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Abstract

Federated Learning (FL) is an increasingly popular machine learning paradigm in
which multiple nodes try to collaboratively learn under privacy, communication and
multiple heterogeneity constraints. A persistent problem in federated learning is
that it is not clear what the optimization objective should be: the standard average
risk minimization of supervised learning is inadequate in handling several major
constraints specific to federated learning, such as communication adaptivity and
personalization control. We identify several key desiderata in frameworks for
federated learning and introduce a new framework, FedMix, that takes into account
the unique challenges brought by federated learning. FedMix has a standard finite-
sum form, which enables practitioners to tap into the immense wealth of existing
(potentially non-local) methods for distributed optimization. Through a smart
initialization that does not require any communication, FedMix does not require
the use of local steps but is still provably capable of performing dissimilarity
regularization on par with local methods. We give several algorithms for solving
the FedMix formulation efficiently under communication constraints. Finally, we
corroborate our theoretical results with extensive experimentation.

1 Introduction

Federated Learning (FL) aims to enable machine learning in the decentralized setting while respecting
data privacy. Application domains of federated learning include healthcare, learning language models
for virtual keyboards, and speech recognition (Kairouz et al., 2019). The promise of federated learning
is that by participating in a distributed training process, clients can learn better machine learning
models than they can using only their own data. The main cost in using federated learning over local
training lies in the network bandwidth used for the distributed training process. Hence, federated
learning must be flexible enough to provide a benefit to users without a prohibitive communication
cost. The standard formulation of FL is to cast it as an optimization problem of the form

min
x∈Rd

[
f(x)

def
= 1

n

n∑
i=1

fi(x)

]
, (ERM)

where fi is the loss function on client i. Thus, the goal of classical FL is for the n clients to collab-
oratively learn a single model, x∗ = arg min f , to be deployed on all clients. Recent development
shows that using a single model for all clients can be severely detrimental to individual performance
on many clients (Yu et al., 2020), defeating the purpose of joining distributed training. Furthermore,
(ERM) offers no clear tunable knobs that can accommodate constraints on the network bandwidth.

* The framework developed in this paper will be renamed from FedMix to FLIX in subsequent versions to
distinguish this work from concurrent publications.

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.



0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.44

0.45

0.46

0.47

0.48

0.49

0.50

re
ca

ll 
@

 5

Two clients, 100 workers
FedMix
FOMAML
Reptile

(a) 100 workers created out of two clients’ data
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Figure 1: Test accuracy of FedMix model for different personalization parameter values, FOMAML
and Reptile. αi = α is set to the value indicated on horizontal axis. FOMAML and Reptile are
independent from the personalization parameter α. Plots correspond to different data splittings.

Can we find a formulation for federated learning that is flexible enough to accommodate the needs of
federated learning, yet also solvable using standard methods?

1.1 Key properties of the FedMixture framework

Our main contribution is FedMixture, a novel and flexible formulation for federated learning: define
αi > 0 to be the personalization parameter for node i, and let xi

def
= minx∈Rd fi(x) be the local

solution to the i-th objective– note that xi can be found by solely running a local optimizer, and hence
computing it requires no communication at all. The FedMixture problem is

min
x∈Rd

f̃(x)
def
= 1

n

n∑
i=1

fi(αix+ (1− αi)xi). (FedMix)

Once we find a solution x∗ of sufficient quality for (FedMix), we deploy Ti(x∗) = αix∗+(1− αi)xi
on node i as its final personalized model. We now enumerate some of the key properties of (FedMix):

• Efficiently solvable as a finite-sum problem. (FedMix) preserves the standard finite-sum for-
mulation of empirical risk minimization. Moreover, it preserves problem structure: we show (in
Section 3) that when the fi are smooth (and/or convex), f̃ is also smooth (resp. convex).

• Adaptive to communication constraints. Communication efficiency is an important concern
in federated learning, as often bandwidth is valuable and limited (Kairouz et al., 2019; Konečný
et al., 2016; Li et al., 2019). Computing xi, a precondition to solving (FedMix), requires no
communication at all, and can be done purely locally on node i. If αi = 0, then no communication
at all is needed to compute the personalized model Ti(x∗). By varying αi between 0 and 1, we
can control the amount of communication needed to compute Ti(x∗). We show (in Section 3)
that given a communication budget of R steps, we can find parameters αi that allows us to solve
(FedMix) in no more than R communication steps.

• Adaptivity to personalization. Our end-goal in federated learning is to generalize well on
each client: this means that the solution deployed on node i should be tailored to its local data
distribution, which may differ from the data distributions on other nodes. In FedMix, varying αi
enables us to amplify or reduce the effect of other objectives on the solution deployed on node i.
In situations where the data on all of the nodes is sufficiently heterogeneous, we set αi to be small
and the effect of other data on node i will be neglibile. On the other hand, when the data on the
different nodes is related we may set αi to be closer to 1. We observe a benefit to varying α in this
manner in practice: Figure 1 shows the effect of varying the αi on real data (see Section 4 for the
details and for other experiments).

FedMix fills a gap that is unsatisfied by existing methods. To the best of our knowledge, there is
no other method for federated learning that is efficiently solvable via standard algorithms and also
adaptive to communication and personalization constraints, and indeed both constraints are important
in practice (Li et al., 2020). We believe the key properties we enumerate can also serve as natural
desiderata in the development of new formulations and methods for federated learning.
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1.2 Related work

Personalization has garnered significant recent interest in federated learning as personalized models
often perform well in practice compared to non-personalized models (Jiang et al., 2019; Yu et al.,
2020). FedMixture is a model mixture method: the personalized solution is a mixture of a global
model and a local model. In recent work, Deng et al. (2020) and Mansour et al. (2020) propose
model mixture methods and prove their statistical benefits, while Zec et al. (2021) introduce a similar
formulation based on the mixture of experts framework. Unfortunately, we show in the supplementary
material that, from the perspective of optimization and without additional data, the formulations in
all three works are trivially minimized at the local minimizers x1, . . . , xn. An alternative to model
mixing is mixing in function space, where we optimize a mixture of objectives rather than a model
mixture. This mixture is often constructed to control model variance: examples of this approach can
be found in (Dinh et al., 2021a;b; Hanzely and Richtárik, 2020; Huang et al., 2021). In FedMix, we
take the model mixture approach as it allows us to use pretraining to better solve the problem while
still regularizing model variance (see Section 2.1). A parallel line of work applies meta-learning
methods like MAML to federated learning (Fallah et al., 2020a; Jiang et al., 2019): in Section 2.2 we
motivate FedMix by taking MAML as our starting point. Chen et al. (2021) discuss the statistical
limits of personalization and show that either solving empirical risk minimization or local training
is optimal, depending on certain problem parameters; However, as of yet there is no single optimal
adaptive algorithm (from the statistical perspective). There are several other techniques in federated
learning that can be combined with our approach for better results, such as clustering (Sattler et al.,
2020) or robust optimization (Reisizadeh et al., 2020).

2 The FedMix formulation

In this section we reintroduce and motivate the FedMix formulation in detail. We define the FedMix
objective as

f̃(x;α1, . . . , αn, x1, . . . , xn)
def
= 1

n

n∑
i=1

fi(αix+ (1− αi)xi), (1)

where αi ∈ (0, 1) is the personalization coefficient for node i and xi is the minimizer of fi, for all
i = 1, 2, . . . , n. We will use f̃(x) to refer to the objective in (1) when the αi and xi are clear from
the context. The FedMixture problem is then

minx∈Rd

[
f̃(x) = 1

n

n∑
i=1

fi(αix+ (1− αi)xi)
]
. (2)

Let α = [α1, . . . , αn] be the vector of the personalization coefficients. If x∗ = x∗(α) is a solution
of (2), we call Ti(x;αi, xi) = αix∗ + (1− αi)xi the deployed solution on node i. Like with f̃ , we
will refer to the deployed solution on node i as Ti(x) when xi and αi are clear from the context.

2.1 Motivation 1: from Local GD to FedMix

The most popular algorithm for solving federated learning problems is the Federated Averaging
algorithm (Kairouz et al., 2019), also known as Local (Stochastic) Gradient Descent (Local GD/SGD).
Local GD alternates steps of local computation on each node with steps of communication and
aggregation. More concretely, the Local GD update is:

xit+1 =

{
xit − γ∇fi(xit) if t mod H 6= 0
1
n

∑n
i=1

[
xit − γ∇fi(xit)

]
if t mod H = 0

, (3)

where H is the number of local steps. Early papers on federated learning (such as e.g. (Konečný et al.,
2016)) motivated local methods as communication-efficient ways of solving (ERM), but subsequent
theoretical development reveals that local methods are, in fact, quite bad solvers for (ERM) whenever
there is significant statistical heterogeneity among the clients (Woodworth et al., 2020). Moreover,
Pathak and Wainwright (2020) show that for the linear least-squares problem, Local GD converges to
a different point than the minimizer of (ERM). More generally, the fixed points of Algorithm (3) can
be very different from the minimizer of (ERM) whenever H > 1 (Malinovskiy et al., 2020). Hanzely
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and Richtárik (2020) show that a mild variant of Local GD can be interpreted as SGD applied on the
nd-dimensional regularized objective fλ defined by

fλ(y1, y2, . . . , yn)
def
=

[
1
n

n∑
i=1

fi(yi) + λ
2n

n∑
i=1

‖yi − ȳ‖2
]
, (4)

where ȳ = 1
n

∑n
i=1 yi is the counterpart of x in (ERM), and where λ is a regularization parameter

determined according to the number of local steps. Objective fλ is the summation of two terms:
the first asks that each node i finds a solution yi that minimizes its local objective well, while the
regularizer ψ(y1, . . . , yn) = 1

2n

∑n
i=1 ‖yi − ȳ‖

2 forces the solutions y1, y2, . . . , yn to be close to
their average ȳ. Hence, Local GD incentivizes finding personalized solutions y1, y2, . . . , yn that
have small population variance. Hanzely and Richtárik (2020) note that as the λ parameter varies
between 0 and∞, the solutions found by Local GD interpolate between the pure local optimal models
(i.e. xi = argminx fi(x)) and the solution of the global problem x∗ (the minimizer of (ERM)).
We observe that the solutions y1, . . . , yn found by Local GD are an implicit mixture of the local
minimizers x1, . . . , xn and the global empirical risk minimizer x∗. Rather than seeking an implicit
mixture of the local and global optimal models, we instead propose to find an explicit mixture of the
local optimal models and a global model: given any global model x (not necessarily the empirical
risk minimizer), we choose coefficients α1, α2, . . . , αn (all between 0 and 1) and then deploy on
node i the mixture

Ti(x) = αix+ (1− αi)xi, (5)
we may then choose x as the best such global model by explicitly solving the optimization prob-

lem min
x∈Rd

1
n

n∑
i=1

fi (αix+ (1− αi)xi), and this is exactly the FedMix formulation. Observe that

coefficients α1, α2, . . . , αn should regularize the population variance of the deployed solutions
T1(x), T2(x), . . . , Tn(x), as in local methods. We show this rigorously for equal αi in Proposition 3.
Our development thus leads us to a natural framework that captures the strength of local methods
while also satisfying the desiderata specified in Section 1.1.

