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ABSTRACT

Sharpness-aware minimization (SAM), which searches for flat minima by min-max
optimization, has been shown to be useful in improving model generalization.
However, since each SAM update requires computing two gradients, its compu-
tational cost and training time are both doubled compared to standard empirical
risk minimization (ERM). Recent state-of-the-arts reduce the fraction of SAM
updates and thus accelerate SAM by switching between SAM and ERM updates
randomly or periodically. In this paper, we design an adaptive policy to employ
SAM based on the loss landscape geometry. Two efficient algorithms, AE-SAM
and AE-LookSAM, are proposed. We theoretically show that AE-SAM has the
same convergence rate as SAM. Experimental results on various datasets and
architectures demonstrate the efficiency and effectiveness of the adaptive policy.

1 INTRODUCTION

Despite great success in many applications (He et al., 2016; Zagoruyko & Komodakis, 2016; Han
et al., 2017), deep networks are often over-parameterized and capable of memorizing all training
data. The training loss landscape is complex and nonconvex with many local minima of different
generalization abilities. Many studies have investigated the relationship between the loss surface’s
geometry and generalization performance (Hochreiter & Schmidhuber, 1994; McAllester, 1999;
Keskar et al., 2017; Neyshabur et al., 2017; Jiang et al., 2020), and found that flatter minima generalize
better than sharper minima (Dziugaite & Roy, 2017; Petzka et al., 2021; Chaudhari et al., 2017;
Keskar et al., 2017; Jiang et al., 2020).

Sharpness-aware minimization (SAM) (Foret et al., 2021) is the current state-of-the-art to seek flat
minima by solving a min-max optimization problem. In the SAM algorithm, each update consists of
two forward-backward computations: one for computing the perturbation and the other for computing
the actual update direction. Since these two computations are not parallelizable, SAM doubles the
computational overhead as well as the training time compared to empirical risk minimization (ERM).

Several algorithms (Du et al., 2022a; Zhao et al., 2022b; Liu et al., 2022) have been proposed
to improve the efficiency of SAM. ESAM (Du et al., 2022a) uses fewer samples to compute the
gradients and updates fewer parameters, but each update still requires two gradient computations.
Thus, ESAM does not alleviate the bottleneck of training speed. Instead of using the SAM update at
every iteration, recent state-of-the-arts (Zhao et al., 2022b; Liu et al., 2022) proposed to use SAM
randomly or periodically. Specifically, SS-SAM (Zhao et al., 2022b) selects SAM or ERM according
to a Bernoulli trial, while LookSAM (Liu et al., 2022) employs SAM at every k step. Though more
efficient, the random or periodic use of SAM is suboptimal as it is not geometry-aware. Intuitively,
the SAM update is more useful in sharp regions than in flat regions.

In this paper, we propose an adaptive policy to employ SAM based on the geometry of the loss
landscape. The SAM update is used when the model is in sharp regions, while the ERM update
is used in flat regions for reducing the fraction of SAM updates. To measure sharpness, we use
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the squared stochastic gradient norm and model it by a normal distribution, whose parameters are
estimated by exponential moving average. Experimental results on standard benchmark datasets
demonstrate the superiority of the proposed policy.

Our contributions are summarized as follows: (i) We propose an adaptive policy to use SAM or
ERM update based on the loss landscape geometry. (ii) We propose an efficient algorithm, called
AE-SAM (Adaptive policy to Employ SAM), to reduce the fraction of SAM updates. We also
theoretically study its convergence rate. (iii) The proposed policy is general and can be combined
with any SAM variant. In this paper, we integrate it with LookSAM (Liu et al., 2022) and propose
AE-LookSAM. (iv) Experimental results on various network architectures and datasets (with and
without label noise) verify the superiority of AE-SAM and AE-LookSAM over existing baselines.

Notations. Vectors (e.g., x) and matrices (e.g., X) are denoted by lowercase and uppercase boldface
letters, respectively. For a vector x, its `2-norm is ‖x‖. N (µ;σ2) is the univariate normal distribution
with mean µ and variance σ2. diag(x) constructs a diagonal matrix with x on the diagonal. Moreover,
IA(x) denotes the indicator function for a given set A, i.e., IA(x) = 1 if x ∈ A, and 0 otherwise.

2 RELATED WORK

We are given a training set D with i.i.d. samples {(xi, yi) : i = 1, . . . , n}. Let f(x;w) be a model
parameterized by w. Its empirical risk on D is L(D;w) = 1

n

∑n
i=1 `(f(xi;w), yi), where `(·, ·) is

a loss (e.g., cross-entropy loss for classification). Model training aims to learn a model from the
training data that generalizes well on the test data.

Generalization and Flat Minima. The connection between model generalization and loss landscape
geometry has been theoretically and empirically studied in (Keskar et al., 2017; Dziugaite & Roy,
2017; Jiang et al., 2020). Recently, Jiang et al. (2020) conducted large-scale experiments and find that
sharpness-based measures (flatness) are related to generalization of minimizers. Although flatness
can be characterized by the Hessian’s eigenvalues (Keskar et al., 2017; Dinh et al., 2017), handling
the Hessian explicitly is computationally prohibitive. To address this issue, practical algorithms
propose to seek flat minima by injecting noise into the optimizers (Zhu et al., 2019; Zhou et al., 2019;
Orvieto et al., 2022; Bisla et al., 2022), introducing regularization (Chaudhari et al., 2017; Zhao et al.,
2022a; Du et al., 2022b), averaging model weights during training (Izmailov et al., 2018; He et al.,
2019; Cha et al., 2021), or sharpness-aware minimization (SAM) (Foret et al., 2021; Kwon et al.,
2021; Zhuang et al., 2022; Kim et al., 2022).

