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ABSTRACT

The ability of reinforcement learning algorithms to learn effective policies is deter-
mined by the rewards available during training. However, for practical problems,
obtaining large quantities of reward labels is often infeasible due to computational
or financial constraints, particularly when relying on human feedback. When
reinforcement learning must proceed with limited feedback—only a fraction of
samples get rewards labeled—a fundamental question arises: which samples should
be labeled to maximize policy performance? We formalize this problem of reward
selection for reinforcement learning from limited feedback (RLLF), introducing
a new problem formulation that facilitates the study of strategies for selecting
impactful rewards. Two types of selection strategies are investigated: (i) heuris-
tics that rely on reward-free information such as state visitation and partial value
functions, and (ii) strategies pre-trained using auxiliary evaluative feedback. We
find that critical subsets of rewards are those that (1) guide the agent along optimal
trajectories, and (2) support recovery toward near-optimal behavior after deviations.
Effective selection methods yield near-optimal policies with significantly fewer
reward labels than full supervision, establishing reward selection as a powerful
paradigm for scaling reinforcement learning in feedback-limited settings.

1 INTRODUCTION

Various real-world scenarios of sequential decision-making share a striking asymmetry: while data is
abundant (or cheaply generated), obtaining evaluative feedback is prohibitively costly and therefore
limited by practical constraints. Consider the following examples: in reinforcement learning from
human feedback (RLHF) for training large language models (LLMs), billions of tokens can be
generated easily, but acquiring reliable human feedback carries significant operational overhead
(Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022; ABAKA AI, 2025). In the field of
AI-driven drug discovery, modern generative models can enumerate billions of syntactically valid
molecular graphs in silico, sweeping through an estimated chemical space of ≈ 1060 drug-like
molecules (Reymond, 2015; Gómez-Bombarelli et al., 2018; Jin et al., 2019). Yet confirming that any
one of those structures is synthesizable, binds to the intended target, and is non-toxic requires weeks
of wet-lab assays and thousands of dollars per compound (DiMasi et al., 2016; Anon, 2023). In these
and many similar problems (Appendix A), where evaluative feedback is limited, it becomes critical
to identify which subset of the abundant data should be selected for feedback in order to achieve
maximal performance gain with minimal feedback.

Reinforcement learning (RL) is the widely adopted approach for solving sequential decision-making
problems (Popova et al., 2018; Ouyang et al., 2022; Feng et al., 2023). In the RL framing of the above
scenarios, feedback corresponds to rewards, but obtaining rewards for all data points is infeasible.
In this work, we study the important question of reward selection—which subset of the data should
be labeled with rewards to maximize the performance of the learned policy? Acquiring rewards for
different subsets leads to policies of varying quality, and the goal is to select the parts of the dataset
to be reward-labeled such that the resulting policy achieves the highest performance, as illustrated
in Figure 1. The question of which data points to acquire rewards for is equivalent to selecting the
states at which to observe rewards. Consequently, the problem is formulated as the selection of a
subset of states at which to obtain rewards. We formulate the reward selection problem wherein the
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Figure 1: Each row represents a data sample;
shaded green rows indicate samples that have
been labeled with rewards. The strategy Qi

determines which states to select for reward
labeling. In the limited feedback setup, only
a subset of states can be labeled. Different
choices of reward-labeled subsets yield learnt
policies of varying performances. The objec-
tive is to identify the subset that leads to the
highest-performing policy.

only degree of freedom permitted is the selection of states (as input), and the outcome observed is the
resultant policy (as output), as illustrated in Figure 2 and detailed in Section 2.2.

The reward selection strategies studied, by design, are agnostic to the specifics of the reinforce-
ment learning under limited feedback (RLLF) methodology—particularly the reward generation
protocols—allowing the formulation and analysis to generalize to future methods of reward gener-
ation. Furthermore, we consider RLLF on offline datasets to disentangle the conflating effects of
online state reachability and exploration. That is, any selected states can be labeled with rewards for
training, rather than only those than can be reached by an exploration policy. This contrasts with
prior setups within active RL (Krueger et al., 2020) and partially observable rewards (Parisi et al.,
2024b), which share similar motivations. To learn from partially reward-labeled data, we adapt an
existing algorithm for incorporating unlabeled data with labeled data for (offline) RL (Yu et al., 2022).
Alternatively, we also study a variant of Q-learning (in Appendix D.9) that defaults to imitating the
data-collecting policy on unlabeled data.

We begin by developing evaluating a range of heuristic selection strategies, including one that
adaptively balances between two heuristics (Section 3.1). Their effectiveness depends strongly on
domain traits, which we characterize in Section 4.1. For cases where feedback about the performance
of intermediate policies is obtainable, we propose a training-phase formulation in which selection
strategies themselves can be optimized (Section 3.2); using methods like evolutionary search, we study
how such strategies improve with additional training cost and compare them to heuristic approaches
(Section 4.2). Finally, we analyze the best (optimal) reward selections to identify structural patterns
that explain which rewards matter most under limited feedback (Section 4.3). Effective reward
selection yields near-optimal policies with far fewer reward labels than full supervision, highlighting
both the potential and challenges of feedback-efficient reinforcement learning.
In this work, our contributions are:

1. Formulate the problem of reward selection for reinforcement learning under limited feedback,
establishing a general, domain-agnostic framework with practical relevance across diverse applica-
tions such as RLHF for LLMs and AI-driven drug discovery (see Appendix A).

2. Conduct a systematic investigation of the problem landscape by developing and evaluating a range
of heuristic-based strategies, characterizing how different design principles influence downstream
policy performance.

3. Introduce a training-phase optimization setting where selection strategies themselves can be
trained from feedback, illustrating how data-driven approaches compare to heuristic ones at the
cost of additional training.

4. Provide an analysis of optimal reward selections, revealing structural factors that answer the central
question: which rewards matter?—laying the groundwork for future algorithmic development.

2 PROBLEM FORMULATION AND PRELIMINARIES

Preliminaries: An MDP is a tuple M := (S,A, p, r, γ, η) where S is a finite set of states, St

is the state at time t ∈ {0, 1, . . . }, A is a finite set of actions, At is the action at time t, p :
S ×A× S → [0, 1] is the transition function that characterizes state transition dynamics according
to p(s, a, s′) := Pr(St+1=s′|St=s,At=a), r : S ×A → R is the reward function that characterizes
rewards according to r(s, a) := E[Rt|St=s,At=a], γ ∈ [0, 1] is the reward discount parameter, and
η : S → [0, 1] characterizes the initial state distribution according to η(s) := Pr(S0=s). A policy
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π : S × A → [0, 1] characterizes how actions can be selected given the current state according
to π(s, a) := Pr(At=a|St=s). We consider finite horizon MDPs (Sutton & Barto, 2018) where
episodes terminate by some (unspecified) time T ∈ N.

2.1 REINFORCEMENT LEARNING FROM LIMITED FEEDBACK

We study the problem of reinforcement learning from limited feedback (RLLF) in the offline setting.
An offline dataset Dn = {(St, At, St+1)

(i)}ni=1 of n samples is obtained by the interaction of a
data-collecting policy πD with M .1 The dataset contains no reward, i.e., evaluative feedback. To
emulate the limited feedback setting, the restriction imposed by the problem setup is that environment
rewards are permitted to be obtained at only a subset B of the states. Let S[B] denote the states that
are reward-labeled. For samples in D where St ∈ S[B], reward labels are assigned; the remaining
samples in D are unlabeled. In practice, since the labeling budget is smaller than the total number
of states |S|, only a subset of the dataset can be reward-labeled. The process of reward-labeling
part of the dataset and learning a policy from the resulting partially labeled data is referred to as
reinforcement learning from limited feedback, and is denoted by RLLF(D,S[B]) (see the box in
Figure 2). Different choices of S[B] result in different policies learned from the partially labeled
dataset, with varying performance (see Figure 6 in Appendix D.2).

Rather than passively learning a policy from a given partially labeled dataset, we study the problem
of actively selecting the states to label with rewards in order to obtain the best-performing policy.
Formally, the reward selection problem is to identify a subset of states S[B], subject to a labeling
budget B, to be labeled with rewards such that the policy learned from the resulting partially labeled
dataset achieves maximum performance.

Policy Learning from Partially Reward-Labeled Data: Given a dataset where only a subset of
samples are reward-labeled, we use the UDS algorithm (Yu et al., 2022) to learn a policy from the
partially reward-labeled dataset. This algorithm follows a simple procedure: unknown rewards are
replaced with zero (or Rmin), and a policy is learned using these imputed rewards. We adopt Q-
learning as the policy update rule, as is standard in offline RL settings (Levine et al., 2020; Kostrikov
et al., 2021). Other methods for handling partially labeled data could also be employed, but the focus
of this work is on identifying a reward selection strategy that is effective for this instantiation of
RLLF. An alternative policy learning rule, which sets the Q-values of states with unknown rewards to
zero, is also studied in Appendix D.9.

2.2 REWARD SELECTION

The strategy for selecting the B states from D to label with rewards is denoted by Q(B) : D → SB .
Formally, given a budget B, the set of states at which rewards are observed is defined as S[B] =

Q(B)(D). The resulting policy is denoted by π[B] = RLLF
(
D,Q(B)(D)

)
.2 The effectiveness of

a strategy Q(B) is quantified by the expected return of the policy produced by RLLF when trained
using the rewards selected by Q(B). The objective, denoted by P (·), is to maximize the average

expected return of the resulting policy, J(π) := Eπ

[∑T
t=0 γ

tRt

]
, averaged over possible datasets D.

That is,

max
Q(B)

P (Q(B)) := max
Q(B)

ED

[
J
(
π[B]

)]
= max

Q(B)
ED

[
J

(
RLLF

(
D,Q(B)(D)

))]
. (1)

When Q(B) is stochastic, the definition of P (·) includes an additional nested expectation over Q(B).

Optimality: Given a budget B, the optimal reward selection strategy Q(B) maximizes the perfor-
mance of the resultant policy π[S[B]]. There are

(|S|
B

)
candidate state sets that may be chosen byQ(B),

all resulting in varying policies with varying performances (Appendix D.2). The optimal strategy

1The data-collecting policy πD can be a single policy, or a mixture of policies of which the weighted average
is denoted by πD . For clarity, we drop the subscript n unless explicitly needed, and denote the dataset by D.

2To make the dependence on S[B] explicit, π[B] is equivalently denoted as π[S[B]]
when relevant.
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entails selecting a state set, denoted by S∗[B], that results in a policy with the highest performance, i.e.,

S∗[B] = arg max
S[B]⊆S,|S[B]|=B

P (π[S[B]]) = arg max
Q(B)(D)⊆S

P (RLLF(D,Q(B)(D))). (2)

It must be noted that S∗[B] may not be a unique set, rather, it belongs to a set of equally optimal state
sets. For ease of exposition, we pick one such state set. The efficacy of any other strategy, that selects
a different state set S[B], can be quantified by the optimality gap, i.e., the gap from the performance
of the optimal policy under the labeling budget π∗

[B] = π∗
[S∗

[B]
], given by:

OptimalityGap(S[B]) = P (π∗
[B])− P (π[S[B]]). (3)

Figure 2: Problem setup for reward selection: The
green arrows indicate the test phase, during which
the reward selection strategy is evaluated. The blue
arrows represent access to, and feedback from, an
evaluator available within the training phase loop.