2.2 Motivation 2: from model-agnostic meta-learning to FedMix

We now motivate FedMix differently by starting with personalization via fine-tuning. The ordinary
formulation of the federated learning problem (ERM) asks for a single global model to be used on
all clients. If the clients are sufficiently heterogeneous, a single model may perform badly on many
of them (Jiang et al., 2019). Personalizing a global model to each of the users’ custom data is often
beneficial in practice; For example, Wang et al. (2019) study the benefits of personalizing language
models for a virtual keyboard application used by tens of millions of users. They observe that a
sizeable fraction of the users benefit from personalization. Personalization is often done in two steps:

Step I: initial model training. Find a “good” global model xglobal.
Step II: fine-tuning. Personalize the global model xglobal on each client to get the personalized
local models xi.

Methods that fit this framework are known as finite-tuning approaches: they include the model-
agnostic meta-learning (MAML) family of methods (Finn et al., 2017). In addition to its practical
popularity, recent theoretical investigations reveal that fine-tuning approaches, such as MAML, are
also benefical from a statistical perspective (Chua et al., 2021; Fallah et al., 2021). In MAML, we find
xglobal by optimizing for the loss after a single step of gradient descent, i.e. the MAML objective is

Find xglobal ∈ argmin
x∈Rd

1
n

n∑
i=1

fi(x− γ∇fi(x)), (6)

where γ is a given stepsize. Once xglobal is found, we may then fine-tune it by running gradient
descent for a number of steps on each node i locally using its own objective fi (Finn et al., 2017).
To gain further insight into what fine-tuning is doing, we now consider the case when each fi is a
quadratic function. Because this problem is amenable to analysis, several authors have used it to
study the theoretical properties of MAML (Charles and Konečný, 2021; Collins et al., 2020; Gao and
Sener, 2020), and we follow in their footsteps. Assume that each fi is a quadratic function, suppose
that we have some initial global model x0, and we fine-tune it by running gradient descent for H
steps on node i: the next proposition shows the final iterate is a matrix-weighted average of the initial
solution and the optimal local solution:
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Proposition 1. Suppose that we run gradient descent for H steps on the quadratic objective fi =
1
2x

TAix− bTi x+ c starting from x0 with stepsize γ > 0. Suppose that the stepsize satisfies γ ≤ 1
Li

,
where Li = λmax(Ai). Then the final iterate xHi can be written as

xHi =
(
I − JHi

)
xi + JHi x

0,

where xi minimizes fi and Ji ∈ Rd×d is a matrix with maximum eigenvalue smaller than 1, i.e.
λmax(J) < 1.

The proof of Proposition 1 and all subsequent proofs are relegated to the supplementary. Plugging
the result of Proposition 1 into Equation (6), observe that in MAML we find the initial model x0 by

solving the problem min
x∈Rd

1
n

n∑
i=1

fi((I − Ji)xi + Jix). Hence, MAML is optimizing for a specific

weighted average of the initial model x0 and the local solutions x1, x2, . . . , xn. We thus propose
to dispense with the specific matrix Ji and instead optimize an average weighted with an arbitrary

constant αi: min
x∈Rd

1
n

n∑
i=1

fi(αix+ (1− αi)xi), and this is exactly the FedMix formulation. Observe

that by properly normalizing or whitening the data and tuning αi we may accomplish a similar
effect to multiplying by JHi for any H . This gives FedMix a new interpretation as an approximate
generalized MAML, where we optimize the global model for performance after potentially many
gradient descent steps rather than just a single step.

3 Theory and algorithms

In this section we aim to develop algorithms to solve (FedMix) in a communication-efficient manner.
Before discussing concrete algorithms, we study a few algorithm-independent properties of (FedMix)
that will come in handy for understanding the formulation and proving convergence bounds. The
following proposition shows that the formulation preserves smoothness and convexity. This is in
contrast, for example, to MAML, where the objective may be nonsmooth (Fallah et al., 2020b).
Proposition 2. Suppose that each objective fi is Li-smooth. That is, for any x, y ∈ Rd we have
‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖. Then the FedMix objective f̃ defined in (1) is Lα-smooth for

Lα
def
= 1

n

∑n
i=1 α

2
iLi. If each fi is convex, then f̃ is also convex. If each fi is µi-strongly convex,

then f̃ is µα strongly convex for µα
def
= 1

n

∑n
i=1 α

2
iµi.

Our next result offers some insight into the variance-regularizing effect of the αi: in particular, when
all the αi are equal, increasing α in (FedMix) directly decreases the variance of the deployed local
models from their mean. As discussed in Section 2.1, this is a key property of local descent methods
that the FedMix formulation captures.
Proposition 3. Suppose that α1 = α2 = . . . = αn = β in the FedMix formulation (FedMix). Let
T1(x), T2(x), . . . , Tn(x) be the deployed models defined in (5). If y1, . . . , yn are vectors in Rd and ȳ

is their mean, we define V (y1, . . . , yn) as the population variance V (y1, . . . , yn)
def
= 1

n

n∑
i=1

‖yi − ȳ‖2.

Then, V (T1(x), T2(x), . . . , Tn(x)) = (1− β)
2
V (x1, x2, . . . , xn).

One-shot learning is a learning paradigm where we may use only a single round of communication
to solve the federated learning problem (Guha et al., 2019; Salehkaleybar et al., 2019). When the
personalization parameters are small enough, we can provably solve the FedMix problem with a
single round of communication by computing a certain weighted average of the local solutions
x1, x2, . . . , xn.

Theorem 1. Suppose that each objective fi is Li-smooth, let L̂
def
= 1

n

∑n
i=1 Li. Given the pure local

models x1, x2, . . . , xn, define the weighted average xavg def
=

n∑
i=1

wixi, wi
def
=

α2
iLi
nLα

, Lα
def
= 1

n

n∑
i=1

α2
iLi.

We further define the constants D
def
= max

i,j=1,...,n,i6=j
‖xi − xj‖ , and, V

def
=

n∑
i=1

wi‖xi − xavg‖2. Fix

any ε > 0. Assume that either maxi=1,...,n αi ≤
√

2ε/
√
L̂D, or αi = β for all i and β ≤

√
2ε/
√
L̂D. Then xavg is an ε-approximate minimizer of (FedMix).
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For αi larger than this, we need more communication rounds. In the next subsection, we describe
how distributed gradient descent can be used to solve the problem.

3.1 Distributed gradient descent

The simplest approach to solving (FedMix) is via distributed gradient descent (DGD): given the local
models x1, x2, . . . , xn (precomputed before starting the process) and an initial global model x0, we

run the update xk+1 = xk − γ
n

n∑
i=1

αi∇fi
(
αix

k + (1− αi)xi
)
. The next theorem shows that under

smoothness and strong convexity, DGD converges linearly to the (FedMix) solution.

Theorem 2. Suppose that each fi in (FedMix) is Li-smooth and µi-strongly convex. Define xavg, Lα,
L̂, V and D as in Theorem 1. Suppose that we run DGD for K iterations starting from x0 = xavg.
Then the following hold:

i) If the αi are allowed to be arbitrary, then for αmax
def
= maxi=1,...,n αi we have

f̃(xk) − min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)K
α2

maxL̂D
2 .

ii) Let µ̂
def
= 1

n

∑n
i=1 µi. If αi = β for all i, then

f̃(xk)−minx∈Rd f̃(x) ≤
(

1− µ̂

L̂

)K
β2L̂V

2 . (7)

There are four ways of making the right hand side in (7) (the communication complexity) small:

• Communicate more. Increase the number of communications K.

• Homogeneous data. The variance V =
∑n
i=1 wi‖xi − xavg‖2 can be seen as a measure of data

heterogeneity. More homogeneous data means smaller V , which leads to better performance.

• Train simpler models. Focusing attention on models with smaller L̂ (adjust model design), or
larger µ̂ (e.g., add more regularization).

• Put more weight on local models. If we prefer local models to the global model, then αi is small,
and hence fewer communications are needed to achieve any given accuracy.

Armed with Theorem 2, we make good on our promise in Section 1.1 and show that FedMix can
be solved using any communication budget. Looking at (7) we see that for any fixed ε > 0 we have

f̃(xk)−minx∈Rd f̃(x) ≤ ε as long as β ≤ Aqk, where A =

√
2ε/(L̂V ) and q = 1/

√
1− µ̂

L̂
.

Putting this together leads to the following observations:

• If β = 0, the problem can be solved with 0 communications (i.e. , each device i independently
computes the pure local model xi).

• If 0 < β ≤ A, the problem can be solved with 1 communication (i.e., compute xavg). This follows
from Theorem 1, and also from the more general result Theorem 2 by setting K = 0.

• If A < β ≤ Aq, the problem can be solved with 2 communications (1 communication to compute
x0 = xavg , followed by one iteration of distributed GD).

• If Aqk−1 < β ≤ Aqk, the problem can be solved with k + 1 communications (1 communication
to compute x0 = xavg , followed by K iterations of distributed gradient descent).

• If β = 1, we need 1 communication to compute x0 = xavg , followed by k ≥ L̄
µ̄ log L̄V

2ε iterations
of distributed gradient descent. This is recovers the standard communication complexity of gradient
descent needed to find the optimal solution of the average risk minimization problem (ERM).

In the supplementary, we develop other algorithms for solving (FedMix) such as distributed gradient
descent with compression (Alistarh et al., 2017) and DIANA (Mishchenko et al., 2019). We note that
because (FedMix) has a standard finite-sum form, many more algorithms can be used to solve it, e.g.
accelerated minibatch SGD (Cotter et al., 2011) or SARAH (Nguyen et al., 2017).
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Figure 2: Squared averaged distance 1/n
∑n
i=1 ‖xi−x∗i ‖2 and loss f(x)−f∗ vs. # of communication

rounds of Gradient Descent for logistic regression with l2 regularizer. αi = α is set to the value
indicated in the legend.

4 Experiments

Logistic regression with l2 regularizer. For our first experiment, we consider a setup where each
device runs regularized logistic regression: fi(x) := 1

ki

∑ki
j=1

[
log (1 + exp (−a>i,jx))

]
+ λ/2‖x‖2,

where ai,j ∈ Rd are given for all j = 1 . . . ki, ki is a number of data points associated with device i
and λ is a regularization parameter. The objective is smooth and strongly convex.

We use four datasets from LIBSVM (Chang and Lin, 2011) for this task: w6a, mushrooms,
ijcnn1.bz2, a6a. We set all αi’s to be equal. We divide data equally between all machines
while preserving the order of data points such that i-th machine owns data with indices b(i−1)r/nc+ 1
up to bir/nc, where r is the total number of data points. We set the regularization parameter λ to 0.1.
To find pure local models for each machine we run gradient descent with step size 1/Li, where Li is
fi’s smoothness parameter until the norm of the gradient is below 10−6. We set the condition number
to be κ = 1

n

∑n
i=1 Li/λ.

