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Abstract001

Today’s image generation systems are capable002
of producing realistic and high-quality images.003
However, user prompts often contain ambigu-004
ities, making it difficult for these systems to005
interpret users’ potential intentions. Conse-006
quently, machines need to interact with users007
multiple rounds to better understand users’ in-008
tents. The unpredictable costs of using or learn-009
ing image generation models through multiple010
feedback interactions hinder their widespread011
adoption and full performance potential, espe-012
cially for non-expert users. In this research, we013
aim to enhance the user-friendliness of our im-014
age generation system. To achieve this, we pro-015
pose a reflective human-machine co-adaptation016
strategy, named RHM-CAS. Externally, the017
Agent engages in meaningful language inter-018
actions with users to reflect on and refine the019
generated images. Internally, the Agent tries to020
optimize the policy based on user preferences,021
ensuring that the final outcomes closely align022
with user preferences. Various experiments on023
different tasks demonstrate the effectiveness of024
the proposed method.025

1 Introduction026

Generative artificial intelligence has demonstrated027

immense potential in facilitating economic develop-028

ment by helping optimize creative and non-creative029

tasks. Models such as DALL·E 2 (Ramesh et al.,030

2021), IMAGEN (Saharia et al., 2022), Stable Dif-031

fusion (Rombach et al., 2022), and Muse (Chang032

et al., 2023) have achieved this through their ca-033

pability to produce unique, convincing, and life-034

like images and artwork from textual descriptions035

(Gozalo-Brizuela and Garrido-Merchan, 2023). De-036

spite the considerable progress achieved, there re-037

mains substantial potential for improvement, partic-038

ularly in generating higher-resolution images that039

more accurately reflect the semantics of the input040

text and in designing more user-friendly interfaces041

(Frolov et al., 2021). Many models find it hard042

to accurately comprehend the nuanced intentions 043

behind human instructions, often leading to a mis- 044

match between user expectations and model out- 045

puts. 046

Moreover, the impact of certain adjustments 047

to variables on the final image output is not al- 048

ways straightforward, posing a significant chal- 049

lenge for non-expert users who haven’t system- 050

atically learned prompt engineering courses. The 051

intricacy involved in comprehending and manipu- 052

lating these variables presents a substantial obsta- 053

cle for individuals without a technical background. 054

Furthermore, given the same input text, the model 055

may still generate images with substantially dif- 056

ferent content or layouts, where aspects such as 057

background, color, and perspective can vary. In 058

such instances, the user must engage in multiple tri- 059

als, and acquiring an image that meets their specific 060

requirements can depend significantly on chance. 061

To address these challenges, we introduce an in- 062

novative dialogic approach designed to enhance the 063

user experience for non-professional users. Within 064

this dialogic interaction process, we posit the exis- 065

tence of a latent generative objective in the user’s 066

mind. A single image may represent the user’s 067

latent and unconscious generative goal. By itera- 068

tively querying the user, we can progressively elicit 069

more detailed descriptions, with the ultimate aim 070

of producing an image that closely aligns with the 071

user’s underlying intent. Figure 1 illustrates the 072

operational flow of this project as interacted by the 073

users. This approach is inspired by the concept of 074

human-in-loop co-adaptation (Reddy et al., 2022), 075

where the model evolves alongside user feedback 076

to better align with user expectations. Our main 077

contributions are: 078

• We delve into human-machine interaction 079

methods within image generation tasks, guid- 080

ing users to effectively create images that re- 081

flect their intentions and preferences. 082
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• We introduce an enhanced Text-to-Image083