Setup: Without insight into how selecting spe-
cific states affects final policy performance, it is
challenging to design effective reward selection
strategies. To enable more informed design, we
introduce an optional training phase in which
the reward selection learnerQ(B) leverages feed-
back from an evaluator Ξ. The evaluator pro-
vides the expected return of any policy under
the true reward function of M , but only at the
aggregate level—individual rewards are neither
stored nor reused. In practice, this could corre-
spond to deploying a policy trained on limited
feedback and using its performance as a signal
to refine the reward selection strategy. Once
trained, a strategy is evaluated in a test phase,
where access to Ξ is no longer available. This setup is illustrated in Figure 2.

During the training phase, Ξ assesses policies induced by different state subsets, guiding updates to
the selection strategy. The RLLF procedure is treated as a black box: individual state-reward values
and policy update mechanisms remain inaccessible. RLLF takes a set of states and an unlabeled
dataset as input and outputs a policy, which may optionally be evaluated by Ξ for training.

During the test phase, reward selection strategies are compared along two dimensions: (1) their
performance, as defined in Equation 1, and (2) their training cost, measured by the number of calls to
Ξ. An ideal strategy maximizes test performance while minimizing evaluator usage. Training data
Dtrain are generated by a data-collecting policy πtrain, while test datasets Dtest come from policies
Πtest = {π1, . . . , πm}. The test performance of Q(B) is averaged over Dtest, as in Equation 1.

3 METHODOLOGY: SELECTION STRATEGIES

We study two types of selection strategies. The first category consists of strategies guided by intuitive
heuristics that are rule-based and do not rely on the training phase. Thus, they can be expected to
perform well enough, though not optimally. Their primary purpose is to assess the utility of intuitive
heuristics when applied to the problem of reward selection without access to any prior information.
The second category includes strategies that incorporate a training phase prior to evaluation. Within
this category, we study a spectrum of approaches: from strategies that identify the optimal reward-
labeled state set S∗[B], albeit at high training cost, to approximate strategies that reduce training
overhead at the expense of marginal loss in performance. Additionally, the strategies we study can be
classified based on how they construct the reward-labeled state set: batch strategies, which select all
B states at once, and iterative strategies, which select one state at a time over B iterations. Iterative
strategies are indexed by b ∈ 1, . . . , B, with selected states and related quantities indexed by b, for
instance the set of selected states S[b]. A detailed categorization is provided in Appendix C.

3.1 HEURISTIC-BASED SELECTION: TRAINING-FREE STRATEGIES

Given an offline dataset D, without any feedback to inform how labeling different states with rewards
impacts the performance of the policy, we must rely on heuristics to guide our selection of states to
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label with rewards. The state-visitation distribution of the data collecting policy πD, captured within
the offline test dataset, serves as a useful signal to guide the selection of states for reward-labeling.
Additionally, constructing the state set (of size B) iteratively, i.e., adding one state at a time, allows
for intermediate updates (at iteration b) to the policy and the corresponding Q-values to inform
subsequent selections. The heuristics investigated are:

(1) visitation sampling: This strategy encodes the intuitive notion that maximizing the fraction
of the dataset that is reward-labeled is a good proxy for maximizing the expected return of the
resultant policy. To do so, it samples the most commonly occurring states in the dataset without
replacement from the state-visitation distribution dπD , i.e., S[B] ∼ Samplew/o rep(S, dπD , B).
(a) If S[B] is constructed in an iterative manner, i.e., adding one state at a time, as opposed to a

batch manner as above, an additional on-policy variant of this strategy is studied, referred
to as visitation-on-policy , where the state set S[B] is constructed by sampling
states from the state-visitation distribution of the updated policy π[b−1] at each iteration b.

(2) uniform sampling: This simple strategy samples B states without replacement from a uniform
distribution over all unlabeled states, i.e., S[B] ∼ UniformSamplew/o rep(S, B). Along with
serving as a baseline for comparison with other strategies, this simple strategy turns out to be
surprisingly effective in certain cases where states that are not frequently visited under πD can
have high utility when labeled with rewards.

(3) guided sampling : This is an iterative strategy that balances exploration and exploitation—by
exploring via sampling from the state-visitation distribution, and exploiting by sampling from the
neighborhood of the current highest valued state. Specifically, at each iteration b, the strategy
samples from the distribution qb defined as:

qb(·|Qπ[b−1] , b) ∝ αb d
πD (·)︸ ︷︷ ︸

explore

+(1− αb) dπD
prev(· | argmax

s∈S
max
a∈A

Qπ[b−1](s, a))︸ ︷︷ ︸
exploit: focus on states near the most promising Q-values

(4)

where d̂πD
prev(· | s′) is the sample estimate of the distribution of states that lead to state s′ as

the next state under πD. The term argmaxs∈S[b−1]
maxa∈A Qπ[b−1](s, a) identifies the state

with the maximum (state-)value based on the rewards obtained thus far. The tradeoff weight
αb initially places more weight on the exploratory term and then decays as b increases, with
decreasing αb as Q-values become more reliable.
(a) The on-policy variant of this strategy, guided-on-policy , is also studied.

We estimate the state visitation distribution(s) dπD (·) from the dataset D, denoted by d̂πD (·), as
d̂πD (s) := N(s)∑

s′∈S N(s′) , where N(s) denotes the number of occurrences of state s in D. These
strategies are empirically evaluated in Section 4 and compared to the training-based strategies
described in the next section.

3.2 STRATEGIES LEVERAGING THE TRAINING PHASE

For the set of strategies that leverage the training phase, the feedback from the evaluator provides a key
insight: the impact of the selected states on the performance of the resultant policy, and, consequently,
the performance of the strategy (Equation 1). The selected set of states can subsequently be updated
to improve the performance of the resultant policy. The cost of this training phase, prior to the
strategy’s evaluation, is quantified by the number of calls to the evaluator Ξ.

(1) The most straightforward strategy is to exhaustively search over all possible subsets of B states
during the training phase, and select the one that results in the highest performing policy. This
approach, referred to as brute-force , is guaranteed to find the optimal state set S∗[B], given
sufficient coverage of the training data. However, since the number of all possible subsets of size
B that must be evaluated is combinatorially large—

(|S|
B

)
≈ O(|S|min{|S|−B,B}) ≈ O(|S|B)—

the resulting training cost is impractical for any reasonably sized state space S.
(2) To mitigate the training cost, we investigate an iterative strategy that constructs the state set S[B]

one state at a time. Specifically, define the utility of adding s to S[b] as

∆(s|S[b]) := P (π[S[b]∪{s}])− P (π[S[b]]). (5)

5
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The sequential-greedy strategy selects the state s that maximizes ∆(s|S[b]), i.e., the
marginal utility of adding state s to the current set of states S[b] at each iteration b. As a result,
this strategy has a training cost of O(B|S|), significantly lower than the brute force strategy.
Furthermore, we empirically observe that the sequential-greedy strategy is approximately optimal
in many cases.

(3) Lastly, instead of relying on a rule-based approach, we optimize the selection strategyQ(B) using
an evolutionary strategy (ES) (Rechenberg, 1989; Salimans et al., 2017). We parameterize the
selection strategy Q(B) with parameters θ, i.e., Q(B)

θ . We define the fitness of each state set S[b]
as the performance of the resulting policy J(π[Sb]), and run a few iterations of ES to optimize θ.
The population k in each iteration of ES, and the number of iterations m, determine the overall
training cost O(km) of this strategy, referred to as ES .

A categorization of all selection strategies is provided in Appendix C.1.

4 EMPIRICAL ANALYSIS

This section evaluates the reward selection strategies across diverse domains. We empirically
investigate the following questions: (Q1: Section 4.1) Which heuristics are effective proxies for
reward selection and what factors shape their effectiveness? (Q2: Section 4.2) What performance
benefits does a training phase provide given its additional cost? (Q3: Section 4.3) What characteristics
define high-impact rewards whose selection should be prioritized under limited budgets?

Domains: We evaluate performance across six prototypical domains and four large-scale MinAtar
domains (Young & Tian, 2019) (Breakout, Freeway, Seaquest, Asterix). Of the prototypical domains,
some (Graph, Tree, TwoRooms, TwoRooms-Trap) are purpose-built; others (FrozenLake, CliffWalk)
are standard Gymnasium benchmarks (Brockman et al., 2016; Foundation, 2023). Additional domain
details, transition dynamics, reward structures, expert policies, data collection, and further experiments
on TwoRooms-Trap and FrozenLake appear in Appendix D.1.

Evaluation: The primary evaluation metric is the average episode return, reported across all
experiments. For heuristic-based selection, we additionally report the optimality gap, as defined
in Equation 3. All reward acquisition budgets are expressed as percentage feedback relative to the
total number of unique states |S| in each dataset, i.e., Percentage Feedback = B/|S|, allowing for
consistent comparison across domains.

4.1 PERFORMANCE OF HEURISTIC REWARD SELECTION DEPENDS ON DOMAINS TRAITS

We observe that the effectiveness of heuristic-based strategies is highly domain-dependent, and no
single strategy consistently dominates. The results on prototypical domains are presented in Table 1

Table 1: Comparison of guided, visitation, and uniform heuristic selection strategies on
prototypical domains. For each domain, the table presents the optimality gap and the corresponding
mean policy return ± standard error (in parentheses) across five feedback levels. Across all strategies
and domains, the optimality gap decreases with increasing budget.

Domains Percentage Feedback guided guided-on-policy visitation visitation-on-policy uniform

Graph

0.1 3.3 [3.7± 0.1] 3.8 [3.2± 0.1] 3.2 [3.8± 0.2] 3.7 [3.3± 0.1] 4.1 [2.9± 0.1]
0.3 2.2 [5.8± 0.1] 2.2 [5.8± 0.1] 2.1 [5.9± 0.1] 2.3 [5.7± 0.1] 3.4 [4.6± 0.2]
0.5 0.9 [7.1± 0.1] 0.3 [7.7± 0.1] 0.8 [7.2± 0.1] 0.4 [7.6± 0.1] 2.0 [6.0± 0.1]
0.7 0.2 [7.8± 0.0] 0.0 [8.0± 0.0] 0.4 [7.6± 0.1] 0.0 [8.0± 0.0] 1.1 [6.9± 0.1]
0.9 0.0 [8.0± 0.0] 0.0 [8.0± 0.0] 0.0 [8.0± 0.0] 0.0 [8.0± 0.0] 0.0 [8.0± 0.0]

Tree

0.1 9.1 [8.0± 0.5] 9.7 [7.4± 0.9] 10.9 [6.1± 0.4] 12.4 [4.7± 0.4] 11.4 [5.7± 0.5]
0.3 4.9 [12.8± 0.4] 5.0 [12.8± 0.6] 6.0 [11.8± 0.4] 5.2 [12.6± 0.4] 7.4 [10.3± 0.5]
0.5 1.7 [16.1± 0.2] 1.4 [16.4± 0.2] 2.4 [15.4± 0.3] 1.4 [16.4± 0.2] 4.5 [13.2± 0.4]
0.7 0.6 [17.2± 0.1] 0.3 [17.4± 0.0] 0.6 [17.1± 0.2] 0.6 [17.2± 0.1] 2.5 [15.3± 0.3]
0.9 0.1 [17.7± 0.0] 0.0 [17.7± 0.0] 0.0 [17.6± 0.2] 0.2 [17.5± 0.1] 0.1 [17.7± 0.1]