In this experiment, we investigate the convergence of gradient descent and look into the dependence
between convergence and value of α. As expected, Figure 2 confirms that smaller values of α lead to
better convergence as we rely more on local solutions and thus start closer to the optimal solution.
Also note that the speed of the convergence appears to be constant among different values of α which
is also predicted by our theory as the same α on each machine does not affect the conditioning of
the global problem, see Proposition 2. We also use the DIANA algorithm (Mishchenko et al., 2019)
with the random sparsification (also known as Rand-k compression), where set k coordinates to
zero at random before communicating gradients to the server. Figure 3 shows the effect of varying
k on the convergence of the method in terms of communication rounds. We consider 7 values
of k linearly spaced between 1 and d. Similar to Figure 2, we observe that smaller values of α
lead to better convergence. The rate at which the algorithm converges linearly is controlled by the
compression constant ω + 1 = d/k or the effective conditioning κ(ω+1)/n. This is in line with the
theory for DIANA (Mishchenko et al., 2019). For completeness, we include convex experiments with
unregularized logistic loss, extra experiments for all the combinations of 5 datasets and 3 algorithms
– gradient descent, compressed gradient descent, and DIANA, as well as a detailed experimental
description in the supplementary material.

Generalization experiment 1: Fitting Sine Functions. Following Finn et al. (2017) and Zhou
et al. (2019), we show the generalization advantages of FedMix on the following regression problem.
We define i-th client’s function fi(x) = ai sin (x+ bi), where amplitude ai and phase bi lie in the
intervals [0.1, 0.5] and [0, 2π], respectively. For each client, we fix ai and bi and sample 50 points
uniformly at random from the interval [−5.0, 5.0]. We measure regression fit in terms of mean
squared error (MSE) loss. To train a model each client adopts a neural net with 2 hidden layers of size
40 with tanh activation. Further technical details are deferred to the appendix. For the experiment,
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Figure 3: Loss f(x)− f∗ vs. # of communication rounds of DIANA for logistic regression problem
l2 regularizer, k is a sparsification parameter of Random-k compressor.
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Figure 4: Average MSE vs. personalization parameter α.

we first sample 2 pairs {ai, bi} and each of 200 clients is assigned one pair, we investigate different
proportion– (30, 170), (50, 150), (70, 130), (90, 110). We then train our FedMix formulation with
αi = α = 0.1, 0.2, . . . , 1. For testing for each client generates a new dataset of size 2000. Figure 4
shows average MSE over clients against different values of α for different proportions. As this figure
indicates, optimal α for which test average MSE is minimal can dramatically outperform the edge
cases of either global model for all tasks or personalized model trained only on the local dataset.

Generalization experiment 2: Comparison to FOMAML and Reptile. Inspired by Reddi et al.
(2021), we conduct a similar experiment to compare generalization capabilities, i.e., test accuracy,
of FedMix and its two baselines FOMAML (Finn et al., 2017), and Reptile (Nichol et al., 2018).
For the first experiment (see Figure 1a), we take 500 train data points of two clients (with client
ids ‘00000267’ and ‘00000459’) from the Stack Overflow dataset (TensorFlow Developers, 2021)
and divide them among 100 workers so that there are 50 workers with 10 train data points from the
first client and another 50 with 10 data points from the second client. For the second experiment
(see Figure 1b), a worker gets 90 train data points from a distinct client. For both experiments, each
objective component fi is a cross-entropy loss for multi-class logistic regression. Further technical
details and the hyperparameters tuning for a fair comparison can be found in the supplementary. In
the test phase, for each client, we used a hold-out testing dataset of size 300 (the same dataset has
been used for workers related to the same client in the first experiment). It can be observed from
Figure 1a, that for wide range of αi, αi ∈ {0.2, 0.4, 0.6, 0.8} FedMix exhibits a better generalization
than its classical meta-learning competitors–FOMAML and Reptile, and it can lead to improvement
of up to 11% in recall@5. Figure 1b shows that in the more real-world scenario FedMix outperforms
FOMAML and Reptile while showing its best test accuracy in non-edge α.
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Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019. (Cited
on pages 3 and 4)

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
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5 Basic facts and notation

The convexity of the norm ‖·‖ and Jensen’s inequality implies the triangle inequality for norms:∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥ ≤
n∑
i=1

‖ai‖ . (8)

We say that a function g is Lg-smooth if for any x, y ∈ Rd we have

‖g(x)− g(y)‖ ≤ Lg ‖x− y‖ . (9)

Note that (9) implies

g(x) ≤ g(y) + 〈∇g(y), x− y〉+
Lg
2
‖x− y‖2. (10)

We say that a function g is µg-strongly convex for µg > 0 if for all x, y ∈ Rd we have

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
µg
2
‖x− y‖2. (11)

If (11) holds with µg = 0, we say that g is convex.

We say C ∈ Bd(ω) is a compression operator if C is unbiased (i.e., E[C(x)] = x for all x ∈ Rd) and
if the second moment is bounded as

E‖C(x)− x‖2 ≤ ω‖x‖2 ∀x ∈ Rd. (12)

Note that if C ∈ Bd(ω), then

E‖C(x)‖2 ≤ (1 + ω)‖x‖2,∀x ∈ Rd. (13)

Let f be a convex function. Then the Bregman divergence associated with f for points x, y ∈ Rd is
defined in the following way:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

Nesterov (2018) shows that if function f is convex and L-smooth, then for all x and y

‖∇f(x)−∇f(y)‖2 ≤ 2LDf (x, y). (14)

Let a, b ∈ Rn be arbitrary vectors. Then, it holds that

‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2). (15)
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6 Missing proofs for Sections 2 and 3

This section collects the proofs of all propositions and theorems mentioned in the paper.

6.1 Proof of Proposition 1

In Section 2.2 we provided the motivation for FedMix through the lens of fine-tuning. We used the
following proposition on fine-tuning quadratics:

Proposition 1. Suppose that we run gradient descent for H steps on the quadratic objective fi =
1
2x

TAix− bTi x+ c starting from x0 with stepsize γ > 0. Suppose that the stepsize satisfies γ ≤ 1
Li

,
where Li = λmax(Ai), and suppose that Ai is positive definite. Then the final iterate xHi can be
written as

xHi =
(
I − JHi

)
xi + JHi x

0, (16)

where xi minimizes fi and Ji ∈ Rd×d is a matrix with maximum eigenvalue smaller than 1, i.e.
λmax(J) < 1.

Proof. The gradient descent update is

xt+1
i = xti − γ∇f(xti)

= xti − γ(Aix
t
i − bi)

= (I − γAi)xti + γbi. (17)

Note that because xi minimizes fi, we have ∇fi(xi) = 0 by first-order optimality. Hence,

∇fi(xi) = 0⇐⇒ Aixi = bi.

Using this in (17),

xt+1
i = (I − γAi)xti + γAixi

Subtracting xi from both sides,

xt+1
i − xi = (I − γAi)xti + (γAi − I)xi

= (I − γAi)(xti − xi).

Iterating the above equality for H steps we get

xHi − xi = (I − γAi)H(x0 − xi).

Rearranging the terms we get (16) with Ji
def
= (I − γAi). Observe that when γ ≤ 1

λmax(Ai)
and

λmin(Ai) > 0 we have that λmax(I − γAi) < 1.

6.2 Proofs for algorithm-independent results

6.2.1 Proof of Proposition 2

Proposition 2. Suppose that each objective fi is Li-smooth. That is, for any x, y ∈ Rd we have

‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖ . (18)

Then the FedMix objective f̃ defined in (1) is Lα-smooth for Lα
def
= 1

n

∑n
i=1 α

2
iLi. If each fi is

convex, then f̃ is also convex. If each fi is µi-strongly convex, then f̃ is µα strongly convex for

µα
def
= 1

n

∑n
i=1 α

2
iµi.

Proof. We separate the proofs in two cases: when each fi is smooth, and when each fi is (strongly)
convex.
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(i) Suppose that each fi is Li-smooth, and let x, y ∈ Rd. Then by direct computation we have∥∥∥∇f̃(x)−∇f̃(y)
∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

αi [∇fi(αix+ (1− αi)xi)−∇fi(αiy + (1− αi)yi)]

∥∥∥∥∥
(8)
≤ 1

n

n∑
i=1

‖αi‖ ‖∇fi(αix+ (1− αi)xi)−∇fi(αiy + (1− αi)yi)‖

(18)
≤ 1

n

n∑
i=1

α2
iLi ‖x− y‖ = Lα ‖x− y‖ ,

hence f̃ is Lα-smooth.

(ii) Suppose that each fi is µi-strongly convex for µi ≥ 0 (where µi = 0 corresponds to just convexity).
Then for x, h ∈ Rd we have

f̃(x+ h) =
1

n

n∑
i=1

fi(αi(x+ h) + (1− αi)xi)

(11)
≥ 1

n

n∑
i=1

[
fi(αix+ (1− αi)xi) + 〈∇fi(αix+ (1− αi)xi), αih〉+

µi
2
‖αih‖2

]
=

1

n

n∑
i=1

fi(αix+ (1− αi)xi) +

〈
1

n

n∑
i=1

αi∇fi(αix+ (1− αi)xi), h

〉

+
1

n

n∑
i=1

α2
iµi
2
‖h‖ .

= f̃(x) +
〈
∇f̃(x), h

〉
+
µα
2
‖h‖2,

hence f̃ is µα-strongly convex if all the µi are positive (resp. convex if they are equal to 0).

6.2.2 A proposition for bounding the gradient norm

Proposition 2 provides us with a simple way to bound the gradient of f̃ in terms of the distance to the
optimum xα:
Proposition 4. Define xα as the solution to the FedMix problem (FedMix):

xα
def
= argmin

x∈Rd

[
f̃(x) =

1

n

n∑
i=1

fi(αix+ (1− αi)xi)

]
.

Define Lα as in Proposition 2. Then for any x ∈ Rd we have∥∥∥∇f̃(x)
∥∥∥ ≤ Lα ‖x− xα‖ , (19)

and
f̃(x)− f̃(xα) ≤ Lα

2
‖x− xα‖2. (20)

Proof. By Proposition 2, we have for any x, y ∈ Rd that∥∥∥∇f̃(x)−∇f̃(y)
∥∥∥ ≤ Lα ‖x− y‖ .

Putting y = xα and using that∇f̃(xα) = 0 we get (19). The Lα-smoothness of f̃ implies

f̃(x) ≤ f̃(y) +
〈
∇f̃(y), x− y

〉
+
Lα
2
‖x− y‖2.

Putting y = xα recovers (20).
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6.2.3 Proof of Proposition 3

Proposition 3. Suppose that α1 = α2 = . . . = αn = β in the FedMix formulation (FedMix).
Let T1(x), T2(x), . . . , Tn(x) be the deployed models defined in (5). If y1, . . . , yn are vectors in

Rd and ȳ is their mean, we define V (y1, . . . , yn) as the population variance V (y1, . . . , yn)
def
=

1
n

∑n
i=1 ‖yi − ȳ‖

2. Then,

V (T1(x), T2(x), . . . , Tn(x)) = (1− β)
2
V (x1, x2, . . . , xn).

Proof. By direct computation observe

V (T1(x), T2(x), . . . , Tn(x)) =
1

n

n∑
i=1

∥∥∥∥∥∥Ti(x)− 1

n

n∑
j=1

Tj(x)

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∥∥∥βx+ (1− β)xi −
1

n

n∑
j=1

(βx+ (1− β)xj)

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∥∥∥(1− β)

xi − 1

n

n∑
j=1

xj

∥∥∥∥∥∥
2

= (1− β)2V (x1, x2, . . . , xn).