SAM. The state-of-the-art SAM (Foret et al., 2021) and its variants (Kwon et al., 2021; Zhuang et al.,
2022; Kim et al., 2022; Zhao et al., 2022a) search for flat minima by solving the following min-max
optimization problem:

min
w

max
‖ε‖≤ρ

L(D;w + ε), (1)

where ρ > 0 is the radius of perturbation. The above can also be rewritten as minw L(D;w) +
R(D;w), whereR(D;w) ≡ max‖ε‖≤ρ L(D;w+ε)−L(D;w) is a regularizer that penalizes sharp
minimizers (Foret et al., 2021). As solving the inner maximization in (1) exactly is computationally
infeasible for nonconvex losses, SAM approximately solves it by first-order Taylor approximation,
leading to the update rule:

wt+1 = wt − η∇L(Bt;wt + ρt∇L(Bt;wt)), (2)

where Bt is a mini-batch of data, η is the step size, and ρt = ρ
‖∇L(Bt;wt)‖ . Although SAM has

shown to be effective in improving the generalization of deep networks, a major drawback is that
each update in (2) requires two forward-backward calculations. Specifically, SAM first calculates
the gradient of L(Bt;w) at wt to obtain the perturbation, then calculates the gradient of L(Bt;w) at
wt+ρt∇L(Bt;wt) to obtain the update direction for wt. As a result, SAM doubles the computational
overhead compared to ERM.

Efficient Variants of SAM. Several algorithms have been proposed to accelerate the SAM algorithm.
ESAM (Du et al., 2022a) uses fewer samples to compute the gradients and only updates part of the
model in the second step, but still requires to compute most of the gradients. Another direction is to
reduce the number of SAM updates during training. SS-SAM (Zhao et al., 2022b) randomly selects
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(a) ResNet-18.
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(b) WRN-28-10.
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(c) PyramidNet-110.
Figure 1: Variance of gradient on CIFAR-100. Best viewed in color.

SAM or ERM update according to a Bernoulli trial, while LookSAM (Liu et al., 2022) employs SAM
at every k iterations. Intuitively, the SAM update is more suitable for sharp regions than flat regions.
However, the mixing policies in SS-SAM and LookSAM are not adaptive to the loss landscape. In
this paper, we design an adaptive policy to employ SAM based on the loss landscape geometry.

3 METHOD

In this section, we propose an adaptive policy to employ SAM. The idea is to use ERM when wt is in
a flat region, and use SAM only when the loss landscape is locally sharp. We start by introducing a
sharpness measure (Section 3.1), then propose an adaptive policy based on this (Section 3.2). Next,
we propose two algorithms (AE-SAM and AE-LookSAM) and study the convergence.

3.1 SHARPNESS MEASURE

Though sharpness can be characterized by Hessian’s eigenvalues (Keskar et al., 2017; Dinh et al.,
2017), they are expensive to compute. A widely-used approximation is based on the gradient
magnitude diag([∇L(Bt;wt)]

2) (Bottou et al., 2018; Khan et al., 2018), where [v]2 denotes the
elementwise square of a vector v. As ‖∇L(Bt;wt)‖2 equals the trace of diag([∇L(Bt;wt)]

2), it is
reasonable to choose ‖∇L(Bt;wt)‖2 as a sharpness measure.

‖∇L(Bt;wt)‖2 is also related to the gradient variance Var(∇L(Bt;wt)), another sharpness mea-
sure (Jiang et al., 2020). Specifically,

Var(∇L(Bt;wt))≡EBt‖∇L(Bt;wt)−∇L(D;wt)‖2=EBt‖∇L(Bt;wt)‖2−‖∇L(D;wt)‖2. (3)

With appropriate smoothness assumptions on L, both SAM and ERM can be shown theoretically to
converge to critical points of L(D;w) (i.e., ∇L(D;w) = 0) (Reddi et al., 2016; Andriushchenko
& Flammarion, 2022). Thus, it follows from (3) that Var(∇L(Bt;wt)) = EBt

‖∇L(Bt;wt)‖2
when wt is a critical point of L(D;w). Jiang et al. (2020) conducted extensive experiments and
empirically show that Var(∇L(Bt;wt)) is positively correlated with the generalization gap. The
smaller the Var(∇L(Bt;wt)), the better generalization is the model with parameter wt. This finding
also explains why SAM generalizes better than ERM. Figure 1 shows the gradient variance w.r.t.
the number of epochs using SAM and ERM on CIFAR-100 with various network architectures
(experimental details are in Section 4.1). As can be seen, SAM always has a much smaller variance
than ERM. Figure 2 shows the expected squared norm of the stochastic gradient w.r.t. the number of
epochs on CIFAR-100. As shown, SAM achieves a much smaller EBt‖∇L(Bt;wt)‖2 than ERM.

3.2 ADAPTIVE POLICY TO EMPLOY SAM

As EBt
‖∇L(Bt;wt)‖2 changes with t (Figure 2), the sharpness at wt also changes along the

optimization trajectory. As a result, we need to estimate EBt
‖∇L(Bt;wt)‖2 at every iteration. One

can sample a large number of mini-batches and compute the mean of the stochastic gradient norms.
However, this can be computationally expensive. To address this problem, we model ‖∇L(Bt;wt)‖2
with a simple distribution and estimate the distribution parameters in an online manner. Figure 3(a)
shows ‖∇L(Bt;wt)‖2 of 400 mini-batches at different training stages (epoch = 60, 120, and 180)
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(a) ResNet-18.
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(b) WRN-28-10.
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(c) PyramidNet-110.
Figure 2: Squared stochastic gradient norms EB‖∇L(B;wt)‖2 on CIFAR-100. Best viewed in color.

on CIFAR-100 using ResNet-181. As can be seen, the distribution follows a Bell curve. Figure 3(b)
shows the corresponding quantile-quantile (Q-Q) plot (Wilk & Gnanadesikan, 1968). The closer
is the curve to a line, the distribution is closer to the normal distribution. Figure 3 suggests that
‖∇L(Bt;wt)‖2 can be modeled2 with a normal distribution N (µt, σ

2
t ). We use exponential moving

average (EMA), which is popularly used in adaptive gradient methods (e.g., RMSProp (Tieleman
& Hinton, 2012), AdaDelta (Zeiler, 2012), Adam (Kingma & Ba, 2015)), to estimate its mean and
variance:

µt = δµt−1 + (1− δ)‖∇L(Bt;wt)‖2, (4)

σ2
t = δσ2

t−1 + (1− δ)(‖∇L(Bt;wt)‖2 − µt)2, (5)
where δ ∈ (0, 1) controls the forgetting rate. Empirically, we use δ = 0.9. Since ∇L(Bt;wt) is
already available during training, this EMA update does not involve additional gradient calculations
(the cost for the norm operator is negligible).
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(b) Q-Q plots.

Figure 3: Stochastic gradient norms {‖L(Bt;wt)‖2 : Bt ∼ D} of ResNet-18 on CIFAR-100 are
approximately normally distributed. Best viewed in color.