CliffWalk

0.1 1152.9 [−1248.9± 117.3] 520.8 [−616.8± 105.6] 1166.1 [−1262.1± 119.2] 296.1 [−392.0± 84.2] 1061.0 [−1157.0± 61.0]
0.3 285.9 [−370.0± 86.5] 9.6 [−93.6± 0.4] 378.5 [−462.5± 100.6] 9.0 [−93.0± 0.4] 1190.5 [−1274.6± 118.9]
0.5 57.6 [−132.7± 32.8] 14.3 [−89.4± 0.8] 90.8 [−165.9± 46.2] 11.7 [−86.7± 0.7] 1160.8 [−1235.8± 137.4]
0.7 32.7 [−98.9± 0.6] 8.6 [−74.8± 2.2] 33.8 [−100.0± 0.0] 6.8 [−73.0± 1.9] 890.0 [−956.2± 136.6]
0.9 59.6 [−72.6± 3.9] 25.6 [−38.6± 3.4] 87.0 [−100.0± 0.0] 83.8 [−96.8± 1.5] 412.8 [−425.8± 99.2]

TwoRooms

0.1 1.0 [0.0± 0.0] 1.0 [0.0± 0.0] 1.0 [0.0± 0.0] 1.0 [0.0± 0.0] 0.7 [0.3± 0.0]
0.3 0.9 [0.1± 0.0] 0.9 [0.1± 0.0] 0.9 [0.1± 0.0] 0.9 [0.1± 0.0] 0.5 [0.5± 0.1]
0.5 0.8 [0.2± 0.0] 0.8 [0.2± 0.0] 0.8 [0.2± 0.0] 0.8 [0.2± 0.0] 0.3 [0.7± 0.0]
0.7 0.7 [0.3± 0.0] 0.6 [0.4± 0.0] 0.5 [0.5± 0.1] 0.5 [0.5± 0.1] 0.1 [0.9± 0.0]
0.9 0.3 [0.7± 0.0] 0.2 [0.8± 0.0] 0.1 [0.9± 0.0] 0.2 [0.8± 0.0] 0.0 [1.0± 0.0]
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Figure 4: Comparison of guided, visitation, and uniform heuristic selection strategies on
four large-scale domains: Breakout, Freeway, Seaquest, and Asterix. For each domain, the plot shows
the mean policy return with error bars indicating the standard error.

and on large-scale domains Figure 4. Additional experiments are deferred to Appendix D.3. The
experiments for prototypical domains are averaged over 100 seeds, while results for large-scale
domains are averaged over 10 seeds. Below, we highlight several key empirical findings:

1. At low budgets: When the reward labeling budget is small, the Q-values estimated form partially
reward-labeled data are largely inaccurate. In such cases, visitation sampling generally
provides an effective auxiliary signal for state selection. For example, in Graph, the visitation
distribution induced by the data-collecting policy aligns well with the optimal selection even at
low budgets, leading to improved performance. In CliffWalk, however, the on-policy visitation
distribution proves to be more effective, as shown in Table 1.

2. At high budgets: As the budget increases, the learned Q-function becomes more accurate and
informative. The exploit-term of guided sampling (see Equation 4) which relies on these Q-
values to discover high-value states tends to aid performance and the guided strategy generally
performes well. This trend is observed in 80% of the domains studied. Appendix D.8 outlines
how the decay schedule and related parameters shape the exploration–exploitation tradeoff, and
Appendix D.7 shows the strategy remains effective even with random initial samples.

3. Impact of bottleneck structures: In domains with bottleneck states—states that are chokepoints
between regions of the environment, such as in TwoRooms and FrozenLake—sampling based on
the visitation distribution under the data-collecting policy πD may overlook these infrequently
visited but critical states. The bottleneck states need to be reward-labeled early on to facilite
effective policy learning as the budget grows. In such cases, uniform sampling has a higher
likelihood of sampling these states and tends to outperforms other heuristics by providing broader
coverage across the entire state set.

Takeaway: The guided sampling strategy balances the strengths of visitation sampling
at low budgets with those of sampling near high-value states at high budgets, making it a use-
ful heuristic. However, in general, training-free heuristic-based reward selection must rely on
discernible domain traits (further elaborated in Section 4.3) and the available labeling budget.

guided ES 1000 sequential-greedy brute-force

…

…

Performance vs Train Cost

Figure 3: Performance vs. training cost for se-
lection strategies in Seaquest (60% feedback).
Optimal strategies require prohibitive training
cost (right), while cost-efficient and heuris-
tic approaches trade off some performance
(left). The dotted region indicates where cost-
efficient strategies could emerge.

Rather than a single heuristic being universally effec-
tive, performance is maximized by combining differ-
ent heuristics—adapting them to budget levels (e.g.,
guided) and to domain-specific characteristics.

4.2 TRAINING PHASE
FACILITATES NEAR-OPTIMAL PERFORMANCE

The strategies optimized using the training phase have
higher performance that training-free strategies, with
performance increasing along with the training cost
of the strategy, as summarized in Figure 3.

The brute-force strategy, while being optimal,
has a prohibitive training cost for even small state sets.
For example, in a domain with |S| = 50, exhaustively
evaluating all possible state sets of size B = 25
would require

(
50
25

)
≈ 1014 calls to the evaluator.
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Even at a rate of 2,000 calls to the evaluator per minute, completing this search would take about one
million years. We compare this strategy with others on prototypical domains, in Figure 5. A reduced
version of the strategy is studied on the MinAtar domains in Appendix D.4.

The training cost of sequential-greedy scales linearly with the size of the state set and the
budget (O(B|S|)), while the training cost of ES is independent of the state set and the budget and
is determined only by the population size per iteration m and number of iterations k. ES with cost
O(km) is denoted as ES km. On prototypical domains, we set k = 10 and evaluate two variants: ES
50 (m = 5) and ES 200 (m = 20). Additional ablations of k and m are provided in Appendix D.4,
where for large-scale domains, we run ES 1000 to accommodate the greater size of the state space.
The results in Figure 5 and Appendix D.4 yield the following key findings:

• sequential-greedy is near-optimal with significantly lower training cost than
brute-force, establishing that training cost linear in |S| suffices for near-optimal performance.
Greedy maximization of marginal utility (Equation 5) proves to be rather effective.

• Zero-cost guided is comparable with low-cost ES (Figure 5, Table 8), indicating that training-
free guided sampling is preferable over low training costs, while ES is advantageous when perfor-
mance can be scaled through higher k and m.

• Optimal state sets identified on training datasets generalize well to test datasets from different
data-collecting policies (Section 2), indicating robustness to moderate dataset distribution shifts.
This is because for Q-learning based policy (as in RLLF), the occurrence of a state matters more
than its frequency of occurrence, which may differ across datasets. This is further supported by
Appendix D.6, where datasets collected under varying behavior policies yield consistent results.
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Figure 5: Performance comparison of training-phase strategies and training-free guided on proto-
typical domains. Values show mean policy return over five test datasets (standard errors negligible).
sequential-greedy achieves near-optimal performance, while guided is comparable to ES.

4.3 COMMON STRUCTURAL PATTERNS OF OPTIMAL REWARD SELECTIONS

As noted earlier, effective selection methods yield near-optimal policies with significantly fewer
reward labels than full supervision. We now conduct a post-hoc examination of the optimal state sets
(S∗[B]) across domains to identify recurring structural patterns.

Pattern 1: Prioritizing Optimal Pathways. Optimal state sets include states that serve as anchor
points to keep the agent on high-return paths in the domain. This is particularly evident in deterministic
domains (like Graph), where at low budgets the goal state is selected first, after which S∗[B] expands
as the budget increases to include additional anchor points. In sparse reward domains, particularly
those without hazardous or penalty states, optimal selection depends mainly on identifying states
with high rewards: an example being paddle-ball alignment in Breakout as shown in Appendix D.5.

Pattern 2: Coverage of Near-Optimal Paths. Particulary for domains with stochastic transitions
(like Tree), states in S∗[B], i.e., states that get reward-labeled with high priority, include those that lie
in the vicinity of optimal pathways of the domain. They serve to facilitate recovery back onto the
optimal pathways from deviations that may occur due to stochastic transitions.

Pattern 3: Early Labeling of Penalty States. Penalty states (such as terminal or trap states in
FrozenLake and TwoRooms-Trap) get reward-labeled early on, even at low budgets. This ensures that
subsequently learned policies steer away from these states, serving the role opposite of anchor points.
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Takeaway: These patterns indicate that optimal state sets follow intuitive structural roles: anchoring
trajectories on high-return paths, supporting recovery in stochastic settings, and steering policies
away from hazards. When such information is available a priori—through expert demonstrations or
domain knowledge—design for effective reward selection strategies must explicitly emphasize these
traits, in addition to the broader considerations of domain properties and budget levels discussed
earlier for heuristic approaches.

5 RELATED WORK

The problem of reward selection for RLLF remains largely unexplored. The closest formalization is
by Parisi et al. (2024b), who consider partially observable rewards in online RL, but their setting
conflates exploration with reward acquisition, making the focus different from our purely offline
formulation. Zhan et al. (2023) propose a sampling approach for reward annotation but assume linear
reward models, whereas our method does not impose such structural constraints. Active RL studies
querying strategies under online exploration constraints, where agents must pay to observe rewards
(Krueger et al., 2020; Schulze & Evans, 2018; Tucker et al., 2023). Our setting differs fundamentally:
we study offline data with no additional exploration burden. Relatedly, Konyushova et al. (2021)
address active off-policy data selection to improve policy evaluation, focusing on policy-level data
collection rather than fine-grained reward state selection.

Works on active reward learning (Sadigh et al., 2017; Bıyık et al., 2019; Wilde et al., 2020; Daniel
et al., 2015; Lindner et al., 2021) study how to query feedback that improves the generalization of a
learned reward function. Our formulation differs fundamentally: because individual rewards are not
retained, no reward model can be learned, and the focus shifts to improving policy learning rather
than reward estimation. Other recent work explores reward modeling under uncertainty, for example,
using priors over reward functions (Hu et al., 2023) or studying data influence (Munos & Moore,
2002; Koh & Liang, 2017; Gottesman et al., 2020). We complement these analyses by studying
how selectively adding reward labels to previously unlabeled data influences the resulting policy
performance.

The use of non reward labeled data has been studied for online (state-based) exploration with
unlabeled samples. Some methods pseudo-label unlabeled samples to improve online exploration
(Wilcoxson et al., 2024; Li et al., 2024), or develop exploration algorithms that operate under missing
reward labels (Parisi et al., 2024a; Huang et al.). However, these primarily study exploration dynamics,
whereas our focus is purely on optimizing offline reward label acquisition. A detailed comparison
with these and additional works is provided in Appendix B.

6 DISCUSSION AND CONCLUSION

We introduce reward selection as a critical but underexplored challenge in RLLF. By decoupling
selection from policy learning, we present the first systematic evaluation of zero-shot heuristics and
optimized strategies across diverse environments, defining simple yet strong baselines and offering
insights for future reward-efficient algorithms in domains like RLHF and drug discovery. The
effectiveness of reward selection varies with domain dynamics and reward structure: in deterministic
settings with frequent rewards, path-following heuristics perform well; in stochastic or sparse-reward
domains,strategies that promote broader state coverage prove more effective. No single heuristic
dominates across all cases, and effective selection must align with both the domain and learning
algorithm. Our findings establish reward selection as a powerful paradigm for scaling reinforcement
learning in limited feedback settings.

While our study focuses on value-based policy updates, extending selection strategies to policy-
gradient methods is a promising direction. Additionally, our general framework abstracts away
domain-specific structure; however, incorporating inductive biases, such as temporal correlations in
time-series tasks, may further aid selection strategies. Exploring how to integrate such structured
priors offers an exciting path for future work.