dialogue-based Agent, which leverages both084

external interactions with users and internal085

reflections to enhance its performance.086

• Application across the general image and fash-087

ion image generation demonstrates the versa-088

tility and potential value of our approach.089

2 Related work090

Text-Driven Image Editing Framework091

Recent advancements in text-to-image generation092

have focused on aligning models with human pref-093

erences, using feedback to refine image genera-094

tion. Studies range from Hertz et al. (Hertz et al.,095

2022)’s framework, which leverages diffusion mod-096

els’ cross-attention layers for high-quality, prompt-097

driven image modifications, to innovative methods098

like ImageReward (Xu et al., 2024), which devel-099

ops a reward model based on human preferences.100

These approaches collect rich human feedback (Wu101

et al., 2023; Liang et al., 2023), from detailed ac-102

tionable insights to preference-driven data, training103

models for better image-text alignment and adapt-104

ability (Lee et al., 2023) to diverse preferences,105

marking significant progress in personalized image106

creation.107

Ambiguity Resolution in Text-to-Image108

Generation109

From visual annotations (Endo, 2023) and model110

evaluation benchmarks (Lee et al., 2024) to auto-111

regressive models (Yu et al., 2022) for rich vi-112

suals, along with frameworks for abstract (Liao113

et al., 2023) and inclusive imagery (Zhang et al.,114

2023), the text-to-image field is advancing through115

strategies like masked transformers (Chang et al.,116

2023), layout guidance (Qu et al., 2023) without117

human input, and feedback mechanisms (Liang118

et al., 2023) for quality. The TIED framework119

and TAB dataset (Mehrabi et al., 2023) notably120

enhance prompt clarity through user interaction,121

improving image alignment with user intentions,122

thereby boosting precision and creativity.123

Human Preference-Driven Optimization for124

Text-to-Image Generation Models125

Zhong et al. (Zhong et al., 2024) significantly126

advance the adaptability of LLMs to human127

preferences with their innovative contributions.128

Zhong et al.’s method stands out by leveraging129

advanced mathematical techniques for a nuanced,130

preference-sensitive model adjustment, eliminating 131

the exhaustive need for model retraining. Xu 132

et al. (Xu et al., 2024) take a unique approach 133

by harnessing vast amounts of expert insights to 134

sculpt their ImageReward system, setting a new 135

benchmark in the creation of images that resonate 136

more deeply with human desires. Together, 137

these advancements mark a pivotal shift towards 138

more intuitive, user-centric LLMs technologies, 139

heralding a future where AI seamlessly aligns 140

with the complex mosaic of individual human 141

expectations. 142

143

3 Proposed method 144

We developed a modular architecture tailored for 145

image generation tasks within multi-turn dialogues. 146

This architecture is designed to facilitate deep intro- 147

spection of the generation system and effectively 148

guide user interactions. The system comprises sev- 149

eral key components: The Memory stores the di- 150

alogue, denoted as h. The Summarizer, denoted 151

as MS , integrates users’ historical dialogue con- 152

tent, and generates a Prompt, denoted as P , for im- 153

age generation. The Generation Model, denoted as 154

MG, is responsible for transforming P into specific 155

images. The Reflection Block, denoted as BR, plays 156

a crucial role. It not only handles the reasoning pro- 157

cess (completing tasks in collaboration with the 158

user) but also engages in internal reflection on the 159

model. Within this module, the Evaluator, marked 160

as ME , is tasked with providing a comprehensive 161

description of the generated images. The Ambigu- 162

ity Inference Minf analyses the potential ambiguity 163

and outputs an internal label r. Finally, the Action, 164

designated as MA, displays the image and poses 165

questions to the user. We provide a detailed exposi- 166

tion of this interactive framework, distinguishing 167

between its internal and external workflows. 168

3.1 External Reflection via Verbal Reflection 169

The external reflection is contingent on user inter- 170

actions. When the user presents a new prompt, 171

the agent generates a corresponding image and 172

subsequently reflects on which intents to inquire 173

about based on that image. This interactive pro- 174

cess is termed Human-Machine Reflection (HM- 175

Reflection). 176

Memory and Summarizer The historical dia- 177

logues between the user and the agent are stored in 178

the Memory, while the Summarizer MS generates 179

2



Figure 1: Proposed framework of Enhanced Text-to-Image Reflexion Agent. The Generation Model can learn user
preferences by Direct Preference Optimization.