6.3 Result on one shot averaging

Before proving Theorem 1, we will need the following lemma which shows that the gradient of the
FedMix and the functional suboptimality can be bound using a weighted average of the iterate norms:
Lemma 1. Suppose that each fi is Li-smooth. Then for any x ∈ Rd we have,∥∥∥∇f̃(x)

∥∥∥ ≤ 1

n

n∑
i=1

α2
iLi ‖x− xi‖ , (21)

and,

f̃(x) ≤ 1

n

n∑
i=1

fi(xi) +
1

2n

n∑
i=1

α2
iLi‖x− xi‖

2
. (22)

Proof. Using the fact that ∇fi(xi) = 0 for all i, and applying the triangle inequality (8) and the
Li-smoothness of fi, we get

‖∇f(x)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

αi∇fi(αix+ (1− αi)xi)

∥∥∥∥∥
=

∥∥∥∥∥ 1

n

n∑
i=1

αi [∇fi(αix+ (1− αi)xi)−∇fi(xi)]

∥∥∥∥∥
(8)
≤ 1

n

n∑
i=1

|αi| ‖∇fi(αix+ (1− αi)xi)−∇fi(xi)‖

(9)
=

1

n

n∑
i=1

α2
iLi ‖x− xi‖ .

Using Li-smoothness of fi and that∇fi(xi) = 0, we get
fi(αix+ (1− αi)xi) = fi(xi + αi(x− x0))

(10)
≤ fi(xi) + 〈∇fi(xi), αi(x− xi)〉+

α2
iLi
2
‖x− xi‖2

= fi(xi) +
α2
iLi
2
‖x− xi‖2.
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Averaging the above inequality yields (22).

As communicated earlier in the paper, we can solve (FedMix) by taking a weighted average of the
pure local models xi if the αi are small enough. This is a consequence of preprocessing step where
we compute xi, which is communication-free, and also a consequence of the new formulation, where
for small α the FedMix objective is less responsive to argument change (see Proposition 2).

Theorem 1. Suppose that each objective fi is Li-smooth, let L̂
def
= 1

n

∑n
i=1 Li. Given the pure local

models x1, x2, . . . , xn, define the weighted average

xavg def
=

n∑
i=1

wixi, wi
def
=
α2
iLi
nLα

, Lα
def
=

1

n

n∑
i=1

α2
iLi. (23)

We further define the constants

D
def
= max

i,j=1,...,n,i 6=j
‖xi − xj‖2 , and V

def
=

n∑
i=1

wi‖xi − xavg‖2 (24)

Fix any ε > 0. Assume that either maxi=1,...,n αi ≤
√

2ε/
√
L̂D, or αi = β for all i and β ≤

√
2ε/
√
L̂D. Then xavg is an ε-approximate minimizer of Problem (FedMix). That is,

f̃(xavg;α1, . . . , αn, x1, . . . , xn)− min
x∈Rd

f̃(x;α1, . . . , αn, x1, . . . , xn) ≤ ε.

Proof. Lemma 1 provides the following bound on the suboptimality of any point x:

f̃(x) ≤ 1

n

n∑
i=1

fi(xi) + Eα(x), (25)

where

Eα(x)
def
=

1

2n

n∑
i=1

α2
iLi ‖x− xi‖

2
. (26)

Note that since the vectors {xi} are known, the expression Eα(x) can be minimized in x, leading to a
weighted average of the pure local models:

xavg
def
=

n∑
i=1

wixi, wi
def
=
α2
iLi
nLα

, Lα
def
=

1

n

n∑
i=1

α2
iLi. (27)

Note that xavg, can be computed using a single communication round. By plugging (27) into (26),
we can evaluate the error of the average model:

E(xavg) =
Lα
2

n∑
i=1

wi ‖xavg − xi‖2 =
LαVα

2
, (28)

where

Vα
def
=

n∑
i=1

wi ‖xavg − xi‖2 = E‖xi − Exi‖2 (29)

can be interpreted as the variance of the local optimal models {xi}. We now give two ways how
E(xavg) can be bounded:

• Assume the customization parameters {αi} are allowed to be arbitrary. Since xavg is in the
convex hull of the set {x1, . . . , xn}, we have ‖xavg − xi‖ ≤ maxi,j ‖xi − xj‖. Therefore,

Vα ≤ D
def
= max

i,j
‖xi − xj‖2 . (30)

Moreover,

Lα =
1

n

n∑
i=1

α2
iLi ≤ α2

maxL̄, (31)

where αmax
def
= maxi αi and L̄ def

= 1
n

∑n
i=1 Li. By plugging (30) and (31) into (28), we get

E(xavg) ≤ α2
maxL̄D

2
. (32)
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Algorithm 1 Distributed gradient descent for FedMix.

Require: Number of communication rounds K, stepsize γ, initial point x0

1: for k = 0, 1, . . . ,K − 1 do
2: for i = 1, . . . , n in parallel do
3: Compute ∇f̃i(xk) = αi∇fi

(
αix

k + (1− αi)xi
)

and communicate it to server.
4: Average and broadcast the new iterate

xk+1 = xk − γ

n

n∑
i=1

∇f̃i(xk).

• Assume the customization parameters {αi} are all equal: αi = β for all i. Thenwi = Li∑
j Lj

,

and hence xavg and Vα = V are independent of β. Since Lα = β2L̄, by plugging these
expressions into (28), we get

E(xavg) ≤ β2L̄V

2
. (33)

Note that V ≤ D.

Plugging (32) or (33) into (25) yields the following observation: fix any ε > 0 and assume one of the
following conditions holds

• αmax ≤
√

2ε
LD .

• αi = β for all i and β ≤
√

2ε
LV .

Then the weighted average of the local optimal models xavg satisfies

f̃(xavg) ≤ 1

n

n∑
i=1

fi(xi) + ε ≤ 1

n

n∑
i=1

fi(x
α) + ε = f̃(xα) + ε,

where xα = argminx∈Rd f̃(x).

6.4 Distributed Gradient Descent

Gradient descent is a simple but yet informative way to solve many optimization problems. Here we
provide the proof for the convergence of DGD.

Theorem 2. Suppose that each fi in (FedMix) is Li-smooth and µi-strongly convex. Define xavg, Lα,
L̂, V and D as in Theorem 1. Suppose that we run DGD for K iterations starting from x0 = xavg.
Then the following hold:

i) If the αi are allowed to be arbitrary, then for αmax
def
= maxi=1,...,n αi we have

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)k
α2

maxL̂D

2
.

ii) If αi = β for all i, then

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µ̂

L̂

)k
β2L̂V

2
,

where µ̂
def
= 1

n

∑n
i=1 µi.
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Proof. Recall the standard result that gradient descent for an L-smooth and µ-strongly convex
objective g satisfies for any initial point x0

g(xk)− g∗ ≤ (1− γµ)
k

(g(x0)− g∗) , (34)

where g∗ = minx∈Rd g(x). For a proof, see (Nesterov, 2018). Note that by Proposition 2 we have
that f̃ is Lα-smooth and µα-strongly convex. Specializing (34) to this case yields

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)k (
f̃(x0)− min

x∈Rd
f̃(x)

)
(35)

Note that our initialization is the same xavg from Theorem 1. Plugging the bounds of that theorem
into (35) yields the theorem’s claims.
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Algorithm Assumption Convergence guarantee Corollary

DCGD smoothness, str cvx E‖xk − x∗‖2 ≤ (1− γ0µ)kC1 + C2 1
E[f̃(xk)− f̃∗] ≤ ((1− γ0µ)kC1 + C2)α2

DIANA smoothness, str cvx E‖xk − x∗‖2 ≤ (1− ρ)kC 2
E[f̃(xk)− f̃∗] ≤ (1− ρ)kCα2

DCGD smoothness, cvx E[f̃(xk)− f̃(x∗)] ≤ 1
kC1α

2 + C2α 3
DIANA smoothness, cvx E[f̃(xk)− f̃(x∗)] ≤ 1

k (C1α
2 + C2α) 4

DCGD smoothness min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ (1+C1γ
2
0)
k
C2

γ0k
α2 5

DIANA smoothness E‖∇f̃(x̂)‖2 ≤ C
k α

2 6

Table 1: Convergence results for Distributed Compressed Gradient Descent and DIANA in different
settings. All the constants are independent of α.

7 Other algorithms

In this section, we include additional algorithms to solve (FedMix) formulation, namely, DCGD (Gor-
bunov et al., 2019) and DIANA (Mishchenko et al., 2019). In Table 1, we display convergence
guarantees for these algorithms. One can see that similarly to our results in Section 3 both of the
algorithms requires less iterations in terms of convergence in both local deploy iterates Ti(xk)’s and
functional value f̃(xk). In addition, for the standard (ERM) problem, i.e., α = 1, we recover the best
known convergence guarantees. Below, we provide a derivation of these claims.

7.1 Strongly convex objectives

7.1.1 DCGD

We firstly introduce the DCGD algorithm followed by general convergence results that we later
exploit to obtain a convergence guarantee for DCGD applied to (FedMix).

Algorithm 2 Distributed Compressed Gradient Descent with different noise levels ωi

Require: x0 ∈ Rd, learning rate γ
1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for i = 1, . . . , n in parallel do
4: Evaluate ∇fi(xk)
5: gki = Ci(∇fi(xk))

6: gk = 1
n

∑n
i=1 g

k
i

7: xk+1 = xk − γgk

Lemma 2. Suppose each fi is Li-smooth and convex, and f is L-smooth. Let Ci : Rd → Rd be
randomized compression operators satisfying Ci ∈ Bd(ωi). Let gk = 1

n

∑n
i=1 Ci(∇fi(xk)). Then

E‖gk −∇f(x∗)‖2 ≤ 2

(
L+

2 max{Liωi}
n

)
Df (xk, x∗) + σDCGD, (36)

where σDCGD = 2
n2

∑n
i=1 ωi‖∇fi(x∗)‖2.

Proof. By applying bias-variance decomposition to E‖gk −∇f(x∗)‖2, we get

E‖gk −∇f(x∗)‖2 = ‖∇f(xk)−∇f(x∗)‖2 + E‖gk −∇f(xk)‖2.

Since all functions are convex holds, function f as a linear combination of convex functions is
also convex. That is why the first term enjoys the ’classic’ bound for convex and smooth functions
expressed in Bregman divergence between xk and x∗ (see inequality 14):

‖∇f(xk)−∇f(x∗)‖2 ≤ 2LDf (xk, x∗). (37)
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We start looking into the second term by expanding the quadratic:

E‖gk −∇f(xk)‖2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇fi(xk))− 1

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

(Ci(∇fi(xk))−∇fi(xk))

∥∥∥∥∥
2

=
1

n2

n∑
i=1

E‖Ci(∇fi(xk))−∇fi(xk)‖2+

1

n2

∑
i 6=j

E〈Ci(∇fi(xk))−∇fi(xk), Cj(∇fj(xk))−∇fj(xk)〉.

Since Ci ∈ B(ωi) ∀i is drawn independently, the expected value of each scalar product in the second
sum becomes the scalar product of expected values, each of which is zero due to unbiasedness of a
compression operator (see Section 5):

E〈Ci(∇fi(xk))−∇fi(xk), Cj(∇fj(xk))−∇fj(xk)〉
= 〈ECi(∇fi(xk))−∇fi(xk)︸ ︷︷ ︸

=0

,ECj(∇fj(xk))−∇fj(xk)〉︸ ︷︷ ︸
=0

= 0.