Reproducibility Statement: We provide detailed description of each selection strategy in Section
3, with additional details about hyperparameters and domains in Appendix D. Code is added as
supplementary material to the submission and will be made public upon acceptance.
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Nils Wilde, Dana Kulić, and Stephen L Smith. Active preference learning using maximum regret. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10952–
10959. IEEE, 2020.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611–25635. PMLR, 2022.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. How to query human feedback
efficiently in rl? 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL MOTIVATING EXAMPLES

1. Reinforcement Learning from Human Feedback (RLHF) in LLMs: In training large
language models (LLMs), model-generated outputs are plentiful, but high-quality human
preference labels remain costly and scarce (Ouyang et al., 2022; Christiano et al., 2017).
This creates a reward selection challenge: which model completions should be labeled with
human feedback to best guide downstream policy improvement? This mirrors our setup,
where a budgeted selection of feedback points must be made to train a performant policy
while minimizing labeling operational cost (ABAKA AI, 2025).

2. AI-driven Drug Discovery: Generative models can propose vast libraries of candidate
molecules (Gómez-Bombarelli et al., 2018; Reymond, 2015; Jin et al., 2019), but only a
limited subset can be experimentally evaluated for synthesizability, bioactivity, and toxicity
due to the cost and time of wet-lab trials (DiMasi et al., 2016). Reward selection here
involves choosing which molecular candidates to evaluate, analogous to selecting states for
reward labeling in our framework to maximize downstream performance within a practically
limited evaluation budget.

3. Autonomous Driving: Simulation platforms can produce diverse driving trajectories
across environments and policies at scale (Dosovitskiy et al., 2017), but obtaining ex-
pert evaluations—such as comfort, rule compliance, or safety—is resource-intensive (Feng
et al., 2023). Thus, a reward selection strategy is needed to determine which trajecto-
ries to annotate to yield robust, deployable policies, much like our proposed approach to
feedback-efficient learning.

4. Robotics: Simulated environments enable generation of numerous trajectories, but transfer-
ring and evaluating those policies in the real world involves expensive and time-consuming
physical experiments (Rajeswaran et al., 2017; Chebotar et al., 2019). Reward selection
in this domain involves prioritizing which simulated or real-world interactions to evaluate,
paralleling our method’s goal of selecting the most informative reward-labeled samples for
efficient policy learning under cost constraints.
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B EXTENDED RELATED WORK

The setup of active reward selection for RLLF has not been previously explored much. The closest
formulation of this problem is in Parisi et al. (2024b), who provide a formulation for partially
observable rewards in online RL and propose algorithms for that setting. The online formulation
conflates the difficulty on online exploration with the utility of rewards, the latter being the focus of
this work. sampling approach to acquiring exploratory trajectories that enable accurate learning of
hidden reward functions before collecting any human feedback. Zhan et al. (2023) propose a sampling
approach to acquire data to be reward-annotated, although their analysis assumes linearity of reward
functions. Similar to discovering high-utility reward states, Konyushova et al. (2021) study active
collection of online data to determine promising policies and improve their performance estimates, as
active off-policy selection.

The topic of reward selection has been studied under Active RL, which is perhaps closest in its
motivation to our setting: where the agent must pay a cost to observe the reward, although for an
online setting, yet again conflating the difficulty of exploration with the utility of rewards. Krueger
et al. (2020) study this in the bandit setting, while Tucker et al. (2023) extend it to structured
settings but retain the bandit-style objective of identifying the best arm by using reward queries to
increase confidence in the average (stochastic) outcomes of each arm. This differs from our problem
in two major ways: the stochasticity of rewards for each arm forces repeated sampling, and the
lack of sequentiality of actions (leading to different outcomes for repeated pulls of the same arm)
shifts the focus from reward utility to uncertainty mitigation. In contrast, Schulze & Evans (2018)
propose a Bayes-optimal algorithm using Monte Carlo Tree Search (MCTS) to actively select reward
observations. Finally, approaches like Lindner et al. (2021) actively select queries to maximize
information gain about the reward function for modeling it.

The use of non-reward-labeled data has been extensively explored in the context of online state-based
exploration with unlabeled samples. Wilcoxson et al. (2024) propose assigning pseudolabels to
unlabeled data to guide exploration, while Li et al. (2024) leverage prior offline datasets and online
rewards to pseudo-label new data for improved exploration. Parisi et al. (2024a) examine exploration
under partially observed rewards, a setting closely related to ours but focused on online interaction.
Huang et al. introduce a data collection strategy combining online RL with offline datasets to
approach the performance of the optimal policy. Yu et al. (2022) show that setting unknown rewards
to zero can perform surprisingly well in certain offline RL settings, a finding we also confirm in our
experiments. Hu et al. (2023) propose using unlabeled data by assuming priors over possible reward
functions and optimizing over sampled realizations of those reward functions.

Beyond data-driven exploration, influence functions have been proposed as signals for high-utility
rewards. Munos & Moore (2002) defines the influence of a reward on value as ∂V ∗(s)

∂R(s′) , equivalent to
the state visitation frequency under the optimal policy. Other works, such as Koh & Liang (2017) and
Gottesman et al. (2020), analyze the effect of removing known datapoints on prediction performance.
In contrast, we study the anticipated influence of adding partially unknown datapoints, requiring
assumptions about their potential impact. Finally, Lindner et al. (2021) provide an algorithm for
learning reward models independently of the reward querying process, which relates directly to the
focus of our study.
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C ADDITIONAL NOTES ON METHODOLOGY

C.1 CATEGORIZATION OF REWARD SELECTION STRATEGIES INVESTIGATED

We categorize the reward state selection strategies introduced in Section 3 according to three key
design dimensions: (i) whether selection during the test phase is performed in an open-loop or
closed-loop manner, (ii) whether training-phase selection operates in a batch or iterative mode, and
(iii) the degree to which each strategy utilizes the evaluator during training. Table 2 presents a
high-level taxonomy across these dimensions.

Selection Strategy Test: Open/Closed Loop Train: Batch/Iterative Train: Evaluator Use
Trained Strategies

brute-force Open loop Batch Yes
sequential-greedy Open loop Iterative Yes
evolutionary-strategy Open loop Batch Yes

Training-free Heuristics
guided Closed loop Iterative No
guided-on-policy Closed loop Iterative No
visitation Open loop Batch No
visitation-on-policy Closed loop Iterative No
uniform Open loop Batch No

Table 2: Categorization of reward selection methods by design dimensions. Columns are shaded to
distinguish test-phase (green) and training-phase (blue) attributes. Methods are grouped based on
whether they use the evaluator during training.

C.2 DESCRIPTION AND NOTATION FOR ITERATIVE REWARD SELECTION STRATEGIES

Iterative reward selection strategies construct the reward-labeled state set S[B] in a sequential manner.
At each step b ∈ {1, . . . , B}, a new state sb ∈ S is selected—conditioned on relevant informa-
tion such as the current estimates of the Q-values of the policy or current policy’s state-visitation
distribution—and added to the selection set S[b−1] to form S[B]. Relevant notation:

• S[b]: The set of selected states after b iterations, i.e., S[b] = S[b−1] ∪ {sb}.
• qb: The selection strategy or distribution used to sample the next state sb at iteration b,

potentially conditioned on policy information or prior selections.
• π[b]: The intermediate policy obtained after the bth reward selection and updated via RLLF.

• Qπ[b−1] : The Q-function corresponding to π[b−1] after the (b − 1)th reward selection and
update.
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D ADDITIONAL EXPERIMENTS AND EMPIRICAL DETAILS

D.1 DOMAIN DETAILS

Table 3 summarizes the domains and their corresponding experimental setup. We study six pro-
totypical domains (Graph, Tree, TwoRooms, TwoRooms-Trap, FrozenLake, and CliffWalk) and
four large-scale MinAtar domains (Breakout, Freeway, Seaquest, and Asterix). The Graph, Tree,
TwoRooms, and TwoRooms-Trap domains are custom-designed to expose structural properties
relevant for analyzing reward selection strategies, while FrozenLake and CliffWalk are standard
Gymnasium benchmarks (Brockman et al., 2016; Foundation, 2023).

Table 3: Summary of domains and their experimental setup.

Prototypical Domains Large-scale Domains (MinAtar)
Domain Names Graph, Tree, TwoRooms, TwoRooms-Trap,

FrozenLake, CliffWalk
Breakout, Freeway, Seaquest, Asterix

State Representation Numeric (tabular) Image-based (10×10 pixels)
Expert Policy Value Iteration Online DQN
Policy Learning Algorithm Offline Q-learning Implicit Q-learning (IQL)

Domain description Brief descriptions of all domains are provided below.

• Graph: A two-row graph structure with 8 nodes per row. In each adjacent column, the 2× 2
nodes are fully connected. Transitions are deterministic; actions move the agent between
rows or advance to the next column in the same row. States correspond to nodes; every
movement yields a dense reward.

• Tree: A complete binary tree where actions correspond to moving left or right. Transitions
are stochastic: the agent moves in the intended direction with 85% probability and in the
alternate direction with 15%. Rewards are dense and provided at every step.

• TwoRooms: Two 5× 5 gridworld rooms connected by a narrow bottleneck state. The agent
starts in one room and must reach a goal located in the other. Rewards are sparse: zero
everywhere except a reward of 1 at the goal state.

• TwoRooms-Trap: A variant of TwoRooms with six additional trap states. Entering a trap
terminates the episode immediately with a penalty of −100. The environment otherwise
shares the layout and reward structure of TwoRooms.

• FrozenLake: A standard Gymnasium benchmark (Brockman et al., 2016; Foundation,
2023). The agent navigates a slippery grid from start to goal, avoiding holes that cause
termination. Transitions are stochastic and rewards are sparse (reward only at the goal).

• CliffWalk: Another Gymnasium benchmark. The agent must traverse a grid from start to
goal while avoiding a high-penalty cliff region. Transitions are deterministic.

• Minatar: A set of simplified Atari-inspired environments with compact state and action
spaces (Young & Tian, 2019). We evaluate on Breakout, Freeway, Seaquest, and Asterix.

Policy training For prototypical domains, expert policies are generated using value iteration
and policies are trained with offline Q-learning. For large-scale MinAtar domains, expert policies
are obtained by training online DQN agents, and offline learning uses implicit Q-learning (IQL).
Prototypical domains use tabular Q-functions due to their discrete, low-dimensional state spaces,
while large-scale domains rely on neural network approximators for Q-values, given their high-
dimensional 10× 10 image-based states.

Dataset collection Datasets are collected using a mixture-based data-collecting policy that combines
expert and random actions. At each timestep, the agent follows the expert policy with probability
ϵ and takes a uniformly random action with probability 1 − ϵ. For training, we use a single data-
collecting policy with ϵ = 0.5. For evaluation, five test data-collecting policies are created with
ϵ ∈ {0.55, 0.53, 0.51, 0.48, 0.45} to study the robustness of learned policies under small distribution
shifts.
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Compute resources All experiments on prototypical domains were conducted on CPUs, while
those on large-scale domains were run on GeForce RTX 2080 Tis.

D.2 DIFFERENT REWARD-LABELED-SETS RESULT IN POLICIES WITH VARYING PERFORMANCE

In Figure 1, we illustrate that different reward-labeled sets lead to policies with varying performance.
We empirically validate this observation in two prototypical domains, Graph and Tree. For each
domain, we select three percentage feedbacks (20%, 40%, and 60%), and report the average return of
policies learned from all possible combinations at that budget. For example, in the Graph domain,
which has 16 total states, selecting b = 2 yields

(
16
2

)
= 120 possible combinations; we report the

average return across policies trained on datasets labeled by each of these 120 state sets. The results,
shown in Figure 6, demonstrate that for a fixed budget, different combinations of labeled states can
lead to significantly different policy performance.