Using µt and σ2
t , we employ SAM only at iterations where ‖∇L(Bt;wt)‖2 is relatively large (i.e.,

the loss landscape is locally sharp). Specifically, when ‖∇L(Bt;wt)‖2 ≥ µt + ctσt (where ct is
a threshold), SAM is used; otherwise, ERM is used. When ct → −∞, it reduces to SAM; when
ct →∞, it becomes ERM. Note that during the early training stage, the model is still underfitting
and wt is far from the region of final convergence. Thus, minimizing the empirical loss is more
important than seeking a locally flat region. Andriushchenko & Flammarion (2022) also empirically
observe that the SAM update is more effective in boosting performance towards the end of training.
We therefore design a schedule that linearly decreases ct from λ2 to λ1 (which are pre-set values):
ct = gλ1,λ2

(t) ≡ t
T λ1+

(
1− t

T

)
λ2, where T is the total number of iterations. The whole procedure,

called Adaptive policy to Employ SAM (AE-SAM), is shown in Algorithm 1.

AE-LookSAM. The proposed adaptive policy can be combined with any SAM variant. Here, we
consider integrating it with LookSAM (Liu et al., 2022). When ‖∇L(Bt;wt)‖2 ≥ µt + ctσt, SAM

1Results on other architectures and CIFAR-10 are shown in Figures 8 and 9 of Appendix B.1.
2Note that normality is not needed in the theoretical analysis (Section 3.3).
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is used and the update direction for wt is decomposed into two orthogonal directions as in LookSAM:
(i) the ERM update direction to reduce training loss, and (ii) the direction that biases the model to a
flat region. When ‖∇L(Bt;wt)‖2 < µt + ctσt, ERM is performed and the second direction of the
previous SAM update is reused to compose an approximate SAM direction. The procedure, called
AE-LookSAM, is also shown in Algorithm 1.

Algorithm 1 AE-SAM and AE-LookSAM .

Require: training set D, stepsize η, radius ρ; λ1 and λ2 for gλ1,λ2
(t); w0, µ−1 = 0, σ2

−1 = e−10,
and α for AE-LookSAM;

1: for t = 0, . . . , T − 1 do
2: sample a mini-batch data Bt from D;
3: compute g = ∇L(Bt;wt);
4: update µt by (4) and σ2

t by (5);
5: compute ct = gλ1,λ2(t);
6: if ‖∇L(Bt;wt)‖2 ≥ µt + ctσt then
7: gs = ∇L(Bt;wt + ρ∇L(Bt;wt));

8: if AE-LookSAM: decompose gs as gv = gs − g>gs

‖g‖2 g;

9: else:
10: if AE-SAM: gs = g;

11: if AE-LookSAM: gs = g + α ‖g‖‖gv‖gv;

12: end if
13: wt+1 = wt − ηgs;
14: end for
15: return wT .

3.3 CONVERGENCE ANALYSIS

In this section, we study the convergence of any algorithm A whose update in each iteration can be
either SAM or ERM. Due to this mixing of SAM and ERM updates, analyzing its convergence is
more challenging compared with that of SAM.

The following assumptions on smoothness and bounded variance of stochastic gradients are stan-
dard in the literature on non-convex optimization (Ghadimi & Lan, 2013; Reddi et al., 2016) and
SAM (Andriushchenko & Flammarion, 2022; Abbas et al., 2022; Qu et al., 2022).

Assumption 3.1 (Smoothness). L(D;w) is β-smooth in w, i.e., ‖∇L(D;w) − ∇L(D;v)‖ ≤
β‖w − v‖.
Assumption 3.2 (Bounded variance of stochastic gradients). E(xi,yi)∼D‖∇`(f(xi;w), yi) −
∇L(D;w)‖2 ≤ σ2.

Let ξt be an indicator of whether SAM or ERM is used at iteration t (i.e., ξt = 1 for SAM, and 0
for ERM). For example, ξt = I{w:‖∇L(Bt;w)‖2≥µt+ctσt}(wt) for the proposed AE-SAM, and ξt is
sampled from a Bernoulli distribution for SS-SAM (Zhao et al., 2022b).

Theorem 3.3. Let b be the mini-batch size. If stepsize η = 1
4β
√
T

and ρ = 1

T
1
4

, algorithm A satisfies

min
0≤t≤T−1

E‖∇L(D;wt)‖2 ≤
32β (L(D;w0)− EL(D;wT ))√

T (7− 6ζ)
+

(1 + ζ + 5β2ζ)σ2

b
√
T (7− 6ζ)

, (6)

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1] is the fraction of SAM updates, and the expectation is taken over the

random training samples.

All proofs are in Appendix A. Note that a larger ζ leads to a larger upper bound in (6). When ζ = 1,
the above reduces to SAM (Corollary A.2 of Appendix A.1).
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4 EXPERIMENTS

In this section, we evaluate the proposed AE-SAM and AE-LookSAM on several standard benchmarks.
As the SAM update doubles the computational overhead compared to the ERM update, the training
speed is mainly determined by how often the SAM update is used. Hence, we evaluate efficiency
by measuring the fraction of SAM updates used: %SAM ≡ 100× #{iterations using SAM}/T . The
total number of iterations, T , is the same for all methods.

4.1 CIFAR-10 AND CIFAR-100

Setup. In this section, experiments are performed on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky & Hinton, 2009) using four network architectures: ResNet-18 (He et al., 2016),
WideResNet-28-10 (denoted WRN-28-10) (Zagoruyko & Komodakis, 2016), PyramidNet-110 (Han
et al., 2017), and ViT-S16 (Dosovitskiy et al., 2021).

Following the setup in (Liu et al., 2022; Foret et al., 2021; Zhao et al., 2022a), we use batch size 128,
initial learning rate of 0.1, cosine learning rate schedule, SGD optimizer with momentum 0.9 and
weight decay 0.0001. The number of training epochs is 300 for PyramidNet-110, 1200 for ViT-S16,
and 200 for ResNet-18 and WideResNet-28-10. 10% of the training set is used as the validation set.
As in Foret et al. (2021), we perform grid search for the radius ρ over {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}
using the validation set. Similarly, α is selected by grid search over {0.1, 0.3, 0.6, 0.9}. For the ct
schedule gλ1,λ2

(t), λ1 = −1 and λ2 = 1 for AE-SAM; λ1 = 0 and λ2 = 2 for AE-LookSAM.