Then, we apply 12 (the second property of compressed operators) to get the final upper-bound on
E‖gk −∇f(xk)‖2.

E‖gk −∇f(xk)‖2 =
1

n2

n∑
i=1

E‖Ci(∇fi(xk))−∇fi(xk)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)‖2.

Curiously but not surprisingly, the result resembles the Law of large numbers (indeed, if each squared
gradient norm and noise level are bounded above by values R and ω0 respectively, then the right side
is bounded by ω0R

n , which converges to zero as n converges to infinity), what partially verifies the
correctness of the proof. The error E‖gk −∇f(xk)||2 is now estimated by squared gradient norms
at iterate xk, which is, in general, a random point generated by CGD. Since we already have some
dependence on Bregman divergence in 37, which perfectly fits assumptions for unified theories from
papers Gorbunov et al. (2019) and Khaled et al. (2020) required in later theorems, we express the
term in the right side of the last inequality in Bregman divergence, too. By subtracting and adding the
same vector∇fi(x∗) inside the norm operator we get

1

n2

n∑
i=1

ωi‖∇fi(xk)‖2 =
1

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗) +∇fi(x∗)‖2

≤ 2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 +
2

n2

n∑
i=1

ωi‖∇fi(x∗)‖2,

where in the second line we used (15). Applying again the bound from 14 to the first term and using
the linearity of Bregman divergence we have

2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 ≤
2

n2

n∑
i=1

ωi2LiDfi(x
k, x∗)

≤ 4 max{Liωi}
n2

n∑
i=1

Dfi(x
k, x∗) =

4 max{Liωi}
n

Df (xk, x∗).

Incorporation of the results above gives the statement.
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Proposition 5. Suppose each fi is Li-smooth and µi-strong. Assume αi ≡ α ∈ R for all i. For any
x0 ∈ Rd, it holds that

‖x0 − x∗‖2 ≤ 1

µ
Li‖x0 − xi‖2. (38)

Proof.

‖x0 − x∗‖2
(11)
≤ 2

µα
(f̃(x0)− f̃(x∗))

Proposition 2
=

2

µα2
(f̃(x0)− f̃(x∗))

(25)
≤ 2

µα2
Eα(x0)

(26)
=

1

µα2

1

n

n∑
i=1

Liα
2‖x0 − xi‖2 =

1

µ
Li‖x0 − xi‖2.

Proposition 6. Suppose each fi is Li-smooth and µi-strong. Assume αi ≡ α ∈ R for all i. Then,

‖xi − x∗‖2 ≤
maxi Li

µ
max
i,j
‖xi − xj‖2. (39)

Proof. According to Proposition 5, for any x∗l where l ∈ {1, . . . , n} it follows that

‖xl − x∗‖2 ≤
1

µ
Li‖xl − xi‖2 ≤

1

µ
max
i
Li · ‖xl − xi‖2 ≤

1

µ
max
i
Li ·max

i,j
‖xj − xi‖2.

Taking the average of both sides finishes the proof.

Theorem 3. Assume all conditions of Lemma 2 hold, and each function fi is µi-strongly convex.
Then, if γ ≤ 1

Lα+
2max{Liα2

i
ωi}

n

, then

E‖xk − x∗‖2 ≤ (1− γµα)k‖x0 − x∗‖2 +
2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2. (40)

Proof. The lemma is a direct corollary of Theorem 4.1 from Gorbunov et al. (2019) and Proposition 2
with constants A = Lα +

2 max{Liα2
iωi}

n , D1 = σDCGD = 2
n2

∑n
i=1 ωi‖∇[fi(Ti(x

∗))]‖2,
B = 0, σ2

k ≡ 0, ρ = 1, C = 0, D2 = 0.

Corollary 1. Assume all conditions of Theorem 3 hold, and αi ≡ α ∀i. If γ = 1

α2(L+
2ωmaxi Li

n )
=

γ0
1
α2 , then

E‖xk − x∗‖2 ≤ (1− γ0µ)k
1

µ
Li‖x0 − xi‖2 +

2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n
(41)

and

E[f̃(xk)− f̃∗] ≤ ((1− γ0µ)kC1 + C2)α2, (42)

where C1 = Li
2µLi‖x0 − xi‖2 and C2 =

Liγ0ω(maxi Li)
2 maxi,j ‖xi−xj‖2
µ2n

.

Proof. Notice that
n∑
i=1

ωi‖∇[fi(αix
∗ + (1− αi)xi)]‖2 =

n∑
i=1

ωi‖αi∇fi(αix∗ + (1− αi)xi)‖2

= ωα2
n∑
i=1

‖∇fi(αx∗ + (1− α)xi)‖2
∇fi(xi)=0

= ωα2
n∑
i=1

‖∇fi(αx∗ + (1− α)xi)−∇fi(xi)‖2

(9)
≤ ωα2

n∑
i=1

Li‖α(x∗ − xi)‖2 ≤ ωα4 max
i
Lin‖x∗ − xi‖2

(39)
≤ ωα4n(maxi Li)

2

µ
max
i,j
‖xi − xj‖2.
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This brings us to the following bound on the neigbourhood:

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2 =

2γ0

α4µn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

≤ 2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n
.

(43)

We further investigate the rate of convergence

1− γµα
Proposition 2

= 1− γ0
1

α2
µα2 = 1− γ0µ. (44)

As can be seen, the rate of convergence does not depend on α.

Combining last two results we obtain the following dependence on α for CGD convergence:

E‖xk − x∗‖2

(40)
≤ (1− γµα)k‖x0 − x∗‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(44)
= (1− γ0µ)k‖x0 − x∗‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(38)
≤ (1− γ0µ)k

1

µ
Li‖x0 − xi‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(43)
≤ (1− γ0µ)k

1

µ
Li‖x0 − xi‖2 +

2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n

= (1− γ0µ)kC̃1 + C̃2,

(45)

where constants C̃1 = 1
µLi‖x0 − xi‖2 and C̃2 =

2γ0ω(maxi Li)
2 maxi,j ‖xi−xj‖2
µ2n

do not depend on α.

In terms of suboptimality convergence for CGD we have

E[f̃(xk)− f̃∗]
(10)
≤ Lα

2
E‖xk − x∗‖2 Lα def

=
L

2
α2E‖xk − x∗‖2

(45)
≤ ((1− γ0µ)kC1 + C2)α2,

(46)
where C1 = C̃1L

2 and C2 = C̃2L
2 .

7.1.2 DIANA

We follow the same procedure as for the previous subsection. Below, we introduce DIANA algorithm,
followed by general theorem, which is then applied to (FedMix).

Algorithm 3 DIANA with different noise levels ωi

Require: x0, h0
1, . . . , h

0
n ∈ Rd, h0 = 1

n

∑n
i=1 h

0
i

1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for i = 1, . . . , n in parallel do
4: ∆k

i = ∇fi(xk)− hki
5: Sample ∆̂k

i ∼ Ci(∆k
i )

6: hk+1
i = hki + βi∆̂

k
i

7: ĝki = hki + ∆̂k
i

8: gk = 1
n

∑n
i=1 ĝ

k
i = hk + 1

n

∑n
i=1 ∆̂k

i

9: xk+1 = xk − γgk
10: hk = 1

n

∑n
i=1 h

k+1
i = hk + 1

n

∑n
i=1 βi∆̂

k
i
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Lemma 3. Suppose each fi is Li-smooth and convex, and f is L-smooth. Let Ci : Rd → Rd be
randomized compression operators satisfying Ci ∈ Bd(ωi). Let gk = 1

n

∑n
i=1 h

k
i +Ci(∇fi(xk)−hki ).

Then

E‖gk −∇f(x∗)‖2 ≤ 2

(
L+

2 max{Liωi}
n

)
Df (xk, x∗) +

2

n
σ2
k, (47)

where σ2
k = 1

n

∑n
i=1 ωi‖hki −∇fi(x∗)‖2.

Proof. We start with bias-variance decomposition:
E‖gk −∇f(x∗)‖2 = ‖∇f(xk)−∇f(x∗)‖2 + E‖gk −∇f(xk)‖2, (48)

where the first term in RHS bounded due to convexity and smoothness of function f :

‖∇f(xk) − ∇f(x∗)‖2
(14)
≤ 2LDf (xk, x∗). Function f is, indeed, convex as a linear combina-

tion of convex functions fi.

When expanding the second term in RHS of equation 48, we encounter scalar products, each of which
is zero in expectation due to independence of Ci for all i and unbiasedness of a compression operator
(see the definition in Section 5).
E‖gk −∇f(xk)‖2

= E

∥∥∥∥∥ 1

n

n∑
i=1

(hki + Ci(∇fi(xk)− hki ))− 1

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇fi(xk)− hki )− (∇fi(xk)− hki )

∥∥∥∥∥
2

=
1

n2

n∑
i=1

E‖Ci(∇fi(xk)− hki )− (∇fi(xk)− hki )‖2

+
1

n2

∑
i 6=j

E〈Ci(∇fi(xk)− hki )− (∇fi(xk)− hki ), Cj(∇fj(xk)− hkj )− (∇fj(xk)− hkj )〉︸ ︷︷ ︸
=0

.

Then, we apply bounded variance property of compression operators:

E‖gk −∇f(xk)‖2 =
1

n2

n∑
i=1

E‖Ci(∇fi(xk)− hki )− (∇fi(xk)− hki )‖2

≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)− hki ‖2.

We subtract and add ∇fi(x∗) inside each norm operator to split ∇fi(xk) and hki from each other
using (15):

E‖gk −∇f(xk)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)− hki ‖2

=
1

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)− (hki −∇fi(x∗))‖2

≤ 2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 +
2

n2

n∑
i=1

ωi‖hki −∇fi(x∗)‖2

While leaving the second term in the last line unchanged (it is basically 2σk/n), we apply (14) to each
norm of gradient differences in the first term and use max-function over Liωi to take out Bregman
divergences:

2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 ≤
2

n2

n∑
i=1

ωi2LiDfi(x
k, x∗)

≤ 4 max{ωiLi}
n2

n∑
i=1

Dfi(x
k, x∗) =

4 max{ωiLi}
n

Df (xk, x∗),
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where in the last part we used linearity property of Bregman divergence. It remains to incorporate all
results to get the statement.

Lemma 4. Assuming all conditions of Lemma 3 hold, let hk+1
i = hki + βiCi(∇fi(xk) − hki ) and

βi ≤ 1
ωi+1 , where i ∈ {1, . . . , n}. Then,

σ2
k+1 ≤ (1−minβi)σ

2
k + 2 max{βiωiLi}Df (xk, x∗). (49)

Proof. Gorbunov et al. (2019) state for βi ≤ 1
ωi+1

E‖hk+1
i −∇fi(x∗)‖2 ≤ (1− βi)‖hki −∇fi(x∗)‖2 + 2βiLiDfi(x

k, x∗). (50)

From this it follows that

σ2
k+1 =

1

n

n∑
i=1

ωi‖hk+1
i −∇fi(x∗)‖2

≤ 1

n

n∑
i=1

(1− βi)ωi‖hki −∇fi(x∗)‖2 +
1

n

n∑
i=1

2βiωiLiDfi(x
k, x∗)

≤ (1−minβi)σ
2
k +

1

n

n∑
i=1

2βiωiLiDfi(x
k, x∗)

≤ (1−minβi)σ
2
k + 2 max{βiωiLi}

1

n

n∑
i=1

Dfi(x
k, x∗)

= (1−minβi)σ
2
k + 2 max{βiωiLi}Df (xk, x∗).