the prompt for controlling image generation based180

on these historical dialogues. Let h represent the181

historical dialogues, t represent the current time,182

wt represent the current user’s response, and Pt183

represent the internal prompt used for image gener-184

ation. The entire process can be expressed with the185

following formula:186

Pt = MS(wt, h). (1)187

Generation Model The Generation Model MG188

is central to the image generation, creating images189

based on provided prompts. Besides generating190

images that align with user intentions, it also incor-191

porates additional details not explicitly mentioned192

by the user. For the general image generation task,193

we use the Stable Diffusion model v1.4 (Rombach194

et al., 2022). Specifically, for the fashion image195

generation task, we employ a Stable Diffusion XL196

v1.0 (Podell et al., 2023), fine-tuned on fashion-197

related datasets. This is because fashion images are198

generally uniform in layout and demand a richer199

representation of fine-grained features. Let It rep-200

resent the currently generated image. This process201

can be expressed as:202

It = MG(Pt). (2)203

Evaluator In this interactive reflection frame-204

work, the Evaluator ME plays a critical role in205

assessing the quality of the generated images. The206

Evaluator uses a visual language model (VLM)207

to describe the image content and generates cap-208

tions that include aspects such as content, style,209

and background. We utilize Qwen-VL (7B) (Bai210

et al., 2023) in the general image generation task211

and ChatGPT 4.0 (OpenAI, 2023) in the fashion212

image creation task, as the VLM evaluator. The 213

generated captions are represented as Ct, where Ct 214

encompasses N aspects of the description. 215

Ct = ME(It), Ct =
{
C1
t , C

2
t , . . . , C

N
t

}
. (3) 216

Inference and Action By comparing the simi- 217

larity between multiple captions Ct and the prompt 218

Pt, the Ambiguity Inference Model Minf identifies 219

which contents are expected by the user and which 220

are randomly generated, and output an Ambigu- 221

itiy label rt. Based on the detected ambiguities 222

rt, the Action MA asks the user for more detailed 223

information. Question qt+1 can be selected from a 224

predefined list of questions or generated by a large 225

language model (LLM) based on the captions and 226

prompts. 227

rt = Minf (Ct, Pt), (4) 228
229

qt+1 = MA(Ct, rt). (5) 230

The entire process of external reflection has been 231

formalized into Algorithm 1. 232

3.2 Internal Reflection via Direct Preference 233

Optimization 234

An efficient intelligent interaction system not only 235

provides effective feedback and guidance to users 236

but also has the ability to self-reflect. As illustrated 237

in Figure 1, the Agent features a ’Refine Image’ 238

step that optimizes the model or output results. Af- 239

ter generating multiple images, users can mark the 240

ones they prefer. The Agent then learns user pref- 241

erences from this feedback to produce images that 242

better align with user preferences. We employ a 243

reinforcement learning method D3PO (Yang et al., 244

2023) for preference learning, which directly learns 245
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Algorithm 1 External reflection via Verbal Reflec-
tion

1: Initialize Agent: MS , MG, ME , BR, MA

2: while dialog do
3: User input words: wt

4: Store wt into Memory h
5: Summarizer MS generates Prompt Pt

6: Generation Model MG generates Image It
7: Reflection BR:
8: Evaluator ME generates Caption Ct

9: Inference Ambiguity rt
10: Action MA generates Question qt+1

11: Store qt+1 into Memory h
12: end while

from user feedback without the need for training246

a reward model. This functionality is designated247

as Tool 1. Additionally, we offer Tool 2, which248

checks the quality of generated images and regener-249

ates those that do not align with the corresponding250

prompt.251

Tool 1: Direct Preference Optimization (DPO)252

Figure 1 illustrates the method of internal reflection253

via DPO. In Stage 1, the generation model under-254

goes supervised fine-tuning to adapt to a specific255

generation task. In Stage 2, a certain amount of256

preference feedback is accumulated through mul-257

tiple interactions with the user. This feedback is258

then used to optimize the model, resulting in more259

personalized outputs. The optimization method260

employed is D3PO (Yang et al., 2023), which ex-261

pands the theoretical DPO into a multi-step MDP262

(Markov Decision Process) and applies it to diffu-263

sion models.264

Given two image samples, the user selects the265

image they prefer, denoted as xw, while the other266

sample can be represented as xl. Using the same267

weight, initialize a reference model πref , and a268

target model πθ. During the denoising process, the269

diffusion model takes a latent s as input and outputs270

a latent a. Based on the probability of πref , the271

overall loss of the D3PO algorithm gives:272

L(θ) =− E
[
log ρ

(
β log

πθ(a
w | sw)

πref(aw | sw)

−β log
πθ(a

l | sl)
πref(al | sl)

)] (6)273

Here, β is the temperature parameter that con-274

trols the deviation of πθ(a|s) and πref (a|s). θ is275

the parameter of the target model.276

Algorithm 2 Tool 1: Direct Preference Optimiza-
tion with D3PO
Require: preferred samples and the other: xw, xl

and Corresponding Latent: sw, sl, aw, al; num-
ber of training epochs N ; number of prompts
per epoch K

1: Copy a pre-trained diffusion model πref = πθ.
Set πref with requires_grad to False.