Baselines. The proposed AE-SAM and AE-LookSAM are compared with the following baselines:
(i) ERM; (ii) SAM (Foret et al., 2021); and its more efficient variants including (iii) ESAM (Du
et al., 2022a) which uses part of the weights to compute the perturbation and part of the samples to
compute the SAM update direction. These two techniques can reduce the computational cost, but may
not always accelerate SAM, particularly in parallel training (Li et al., 2020); (iv) SS-SAM (Zhao
et al., 2022b), which randomly selects SAM or ERM according to a Bernoulli trial with success
probability 0.5. This is the scheme with the best performance in (Zhao et al., 2022b); (v) Look-
SAM (Liu et al., 2022) which uses SAM at every k = 5 steps. The experiment is repeated five times
with different random seeds.

Results. Table 1 shows the testing accuracy and fraction of SAM updates (%SAM). Methods are
grouped based on %SAM. As can be seen, AE-SAM has higher accuracy than SAM while using only
50% of SAM updates. SS-SAM and AE-SAM have comparable %SAM (about 50%), and AE-SAM
achieves higher accuracy than SS-SAM (which is statistically significant based on the pairwise t-test
at 95% significance level). Finally, LookSAM and AE-LookSAM have comparable %SAM (about
20%), and AE-LookSAM also has higher accuracy than LookSAM. These improvements confirm
that the adaptive policy is better.

4.2 ImageNet

Setup. In this section, we perform experiments on the ImageNet (Russakovsky et al., 2015), which
contains 1000 classes and 1.28 million images. The ResNet-50 (He et al., 2016) is used. Following
the setup in Du et al. (2022a), we train the network for 90 epochs using a SGD optimizer with
momentum 0.9, weight decay 0.0001, initial learning rate 0.1, cosine learning rate schedule, and
batch size 512. As in (Foret et al., 2021; Du et al., 2022a), ρ = 0.05. For the ct schedule gλ1,λ2(t),
λ1 = −1 and λ2 = 1 for AE-SAM; λ1 = 0 and λ2 = 2 for AE-LookSAM. k = 5 is used for
LookSAM. Experiments are repeated with three different random seeds.

Results. Table 2 shows the testing accuracy and fraction of SAM updates. As can be seen, with only
half of the iterations using SAM, AE-SAM achieves comparable performance as SAM. Compared
with LookSAM, AE-LookSAM has better performance (which is also statistically significant),
verifying the proposed adaptive policy is more effective than LookSAM’s periodic policy.

4.3 ROBUSTNESS TO LABEL NOISE

Setup. In this section, we study whether the more-efficient SAM variants will affect its robustness to
training label noise. Following the setup in Foret et al. (2021), we conduct experiments on a corrupted
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Table 1: Means and standard deviations of testing accuracy and fraction of SAM updates (%SAM)
on CIFAR-10 and CIFAR-100. Methods are grouped based on %SAM. The highest accuracy in each
group is underlined; while the highest accuracy for each network architecture (across all groups) is in
bold.

CIFAR-10 CIFAR-100
Accuracy %SAM Accuracy %SAM

R
es

N
et

-1
8

ERM 95.41 ±0.03 0.0 ±0.0 78.17 ±0.05 0.0 ±0.0

SAM (Foret et al., 2021) 96.52 ±0.12 100.0 ±0.0 80.17 ±0.15 100.0 ±0.0
ESAM (Du et al., 2022a) 96.56 ±0.08 100.0 ±0.0 80.41 ±0.10 100.0 ±0.0

SS-SAM (Zhao et al., 2022b) 96.40 ±0.16 50.0 ±0.0 80.10 ±0.16 50.0 ±0.0
AE-SAM 96.63 ±0.04 50.1 ±0.1 80.48 ±0.11 49.8 ±0.0

LookSAM (Liu et al., 2022) 96.32 ±0.12 20.0 ±0.0 79.89 ±0.29 20.0 ±0.0
AE-LookSAM 96.56 ±0.21 20.0 ±0.1 80.29 ±0.37 20.0 ±0.0

W
R

N
-2

8-
10

ERM 96.34 ±0.12 0.0 ±0.0 81.56 ±0.14 0.0 ±0.0

SAM (Foret et al., 2021) 97.27 ±0.11 100.0 ±0.0 83.42 ±0.05 100.0 ±0.0
ESAM (Du et al., 2022a) 97.29 ±0.11 100.0 ±0.0 84.51 ±0.02 100.0 ±0.0

SS-SAM (Zhao et al., 2022b) 97.09 ±0.11 50.0 ±0.0 82.89 ±0.02 50.0 ±0.0
AE-SAM 97.30 ±0.10 49.5 ±0.1 84.51 ±0.11 49.6 ±0.0

LookSAM (Liu et al., 2022) 97.02 ±0.12 20.0 ±0.0 83.70 ±0.12 20.0 ±0.0
AE-LookSAM 97.15 ±0.08 20.0 ±0.0 83.92 ±0.07 20.2 ±0.0

P
yr

am
id

N
et

-1
10

ERM 96.62 ±0.10 0.0 ±0.0 81.89 ±0.15 0.0 ±0.0

SAM (Foret et al., 2021) 97.30 ±0.10 100.0 ±0.0 84.46 ±0.05 100.0 ±0.0
ESAM (Du et al., 2022a) 97.81 ±0.01 100.0 ±0.0 85.56 ±0.05 100.0 ±0.0

SS-SAM (Zhao et al., 2022b) 97.22 ±0.10 50.0 ±0.0 84.90 ±0.05 50.0 ±0.0
AE-SAM 97.90 ±0.05 50.2 ±0.1 85.58 ±0.10 49.8 ±0.1

LookSAM (Liu et al., 2022) 97.10 ±0.11 20.0 ±0.0 84.01 ±0.06 20.0 ±0.0
AE-LookSAM 97.22 ±0.11 20.3 ±0.0 84.80 ±0.13 20.2 ±0.1

Vi
T-

S1
6

ERM 86.69 ±0.11 0.0 ±0.0 62.42 ±0.22 0.0 ±0.0

SAM (Foret et al., 2021) 87.37 ±0.09 100.0 ±0.0 63.23 ±0.25 100.0 ±0.0
ESAM (Du et al., 2022a) 84.27 ±0.11 100.0 ±0.0 62.11 ±0.15 100.0 ±0.0