Theorem 4. Assume all conditions of Lemmas 3, 4 hold, and each function fi is µi-strongly convex.
If γ ≤ 1

Lα+
2max{Liα2

i
ωi}

n +
4max{βiωiLiα2

i
}

nmin βi

, then

E[Dk] ≤ max

{
(1− γµα)k,

(
1− 1

2
minβi

)k}
D0, (51)

where Dk = ‖xk − x∗‖2 + 4
nmin βi

γ2σ2
k and Lα is defined as in Proposition 2.

Proof. The lemma is a direct corollary of Theorem 4.1 from Gorbunov et al. (2019), 3 and 4
and strong convexity with constants: A = Lα +

2 max{Liα2
iωi}

n , B = 2
n , D1 = 0, ρ = minβi,

C = max{βiωiLiα2
i }, D2 = 0,M = 4

nmin βi
= 2B

ρ ≥
4(1+maxωi)

n .

Corollary 2. Assume all conditions of Theorem 4 hold and αi ≡ α ∀i. If γ =
1
α2 · 1

L+
2max{Liωi}

n +
4max{βiωiLi}

nmin βi

=: γ0
1
α2 , then

E‖xk − x∗‖2 ≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2

(52)
and

E[f̃(xk)]− f̃∗ ≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}
Cα2, (53)

where C = Li
2

(
1 + 4

nmin βi
γ2

0ωiL
2
i

)
1
µLi‖x0 − xi‖2.
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Proof. Let us investigate the quantity D0. We assume memory hi0 in DIANA algorithm is equal to
∇[fi(Ti(x

0))] for i ∈ {1, . . . , n}. Plugging in definitions and initializations we obtain expanded
definition of D0:

D0 def
=‖x0 − x∗‖2 +

4

nminβi
γ2σ2

0

γ=γ0
1
α2

= ‖x0 − x∗‖2 +
4

nminβi
γ2

0

1

α4
σ2

0

σ2
0 def
= ‖x0 − x∗‖2 +

4

nminβi
γ2

0

1

α4

1

n

n∑
i=1

ωi‖hi0 −∇[fi(Ti(x
∗))]‖2

hi0initialisation
= ‖x0 − x∗‖2 +

4

nminβi
γ2

0

1

α4

1

n

n∑
i=1

ωi‖∇[fi(Ti(x
0))]−∇[fi(Ti(x

∗))]‖2

.

We further upper bound the sum in the last term using smoothness properties of functions fi:

1

n

n∑
i=1

ωi‖∇[fi(Ti(x
0))]−∇[fi(Ti(x

∗))]‖2

=
1

n

n∑
i=1

ωi‖∇[fi(αx
0 + (1− α)x∗i )]−∇[fi(αx

∗ + (1− α)x∗i )]‖2

=
1

n

n∑
i=1

ωi‖α(∇fi(αx0 + (1− α)x∗i )−∇fi(αx∗ + (1− α)x∗i ))‖2

= α2 1

n

n∑
i=1

ωi‖∇fi(αx0 + (1− α)x∗i )−∇fi(αx∗ + (1− α)x∗i )‖2

≤ α2 1

n

n∑
i=1

ωiL
2
i ‖α(x0 − x∗)‖2 = α4ωiL2

i ‖x
0 − x∗‖2.

Plugging this result back into the definition of D0 and applying further bounds we get

D0 ≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
‖x0 − x∗‖2

(11)
≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
2

µα
(f̃(x0)− f̃(x∗))

Proposition 2
=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
2

µα2
(f̃(x0)− f̃(x∗))

(25)
≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
2

µα2
Eα(x0)

(26)
=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µα2

1

n

n∑
i=1

Liα
2‖x0 − xi‖2

=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2,
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what shows that D0 can be upper bounded by value independent of α. Since Mγ2σ2
k ≥ 0 Dk =

‖xk − x∗‖2 +Mγ2σ2
k ≥ ‖xk − x∗‖2, and that is why

E‖xk − x∗‖2 ≤ EDk ≤ max

{
(1− γµα)k,

(
1− 1

2
minβi

)k}
D0

= max

{
(1−

(
γ0

1

α2

)
(µα2))k,

(
1− 1

2
minβi

)k}
D0

= max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}
D0

≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2,

what means that the convergence of iterates is completely independent from α. To derive the result
for the convergence of functional values we use Lα-smoothness of function f̃ (see Proposition 2):
E[f̃(xk)]− f̃∗ ≤ Lα

2 E‖xk − x∗‖2 = α2 Li
2 E‖xk − x∗‖2.

7.2 Convex objectives

7.2.1 DCGD

As for the previous section, we first introduce the algorithm, followed by general theorem, which is
then applied to (FedMix).

Theorem 5. Assume all conditions of Lemma 2 hold. Let 0 < γ ≤ 1

4

(
Lα+

2max{Liωiα2
i
}

n

) . Then,

E[f̃(xk)− f̃(x∗)] ≤ 2(f̃(x0)− f̃(x∗))

k
+
‖x0 − x∗‖2

γk
+ 2γσDCGD, (54)

where xk = (1/k)
k∑
j=1

xj .

Proof. The theorem is a corollary of Corollary 4.1 from Khaled et al. (2020) with constants

A = Lα +
2 max{Liωiα2

i }
n

, B = 0, σ2
k ≡ 0,

ρ = 1, C = 0, D2 = 0,

D1 = σDCGD =
2

n2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

=
2

n2

n∑
i=1

ωiα
2
i ‖∇fi(Ti(x∗))‖2.
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Corollary 3. Assume all conditions of Lemma 2 hold. Let αi = α, ωi = ω for all i, γ =
1

4(Li+ 2ωmaxi Li
n )α2

and sup
α∈[0,1]

inf
x∗∈X

‖x0 − x∗‖ = R. Then,

E[f̃(xk)− f̃(x∗)]

≤ α2 · 2

k

(
Li‖x0 − xi‖2 + 2

(
Li +

2 max{Liωi}
n

)
R2

)
+ α · ωmaxi Li

nLi + 2ωmaxi Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)

=
1

k
C1α

2 + C2α.

Proof. Let us investigate f̃(x0)− f̃(x∗). Let αi ≡ α ∈ R for all i. Since min 1
n

∑n
i=1 fi(Ti(x)) ≥

1
n

∑n
i=1 min fi(Ti(x)) = 1

n

∑n
i=1 min fi(x) and each fi is Li-smooth, we get

f̃(x0)− f̃(x∗) ≤ f̃(x0)− 1

n

n∑
i=1

fi(xi)

=
1

n

n∑
i=1

fi(αx
0 + (1− α)xi)− f(xi)

(9)
≤ 1

n

n∑
i=1

Li‖α(x0 − xi)‖2

= α2Li‖x0 − xi‖2.

This observation shows that the dependence between f̃(x0)−f̃(x∗) and α is quadratic. f̃(x0)−f̃(x∗)
diminishes to zero as α goes to zero what proves our intuition: the closer α is to zero, the less steps
the algorithm needs to make till convergence.

We verify that the stepsize in the corollary fits the restriction on stepsizes in Theorem 5.

1

γ
= 4

(
Lα +

2 max{Liωiα2
i }

n

)
αi≡α, Proposition 2

= 4

(
Li +

2 max{Liωi}
n

)
· α2.

(55)

Further assuming that inf
x∗∈X

‖x0− x∗‖ is bounded above for all α ∈ [0, 1] by value R ∈ R, we obtain

the following result:

1

γ
‖x0 − x∗‖2 ≤ 4

(
Li +

2 max{Liωi}
n

)
R2α2.

The neighborhood governing term is γσDCGD. Let us assume αi ≡ α and ωi ≡ ω for all i.

σDCGD =
2

n2

n∑
i=1

ωiα
2
i ‖∇fi(Ti(x∗))‖2

Ti(x) def
=

2

n2

n∑
i=1

ωiα
2
i ‖∇fi(αix∗ + (1− αi)xi)‖2

αi≡α, ωi≡ω
=

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)‖2
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Since x∗i minimizes fi(x), ∇fi(x∗i ) = 0. Thus,

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)‖2

=
2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)−∇fi(xi)‖2

Inequality (14) further bounds each norm of gradient differences.

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)−∇fi(xi)‖2

≤ 4ωα2

n2

n∑
i=1

Li(fi(αix
∗ + (1− αi)xi)− fi(xi))

≤ 4ωα2 maxi Li
n2

n∑
i=1

(fi(αix
∗ + (1− αi)xi)− fi(xi))

=
4ωα2 maxi Li

n

(
f̃(x∗)− 1

n

n∑
i=1

fi(xi)

)
In the rightmost term point x∗ depends on α because it is an optimal point of a problem dependent
on α. But the observation below explicitly reveals the dependence. Since each fi is convex,

f̃(x) =
1

n

n∑
i=1

fi(αx+ (1− α)xi)

≤ α 1

n

n∑
i=1

fi(x) + (1− α)
1

n

n∑
i=1

fi(xi).

Taking the minimum of both sides of inequality above we get to

f̃(x∗) ≤ αf̃(x∗(0)) + (1− α)
1

n

n∑
i=1

fi(xi).

We established that

σDCGD ≤
4ωmaxi Li

n

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α3. (56)

Together with equality 55 it brings us to the following bound on the neighbourhood:

γσDCGD ≤
ωmaxi Li

nLi + 2ωmaxi Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α = Cα,

where C does not depend on α.

7.2.2 DIANA

As for the previous section, we first introduce the algorithm, followed by general theorem, which is
then applied to (FedMix).
Theorem 6. Assume all conditions of Lemmas 3 and 4 hold. Let 0 < γ ≤

1

4

(
Lα+

2maxi{Liα2
i
ωi}

n +
4maxi{βiωiLiα2

i
}

nmini βi

) . Then,

E[f̃(xk)− f̃(x∗)] ≤
(

2(f̃(x0)− f̃(x∗)) +
4γ

nminβi
σ2

0 +
1

γ
‖x0 − x∗‖2

)
1

k
. (57)
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Proof. The theorem is a corollary of Corollary 4.1 from Khaled et al. (2020) with constants

A = Lα +
2 max{Liωiα2

i }
n

,B =
2

n
,D1 = 0,

ρ = min
i
βi, C = max

i
{βiωiLiα2

i }, D2 = 0.

Corollary 4. Assume all conditions of Lemmas 3 and 4 hold. Let αi = α, ωi = ω, h0
i = 0 ∈ Rd for

all i, γ = 1

4(Li+ 6ωmaxi Li
n )α2

, sup
α∈[0,1]

inf
x∗∈X

‖x0 − x∗‖ = R. Then,

E[f(xk)− f(x∗)] ≤ 1

k
(C1α

2 + C2α),

where C1 = 2
(
Li‖x0 − xi‖2 + 2

(
Li + 6ωmaxi Li

n

)
R2
)

and C2 =

ω(ω+1) maxi Li
(nLi+6ωmaxi Li)

(
f̃(x∗(0))− 1

n

∑n
i=1 fi(xi)

)
.