2: for n = 1 to N do
3: Training:
4: for k = 1 to K do
5: Update θ with gradient descent using

Equation 6
6: end for
7: end for

Tool 2: Attend-and-Excite The publicly avail- 277

able Stable Diffusion model exhibits issues with 278

catastrophic neglect, where the model fails to 279

generate the subjects or attributes from the input 280

prompt. To address this issue in diffusion models 281

and improve text-image alignment, we utilize the 282

A&E algorithm (Chefer et al., 2023). 283

First, we calculate the CLIP similarity score 284

Sim between the image and prompt. Then, we 285

identify the neglected words by backpropagating 286

the loss function l = 1− Sim. During the process 287

of regenerating the image, we use the A&E method 288

to activate these neglected words. Repeat the above 289

process a certain number of times. This Tool is 290

detailed in Algorithm 3. 291

Algorithm 3 Tool 2: Attend-and-Excite
Require: Image It, Prompt Pt.

1: Initialize token_list ← empty, Iteration
Number N , Threshold k

2: for n = 1 to N do
3: Computing the Similarity of It and Pt:

Sim← CLIP(It, Pt)
4: if Image is OK: Sim > k then
5: break
6: end if
7: Computing the Objective: l← 1− Sim
8: Computing Pt gradient by l: ∆Pt

9: Locate peak value of ∆Pt to get token_id
10: Append token_id to token_list
11: Regenerate It by A&E(Pt, token_list)
12: end for
13: return Image It
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Figure 2: A comparative display of four rounds of image generation based on specific prompts, including cherry
blossom tea, a parrot, a teenage girl, and an Asian temple across different rounds.

Table 1: Evaluations of prompt-intent alignment, image-intent alignment and human voting across various method-
ologies and integrations. Augmentation refers to using LLMs to infer ambiguity and enhance the initial prompt.
HM-Reflection is the external reflection of our RHM-CAS. T2I stands for Text-to-Image, and I2I stands for Image-
to-Image.

Methods Prompt-Intent Alignment Image-Intent Alignment Human VotingT2I CLIPscore T2I BLIPscore I2I CLIPscore I2I BLIPscore

GPT-3.5 augmentation 0.157 0.145 0.624 0.633 4%
GPT-4 augmentation 0.163 0.152 0.648 0.637 3.2%
LLaMA-2 augmentation 0.112 0.132 0.593 0.571 6%
Yi-34B augmentation 0.101 0.123 0.584 0.560 4.4%

HM-Reflection 0.282 0.281 0.752 0.760 25.5%
HM-Reflection + ImageReward RL 0.292 0.283 0.782 0.776 26.2%
RHM-CAS (Ours) 0.328 0.334 0.802 0.813 30.6%

Table 2: Multi-dialog (HM-Reflection) ablation experiment with image-to-image similarity scores across different
rounds, including SD-1.4, SD-1.5, DALL-E. I2I stands for Image-to-Image.

Multi-dialog SD-1.4 SD-1.5 DALL-E
I2I CLIPscore I2I BLIPscore I2I CLIPscore I2I BLIPscore I2I CLIPscore I2I BLIPscore

Round 1 0.726 0.702 0.722 0.698 0.650 0.673
Round 2 0.757 (↑ 0.031) 0.737 (↑ 0.035) 0.745 (↑ 0.023) 0.724 (↑ 0.026) 0.673 (↑ 0.023) 0.689 (↑ 0.016)
Round 3 0.775 (↑ 0.049) 0.762 (↑ 0.060) 0.772 (↑ 0.050) 0.783 (↑ 0.085) 0.690 (↑ 0.040) 0.717 (↑ 0.044)
Round 4 0.802 (↑ 0.076) 0.823 (↑ 0.121) 0.788 (↑ 0.066) 0.810 (↑ 0.112) 0.741 (↑ 0.091) 0.735 (↑ 0.062)

5



Figure 3: Human Voting for Statement: Multi-turn dialogues can approximate the user’s potential intents.