G
ra

ph
Tr

ee

Percentage Feedback=0.2 Percentage Feedback=0.6Percentage Feedback=0.4

Figure 6: Performance variability across different reward-labeled state sets at fixed budgets. The first
row shows results for the Graph domain; the second row shows results for the Tree domain. Columns
correspond to percentage feedback levels of 20%, 40%, and 60%, respectively. The results illustrate
that at the same feedback level, the choice of which states are labeled strongly affects the resulting
policy performance.
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D.3 ADDITIONAL RESULTS FOR HEURISTIC-BASED SELECTION

The heuristics results on all prototypical domains are shown in Table 4, which aligns with the findings
we’ve got in Section 4.1. Results on FrozenLake and TwoRooms-Trap domains have a similar pattern
to TwoRooms domain, as their reward function are all sparse, and have bottleneck states.

Table 4: Comparison of guided, visitation, and uniform heuristic selection strategies on
prototypical domains. For each domain, the table presents the mean policy return (± standard error)
and the corresponding optimality gap (in parentheses) across five percentage feedback levels.

Domains Percentage Feedback guided guided-on-policy visitation visitation-on-policy uniform

Graph

0.1 3.701± 0.129 (3.302) 3.208± 0.139 (3.795) 3.797± 0.151 (3.206) 3.300± 0.142 (3.703) 2.949± 0.137 (4.054)
0.3 5.831± 0.137 (2.169) 5.760± 0.127 (2.240) 5.871± 0.146 (2.129) 5.690± 0.146 (2.310) 4.617± 0.156 (3.383)
0.5 7.110± 0.099 (0.890) 7.690± 0.070 (0.310) 7.199± 0.090 (0.801) 7.583± 0.086 (0.417) 5.978± 0.114 (2.022)
0.7 7.830± 0.040 (0.170) 8.000± 0.000 (0.000) 7.599± 0.060 (0.401) 7.991± 0.009 (0.009) 6.920± 0.084 (1.080)
0.9 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000)

Tree

0.1 8.003± 0.468 (9.053) 7.403± 0.869 (9.653) 6.133± 0.428 (10.924) 4.658± 0.370 (12.398) 5.665± 0.532 (11.392)
0.3 12.846± 0.373 (4.921) 12.755± 0.632 (5.013) 11.763± 0.427 (6.004) 12.601± 0.414 (5.167) 10.341± 0.524 (7.427)
0.5 16.072± 0.205 (1.695) 16.415± 0.207 (1.352) 15.395± 0.297 (2.372) 16.379± 0.216 (1.388) 13.218± 0.430 (4.550)
0.7 17.193± 0.083 (0.575) 17.444± 0.037 (0.323) 17.135± 0.153 (0.633) 17.174± 0.120 (0.594) 15.258± 0.312 (2.509)
0.9 17.673± 0.013 (0.094) 17.731± 0.031 (0.036) 17.609± 0.158 (0.049) 17.521± 0.110 (0.246) 17.695± 0.141 (0.072)

CliffWalk

0.1 −1248.872± 117.272 (1152.914) −616.760± 105.578 (520.803) −1262.067± 119.207 (1166.109) −392.040± 84.184 (296.082) −1156.960± 61.025 (1061.002)
0.3 −369.964± 86.539 (285.948) −93.637± 0.373 (9.621) −462.530± 100.633 (378.515) −92.981± 0.358 (8.965) −1274.561± 118.910 (1190.545)
0.5 −132.671± 32.819 (57.629) −89.390± 0.827 (14.348) −165.870± 46.201 (90.828) −86.746± 0.677 (11.704) −1235.823± 137.366 (1160.781)
0.7 −98.870± 0.647 (32.665) −74.821± 2.171 (8.615) −100.000± 0.000 (33.794) −72.995± 1.872 (6.790) −956.208± 136.611 (890.003)
0.9 −72.646± 3.909 (59.646) −38.592± 3.373 (25.592) −100.000± 0.000 (87.000) −96.819± 1.466 (83.819) −425.837± 99.188 (412.837)

FrozenLake

0.1 0.021± 0.007 (−0.721) 0.056± 0.017 (−0.686) 0.028± 0.010 (−0.714) 0.020± 0.007 (−0.722) 0.145± 0.028 (−0.598)
0.3 0.087± 0.022 (−0.655) 0.078± 0.021 (−0.663) 0.079± 0.021 (−0.663) 0.050± 0.016 (−0.692) 0.306± 0.036 (−0.436)
0.5 0.165± 0.029 (−0.578) 0.127± 0.026 (−0.617) 0.171± 0.030 (−0.573) 0.086± 0.022 (−0.657) 0.467± 0.036 (−0.276)
0.7 0.261± 0.034 (−0.482) 0.251± 0.034 (−0.492) 0.326± 0.036 (−0.416) 0.160± 0.029 (−0.582) 0.582± 0.031 (−0.160)
0.9 0.477± 0.035 (−0.263) 0.508± 0.033 (−0.232) 0.566± 0.031 (−0.174) 0.427± 0.036 (−0.313) 0.697± 0.019 (−0.043)

TwoRooms

0.1 0.012± 0.010 (0.988) 0.022± 0.014 (0.978) 0.042± 0.020 (0.959) 0.022± 0.014 (0.979) 0.261± 0.044 (0.739)
0.3 0.077± 0.027 (0.923) 0.092± 0.029 (0.908) 0.071± 0.025 (0.929) 0.081± 0.027 (0.919) 0.530± 0.050 (0.470)
0.5 0.173± 0.039 (0.827) 0.151± 0.036 (0.849) 0.182± 0.038 (0.818) 0.181± 0.038 (0.819) 0.720± 0.045 (0.280)
0.7 0.270± 0.046 (0.730) 0.371± 0.048 (0.629) 0.481± 0.050 (0.519) 0.501± 0.050 (0.499) 0.910± 0.029 (0.090)
0.9 0.732± 0.046 (0.268) 0.800± 0.040 (0.200) 0.870± 0.034 (0.130) 0.770± 0.042 (0.230) 0.990± 0.010 (0.010)

TwoRooms-Trap

0.1 −58.492± 0.642 (59.492) −60.151± 0.673 (61.151) −59.390± 1.156 (60.390) −61.520± 0.723 (62.520) −46.850± 2.884 (47.850)
0.3 −45.692± 1.015 (46.692) −47.391± 0.899 (48.391) −47.130± 1.538 (48.130) −49.960± 1.022 (50.960) −29.340± 2.983 (30.340)
0.5 −16.440± 0.968 (17.440) −15.374± 0.874 (16.374) −23.320± 1.396 (24.320) −20.140± 0.934 (21.140) −13.270± 2.261 (14.270)
0.7 −0.336± 0.056 (1.336) −0.210± 0.065 (1.210) −0.300± 0.349 (1.300) −0.700± 0.160 (1.700) −1.600± 0.916 (2.600)
0.9 1.000± 0.000 (0.000) 1.000± 0.000 (0.000) 1.000± 0.000 (0.000) 0.851± 0.040 (0.149) 1.000± 0.000 (0.000)
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D.4 ADDITIONAL RESULTS FOR TRAINING-BASED STRATEGIES

In sparse-reward environments, brute-force search can be accelerated by recognizing that only
states with non-zero rewards must be labeled. This greatly reduces the number of combinations
to consider, making exact evaluation tractable in small domains. The optimality results on all
prototypical domains are shown in Table 5, where we further show the error bar of each experiment,
which are omitted in Section 4.2, as the results between different seeds are almost the same, showing
the robustness of optimal selection strategies.

Table 5: Performance comparison of brute-force, sequential-greedy, and ES on proto-
typical domains. Results are reported on training datasets, with test performance shown in parentheses
(e.g., train score (test score)). Test scores are reported as mean ± standard error across five test
datasets. ES 200 corresponds to k = 10,m = 20 and ES 50 to k = 10,m = 5.

Domains Percentage Feedback brute-force sequential-greedy ES 200 ES 50 guided

Graph

0.1 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000) 4.999(4.996± 0.000) 3.701
0.3 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 6.000(6.000± 0.000) 5.831
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.003(7.003± 0.000) 7.110
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.830
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000

Tree

0.1 17.056(16.773± 0.000) 17.056(16.773± 0.000) 12.990(12.978± 0.000) 8.841(8.768± 0.000) 8.003
0.3 17.767(17.592± 0.017) 17.767(17.592± 0.033) 17.198(17.157± 0.000) 16.199(16.271± 0.000) 12.846
0.5 17.767(17.629± 0.020) 17.767(17.629± 0.018) 17.781(17.680± 0.000) 17.445(17.275± 0.009) 16.072
0.7 17.767(17.649± 0.000) 17.767(17.649± 0.000) 17.777(17.623± 0.000) 17.642(17.547± 0.000) 17.193
0.9 17.767(17.657± 0.000) 17.767(17.657± 0.000) 17.736(17.639± 0.000) 17.746(17.564± 0.000) 17.673

CliffWalk

0.1 −95.958(−96.081± 0.001) −95.958(−96.081± 0.001) −713.261(−714.600± 0.019) −1086.006(−1086.526± 0.039) −1248.872
0.3 −84.016(−83.986± 0.001) −84.016(−83.986± 0.001) −97.237(−97.276± 0.000) −100.000(−100.000± 0.000) −369.964
0.5 −75.042(−75.059± 0.001) −75.042(−75.059± 0.001) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −132.671
0.7 −66.206(−66.477± 0.001) −66.206(−66.477± 0.001) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −98.870
0.9 −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −100.000(−100.000± 0.000) −72.646

FrozenLake

0.1 0.746(0.729± 0.010) 0.746(0.729± 0.010) 0.742(0.728± 0.009) 0.014(0.014± 0.000) 0.021
0.3 0.746(0.736± 0.006) 0.746(0.736± 0.006) 0.738(0.702± 0.010) 0.738(0.730± 0.008) 0.087
0.5 0.746(0.719± 0.012) 0.746(0.719± 0.012) 0.740(0.731± 0.009) 0.737(0.714± 0.009) 0.165
0.7 0.746(0.728± 0.007) 0.746(0.728± 0.007) 0.733(0.730± 0.010) 0.742(0.737± 0.002) 0.261
0.9 0.746(0.719± 0.008) 0.746(0.719± 0.008) 0.739(0.740± 0.001) 0.743(0.734± 0.005) 0.477

TwoRooms

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.055
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.109
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.195
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.270
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.732

TwoRooms-Trap

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −37.204
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −16.440
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −1.397
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.966
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000

In addition to the two ES variants presented in Section 4.2, we provide an ablation study examining
how performance varies with different numbers of samples per iteration m and iterations k. In
Table 6, we fix m = 20 and vary k across {3, 5, 8, 10}. In Table 7, we fix k = 10 and vary m across
{5, 10, 15, 20}. We find that larger values of k ×m generally lead to better performance. Notably,
increasing m (the number of samples per iteration) tends to have a greater impact than increasing k
(the number of iterations), suggesting that sampling more candidates per iteration contributes more
significantly to performance gains than simply running additional iterations.
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Table 6: Ablation study of ES performance as a function of the number of iterations k (with m = 20
fixed). Results are reported as k ×m for consistency with the main paper (e.g., ES 10× 20 indicates
k = 10 and m = 20).