SS-SAM (Zhao et al., 2022b) 87.38 ±0.14 50.0 ±0.0 63.18 ±0.19 50.0 ±0.0
AE-SAM 87.77 ±0.13 49.7 ±0.1 63.68 ±0.23 49.5 ±0.2

LookSAM (Liu et al., 2022) 87.12 ±0.20 20.0 ±0.0 63.52 ±0.19 20.0 ±0.0
AE-LookSAM 87.32 ±0.11 20.2 ±0.2 64.16 ±0.23 20.3 ±0.2

version of CIFAR-10, with some of its training labels randomly flipped (while its testing set is kept
clean). The ResNet-18 and ResNet-32 networks are used. They are trained for 200 epochs using
SGD with momentum 0.9, weight decay 0.0001, batch size 128, initial learning rate 0.1, and cosine
learning rate schedule. For LookSAM, the SAM update is used every k = 2 steps.3 For AE-SAM and
AE-LookSAM, we set λ1 = −1 and λ2 = 1 in their ct schedules gλ1,λ2(t), such that their fractions
of SAM updates (approximately 50%) are comparable with SS-SAM and LookSAM. Experiments
are repeated with five different random seeds.

Results. Table 3 shows the testing accuracy and fraction of SAM updates. As can be seen, AE-
LookSAM achieves comparable performance with SAM but is faster as only half of the iterations use
the SAM update. Compared with ESAM, SS-SAM, and LookSAM, AE-LookSAM performs better.
The improvement is particularly noticeable at the higher noise levels (e.g., 80%).

3The performance of LookSAM can be sensitive to the value of k. Table 4 of Appendix B.2 shows that using
k = 2 leads to the best performance in this experiment.
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Table 2: Means and standard deviations of testing accuracy and fraction of SAM updates (%SAM)
on ImageNet using ResNet-50. Methods are grouped based on %SAM. The highest accuracy in each
group is underlined; while the highest across all groups is in bold.

Accuracy %SAM

ERM 77.11 ±0.14 0.0 ±0.0

SAM (Foret et al., 2021) 77.47 ±0.12 100.0 ±0.0
ESAM (Du et al., 2022a) 77.25 ±0.75 100.0 ±0.0

SS-SAM (Zhao et al., 2022b) 77.38 ±0.06 50.0 ±0.0
AE-SAM 77.43 ±0.06 49.4 ±0.0

LookSAM (Liu et al., 2022) 77.13 ±0.09 20.0 ±0.0
AE-LookSAM 77.29 ±0.08 20.3 ±0.0

Table 3: Testing accuracy and fraction of SAM updates on CIFAR-10 with different levels of label
noise. The best accuracy is in bold and the second best is underlined.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

R
es

N
et

-1
8

ERM 87.92 0.0 70.82 0.0 49.61 0.0 28.23 0.0
SAM (Foret et al., 2021) 94.80 100.0 91.50 100.0 88.15 100.0 77.40 100.0
ESAM (Du et al., 2022a) 94.19 100.0 91.46 100.0 81.30 100.0 15.00 100.0

SS-SAM (Zhao et al., 2022b) 90.62 50.0 77.84 50.0 61.18 50.0 47.32 50.0
LookSAM (Liu et al., 2022) 92.72 50.0 88.04 50.0 72.26 50.0 69.72 50.0

AE-SAM 92.84 50.0 84.17 50.0 73.54 49.9 65.00 50.0
AE-LookSAM 94.34 49.9 91.58 50.0 87.85 50.0 76.90 50.0

R
es

N
et

-3
2

ERM 87.43 0.0 70.82 0.0 46.26 0.0 29.00 0.0
SAM (Foret et al., 2021) 95.08 100.0 91.01 100.0 88.90 100.0 77.32 100.0
ESAM (Du et al., 2022a) 93.42 100.0 91.63 100.0 82.73 100.0 10.09 100.0

SS-SAM (Zhao et al., 2022b) 89.63 50.0 74.17 50.0 58.40 50.0 59.53 50.0
LookSAM (Liu et al., 2022) 92.49 50.0 86.56 50.0 63.35 50.0 68.01 50.0

AE-SAM 92.87 50.0 82.85 50.0 71.50 50.0 65.43 50.3
AE-LookSAM 94.70 50.0 91.80 50.0 88.22 50.0 77.03 49.8
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(a) Training accuracy.
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(b) Testing accuracy.
Figure 4: Accuracies with number of training epochs on CIFAR-10 (with 80% noise labels) using
ResNet-18. Best viewed in color.

Figure 4 shows the training and testing accuracies with number of epochs at a noise level of 80%
using ResNet-184. As can be seen, SAM is robust to the label noise, while ERM and SS-SAM heavily
suffer from overfitting. AE-SAM and LookSAM can alleviate the overfitting problem to a certain
extent. AE-LookSAM, by combining the adaptive policy with LookSAM, achieves the same high
level of robustness as SAM.

4Results for other noise levels and ResNet-32 are shown in Figures 10 and 11 of Appendix B.3, respectively.
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(b) CIFAR-100.

Figure 5: Effects of λ1 and λ2 on fraction of
SAM updates using ResNet-18. Best viewed
in color.
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(b) CIFAR-100.

Figure 6: Effects of λ1 and λ2 on testing accuracy
using ResNet-18. Best viewed in color.

4.4 EFFECTS OF λ1 AND λ2

In this experiment, we study the effects of λ1 and λ2 on AE-SAM. We use the same setup as in Section
4.1, where λ1 and λ2 (with λ1 ≤ λ2) are chosen from {0,±1,±2}. Results on AE-LookSAM using
the label noise setup in Section 4.3 are shown in Appendix B.4.

Figure 5 shows the effect on the fraction of SAM updates. For a fixed λ2, increasing λ1 increases
the threshold ct, and the condition ‖∇L(Bt;wt)‖2 ≥ µt + ctσt becomes more difficult to satisfy.
Thus, as can be seen, the fraction of SAM updates is reduced. The same applies when λ2 increases.
A similar trend is also observed on the testing accuracy (Figure 6).