Proof. Let us investigate stepsize γ. The statement of the corrolary requires the stepsize equals its
maximum value 1

4

(
Lα+

2maxi{Liα2
i
ωi}

n +
4maxi{βiωiLiα2

i
}

nmini βi

) . Since αi = α, ωi = ω, βi = 1
1+ω for all

i,

γ =
1

4
(
Lα +

2 maxi{Liα2
iωi}

n +
4 maxi{βiωiLiα2

i }
nmini βi

) =
1

4
(
Li + 6ωmaxi Li

n

)
α2
. (58)

From definitions it follows that σ2
0 = n

2σDCGD if h0
i = 0 ∈ Rd. Thus,

σ2
0 =

n

2
σDCGD

(56)
≤ 2ωmax

i
Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α3.

That is why

4γ

nminβi
σ2

0

βi=
1
ω+1

=
4γ(ω + 1)

n
σ2

0
(58)
=

ω + 1

n
(
Li + 6ωmaxi Li

n

)
α2
σ2

0

=
ω + 1

(nLi + 6ωmaxi Li)α2
σ2

0 ≤
2ω(ω + 1) maxi Li

(nLi + 6ωmaxi Li)

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α.

Remaining terms are analyzed as for DCGD in convex case.

7.3 Nonconvex objectives

In this section we analyze algorithms in the nonconvex case of functions. Throughout this section we
assume that x∗i is a stationary point of function fi. For the sake of convenience we transfer Lemma 1
from Khaled and Richtárik (2020) to here.
Lemma 5 (Lemma 1 from Khaled and Richtárik (2020)). Suppose f∗i = min fi(x) exists and fi is
Li-smooth. Then, for any x ∈ Rd it holds that

‖∇fi(x)‖2 ≤ 2Li(fi(x)− f∗i ).

Throughout this section we will use notation f∗ def
= 1

n

∑n
i=1 f

∗
i .

7.3.1 DCGD

Theorem 7. Suppose f∗i = min fi(x) exists and fi is Li-smooth for each i. Then, if γ ≤ 1
Lα

,

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤
2
(

1 +
2Lαγ

2 max{Liωiα2
i }

n

)k
γk

(f̃(x0)− f?). (59)
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Proof. The proof is a direct application of Theorem 2 in Khaled and Richtárik (2020) to our setting.
First, let us analyze E‖g(x)‖2.

E‖g(x)‖2 = E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− E

[
1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

]∥∥∥∥∥
2

+

∥∥∥∥∥E
[

1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

]∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− 1

n

n∑
i=1

∇[fi(Ti(x))]

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(Ti(x))

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− 1

n

n∑
i=1

∇[fi(Ti(x))]

∥∥∥∥∥
2

+
∥∥∥∇f̃(x)

∥∥∥2

=
1

n2

n∑
i=1

‖Ci(∇[fi(Ti(x))])−∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

≤ 1

n2

n∑
i=1

ωi‖∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

.

To analyze the first term we refer ourselves to Lemma 5:

‖∇[fi(Ti(x))]‖2 Ti def
= ‖∇[fi(αix+ (1− αi)xi)]‖2 = α2

i ‖∇fi(αix+ (1− αi)xi)‖2
Lemma 5
≤ α2

i 2Li(fi(αix+ (1− αi)xi)− f∗i )

Plugging this in the previous inequality we get

E‖g(x)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

≤ 1

n2

n∑
i=1

ωiα
2
i 2Li(fi(αix+ (1− αi)xi)− f∗i ) +

∥∥∥∇f̃(x)
∥∥∥2

≤ 2 max{Liωiα2
i }

n

(
1

n

n∑
i=1

fi(αix+ (1− αi)xi)−
1

n

n∑
i=1

f∗i

)
+ ‖∇f̃(x)‖2

=
2 max{Liωiα2

i }
n

(f̃(x)− f∗) + ‖∇f̃(x)‖2,

what means that Assumption 2 from Khaled and Richtárik (2020) holds with A =
2 max{Liωiα2

i }
n , B = 1, C = 0. Then, as Theorem 2 from the same paper states, for stepsize

γ ≤ 1
Lα

it holds that

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤
2
(

1 +
2Lαγ

2 max{Liωiα2
i }

n

)k
γk

(f̃(x0)− f?).

Corollary 5. Suppose assumptions of Theorem 7 hold, αi ≡ α, ωi ≡ ω. Let γ = γ0
1
α2 ≤ 1

Liα2
and

∆0 = sup
α
f̃(x0)− f∗.

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ α2
2
(

1 +
2Lωγ2

0 maxi Li
n

)k
γ0k

∆0. (60)
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Proof. We note that when αi ≡ α, Lα = Lα2, which follows from the definition of Lα. Plugging
equations Lα = Lα2, γ = γ0

1
α2 , αi ≡ α and ωi ≡ ω into the main result of Theorem 7 we get

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ α2
2
(

1 +
2Lωγ2

0 maxi Li
n

)k
γ0k

(f̃(x0)− f?).

Noting that f̃(x0)− f∗ ≤ ∆0 we finish the proof.

7.3.2 DIANA

Theorem 8. Suppose f∗i = min fi(x) exists and fi is Li-smooth for each i. Let βk ≡ β and

ωk ≡ ω for all k ∈ {1, . . . , n}. Suppose β ∈ 1
1+ω

[
1,min

{
1 + 1

2(1+ω) ,
√

3
2 + ω + 1

2ω

}]
and

γ ≤ 1
Lα
·min

{
1

2
√
η0
, 2√

1+8η0+1

}
, η0 = (1+ω)ω(1+2(1+ω))

n , and h0
i = ∇[fi(Ti(x

0))]. Let x̂ be a

point chosen uniformly at random among iterates x0, x1, . . . , xk−1 generated by DIANA. Then,

E‖∇f̃(x̂)‖2 ≤ 2

γk
(f̃(x0)− f∗). (61)

Proof. The proof is following the proof of Theorem 1 in Li and Richtárik (2020) with small modifi-
cations: we rewrite the main proposition in the different way and give slightly different bound on the
stepsize. First, Lemma 9 in Li and Richtárik (2020) says that

E‖gk‖2 ≤ ‖∇f(xk)‖2 +
1 + ω

n
σ2
k, (62)

Eσ2
k+1 ≤ (1− ρ)σ2

k +
ω(1 + r)L2

αγ
2

1 + ω
‖∇f(x)‖2, (63)

where

σ2
k =

ω

(1 + ω)n

n∑
i=1

‖∇[fi(Ti(x
k))]− hki ‖2 (64)

ρ = θ − ω(1 + r)

n
L2
αγ

2 (65)

θ = min{1− β2ω, 2β − 1− β
r
− β2 − β2ω} (66)

and r is an arbitrary positive number. We choose r = 2(1 + w) > 0. For the sake of readability, we
define function ζ in the following way

2β − 1− β
2(1 + ω)

− β2 − β2ω = −(ω + 1)β2 +

(
2 +

1

2(1 + ω)

)
β − 1

2(1 + ω)
=: ζ(β)

That is why we can write that θ ∈ min{1− β2ω, ζ(β)}.
Second, let us analyze the lower bound for θ. Note that for β lying in the range

1
1+ω

[
1,min

{
1 + 1

2(1+ω) ,
√

3
2 + ω + 1

2ω

}]
we have

1− β2ω ≥ 1− ω

(1 + ω)2

(
3

2
+ ω +

1

2ω

)
= 1− ω

(1 + ω)2

(1 + 2ω)(1 + ω)

2ω

= 1− 1 + 2ω

2(1 + ω)
=

1

2(1 + ω)
,

and

ζ

(
1

1 + ω

)
= − 1

1 + ω
+

(
2 +

1

2(1 + ω)

)
1

1 + ω
− 1

2(1 + ω)

=
1

2(1 + ω)
+

1

2(1 + ω)2
≥ 1

2(1 + ω)
,
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and

ζ

(
1

1 + ω
+

1

2(1 + ω)2

)
= − 1

1 + ω
− 1

(1 + ω)2
− 1

4(1 + ω)3

+

(
2 +

1

2(1 + ω)

)(
1

1 + ω
+

1

2(1 + ω)2

)
− 1

2(1 + ω)

=
1

2(1 + ω)
+

1

2(1 + ω)2
≥ 1

2(1 + ω)
.

Since ζ is a quadratic function with the ends of the parabola pointed downwards, for all β in the
range we have ζ(β) ≥ 1

2(1+ω) , which altogether means that θ ≥ 1
2(1+ω) > 0.

If we enforce

ω(1 + r)

n
L2
αγ

2 ≤ 1

4(1 + ω)

or

γ ≤ 1

2Lα

√
n

(1 + ω)ω(1 + r)
=

1

2Lα

√
n

(1 + ω)ω(1 + 2(1 + ω))
,

then ρ = θ − ω(1+r)
n L2

αγ
2 ≥ 1

4(1+ω) .

Now let us switch to the proof of the convergence. We first note that due to smoothness of fis and
inequality 62 we get

Ef(xk+1) ≤ f(xk) + E〈∇f(xk), xk+1 − xk〉+
Lα
2
E‖xk+1 − xk‖2

= f(xk)− γ‖∇f(xk)‖2 +
Lαγ

2

2
E‖gk‖2

≤ f(xk)−
(
γ − Lαγ

2

2

)
‖∇f(xk)‖2 +

Lαγ
2

2

1 + ω

n
σ2
k.

Let us fix ξ > 0. Then according to 63 we have

E[f(xk+1)− f∗ + ξσ2
k+1]

≤ f(xk)− f∗ −
(
γ − Lαγ

2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω

)
‖∇f(xk)‖2 +

(
ξ(1− ρ) +

Lαγ
2

2

1 + ω

n

)
σ2
k.

Let us notate ∆k = f(xk) − f∗ + ξσ2
k and set ξ = Lαγ

2

2ρ
1+ω
n . Then from previous inequality it

follows that

E∆k+1 ≤ ∆k −
(
γ − Lαγ

2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω

)
‖∇f(xk)‖2. (67)

Let us define γ′ the coefficient in front of ‖∇f(xk)‖2 in the last inequality. When is γ′ larger than γ
2 ?

γ − Lαγ
2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω
= γ − Lαγ

2

2
− Lαγ

2

2ρ

1 + ω

n

ω(1 + r)L2
αγ

2

1 + ω

= γ − Lαγ
2

2
− Lαγ

2

2ρ

ω(1 + r)L2
αγ

2

n
= γ − γ

2

(
Lαγ +

L3
αγ

3ω(1 + r)

ρn

)
≥ γ

2
,

if

Lαγ +
L3
αγ

3ω(1 + r)

ρn
≤ 1.
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Let us define y := Lαγ and a := ω(1+r)
n . Then according to 65 ρ = θ − ay2. Plugging this back to

the last inequality we get

y +
ay3

θ − ay2
≤ 1

⇔ yθ − ay3 + ay3

θ − ay2
≤ 1

⇔ yθ

θ − ay2
≤ 1

θ−ay2=ρ>0⇔ yθ ≤ θ − ay2

θ>0⇔ a

θ
y2 + y − 1 ≤ 0.

The last inequality holds for all y lying between zero and the positive root of the quadratic equation.