4 Experiment292

We explore the application of our proposed En-293

hanced Text-to-Image Reflexion Agent in two dis-294

tinct scenarios: general image generation and spe-295

cific fashion product creation. Due to the differ-296

ent requirements of these applications, adjustments297

have been made to our approach accordingly. In298

the experiments, the focus varies between the two299

tasks. For the general image generation task, we300

emphasize the effectiveness of our external reflec-301

tion via verbal reflection. The emphasis of the302

fashion product creation task is placed on captur-303

ing fine-grained features within the images and304

addressing user preferences.305

4.1 Task 1 General Image Generation306

The General Image Generation Task, powered by307

the Enhanced Text-to-Image Reflexion Agent, is308

designed to enhance the user experience in image309

creation. Our agent not only generates images310

based on textual instructions but also engages in311

dynamic dialogues with users, ensuring the images312

align more closely with their underlying intentions.313

This interactivity ensures that the images are not314

only visually appealing but also meet the content315

expectations and needs of the users. Moreover,316

through real-time feedback loops and continuous317

interaction, the agent guides users and enhances318

their creative expression, allowing even those with319

minimal experience to easily produce professional-320

level images.321

4.1.1 Setting322

In this task, the process begins with the Summa-323

rizer generating prompts by aggregating the user’s324

input words. These prompts are then used to gen-325

erate images. The generated images are subse-326

quently captioned by Qwen-VL (Bai et al., 2023),327

a Vision-Language Model, covering seven aspects:328

’Content’, ’Style’, ’Background’, ’Size’, ’Color’,329

’Perspective’, and ’Other’. By comparing the CLIP 330

text similarity scores between the user’s historical 331

inputs and each caption, we identify which aspects 332

of the image contain ambiguity. From the three 333

aspects with the lowest scores, one is randomly 334

selected for questioning. The question is displayed, 335

and the user can choose whether to respond. 336

To quantify the effectiveness of human-in-the- 337

loop image generation, we assumed a reference 338

image as the user’s generation target in the exper- 339

iments. After each image generation, the user re- 340

sponds based on the content of the target image 341

until a certain number of iterations are completed. 342

The similarity between each generated image and 343

the target image is then evaluated to assess the ef- 344

fectiveness of our approach. 345

4.1.2 Data Collection 346

We collected those high-scoring image-text pairs 347

from the ImageReward (Xu et al., 2024) dataset, 348

which were gathered from real users. These high- 349

scoring images exhibit excellent visual quality and 350

a high degree of consistency with the original 351

prompts. We excluded samples that were abstract 352

or difficult to understand, as well as those with 353

excessively long input prompts. Ultimately, we ob- 354

tained 496 samples covering a variety of subjects, 355

including people, animals, scenes, and artworks. 356

And obtained over 2000 prompts from users for 357

image generation. Some of these images also con- 358

tained content not explicitly mentioned in the orig- 359

inal prompts. These reference images served as 360

potential targets for multi-turn dialogue generation, 361

with each sample undergoing at least four rounds 362

of dialogue. 363

4.1.3 Baseline setup 364

To demonstrate the effectiveness of our Reflec- 365

tive Human-Machine Co-adaptation Strategy in 366

uncovering users’ underlying intentions, we es- 367

tablished several baselines. One approach to re- 368
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solving ambiguity in user prompts is to use Large369