4.5 CONVERGENCE

In this experiment, we study whether wt’s (where t is the number of epochs) obtained from AE-SAM
can reach critical points of L(D;w), as suggested in Theorem 3.3. Figure 7 shows ‖∇L(D;wt)‖2
w.r.t. t for the experiment in Section 4.1. As can be seen, in all settings, ‖∇L(D;wt)‖2 converges
to 0. In Appendix B.5, we also verify the convergence of AE-SAM’s training loss on CIFAR-10
and CIFAR-100 (Figure 14), and that AE-SAM and SS-SAM have comparable convergence speeds
(Figure 15), which agrees with Theorem 3.3 as both have comparable fractions of SAM updates
(Table 1).
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(a) ResNet-18.
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(b) WRN-28-10.
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(c) PyramidNet-110.

Figure 7: Squared gradient norms of AE-SAM with number of epochs. Best viewed in color.

5 CONCLUSION

In this paper, we proposed an adaptive policy to employ SAM based on the loss landscape geometry.
Using the policy, we proposed an efficient algorithm (called AE-SAM) to reduce the fraction of SAM
updates during training. We theoretically and empirically analyzed the convergence of AE-SAM.
Experimental results on a number of datasets and network architectures verify the efficiency and
effectiveness of the adaptive policy. Moreover, the proposed policy is general and can be combined
with other SAM variants, as demonstrated by the success of AE-LookSAM.
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A PROOFS

A.1 PROOF OF THEOREM 3.3

Theorem 3.3. Let b be the mini-batch size. If η = 1
4β
√
T

and ρ = 1/T
1
4 , algorithm A satisfies

min
0≤t≤T−1

E‖∇L(D;wt)‖2 ≤
32β (L(D;w0)− EL(D;wT ))√

T (7− 6ζ)
+

(1 + ζ + 5β2ζ)σ2

b
√
T (7− 6ζ)

, (7)

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1].

Lemma A.1 (Andriushchenko & Flammarion (2022)). Under Assumptions 3.1 and 3.2 for all t and
ρ > 0, we have

E∇L(Bt;w + ρ∇L(Bt;w))>∇L(D;w) ≥
(
1

2
− ρβ

)
‖∇L(D;w)‖2 − β2ρ2σ2

2b
. (8)

Proof. Let gt ≡ 1
b

∑
(xi,yi)∈Bt

∇`(f(xi;wt), yi), ht ≡ 1
b

∑
(xi,yi)∈Bt

∇`(f(xi;wt + ρgt), yi),
and ĝt ≡ ∇L(D;wt).

By Taylor expansion and L(D;w) is β-smooth, we have

L(D;wt+1)

≤L(D;wt) + ĝ>t (wt+1 −wt) +
β

2
‖wt+1 −wt‖2

≤L(D;wt)− ηĝ>t ((1− ξt)gt + ξtht) +
βη2

2
‖(1− ξt)gt + ξtht‖2

=L(D;wt)−η(1−ξt)ĝ>t gt−ηξtĝ>t ht+
βη2

2

(1−ξt)‖gt‖2+ξt‖ht‖2+2ξt(1− ξt)g>t ht︸ ︷︷ ︸
=0

 (9)

=L(D;wt)− η(1− ξt)ĝ>t gt − ηξtĝ>t ht +
βη2

2

(
(1− ξt)‖gt‖2 + ξt‖ht‖2

)
, (10)
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where we have used ξt(1 − ξt) = 0 as ξt ∈ {0, 1}, ξ2t = ξt, and (1 − ξt)2 = 1 − ξt to obtain (9).
Taking expectation w.r.t. wt on both sides of (10), we have

EL(D;wt+1)≤EL(D;wt)−η(1−ξt)E‖ĝt‖2−ηξtEĝ>t ht+
βη2(1− ξt)

2
E‖gt‖2+

βη2ξt
2

E‖ht‖2.
(11)

Claim 1: E‖gt‖2=E‖gt−ĝt‖2+E‖ĝt‖2= σ2

b +E‖ĝt‖2, which follows from Assumption 3.2.

Claim 2: E‖ht‖2 ≤ 2(1 + ρ2β2)σ
2

b − (1− 2ρ2β2)E‖ĝt‖2 + 2Eĝ>t ht, which is derived as follows:

E‖ht‖2 = E‖ht − ĝt‖2 − E‖ĝt‖2 + 2Eĝ>t ht
= 2E‖ht − gt‖2 + 2E‖gt − ĝt‖2 − E‖ĝt‖2 + 2Eĝ>t ht

≤ 2ρ2β2E‖gt‖2 +
2σ2

b
− E‖ĝt‖2 + 2Eĝ>t ht (12)

≤ 2ρ2β2

(
σ2

b
+ E‖ĝt‖2

)
+

2σ2

b
− E‖ĝt‖2 + 2Eĝ>t ht (13)

= 2(1 + ρ2β2)
σ2

b
− (1− 2ρ2β2)E‖ĝt‖2 + 2Eĝ>t ht, (14)

where (12) follows from ‖ht − gt‖ ≤ ρβ‖gt‖ and Assumption 3.2, (13) follows from Claim 1.

Substituting Claims 1 and 2 into (11), we obtain

EL(D;wt+1)

≤ EL(D;wt)− η (1− ξt)E‖ĝt‖2 − ηξtEĝ>t ht +
βη2(1− ξt)

2

(
σ2

b
+ E‖ĝt‖2

)
+
βη2ξt
2

(
2(1 + ρ2β2)

σ2

b
− (1− 2ρ2β2)E‖ĝt‖2 + 2Eĝ>t ht

)
(15)

= EL(D;wt)− η
(
1− ξt −

βη(1− ξt)
2

+
βηξt(1− 2ρ2β2)

2

)
E‖ĝt‖2 − ηξt (1− ηβ)Eĝ>t ht

+

(
βη2(1− ξt)

2
+ βη2ξt(1 + ρ2β2)

)
σ2

b

≤ EL(D;wt)− η
(
1− ξt −

βη(1− ξt)
2

+
βηξt(1− 2ρ2β2)

2
+ ξt (1− ηβ) (

1

2
− ρβ)

)
E‖ĝt‖2

+

(
βη2(1− ξt)

2
+ βη2ξt(1 + ρ2β2) + ηξt (1− ηβ)

β2ρ2

2

)
σ2

b
(16)

≤ EL(D;wt)− η
(
1− (1 + βη − 2ρβ)

ξt
2
− βη

2

)
E‖ĝt‖2

+
(
η + ξt(η + 2ηρ2β2 + βρ2 − ηβ2ρ2)