Domains Percentage Feedback ES 10× 20 ES 8× 20 ES 5× 20 ES 3× 20

Graph

0.1 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000)
0.3 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)

Tree

0.1 12.990(12.978± 0.000) 12.990(12.978± 0.000) 12.880(12.884± 0.000) 11.820(11.897± 0.086)
0.3 17.198(17.157± 0.000) 17.329(17.111± 0.000) 17.436(17.464± 0.000) 16.357(16.161± 0.000)
0.5 17.781(17.680± 0.000) 17.692(17.518± 0.009) 17.583(17.535± 0.000) 17.016(16.911± 0.000)
0.7 17.777(17.623± 0.000) 17.763(17.603± 0.000) 17.846(17.668± 0.000) 17.721(17.552± 0.000)
0.9 17.736(17.639± 0.000) 17.746(17.564± 0.000) 17.746(17.564± 0.000) 17.746(17.564± 0.000)

CliffWalk

0.1 −713.261(−714.600± 0.019) −713.261(−714.567± 0.012) −767.641(−769.536± 0.028) −783.801(−786.146± 0.021)
0.3 −97.237(−97.276± 0.000) −97.329(−97.361± 0.000) −95.920(−95.841± 0.001) −100.000(−100.000± 0.000)
0.5 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000)
0.7 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000)
0.9 −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −14.000(−13.996± 0.000)

FrozenLake

0.1 0.742(0.728± 0.009) 0.743(0.741± 0.001) 0.740(0.740± 0.001) 0.737(0.721± 0.010)
0.3 0.738(0.702± 0.010) 0.740(0.727± 0.006) 0.743(0.735± 0.006) 0.738(0.735± 0.006)
0.5 0.740(0.731± 0.009) 0.743(0.735± 0.005) 0.740(0.710± 0.011) 0.737(0.734± 0.005)
0.7 0.733(0.730± 0.010) 0.740(0.714± 0.014) 0.741(0.725± 0.013) 0.739(0.710± 0.008)
0.9 0.739(0.740± 0.001) 0.739(0.723± 0.007) 0.742(0.710± 0.013) 0.740(0.734± 0.005)

TwoRooms

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)

TwoRooms-Trap

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)

Table 7: Ablation study of ES performance as a function of the number of samples per iteration m
(with k = 10 fixed). Results are reported as k ×m for consistency with the main paper (e.g., ES
10× 20 indicates k = 10 and m = 20).

Domains Percentage Feedback ES 10 × 20 ES 10 × 15 ES 10 × 10 ES 10 × 5

Graph

0.1 7.003(7.003 ± 0.000) 5.999(6.001 ± 0.000) 5.999(6.001 ± 0.000) 4.999(4.996 ± 0.000)
0.3 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 6.000(6.000 ± 0.000)
0.5 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 7.003(7.003 ± 0.000)
0.7 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000)
0.9 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000)

Tree

0.1 12.990(12.978 ± 0.000) 12.754(12.301 ± 0.116) 12.427(12.516 ± 0.000) 8.841(8.768 ± 0.000)
0.3 17.198(17.157 ± 0.000) 17.319(17.219 ± 0.000) 17.082(17.015 ± 0.002) 16.199(16.271 ± 0.000)
0.5 17.781(17.680 ± 0.000) 17.454(17.334 ± 0.000) 17.328(17.290 ± 0.034) 17.445(17.275 ± 0.009)
0.7 17.777(17.623 ± 0.000) 17.742(17.603 ± 0.000) 17.727(17.726 ± 0.000) 17.642(17.547 ± 0.000)
0.9 17.736(17.639 ± 0.000) 17.736(17.639 ± 0.000) 17.736(17.639 ± 0.000) 17.746(17.564 ± 0.000)

CliffWalk

0.1 −713.261(−714.600 ± 0.019) −755.425(−754.434 ± 0.000) −867.262(−865.682 ± 0.021) −1086.006(−1086.526 ± 0.039)
0.3 −97.237(−97.276 ± 0.000) −98.579(−98.576 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.5 −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.7 −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.9 −13.000(−13.000 ± 0.000) −13.000(−13.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)

FrozenLake

0.1 0.742(0.728 ± 0.009) 0.739(0.698 ± 0.011) 0.741(0.720 ± 0.013) 0.014(0.014 ± 0.000)
0.3 0.738(0.702 ± 0.010) 0.744(0.741 ± 0.002) 0.740(0.728 ± 0.007) 0.738(0.730 ± 0.008)
0.5 0.740(0.731 ± 0.009) 0.739(0.723 ± 0.009) 0.740(0.733 ± 0.005) 0.737(0.714 ± 0.009)
0.7 0.733(0.730 ± 0.010) 0.739(0.711 ± 0.014) 0.739(0.722 ± 0.006) 0.742(0.737 ± 0.002)
0.9 0.739(0.740 ± 0.001) 0.738(0.737 ± 0.005) 0.738(0.731 ± 0.008) 0.743(0.734 ± 0.005)

TwoRooms

0.1 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.3 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.5 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.7 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.9 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)

TwoRooms-Trap

0.34 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.48 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.61 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.75 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.89 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)

We also report ES results on large-scale MinAtar domains, using k = 10,m = 100 (ES 1000).
Although the training computation of ES remains fixed, achieving accurate performance estimates
still requires large k ×m values. Even under this configuration, ES does not consistently outperform
guided, illustrating the inherent difficulty of discovering optimal state sets in large state spaces
even when an evaluator is available, as shown in Table 8.

In addition, Table 8 includes a column for reduced brute-force. By leveraging UDS, we only
label the data points where rewards are non-zero. All four MinAtar domains exhibit sparse rewards,
with fewer than 10% of states containing non-zero rewards. As a result, reduced brute-force
is expected to identify a state set that achieves equivalent performance to the fully labeled dataset,
while substantially reducing the labeling effort.
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Table 8: Performance comparison of ES and guided for optimal state set selection on large-scale
domains. Results are reported only on training datasets because the guided heuristic is defined with
respect to the training dataset, and our comparison focuses on matching the settings for both methods.
Although the training computation of ES is fixed, accurately evaluating its performance on large
datasets remains costly, and small values of k ×m yield poor results. Even with k = 10,m = 100
(denoted as ES 1000), ES does not consistently outperform guided. Scores are reported as mean
± standard error.

Domains Percentage Feedback Reduced brute-force ES 1000 guided

Breakout

0.15

17.75

17.75 ± 0.85 7.13 ± 0.11
0.30 17.66 ± 0.40 14.12 ± 0.34
0.45 17.75 ± 0.89 17.39 ± 0.29
0.60 17.32 ± 1.05 17.60 ± 0.33
0.75 17.46 ± 1.08 16.17 ± 0.35
0.90 17.40 ± 1.43 17.06 ± 0.37

Freeway

0.15

58.28

43.44 ± 1.41 42.31 ± 0.25
0.30 55.82 ± 0.93 54.01 ± 0.21
0.45 58.28 ± 0.48 58.02 ± 0.20
0.60 58.28 ± 0.46 58.28 ± 0.20
0.75 58.28 ± 0.81 58.28 ± 0.15
0.90 58.28 ± 0.45 58.28 ± 0.24

Seaquest

0.15

34.99

1.42 ± 0.26 7.30 ± 0.23
0.30 9.16 ± 1.09 14.35 ± 0.47
0.45 18.80 ± 2.25 19.77 ± 0.71
0.60 23.58 ± 3.00 23.46 ± 0.80
0.75 24.99 ± 3.44 23.79 ± 0.88
0.90 25.48 ± 3.31 27.17 ± 1.04

Asterix

0.15

35.16

4.88 ± 0.74 7.38 ± 0.34
0.30 9.06 ± 1.10 16.21 ± 0.65
0.45 22.36 ± 2.45 24.00 ± 0.84
0.60 28.92 ± 2.52 30.19 ± 0.91
0.75 32.28 ± 3.03 30.71 ± 0.94
0.90 35.16 ± 2.96 34.94 ± 1.01
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D.5 ADDITIONAL PATTERN ANALYSIS

In FrozenLake and TwoRooms-Trap, trap states can prematurely terminate episodes, leading to
optimal sets focusing on avoiding trap states as well as reaching the goal. In CliffWalk, the large
penalty for falling into the cliff causes optimal sets to include off-path states adjacent to the cliff,
effectively constraining the agent’s behavior. These effects are accentuated by the reward imputation
strategy in UDS (Yu et al., 2022), which assumes unlabeled states have zero reward. Further ablation
with alternative settings (e.g., Q-truncated) is shown in Appendix D.9.

To better understand the effectiveness of heuristic strategies in Breakout, we further analyze the
state sets selected by visitation and uniform methods. As shown in Figure 4, visitation
consistently outperforms uniform across all budget levels. To investigate this, we sampled 100
state sets from each strategy and calculated the cumulative reward present within the selected states.

Table 9 shows the average sum of rewards across these samples at varying feedback levels. The
results indicate that state sets selected by visitation heuristics consistently contain a higher
concentration of high-reward states compared to uniform. In Breakout, high-reward states often
correspond to frames where the paddle is well-aligned with the ball to prevent it from being lost, which
yields a reward of 1. The visitation heuristic is biased toward such frequently encountered high-
value configurations during data collection, whereas uniform sampling provides more dispersed
but less reward-focused coverage.

This quantitative observation directly supports the qualitative interpretation of the performance gap
seen in Figure 4: visitation’s tendency to prioritize paddle-ball alignment states leads to a higher
sum of rewards in the labeled dataset and therefore facilitates better value propagation during offline
RL training.

Table 9: Sum of rewards in the state sets selected by visitation and uniform heuristics on
Breakout. At each feedback level, we sample 100 state sets and report the mean (± standard error)
of total rewards present in the selected states. Higher values for visitation indicate its stronger
tendency to select high-reward (paddle-ball alignment) states.

Percentage Feedback visitation uniform

0.146 60936.980 ± 49.963 10039.340 ± 368.025
0.291 65967.740 ± 15.982 20394.690 ± 514.998
0.437 67718.620 ± 9.163 30736.510 ± 609.436
0.583 68640.250 ± 4.266 39807.620 ± 668.318
0.728 69182.230 ± 2.760 51333.890 ± 522.632
0.874 69522.340 ± 1.531 61671.510 ± 347.499

D.6 BEHAVIOUR POLICY DEPENDENCE

In the experiments below, we constructed five offline datasets in the Breakout domain using five
different mixture ratios of an expert policy and a uniform-random policy, where the mixture ratio
indicates the probability of following the expert policy (e.g., 0.3 means 30% expert and 70% random).
We evaluate the guided selection strategy with both UDS (Section 2) and Adaptive Q-learning
(Appendix D.9), confirming the Section 4.1 conclusion on coverage-driven performance across
different datasets and including a Behavior Cloning (BC) comparison under Adaptive Q-learning.

The table below summarizes the number of unique states visited under each behavior policy ratio,
which directly reflects dataset coverage:

Table 10: Unique states under different expert policy ratios.

Expert Policy Ratio 0.0 0.3 0.5 0.7 1.0

Unique States 99,254 26,255 13,731 7,110 3,535

For guided with UDS, we compare selective reward-labeling with a uniform-random baseline at
0%. UDS imputes all unlabeled rewards as zero, making uniform coverage an appropriate comparison
for its behavior in the absence of reward labels. Guided selection quickly outperforms the naive
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uniform-random baseline even at small labeling budgets, confirming the conclusion from Section 4.1,
showing a robust trend across diverse datasets.

Table 11: Performance of different feedback levels under varying behavior policies with UDS.