Language Models (LLMs) to rewrite the prompts.370

We employed several LLMs to augment the ini-371

tial prompts, allowing these models to infer the372

users’ intentions. These LLMs include: ChatGPT-373

3.5, ChatGPT-4 (Achiam et al., 2023), LLaMA-2374

(Touvron et al., 2023), and Yi-34B (AI et al., 2024).375

The relevant experiments are shown in Table 1. Ta-376

ble 1 presents the alignment between the generated377

prompt and target image, as well as the alignment378

between the output image and target image. A379

subjective visual evaluation (Human Voting) was380

used to select the image result that most closely381

resembles the target image. All experiments were382

conducted on four Nvidia A6000 GPUs. The diffu-383

sion model SD-1.4 employed the DDIM sampler.384

Additionally, we validated the effectiveness of385

our Multi-dialog (HM-Reflection) approach in un-386

covering users’ underlying intentions by using dif-387

ferent generative models. The relevant experiments388

are shown in Table 2, including Stable Diffusion389

(v1.4), Stable Diffusion (v1.5) (Rombach et al.,390

2022), and DALL-E (Ramesh et al., 2021).391

4.1.4 Result Analysis392

In Figure 2, we illustrate our reflective human-393

machine co-adaptation strategy. The rightmost side394

of the figure shows the target images observed by395

users during testing, serving as the users’ intended396

generation targets. The four columns of images on397

the left correspond to the image results and prompt398

outputs at different dialogue turn. From the visual399

results, it is evident that by incorporating compre-400

hensive descriptions across the seven aspects, the401

generated images increasingly align with the target402

images.403

Tables 1 and Table 2 describe the experiments404

conducted on our collected dataset. Table 1 uses405

the SD-1.4 as the generative model and Qwen-VL406

as the evaluator. It first compares the effectiveness407

of non-human-machine methods (LLM augmenta-408

tion) in inferring user intent and then evaluates the409

performance of our multi-dialog approach (HM-410

Reflection). We compare our RHM-CAS method411

with a reinforcement learning approach using the412

feedback of ImageReward model (Xu et al., 2024)413

to improve the generative model. In Table 1, ’In-414

tent’ refers to the target images in the experiments.415

We use CLIP (Radford et al., 2021) and BLIP (Li416

et al., 2022) to extract embeddings of prompts and417

images and measure their similarity scores with418

the Intent embeddings. Table 1 also includes user419

votes on which method produced outputs closest 420

to the target images. Compared to other methods, 421

our approach achieved optimal performance. Ta- 422

ble 2 shows the effectiveness of multi-dialog (HM- 423

Reflection) in resolving ambiguity across different 424

generative models. As the number of dialog rounds 425

increases, the generated images increasingly resem- 426

ble the target images, with scores in parentheses 427

indicating the improvement relative to the initial 428

scores. Figure 3 collects the approval ratings from 429

five testers. In these sets of dialogues conducted 430

by each of the five users, we explore whether the 431

users agree that the multi-round dialogue format 432

can approximate the underlying generative target. 433

In most cases, HM-Reflection produces results that 434

more closely align with user intent. Besides, the 435

experiments related to Tool 2: Attend-and-Excite 436

are provided in the Appendix D. 437

4.2 Task 2 Fashion Product Creation 438

Our second task is fashion product creation, a key 439

application of image generation technology. In the 440

future, generating fashion products like dresses and 441

jackets that users can purchase or customize holds 442

great potential. This approach combines personal- 443

ization and automation, offering highly customized 444

shopping experiences. Users can generate ideal 445

designs through simple text descriptions, reducing 446

trial and error costs. Brands and designers can 447

quickly test market reactions, lower inventory risks. 448

Overall, image generation technology in fashion 449

has a promising future. 450

4.2.1 Setting 451

Fashion product creation is more challenging than 452

general image generation due to higher demands on 453

image quality and diversity. Our Agent system also 454

requires enhanced reasoning and multimodal under- 455

standing capabilities. During the experiments, we 456

used ChatGPT 4.0 for reasoning tasks beyond im- 457

age generation, facilitating multimodal dialogues. 458

More information is available in Appendix B.2. 459

For image generation, we used the SD-XL 1.0 460

model for its superior capabilities. We referred 461

to the DeepFashion dataset (Liu et al., 2016) for 462

clothing types and attributes, creating labels for col- 463

lecting SD-XL 1.0 image samples. These images 464

were cleaned and curated for fine-tuning, resulting 465

in more stable and consistent outputs. The LoRA 466

(Hu et al., 2021) method was used for fine-tuning 467

on four Nvidia A6000 GPUs. 468

To offer a customized user experience, we 469
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Figure 4: This image showcases a diverse collection of fashion models and outfits, segmented by user preferences
or data. Each section highlights different styles of attire, including elegant dresses and professional to casual jackets,
modeled by individuals of different ethnic backgrounds.

trained multiple models with different data, allow-470

ing users to choose models with different ethnici-471

ties. Based on user feedback, the model performs472

Direct Preference Optimization (DPO). In the DPO473

process, model parameters are updated after every474

40 user feedback instances, repeated three times.475

The model uses the DDIM sampler for image gen-476

eration.477

4.2.2 Result Analysis478

In Figure 4, we display the outputs of six models479

used by different users, each optimized based on480

their initial model selections and interaction history.481

All models generated fashion products from the482

same prompt using identical seeds, resulting in483

subtle variations among the products.484

We input the same prompt into each of the six485

models under consistent conditions to produce six486

sets of fashion items. These products were then pro-487

cessed through Fashion-CLIP (Chia et al., 2022),488

a version of CLIP fine-tuned for the fashion do-489

main, to obtain their embedding representations,490

which were visualized in a low-dimensional space491

using the t-SNE method in Appendix C. The vi-492

sualization Appendix C Figure 10 shows distinct493

preference distributions for each user. 494

Additionally, we had the six testers compare 495

the outputs from models optimized with DPO and 496

those without optimization. As shown in Appendix 497

C Figure 11, in the majority of cases, testers be- 498

lieved that the DPO method improved the model’s 499

output results, more aligned with their tastes. 500

5 Conclusion 501

In this study, we explored the application of ad- 502

vanced image generation techniques integrated 503

with human-machine interaction frameworks to en- 504

hance personalization and visual appeal in both 505

general image generation and fashion product cre- 506

ation. Our Enhanced Text-to-Image Reflection Sys- 507

tem demonstrated significant capabilities in guiding 508

users to articulate their generative intentions effec- 509

tively. By leveraging both external interactions 510

and internal reflections, our agent was able to learn 511

from human feedback and align its outputs more 512

closely with user preferences. Future work will fo- 513

cus on integrating finer user feedback mechanisms 514

and broadening the applicability and effectiveness 515

of these technologies in various domains. 516
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6 Limitations517