) ηβσ2

2b
, (17)

where (15) follows from Claims 1 and 2, (16) follows from Lemma A.1 and 1− ηβ > 0. As η < 1
4β ,

we have 1 + βη − 2ρβ ≤ 3/2 and βη < 1/4, thus, 1− (1 + βη − 2ρβ) ξt2 −
βη
2 > 0.
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Summing over t on both sides of (17) and rearranging, we obtain

min
0≤t≤T−1

E‖ĝt‖2 ≤
L(D;w0)− EL(D;wT )

η
∑T−1
t=0

(
1− (1 + βη − 2ρβ) ξt2 −

βη
2

)
+

∑T−1
t=0

(
η + ξt(η + ηρ2β2 + βρ2)

)∑T−1
t=0

(
1− (1 + βη − 2ρβ) ξt2 −

βη
2

) βσ2

2b

=
L(D;w0)− EL(D;wT )

Tη(1− γζ
2 −

βη
2 )

+
T (η + ηκζ + βρ2ζ)βσ2

2bT (1− γζ
2 −

βη
2 )

(18)

=
L(D;w0)− EL(D;wT )

Tη(1− γζ
2 −

βη
2 )

+
(1 + κζ + 4β2ζ)ηβσ2

2b(1− γζ
2 −

βη
2 )

=
L(D;w0)− EL(D;wT )

Tη(1− γζ
2 −

βη
2 )

+
(1 + κζ + 4β2ζ)σ2

8b
√
T (1− γζ

2 −
βη
2 )

(19)

≤ 32β (L(D;w0)− EL(D;wT ))√
T (7− 6ζ)

+
(1 + ζ + 5β2ζ)σ2

b
√
T (7− 6ζ)

, (20)

where γ = 1 + βη − 2ρβ ≤ 3/2, κ = 1 + ρ2β2, ρ2 = 1/
√
T , and ζ = 1

T

∑T−1
t=0 ξt ∈ [0, 1]. We

thus finish the proof.

Corollary A.2. Let b be the mini-batch size. If η = 1
4β
√
T

and ρ = 1/T
1
4 , SAM (Foret et al., 2021)

satisfies

min
0≤t≤T−1

E‖∇L(D;wt)‖2 ≤
32β (L(D;w0)− EL(D;wT ))√

T
+

(2 + 5β2)σ2

b
√
T

. (21)

Corollary A.3. Let b be the mini-batch size. If η =
√
b

4β
√
T

and ρ = 1/T
1
4 , algorithm A satisfies

min
0≤t≤T−1

E‖∇L(D;wt)‖2 ≤
32β(L(D;w0)− EL(D;wT ))√

Tb(7− 6ζ)
+

(1 + ζ + 5β2ζ)σ2

√
Tb(7− 6ζ)

, (22)

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1].

Proof. It follows from (18) that

min
0≤t≤T−1

E‖ĝt‖2 ≤
L(D;w0)− EL(D;wT )

Tη(1− γζ
2 −

βη
2 )

+
ηβ(1 + κζ + 4β2ζ)σ2

2b(1− γζ
2 −

βη
2 )

(23)

≤ 4β(L(D;w0)− EL(D;wT ))√
Tb( 78 −

3
4ζ)

+
(1 + ζ + 5β2ζ)σ2

8
√
Tb( 78 −

3ζ
4 )

(24)

=
32β(L(D;w0)− EL(D;wT ))√

Tb(7− 6ζ)
+

(1 + ζ + 5β2ζ)σ2

√
Tb(7− 6ζ)

. (25)

A.2 CONVERGENCE OF FULL-BATCH GRADIENT DESCENT FOR AE-SAM

Theorem A.4. Under Assumption 3.1, with full-batch gradient descent, if ρ < 1
2β and η < 1

β ,
algorithm A satisfies

min
0≤t≤T−1

‖∇L(D;wt)‖2 ≤
L(D;w0)− L(D;wT )

Tη
(
1− βη

2 − βρζ
) , (26)

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1].
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Lemma A.5 (Lemma 7 in Andriushchenko & Flammarion (2022)). Let L(D;w) be a β-smooth
function. For any ρ > 0, we have

∇L(D;w)>∇L(D;w + ρ∇L(D;w)) ≥ (1− ρβ)‖∇L(D;w)‖2. (27)

Proof of Theorem A.4. Let gt ≡ ∇L(D;wt) and ht ≡ ∇L(D;wt + ρ∇L(D;wt)) be the update
direction of ERM and SAM, respectively. By Taylor expansion and L(D;w) is β-smooth, we have
L(D;wt+1)

≤ L(D;wt) + g>t (wt+1 −wt) +
β

2
‖wt+1 −wt‖2

≤ L(D;wt)− ηg>t ((1− ξt)gt + ξtht) +
βη2

2
‖(1− ξt)gt + ξtht‖2

=L(D;wt)−η(1−ξt)‖gt‖2−ηξtg>t ht+
βη2

2

(1−ξt)‖gt‖2+ξt‖ht‖2+2ξt(1−ξt)g>t ht︸ ︷︷ ︸
=0

 (28)

= L(D;wt)− η
(
1− ξt −

βη(1− ξt)
2

)
‖gt‖2 +

βη2ξt
2
‖ht‖2 − ηξtg>t ht, (29)

where we have used ξt(1− ξt) = 0 as ξt ∈ {0, 1}, ξ2t = ξt, and (1− ξt)2 = 1− ξt to obtain (28).