Behavior Policy Uniform-random (0%) 15% 30% 45% 60% 75% 90% IQL (100%)
0.0 0.77 ± 0.06 0.51 ± 0.03 0.57 ± 0.03 0.53 ± 0.04 0.56 ± 0.04 0.70 ± 0.05 0.87 ± 0.05 0.84 ± 0.06
0.3 0.77 ± 0.06 16.27 ± 0.34 16.31 ± 0.37 17.53 ± 0.38 17.98 ± 0.34 17.83 ± 0.37 17.70 ± 0.38 17.82 ± 0.35
0.5 0.77 ± 0.06 7.13 ± 0.11 14.12 ± 0.34 17.39 ± 0.29 17.60 ± 0.33 17.17 ± 0.35 17.06 ± 0.37 17.75 ± 0.22
0.7 0.77 ± 0.06 4.26 ± 0.03 5.74 ± 0.07 6.44 ± 0.11 7.14 ± 0.10 7.27 ± 0.10 7.60 ± 0.10 7.59 ± 0.12
1.0 0.77 ± 0.06 3.24 ± 0.03 3.64 ± 0.04 5.51 ± 0.05 5.59 ± 0.06 5.64 ± 0.06 5.49 ± 0.06 5.60 ± 0.08

For guided with Adaptive Q-learning, we include Behavior Cloning (BC) at 0% as a reference
point, representing fully supervised learning from raw trajectories without reward labeling. Guided
selection with even small labeling budgets consistently outperforms BC—except when using datasets
collected purely by uniform-random policies. These results also support the Section 4.1 conclusion.

Table 12: Performance of different feedback levels under varying behavior policies with Adaptive
Q-learning.

Behavior Policy BC (0%) 15% 30% 45% 60% 75% 90% IQL (100%)
0.0 0.77 ± 0.06 0.48 ± 0.03 0.61 ± 0.05 0.81 ± 0.04 0.87 ± 0.05 0.87 ± 0.03 0.85 ± 0.06 0.82 ± 0.05
0.3 2.77 ± 1.04 16.53 ± 0.36 16.37 ± 0.38 16.88 ± 0.36 16.89 ± 0.36 16.97 ± 0.35 17.17 ± 0.36 17.77 ± 1.04
0.5 5.23 ± 0.46 14.12 ± 0.34 17.39 ± 0.29 17.60 ± 0.33 16.17 ± 0.35 17.06 ± 0.37 17.75 ± 0.22 17.49 ± 0.66
0.7 4.89 ± 0.07 5.71 ± 0.07 6.14 ± 0.09 6.69 ± 0.10 7.23 ± 0.11 7.10 ± 0.10 7.48 ± 0.11 7.98 ± 0.38
1.0 3.70 ± 0.05 4.31 ± 0.05 5.11 ± 0.05 5.47 ± 0.06 5.34 ± 0.06 5.52 ± 0.06 5.54 ± 0.06 5.46 ± 0.21

Takeaway

1. The results above demonstrate that the learned policy does not degenerate to the
behavior policy simply because frequently visited states are labeled. Instead, state
coverage of the offline dataset is a dominant factor in final policy performance. Even
when the behavior policy is weak, guided reward selection enables strong policy
learning as long as coverage is sufficient.

2. Behavior Cloning (BC) is generally outperformed by guided reward selection with
only 15% feedback. This confirms that the outcome of reward selection does not
simply imitate the behavior policy, and that guided selection can leverage a small
number of labeled rewards to learn a policy that outperforms BC, even when dataset
coverage is limited, and performs even better when coverage is sufficient.

D.7 INITIAL SAMPLE SENSITIVITY

To evaluate how the method responds to different initial state subset selections, we performed initial
sample ratio experiments: a fraction of the total labeling budget was randomly allocated at the start,
after which the remaining budget was spent according to the guided selection strategy (1st row).
For comparison, we also evaluated two static baselines, ES 50 (2nd row) and ES 200 (3rd row),
under the same initial sample ratios. Results are reported for both a dense reward domain (Graph,
Table 13) and a sparse reward domain (TwoRooms, Table 14).

Across both domains, we observe that the optimal selection methods (ES 200 and ES 50) generally
outperform guided selection at equivalent budgets, as they are not penalized by suboptimal early
queries and have access to the evaluator. However, the effect of initial random sampling differs by
domain. In the sparse reward TwoRooms environment, larger initial samples improve early perfor-
mance because random initialization has a better chance of labeling terminal states, which accelerates
learning once guided selection begins. In contrast, in the dense reward Graph environment, larger
initial samples degrade performance, as they waste labeling budget on states that guided selection
would have efficiently deprioritized. These results suggest that guided selection still converges to
near-optimal performance once it has enough budget, even after suboptimal initial state selections.
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Table 13: Results across different initial sample ratios and feedback percentages on Graph domain
with guided selection strategy.

Initial Sample Ratio 0.1 0.3 0.5 0.7 0.9

0
3.701 ± 0.129 5.831 ± 0.137 7.110 ± 0.099 7.830 ± 0.040 8.000 ± 0.000
5.001 ± 0.000 6.000 ± 0.000 7.003 ± 0.000 8.000 ± 0.000 8.000 ± 0.000
7.003 ± 0.000 8.000 ± 0.000 8.000 ± 0.000 8.000 ± 0.000 8.000 ± 0.000

0.1
3.406 ± 0.135 5.699 ± 0.130 7.041 ± 0.094 7.731 ± 0.049 8.000 ± 0.000
3.750 ± 0.140 5.311 ± 0.128 7.101 ± 0.121 7.532 ± 0.116 8.000 ± 0.000
4.120 ± 0.146 6.391 ± 0.127 7.081 ± 0.109 7.501 ± 0.114 8.000 ± 0.000

0.3
– 4.932 ± 0.164 6.531 ± 0.117 7.581 ± 0.062 8.000 ± 0.000
– 6.011 ± 0.092 6.852 ± 0.079 7.401 ± 0.066 8.000 ± 0.000
– 6.111 ± 0.087 7.172 ± 0.063 7.541 ± 0.057 8.000 ± 0.000

0.5
– – 6.234 ± 0.114 7.399 ± 0.066 8.000 ± 0.000
– – 6.502 ± 0.084 7.002 ± 0.065 8.000 ± 0.000
– – 7.102 ± 0.067 7.451 ± 0.059 8.000 ± 0.000

Table 14: Results across different initial sample ratios and feedback percentages on the TwoRooms
domain with guided selection strategy.

Initial Sample Ratio 0.1 0.3 0.5 0.7 0.9

0
0.012 ± 0.010 0.077 ± 0.027 0.173 ± 0.039 0.270 ± 0.046 0.732 ± 0.046
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

0.1
0.221 ± 0.041 0.251 ± 0.043 0.331 ± 0.047 0.511 ± 0.050 0.830 ± 0.038
0.321 ± 0.047 0.571 ± 0.049 0.700 ± 0.046 0.870 ± 0.034 1.000 ± 0.000
0.451 ± 0.050 0.770 ± 0.042 0.950 ± 0.022 0.970 ± 0.017 1.000 ± 0.000

0.3
– – 0.601 ± 0.049 0.700 ± 0.046 0.880 ± 0.032
– – 0.910 ± 0.029 0.980 ± 0.014 1.000 ± 0.000
– – 0.950 ± 0.022 0.990 ± 0.010 1.000 ± 0.000

0.5
– – – 0.780 ± 0.041 0.920 ± 0.027
– – – 0.850 ± 0.036 1.000 ± 0.000
– – – 0.890 ± 0.031 1.000 ± 0.000

Takeaway

The impact of initial state subset selection depends on the reward structure. In sparse
reward settings, allocating more initial random labels can improve early performance by
increasing the chance of covering terminal states, whereas in dense reward settings, it can
hinder performance by diverting labels away from more informative regions. While guided
selection may lag behind optimal methods a lot in the early stage, it recovers as more budget
becomes available and converges to strong final policies.

D.8 TRADEOFF SCHEDULES

The guided strategy gradually shifts from exploration to exploitation. This shift is controlled by a
decay function and related parameters:

1. Decay function determines how quickly exploration weight decreases over the course of
the labeling budget.

• Linear decay: exploration weight decreases at a constant rate from start to finish.

• Convex decay: exploration weight decreases quickly at the start and then flattens out,
prioritizing exploitation early.
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• Concave decay: exploration weight decreases slowly at the start and then drops
quickly near the end, emphasizing exploration for longer before rapidly switching to
exploitation.

2. Decay temperature controls how sharp or gentle the decay curve is for convex and concave
schedules. A larger temperature means a steeper initial drop (for convex) or a flatter early
phase (for concave).

3. Fixed time threshold specifies the fraction of total iterations after which exploration stops
entirely, forcing the strategy to fully exploit. For example, fixtime = 0.7 means
exploration will stop only after rewards have been queried for at least 70% of all rewards
in the dataset; if the total budget is smaller than that threshold, exploration is never fully
turned off.

4. Initial sample size determines, respectively, how many states are chosen randomly before
guided selection begins and how unqueried rewards are treated.

Takeaway

These parameters define how the guided strategy balances exploration and exploitation over
time. We performed a combinational search over these settings and selected a configuration
that provided good performance, which we use as the default in our experiments.
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D.9 ABLATION STUDY: A VARIANT OF ALG

As illustrated in Figure 2, the core of this work is to propose and compare different reward selection
strategies, which should be applicable to any Alg. While our main results focus on using UDS, in
this section we apply the same selection strategies to an alternative Alg we propose.

D.9.1 ADAPTED Q-LEARNING

We use Q-learning—a value-based algorithm variants of which are widely used in offline settings
(Levine et al., 2020; Kostrikov et al., 2021)—for policy updates in Alg. However, missing reward
labels for some samples in RLLF pose a challenge: how should the policy be updated when samples
without rewards are encountered? While assumptions might be made to facilitate modeling of
unknown rewards, those reward estimates may be arbitrarily incorrect, especially in discrete domains.

Consequently, for states where rewards are unavailable (i.e., s /∈ S[B]), we make no assumptions
and treat the reward as being undefined. As a result, this algorithm sets unknown Q-values to zero,
in contrast the UDS algorithm sets unknown reward values to zero. This approach aligns with the
principle of pessimism in offline RL, which ensures that potentially erronous value estimates from
unseen data are not used to update values of seen data—a strategy whose benefits are widely studied
(Jin et al., 2021; Xie et al., 2021). To accommodate undefined rewards, we modify the vanilla
Q-learning update rule as follows:

Q(s, a)←−


Q(s, a) + α

(
r(s, a) + γ ∗maxa′ Q(s′, a′)−Q(s, a)

)
, s ∈ S[B] & s′ ∈ S[B]

α r(s, a), s ∈ S[B] & s′ /∈ S[B]

undefined︸ ︷︷ ︸
=0

, s /∈ S[B]

(6)
For B = |S|, i.e., when all rewards are known for all states, this reduces to the standard Q-learning
update rule (Sutton & Barto, 2018). For B < |S|, this update rule yields a truncated estimate of the
standard Q-values, with a corresponding truncated Bellman operator. To distinguish these Q-values
from the standard definition, we use Q̃ to denote Q-values estimated from the update rule in Equation
6.

The values Q̃(s, a) are only defined for states s ∈ S[B]. Consequently, a greedy policy derived from
the truncated Q-values can only be defined for s ∈ S[B]. For states s /∈ S[B], there is no reward
feedback is available and Q̃(s, a) is undefined, and we cannot evaluate the varying effects of actions
in those states. In the absence of any evaluative signal for actions, we default to the data collecting
policy πD at those states.

π[B] = π[S[B]] =

{
argmaxa Q̃(s, a), s ∈ S[B]

πD, s /∈ S[B]
(7)

This update scheme is denoted by Alg, and the policy output by Alg(D,S[B]) is denoted by π[B], or
equivalently, π[S[B]] when emphasizing the dependence on S[B]. Policy updates only occur at states
s ∈ S[B]. Selecting a set of states to label with reward amounts determines states at which the policy
gets updated—potentially to differ from the data-collecting policy—and the strategy for selecting
these states Q(B) to optimize Equation (1) is the focus of the following sections.