This study, although advanced with the RHM-CAS,518

has certain limitations. In the interaction process,519

due to prompts containing multiple high-level de-520

scriptions, the image generation model might not521

fully transform all of them into images. More-522

over, the VL model’s ability to capture fine-grained523

details is limited, which may result in inaccurate524

captions. These cross-modal information transfer525

processes also lead to errors in information prop-526

agation, obstructing the expression of user intent,527

and thereby affecting communication efficiency.528

Apart from this, the method is computationally in-529

tensive, requiring substantial resources, which may530

limit its accessibility for users with less powerful531

hardware. Furthermore, the iterative refinement532

process, while effective, can be time-consuming.533

This could potentially lead to user frustration in534

time-sensitive situations.535

Future efforts should aim to enhance computa-536

tional efficiency and broaden the system’s ability to537

generalize across more diverse inputs, improving538

usability in real-world applications.539
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A Q&A Software Annotation Interface 713

Figure 5: Screenshot of the Q&A software annotation
interface.

Image Panel: Two images are displayed side-by- 714

side for comparison or annotation. These images 715
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seem to depict artistic or natural scenes, suggesting716

the software can handle complex visual content.717

HTML Code Snippet: Below the images, there’s718

an HTML code snippet visible. This could be used719

to embed or manage the images within web pages720

or for similar digital contexts.721

Interactive Command Area: On the right, there722

is an area with various controls and settings:723

Current task and image details: Displayed at the724

top, indicating the task at hand might be related to725

outdoor scenes. Navigation buttons: For loading726

new images and navigating through tasks. Anno-727

tation tools: Options to add text, tags, or other728

markers to the images. Save and manage changes:729

Buttons to save the current work and manage the730

task details.731

A.1 Human annotation instruction732

Objective733

Accurately describe and tag visual content in im-734

ages to train our machine learning models.735

Steps736

1. Load Image: Use the ’Load Image’ button to737

begin your task.738

2. Analyze and Describe:739

• Examine each image for key features.740

• Enter descriptions in the text box below741

each image.742

3. Tagging:743

• Apply relevant tags from the provided744

list to specific elements within the image.745

4. Save Work: Click ’Save Task’ to submit your746

annotations. Use ’Load Last’ to review past747

work.748

Guidelines749

• Accuracy: Only describe visible elements.750

• Consistency: Use the same terms consistently751

for the same objects or features.752

• Clarity: Keep descriptions clear and to the753

point.754

Support755

For help, contact the project manager at [contact756

information].757

Note: Submissions will be checked for quality;758

maintain high standards to ensure data integrity.759

Human annotator information 760

We invited annotators, users, and testers from uni- 761

versity undergraduate and graduate students, in- 762

cluding both computer science and non-computer 763

science majors. Compensation was provided based 764

on the amount of work completed. 765

B RHM-CAS Pipeline Example 766

B.1 general image generation task pipeline 767

RHM-CAS uses the Qwen-VL as the evaluator 768

when performing general image generation tasks. 769

Figure 6 presents an example. On the far left is 770

the prompt generated by the Summarizer based on 771

the user’s historical dialogues, using the simplest 772

method of phrase stacking for this task. The dif- 773

fusion model then generates an image based on 774

the current prompt. This image is subsequently 775

described by the Qwen-VL model, which gener- 776

ates captions covering various aspects including 777

"Content," "Image Style," "Background," "Subject 778

Size," "Color," "Perspective," and "Other Aspects." 779

The prompt and the captions are then compared, 780

and a question related to a specific aspect is ex- 781

tracted from the question list. Figure 7 shows a 782

subset of the optional questions from the general 783

image generation task question set. 784

B.2 fashion product creation task pipeline 785

When generating fashion products, we attempted to 786

use LLMs to handle all tasks other than image gen- 787

eration. We selected ChatGPT-4 to manage all tex- 788

tual interactions with users and image descriptions, 789

while the generative model used was our fine-tuned 790

Stable Diffusion XL model. As shown in Figure 791

7, we first initialized several modules based on 792

ChatGPT-4, including Summarizer, Evaluator, and 793

Action. Yellow represents the user’s role, while 794

other colors represent different modules of our 795

RHM-CAS. When captioning, the Evaluator pro- 796

vided descriptions from multiple aspects, includ- 797