The positive root is
√

1+ 4a
θ −1

2a
θ

=
4a
θ

2a
θ

(√
1+ 4a

θ +1
) = 2√

1+ 4a
θ +1

. That means that the last inequality

holds if

y ≤ 2√
1 + 4a

θ + 1

or the tightest bound for γ achieved on smallest θ gives

γ ≤ 1

Lα

2√
1 + 4ω(1+2(1+ω))

nθmin
+ 1

=
1

Lα

2√
1 + 8(1+ω)ω(1+2(1+ω))

n + 1
.

Going back to 67 we finally get

E∆k+1 ≤ ∆k − γ

2
‖∇f(xk)‖2

E‖∇f(xk)‖2 ≤ 2

γ
(E∆k − E∆k+1).

That is why

E‖∇f(x̂)‖2 =
1

k

k−1∑
t=0

E‖∇f(xt)‖2 ≤ 2

γk
(∆0 − E∆k) ≤ 2

γk
∆0.

The proof is written for general function f(x) = 1
n

∑n
i=1 fi(x). To apply the theorem for our setting,

we replace f by f̃ .

Corollary 6. Suppose all conditions of Theorem 8 hold and αi ≡ α for all i from {1, . . . , n}. Let

γ = 1
α2 γ0, where γ0 = 1

L
min

{
1

2
√
η0
, 2√

1+8η0+1

}
. Let ∆0 = sup

α
f̃(x0)− f∗ Then,

E‖∇f̃(x̂)‖2 ≤ α2 2

γ0k
∆0. (68)

Proof. According to the definition of Lα = 1
n

∑n
i=1 Liα

2
i , in the case of equal αis we get Lα = Lα2.

It remains to notice that the stepsize in the corollary condition still satisfies the condition on the
stepsize γ in Theorem 8 and ∆0 ≥ f̃(x)− f∗.
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8 Discussion of other model mixture methods

Deng et al. (2020) propose that each client solves the local problem

min
v∈Rd

fi(αiv + (1− αi)w∗),

where w∗ is the minimizer of (ERM). This does not result in any personalization since the “per-
sonalized” solution on each node is a reparameterization of each local solution xi. Furthermore,
the convergence theory that Deng et al. (2020) develop does not recover the linear convergence of
gradient descent at αi = 1.

Mansour et al. (2020) introduce a similar method, MAPPER, where they propose to solve

min
z,αi,yi

1

n

n∑
i=1

fi(αiyi + (1− αi)z).

Again, this objective is trivially minimized by setting αi = 1, yi = minx∈Rd fi(x), and z = 0 (i.e.
with no personalization at all).

Zec et al. (2021) also introduce a similar formulation based on the mixture of experts framework,
where they propose to first learn the minimizer x∗ of (ERM), learn the optimal local models
x1, x2, . . . , xn, and then learn a mixture of both the global and local models (i.e. the αi) on each
client. Unfortunately, this is also ill-defined, as αi = 1 will always perform best on the local training
set, and hence if there is no additional data the optimization process cannot improve over the local
minimizers x1, . . . , xn.
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Validation loss on Grid Search

Figure 5: Grid-Search of stepsizes for FedMix for the first Stack Overflow experiment. Values in cells
are logarithms of validation losses. Horizontal axis corresponds to logarithm of scaled step-sizes.
Red frames correspond to minimum value in a row. Colors are scaled row-wise.

9 Experimental Details

Generalization experiment 1: Fitting Sine Functions. We train each local model i until the gradient
norm ‖∇fi(x)‖ is below 10−2. Stopping criteria for global models is the same but with respect
to FedMix formulation: ‖ 1

n

∑n
i=1∇fi(Ti(x))‖ < 10−2. Gradient descent with line search at each

iteration was used as a local and a meta optimizer.

Generalization experiment 2: Comparison to FOMAML and Reptile. We preprocess the raw
data in the same way as in Reddi et al. (2021) for Stackoverflow logistic regression task, i.e., each
feature vector is a bag-of-words representation of a user’s sentence, each label vector is a binary
vector showing if a sentence relates to a particular question tag or not. Word vocabulary for the
feature dataset is restricted to the 10000 most common words. We restrict the task to the 500 most
used tags. For preprocessing, we used Tensorflow computational procedures from Xu et al. (2021).

To select 50 clients for the Figure 1, we map first 5000 clients from train dataset to vector space with
BERT Devlin et al. (2019) and run k-means with 10 clusters. The first 50 clients from the first cluster
have been selected for the experiment.

The hold-out validation dataset is of size 100, for the first experiment, and of size 110, for the second
one. To compute pure local models we run gradient descent until the norm of the gradient is less than
[10−1, 10−2, 10−3, 10−4, 10−5], respectively. We train pure local models until the gradient norm
is less than 10−4, for the first experiments, and 10−5, for the second, as this tolerance level was
observed to have the lowest generalization error on the validation dataset in our experiments.

Then, we use a grid-search to find optimal stepsizes for gradient descent used for training FedMix.
Our grid for step-sizes are [5 · 10−2, 5 · 10−1, . . . , 5 · 106]. The results are presented in Figures 5
and 6.

As table shows, the smaller α is, the higher step-size the task needs to achieve the best generalization,
which is in line with our convergence results, see Theorem 2 and Table 1.

To train FOMAML and Reptile, we set the number of inner steps to five and grid search outer and
inner loop step-sizes. The explored outer step-sizes are the same as for FedMix. Inner step-sizes
iterate over the set [10−3, 10−2, . . . , 10].
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Validation loss on Grid Search

Figure 6: Grid-Search of stepsizes for FedMix for the seconds Stack Overflow experiment. Values in
cells are logarithms of validation losses. Horizontal axis corresponds to logarithm of scaled step-sizes.
Red frames correspond to minimum value in a row. Colors are scaled row-wise. Grey cells correspond
to nan values.

After grid search, we run gradient descent for each value of alpha of FedMix, FOMAML, and Reptile
for 10 000 and 50000 iterations in the first and seconds experiments accordigly and report obtained
test accuracy.
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10 Extra Experiments

Logistic regression with l2 regularizer. On figures 7, 8, 9, and 10 we present the plots for
regularized logistic regression loss for all datasets mentioned in the previous section and for all 3
algorithms: GD, CGD and DIANA. Number of machines n is set to 50 for DIANA and GD, and is
set to 8 for CGD. Plots showing the dependence between loss and communication cost show that
although in terms of communication rounds DIANA and CGD lose to classical GD, they are better
with respect to communication cost, which is of more practical importance. We run all the algorithms
with their best theoretical step-sizes.
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Figure 7: Loss f(x)− f∗ vs. # of communication rounds of DIANA and GD for logistic regression
problem l2 regularizer for four datasets, k is a sparsification parameter of Random-k compressor.

Unregularized logistic regression. Unregularized logistic regression task has got the following form
fi(x) := 1

ki

∑ki
j=1 log (1 + exp (−a>i,jx)), which is well-known to be a convex problem. Similarly

to regularized case, we present four plots ( 11, 12, 13, and 14) exhibiting convergence of three
algorithms in terms of communication rounds and overall communication cost for four LIBSVM
datasets. Number of machines n is set to 100 for DIANA and GD, and to 8 for CGD. We run all the
algorithms with their best theoretical step-sizes.

Generalization experiment 1: Fitting Sin Functions. On figure 15 we present the rest of the plots
of this subsection.

39



0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

mushrooms, ® = 1.0

k = 1
k = 22
k = 45
k = 67
k = 90
k = 113
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

mushrooms, ® = 0.1

k = 1
k = 22
k = 45
k = 67
k = 90
k = 113
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

mushrooms, ® = 0.01

k = 1
k = 22
k = 45
k = 67
k = 90
k = 113
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

mushrooms, ® = 0.001

k = 1
k = 22
k = 45
k = 67
k = 90
k = 113
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

ijcnn1.bz2, ® = 1.0
k = 1
k = 4
k = 9
k = 13
k = 18
k = 23
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

ijcnn1.bz2, ® = 0.1
k = 1
k = 4
k = 9
k = 13
k = 18
k = 23
GD

0 10 20 30 40
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

ijcnn1.bz2, ® = 0.01
k = 1
k = 4
k = 9
k = 13
k = 18
k = 23
GD

0 10 20 30
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

ijcnn1.bz2, ® = 0.001
k = 1
k = 4
k = 9
k = 13
k = 18
k = 23
GD

20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

w6a, ® = 1.0

k = 1
k = 60
k = 120
k = 180
k = 240
k = 301
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

w6a, ® = 0.1

k = 1
k = 60
k = 120
k = 180
k = 240
k = 301
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

w6a, ® = 0.01

k = 1
k = 60
k = 120
k = 180
k = 240
k = 301
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

w6a, ® = 0.001

k = 1
k = 60
k = 120
k = 180
k = 240
k = 301
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

a6a, ® = 1.0

k = 1
k = 24
k = 49
k = 73
k = 98
k = 123
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

a6a, ® = 0.1

k = 1
k = 24
k = 49
k = 73
k = 98
k = 123
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

a6a, ® = 0.01

k = 1
k = 24
k = 49
k = 73
k = 98
k = 123
GD

0 10 20 30 40 50
Communication cost

10-13

10-10

10-7

10-4

10-1

102

Lo
ss

a6a, ® = 0.001

k = 1
k = 24
k = 49
k = 73
k = 98
k = 123
GD

Figure 8: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of DIANA
and GD for logistic regression problem l2 regularizer for four datasets, k is a sparsification parameter
of Random-k compressor.
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Figure 9: Loss f(x)− f∗ vs. # of communication rounds of CGD for logistic regression problem l2
regularizer for four datasets, k is a sparsification parameter of Random-k compressor.
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Figure 10: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of CGD
for logistic regression problem l2 regularizer for four datasets, k is a sparsification parameter of
Random-k compressor.
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Figure 11: Loss f(x) − f∗ vs. # of communication rounds of DIANA and GD for unregularized
logistic regression problem for four datasets, k is a sparsification parameter of Random-k compressor.
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Figure 12: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of DIANA
and GD for unregularized logistic regression problem for four datasets, k is a sparsification parameter
of Random-k compressor.
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Figure 13: Loss f(x) − f∗ vs. # of communication rounds of CGD for unregularized logistic
regression problem for four datasets, k is a sparsification parameter of Random-k compressor.
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Figure 14: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of CGD
for unregularized logistic regression problem for four datasets, k is a sparsification parameter of
Random-k compressor.
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Figure 15: Average MSE vs. personalization parameter α for different splittings.
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11 Limitations

Our current (FedMix) formulation is dependent on a computation of the local optimal solutions xi’s.
Arguably, this is not well-defined beyond strongly convex models. Therefore, applying (FedMix)
formulation to weakly convex or non-convex models might lead to some problems because of the
existence of potentially several local optima and selection of xi affects (FedMix) formulation. One
possibility to remedy such issue is to use the ensemble of global and local models with the weights
αi and(1− αi), respectively, instead of the linear combination of x and xi.

Another possible limitation is the availability of local data to compute an optimal local solution as the
small number of local data points might lead to a noisy estimate and subsequently, it can potentially
lead to bad generalization of (FedMix). To mitigate this limitation, we propose to use some clustering
method to group several clients and compute xi’s on clusters rather than single clients.

Further investigation of both of these limitations is out of the scope of our current manuscript and we
plan to investigate this in future work.
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