D.9.2 PERFORMANCE OF HEURISTICS SELECTION STRATEGY

We evaluate guided, visitation, and uniform selection strategies under Adaptive Q-Learning
on small domains as shown in the Table 15. The trends largely align with the findings in the main text
and remain consistent with those observed under UDS. In domains such as Graph, Tree, CliffWalk,
and TwoRooms-Trap, where the optimal policy follows a narrow set of trajectories, path-following
methods (guided and visitation) perform best. In contrast, TwoRooms and FrozenLake
contain multiple viable paths to the goal, making broader state coverage more advantageous; here,
uniform selection achieves superior results. Adaptive Q-Learning confirms the strong dependence
of heuristic effectiveness on domain characteristics, including transition determinism, reward sparsity,
and bottleneck structures (as discussed in Section 4.1).
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Table 15: Comparison of guided, visitation, and uniform heuristic selection strategies on
prototypical domains. For each domain, the table presents the mean policy return (± standard error)
and the corresponding optimality gap (in parentheses) across five percentage feedback levels.

Domains Percentage Feedback guided visitation uniform

Graph

0.1 4.477 ± 0.040 (0.860) 4.397 ± 0.036 (0.940) 4.171 ± 0.040 (1.166)
0.3 5.616 ± 0.069 (1.549) 5.480 ± 0.068 (1.685) 5.048 ± 0.062 (2.117)
0.5 6.604 ± 0.098 (1.396) 6.385 ± 0.101 (1.615) 5.697 ± 0.081 (2.303)
0.7 7.502 ± 0.086 (0.498) 7.229 ± 0.093 (0.771) 6.019 ± 0.127 (1.981)
0.9 8.000 ± 0.000 (0.000) 8.000 ± 0.000 (0.000) 8.000 ± 0.000 (0.000)

Tree

0.1 8.300 ± 0.144 (3.424) 8.059 ± 0.116 (3.665) 6.753 ± 0.076 (4.971)
0.3 13.317 ± 0.337 (3.608) 12.126 ± 0.238 (4.798) 8.484 ± 0.134 (8.440)
0.5 16.120 ± 0.183 (1.340) 14.917 ± 0.277 (2.543) 10.445 ± 0.240 (7.014)
0.7 17.354 ± 0.041 (0.269) 16.870 ± 0.151 (0.753) 11.637 ± 0.343 (5.985)
0.9 17.689 ± 0.012 (0.030) 17.675 ± 0.012 (0.016) 16.280 ± 0.292 (1.379)

CliffWalk

0.1 −414.059 ± 7.923 (171.814) −414.059 ± 7.923 (171.814) −488.198 ± 6.642 (245.953)
0.3 −236.441 ± 18.131 (136.441) −237.081 ± 18.171 (137.081) −433.176 ± 15.181 (333.176)
0.5 −155.088 ± 13.893 (55.088) −154.042 ± 13.888 (54.042) −409.481 ± 20.146 (309.481)
0.7 −123.490 ± 7.651 (92.459) −100.437 ± 0.881 (69.406) −378.334 ± 24.350 (347.302)
0.9 −146.676 ± 11.375 (132.023) −107.590 ± 5.313 (92.937) −341.785 ± 27.414 (327.131)

FrozenLake

0.1 0.024 ± 0.000 (0.010) 0.024 ± 0.000 (0.010) 0.024 ± 0.000 (0.010)
0.3 0.024 ± 0.000 (0.048) 0.024 ± 0.000 (0.048) 0.025 ± 0.001 (0.047)
0.5 0.024 ± 0.000 (0.222) 0.023 ± 0.000 (0.223) 0.027 ± 0.001 (0.218)
0.7 0.073 ± 0.015 (0.595) 0.036 ± 0.007 (0.631) 0.098 ± 0.014 (0.569)
0.9 0.374 ± 0.030 (0.336) 0.267 ± 0.025 (0.443) 0.368 ± 0.026 (0.341)

TwoRooms

0.1 0.025 ± 0.001 (0.289) 0.025 ± 0.001 (0.289) 0.030 ± 0.001 (0.283)
0.3 0.013 ± 0.001 (0.939) 0.012 ± 0.001 (0.939) 0.033 ± 0.003 (0.919)
0.5 0.007 ± 0.000 (0.992) 0.008 ± 0.000 (0.992) 0.043 ± 0.005 (0.956)
0.7 0.159 ± 0.035 (0.841) 0.085 ± 0.027 (0.915) 0.230 ± 0.034 (0.770)
0.9 0.721 ± 0.044 (0.279) 0.761 ± 0.043 (0.239) 0.720 ± 0.042 (0.280)

TwoRooms-Trap

0.1 −55.947 ± 0.920 (32.444) −57.720 ± 0.628 (34.217) −62.899 ± 0.487 (39.396)
0.3 −41.188 ± 1.123 (39.950) −44.392 ± 0.832 (43.154) −53.528 ± 0.692 (52.290)
0.5 −14.334 ± 0.837 (14.872) −21.868 ± 0.894 (22.406) −40.030 ± 0.837 (40.568)
0.7 −0.178 ± 0.057 (1.176) −1.001 ± 0.332 (1.999) −26.138 ± 0.966 (27.136)
0.9 1.000 ± 0.000 (0.000) 1.000 ± 0.000 (0.000) −4.577 ± 0.689 (5.577)

D.9.3 PERFORMANCE OF OPTIMAL SELECTION STRATEGY

We evaluate brute-force, sequential-greedy, ES 200, and ES 50 under Adaptive Q-
Learning with the same setting as in the main text shown in Table 16. The findings closely mir-
ror those observed with UDS. Sequential-greedy consistently matches the performance of
brute-force, validating its effectiveness as a scalable approximation to the true optimal state
set. ES 200 reliably outperforms ES 50, and both evolutionary variants generally exceed the
performance of guided selection at moderate to high budgets. These results reaffirm the relative
ordering and conclusions reported in the main text, demonstrating that the effectiveness of optimized
selection strategies remains stable across different policy learning algorithms.

Table 16: Performance comparison of brute-force, sequential-greedy, and ES on proto-
typical domains. Results are reported on training datasets, with test performance shown in parentheses
(e.g., train score (test score)). Test scores are reported as mean ± standard error across five test
datasets. ES 200 corresponds to k = 10,m = 20 and ES 50 to k = 10,m = 5.

Domains Percentage Feedback brute-force sequential-greedy ES 200 ES 50 guided

Graph

0.1 5.337(3.032± 0.213) 5.337(3.032± 0.213) 5.308(3.014± 0.211) 4.214(1.521± 0.226) 4.477
0.3 7.165(6.004± 0.128) 7.165(6.004± 0.128) 7.157(5.994± 0.124) 6.275(4.518± 0.164) 5.616
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 6.589(5.256± 0.115) 6.604
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.502
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000

Tree

0.1 11.724(8.092± 0.276) 11.724(8.092± 0.276) 11.724(8.092± 0.276) 9.073(4.078± 0.384) 8.300
0.3 16.925(16.349± 0.056) 16.925(16.349± 0.056) 13.282(10.283± 0.238) 9.637(5.187± 0.334) 13.317
0.5 17.460(17.406± 0.017) 17.460(17.406± 0.017) 17.235(16.982± 0.025) 12.656(9.909± 0.184) 16.120
0.7 17.623(17.627± 0.006) 17.623(17.627± 0.006) 17.513(17.489± 0.009) 15.217(13.324± 0.142) 17.354
0.9 17.659(17.788± 0.001) 17.659(17.788± 0.001) 17.678(17.777± 0.000) 17.655(17.728± 0.001) 17.689

CliffWalk

0.1 −242.245(−231.272± 6.042) −242.245(−231.272± 6.042) −322.823(−347.828± 12.005) −409.384(−414.365± 26.537) −414.059
0.3 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −150.081(−150.586± 4.002) −320.748(−308.868± 13.555) −236.441
0.5 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −180.969(−189.833± 3.670) −155.088
0.7 −31.031(−31.142± 1.045) −31.031(−31.142± 1.045) −100.000(−100.000± 0.000) −186.756(−180.828± 8.232) −123.490
0.9 −14.653(−14.506± 0.138) −14.653(−14.506± 0.138) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −146.676

FrozenLake

0.1 0.034(0.032± 0.001) 0.034(0.032± 0.001) 0.031(0.030± 0.000) 0.031(0.030± 0.001) 0.024
0.3 0.072(0.049± 0.003) 0.072(0.049± 0.003) 0.036(0.032± 0.001) 0.032(0.034± 0.001) 0.024
0.5 0.246(0.347± 0.029) 0.246(0.347± 0.029) 0.067(0.057± 0.004) 0.054(0.045± 0.005) 0.024
0.7 0.667(0.629± 0.011) 0.667(0.629± 0.011) 0.199(0.212± 0.006) 0.196(0.223± 0.008) 0.073
0.9 0.710(0.688± 0.013) 0.710(0.688± 0.013) 0.679(0.703± 0.006) 0.699(0.709± 0.013) 0.374

TwoRooms

0.1 0.314(0.321± 0.031) 0.314(0.321± 0.031) 0.063(0.073± 0.014) 0.038(0.046± 0.009) 0.025
0.3 0.952(0.952± 0.005) 0.952(0.952± 0.005) 0.310(0.314± 0.029) 0.052(0.057± 0.009) 0.013
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.365(0.362± 0.026) 0.270(0.270± 0.022) 0.007
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.999(1.000± 0.000) 0.159
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.721

TwoRooms-Trap

0.1 −23.503(−23.047± 0.319) −23.503(−23.047± 0.319) −31.646(−32.431± 0.736) −53.449(−53.509± 0.204) −55.947
0.3 −1.238(−1.243± 0.017) −1.238(−1.243± 0.017) −11.259(−10.935± 0.174) −35.621(−35.996± 0.556) −41.188
0.5 0.538(0.540± 0.016) 0.538(0.540± 0.016) −0.845(−0.793± 0.030) −17.590(−17.505± 0.139) −14.334
0.7 0.998(0.998± 0.000) 0.998(0.998± 0.000) −0.233(−0.258± 0.024) −14.739(−14.826± 0.245) −0.178
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.862(0.845± 0.010) 1.000

27


	Introduction
	Problem Formulation and Preliminaries
	Reinforcement Learning from Limited Feedback
	Reward Selection

	Methodology: Selection Strategies
	Heuristic-Based Selection: Training-Free Strategies
	Strategies Leveraging the Training Phase

	Empirical Analysis
	Performance of Heuristic Reward Selection Depends on Domains Traits
	Training Phase Facilitates Near-Optimal Performance
	Common Structural Patterns of Optimal Reward Selections

	Related Work
	Discussion and Conclusion
	Additional Motivating Examples
	Extended Related Work
	Additional Notes on Methodology
	Categorization of Reward Selection Strategies Investigated
	Description and Notation for Iterative Reward Selection Strategies

	Additional Experiments and Empirical Details
	Domain Details
	Different reward-labeled-sets result in policies with varying performance
	Additional Results for Heuristic-Based Selection
	Additional Results for Training-Based Strategies
	Additional Pattern Analysis
	Behaviour Policy Dependence
	Initial Sample Sensitivity
	Tradeoff Schedules
	Ablation Study: A Variant of Alg
	Adapted Q-Learning
	Performance of Heuristics Selection Strategy
	Performance of Optimal Selection Strategy