As ‖ht‖2 = ‖ht − gt‖2 − ‖gt‖2 + 2g>t ht, it follows from (29) that
L(D;wt+1)

=L(D;wt)−η
(
1−ξt −

βη(1− ξt)
2

)
‖gt‖2+

βη2ξt
2

(
‖ht−gt‖2−‖gt‖2 + 2g>t ht

)
−ηξtg>t ht

≤L(D;wt)−η
(
1−ξt−

βη(1− ξt)
2

+
βηξt
2

)
‖gt‖2 +

βη2ξt
2
‖ht − gt‖2 − η(1− βη)ξtg>t ht

≤L(D;wt)−η
(
1−ξt−

βη(1−ξt)
2

+
βηξt
2

)
‖gt‖2 +

β3η2ρ2ξt
2

‖gt‖2 − η(1− βη)ξtg>t ht (30)

=L(D;wt)− η
(
1− ξt −

βη(1− ξt)
2

+
βηξt
2

+
β3ηρ2ξt

2
+ (1− βη)(1− βρ)ξt

)
‖gt‖2 (31)

=L(D;wt)− η
(
1− βη(1− ξt)

2
+
βηξt
2

+
β3ηξtρ

2

2
− βηξt − βρξt + β2ηρξt

)
‖gt‖2

≤L(D;wt)− η
(
1− βη

2
− βρξt

)
‖gt‖2, (32)

where we have used ‖ht − gt‖2 = ‖∇L(D;wt + ρ∇L(D;wt)) − ∇L(D;wt)‖2 ≤
β2ρ2‖∇L(D;wt)‖2 = β2ρ2‖gt‖2 to obtain (30), and Lemma A.5 to obtain (31).

Summing over t from t = 0 to T − 1 on both sides of (32) and rearranging, we have
T−1∑
t=0

η

(
1− βη

2
− βρξt

)
‖gt‖2 ≤ L(D;w0)− L(D;wT ). (33)

As ρ < 1
2β and η < 1

β , it follows that 1− βη
2 − βρξt > 0 for all t. Thus, (33) implies

min
0≤t≤T−1

‖gt‖2 ≤
L(D;w0)− L(D;wT )∑T−1
t=0 η

(
1− βη

2 − ξtβρ
) =

L(D;w0)− L(D;wT )

Tη
(
1− βη

2 − βρζ
) , (34)

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1] and we finish the proof.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DISTRIBUTION OF STOCHASTIC GRADIENT NORMS

Figure 8 shows the distributions of stochastic gradient norms for ResNet-18, WRN-28-10 and
PyramidNet-110 on CIFAR-10 and CIFAR-100. As can be seen, the distribution follows a Bell
curve in all settings. Figure 9 shows the Q-Q plots. We can see that the curves are close to the lines.
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0 10 20 30 40 50 60
( t; wt) 2

0.00

0.01

0.02

0.03

0.04

de
ns

ity

epoch = 180
epoch = 120
epoch = 60

(b) WRN-28-10.

0 10 20 30 40
( t; wt) 2

0.00

0.01

0.02

0.03

0.04

0.05

de
ns

ity

epoch = 240
epoch = 160
epoch = 80

(c) PyramidNet-110.
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(f) PyramidNet-110.

Figure 8: Distributions of stochastic gradient norms on CIFAR-10 (top) and CIFAR-100 (bottom).
Best viewed in color.
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(d) ResNet-18.
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Figure 9: Q-Q plots of stochastic gradient norms on CIFAR-10 (top) and CIFAR-100 (bottom). Best
viewed in color.

B.2 EFFECT OF k ON LOOKSAM

In this experiment, we demonstrate that LookSAM is sensitive to the choice of k. Table 4 shows
the testing accuracy and fraction of SAM updates when using LookSAM on noisy CIFAR-10, with
k ∈ {2, 3, 4, 5} and the ResNet-18 model. As can be seen, k = 2 yields much better performance
than k ∈ {3, 4, 5}, particularly at higher noise levels (e.g., 80%).

16



Published as a conference paper at ICLR 2023

Table 4: Effects of k in LookSAM on CIFAR-10 with different levels of label noise using ResNet-18.
noise = 20% noise = 40% noise = 60% noise = 80%

k accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

2 92.72 50.0 88.04 50.0 72.26 50.0 69.72 50.0
3 89.07 33.3 75.38 33.3 63.79 33.3 53.87 33.3
4 89.00 25.0 74.12 25.0 58.17 25.0 52.28 25.0
5 88.57 20.0 73.90 20.0 56.80 20.0 51.82 20.0

B.3 MORE RESULTS ON ROBUSTNESS TO LABEL NOISE

Figure 10 (resp. 11) shows the curves of accuracies at noise levels of 20%, 40%, 60%, and 80% with
ResNet-18 (resp. ResNet-32). As can be seen, in all settings, AE-LookSAM is as robust to label noise
as SAM.
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Figure 10: Accuracies with number of epochs on CIFAR-10 with 20%, 40%, 60%, and 80% noise
level using ResNet-18. Best viewed in color.
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Figure 11: Accuracies with number of epochs on CIFAR-10 with 20%, 40%, 60%, and 80% noise
level using ResNet-32. Best viewed in color.
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B.4 EFFECTS OF λ1 AND λ2 ON AE-LOOKSAM

In this experiment, we study the effects of λ1 and λ2 on AE-LookSAM. Experiment is performed on
CIFAR-10 with label noise (80% noisy labels), using the same setup as in Section 4.3.

Figure 12 shows the effects of λ1 and λ2 on the fraction of SAM updates. Again, as in Section 4.4,
for a fixed λ2, increasing λ1 always reduces the fraction of SAM updates. Figure 13 shows the effects
of λ1 and λ2 on the testing accuracy of AE-SAM. As can be seen, the observations are similar to
those in Section 4.4.
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(b) ResNet-32.

Figure 12: Effects of λ1 and λ2 on fraction
of SAM updates on CIFAR-10 (with 80% noisy
labels). Best viewed in color.
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Figure 13: Effects of λ1 and λ2 on testing accu-
racy of CIFAR-10 (with 80% noisy labels). Note
that the curves for λ2 ∈ {−2,−1} overlap com-
pletely with that of λ2 = 1. Best viewed in color.

B.5 ADDITIONAL CONVERGENCE RESULTS ON CIFAR-10 AND CIFAR-100
Figure 14 shows convergence of AE-SAM’s training loss on the CIFAR-10 and CIFAR-100 datasets.
As can be seen, AE-SAM achieves convergence with various network architectures.

Figure 15 shows the training losses w.r.t. the number of epochs for AE-SAM and SS-SAM. As can
be seen, AE-SAM and SS-SAM converge with comparable speeds, which agrees with Theorem 3.3
as both of them have comparable fractions of SAM updates (Table 1).
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(b) WRN-28-10.
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Figure 14: Training loss of AE-SAM with number of epochs on CIFAR-10 and CIFAR-100. Best
viewed in color.
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(a) ResNet-18.
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Figure 15: Training losses of AE-SAM and SS-SAM with number of epochs on CIFAR-10. Note
that the two curves almost completely overlap. Best viewed in color.
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