ing ’Appearance,’ ’Function,’ ’Material,’ ’Style,’ 798

’Details,’ ’Occasion,’ and others. It can be seen 799

that through our RHM-CAS, users can dynamically 800

adjust the generated images and make selections 801

based on recommendations posed by the LLM, al- 802

lowing even users without prior experience to adapt 803

quickly. 804

Figure 8 showcases our demo developed based 805

on ChatGPT. The left side of the interface is dedi- 806

cated to dialogues with users, while the right side 807

generates images in real-time based on the current 808
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Figure 6: Dialogue Record of General Image Generation, including Prompts, Qwen-VL Captions and Questions.

Figure 7: A subset of the optional questions from the general image generation task question set.

Figure 8: Demo of Fashion Product Creation
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Figure 9: Mode of Fashion Product Creation based on ChatGPT. Special Prompt initialized Each Agent.
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conversation. The system presents two images, al-809

lowing users to choose the one they prefer, which is810

then used to optimize the generative model through811

DPO. Before using the system, users can select812

different ethnicities in the bottom right corner to813

initialize the generative model.814

C DPO User Study815

In the fashion product creation task, we collected816

feedback from six users and used this feedback817

to optimize the model through DPO. As shown818

in Figure 10, under the same random seed condi-819

tions, these six models, which have been optimized820

multiple times, generate images using the same821

textual input. These images are then fed into the822

Fashion-CLIP (Chia et al., 2022) model for embed-823

ding representation. Finally, these embedding vec-824

tors are visualized using the t-SNE method. From825

the latent space of Fashion-CLIP, it is evident that826

each of the six models exhibits distinct distribution827

characteristics.828

In addition, we invited these users to evaluate829

the effectiveness of DPO in Figure 11. Based on830

their assessments, in most cases, using DPO sig-831

nificantly improved the output performance of the832

model compared to the unoptimized version.833

D Tool 2 ttend-and-Excite Experimrnt834

We conducted independent experiments on Algo-835

rithm 3 (Tool 2: Attend-and-Excite) using the836

dataset collected from Task 1. As shown in Table 3,837

the second row records the usage frequency of Tool838

2 as the threshold k varies. When the threshold839

k is set to 0.72 and 0.7, the usage frequencies are840

31.1% and 51.1%, respectively. Correspondingly,841

the CLIP scores increased by 1.8% and 2.3%, in-842

dicating that these settings effectively enhance the843

alignment between images and text. The iteration844

number N is set to 3.845

E Flawed Example846

However, we encountered some suboptimal cases847

during our experiments. As shown in Figure 12, in848

the first topic discussing ’Super Mario’, the model849

generated multiple rounds of images based on ran-850

dom noise. As the prompt length increased, the851

model’s understanding of ’Super Mario’ gradually852

diminished, making it difficult to consistently pro-853

duce a cartoon character. Moreover, the layout of854

the images was also influenced by the random seed.855

In some instances, even with added descriptions, it856

was challenging to obtain images that completely 857

matched the target image, as illustrated in the sec- 858

ond topic in Figure 12. 859

F Potential Risks and Ethical 860

Considerations 861

The research on image generation based on dia- 862

logue systems involves several potential risks that 863

need to be addressed to ensure ethical use and so- 864

cial responsibility. 865

Firstly, we utilized image generation models 866

from the open-source community. These models 867

have implemented efforts to prevent the generation 868

of misleading or false information. Watermark- 869

ing techniques have been applied, and strict review 870

mechanisms for content generation have been es- 871

tablished to prevent misuse. 872

Fairness and privacy are also important consid- 873

erations. The datasets used in this study are based 874

on open-source data, with all user data anonymized 875

and securely stored to protect privacy. 876

Furthermore, the software programs developed 877

based on these open-source data and models are 878

intended solely for academic research and are not 879

used for commercial purposes. 880

14



Figure 10: Fashion-CLIP Embeddings of 6 Users visualized with t-SNE

Figure 11: Human Voting for Statement: Direct Preference Optimization can improve generation results.

Figure 12: Flawed Case
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Tool 2 threshold 0.8 0.75 0.72 0.7 0.68 0.66

Frequency of Usage 0 8.9% 31.1% 51.1% 73% 95.5%

T2I Similarity Improvement 0 0.2% 1.8% 2.3% 2.6% 1.0%

Table 3: Tool 2 usage frequency and T2I Similarity at Different Tool 2 Thresholds
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