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Abstract

Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear
solution operator of) partial differential equations (PDEs). The current state of the art for
these models does not provide explicit uncertainty quantification. This is arguably even more
of a problem for this kind of tasks than elsewhere in machine learning, because the dynamical
systems typically described by PDEs often exhibit subtle, multiscale structure that makes
errors hard to spot by humans. In this work, we first provide a mathematically detailed
Bayesian formulation of the “shallow” (linear) version of neural operators in the formalism
of Gaussian processes. We then extend this analytic treatment to general deep neural
operators using

::::::::::::::::::::
operators—specifically,

:::::
graph

::::::
neural

:::::::::::::::
operators—using

:
approximate methods

from Bayesian deep learning, enabling them to incorporate uncertainty quantification. As a
result, our approach is able to identify cases, and provide structured uncertainty estimates,
where the neural operator fails to predict well.

1 Introduction

Neural operators (Kovachki et al., 2023; Li et al., 2020b; 2021a; 2020a; 2021b) are a deep learning architecture
::::
deep

::::::::
learning

::::::::::::
architectures

:
designed for reconstruction problems related to partial differential equations

(PDEs). They approximate mappings between infinite-dimensional vector spaces of functions, such that –
once trained – solutions of entire families of parametric PDEs can be represented by a single neural network.
However, the learning process is subject to several sources of uncertainty, which can result in a potentially
significant prediction error because of the nonlinear – and

:::::
often nonintuitive – interactions of different stages

of the approximation. The goal of this paper is to develop methods for estimating this error at a practically
acceptable computational cost. This kind of functionality is urgently needed in this domain: Due to the
intricate and often not intuitive nature of the dynamical systems described by PDEs, it can be hard for the
human eye to detect prediction errors, even when they are large.

In this paper, we address this gap by developing an approximate Bayesian framework for neural operators
– from a theoretical, and a computational point of view. We begin with a brief review of neural operators.
Then, using linear, parametric PDEs as guiding examples, we show how their “shallow” (single-layer) base
case allows for an analytic Bayesian treatment using the formalism of Gaussian processes (Rasmussen &
Williams (2006)). This linear case, while primarily of theoretical interest, provides valuable insights and
aims to make this model class more accessible to the Bayesian machine learning community. We then extend
the theoretical analysis to the nonlinear deep case. Here, analytic treatments are no longer possible, so
we fall back on approximations developed for Bayesian deep learning. Specifically, we focus on Laplace
approximations (MacKay, 1992) which are easy to add post-hoc even to pretrained networks, and add only
moderate computational cost relative to deep training without uncertainty quantification (Daxberger et al.,
2021). Our experiments in Section 5 demonstrate that the resulting method effectively captures structure in
the predictive error of graph neural operators, both in the over- and under-sampled regime. In Section 2 we
discuss some theoretical background

:
,
:
and develop a probabilistic framework for neural operators

:
in

:::::::::
Section 3

. We discuss related work in Section 4.
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Figure 1: Green’s functions in Equation (6) for different values of λ0 = {3, 4.5, 7.5}. On the left, right-
hand-side functions f , g for the PDE in Equation (5) and respective solutions uf , ug for the correspondent
λ0-value, computed through Equation (4).

2 Background

In this section, we examine how neural operators approximate solution operators for parametric PDEs
through functional observations. If we fix one input of the solution operator, neural operators can be
understood as effectively inverting the differential operator associated with the PDE. In this framework, the
process of learning the operator becomes equivalent to reconstructing the Green’s function, reducing the
problem to a task of function approximation. This perspective, developed in Section 2.1, forms the basis
for the Bayesian approach developed in Section 3.1. Subsequently, in Section 2.2, we outline the iterative
structure of neural operators, their training methodology, and their relationship

:::::::::
procedure,

::::
and

::::
how

:::::
they

:::::
relate

:
to Green’s functions.

2.1 PDEs And Green’s Function

One of the main fields of applications of neural operators are PDEs. In this work we consider the family
:::::::
families of parametric PDEs

::
of

:::
the

:::::
form

:(
Lλu

)
(x) = f(x), x ∈ D
u(x) = 0, x ∈ ∂D

(1)

for some sufficiently well-behaved, bounded domain D ⊂ Rd with boundary ∂D (e.g. open, bounded D with
Lipschitz boundary ∂D), where U 3 u : D → R, F 3 f : D → R, λ ∈ Λ, with U , F and Λ appropriate
function spaces. The precise nature of those function spaces is not important for the remainder of this work.
The function λ parametrises the differential operator Lλ.

Equation (1) defines a solution operator

H : Λ× F → U, (λ, f) 7→ uλ,f (2)

in the sense that H(λ, f)(x) = uλ,f (x) solves the PDE for the given functions λ and f . Even though the
PDE is linear, H is (possibly highly) nonlinear. In particular, in this section we consider the case where λ
is fixed, so the solution operator can be written as

G : f 7→ u.
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f

λ

ψ1(x) ψ2(x) . . . ψL−1(x) uλ,f (x)

(W1, θ)

(W2, θ2) (W3, θ3) (WL−1, θL−1) (WL, θL)

ψ1(f, λ) = σ1

(
W1f(x) +

∫
D

gθ1 (x, y, λ(x), λ(y)), f(y) dy
)

ψL(f, λ) = σL

(
WLψL−1(x) +

∫
D

gθL (x, y, λ(x), λ(y)), ψL−1(y) dy
)

Figure 2:
::::::
Neural

::::::::
operator

:::::::::::
architecture

::::::
NOΘ.:::::

Each
:::::
layer

::
l
:::::::::
computes

::
a

::::
new

::::::::
function

:::
ψl,::::

that
::::::::
contains

::::
the

:::::
neural

::::::::
network

:::
gθ ::

in
:::
the

::::::::::
integrand.

::::::
Layer

::::::::::
parameters

:::
are

::::::
shown

:::
on

::::
the

::::::::::::
corresponding

:::::::
arrows.

:

The operator G, like
:::
The

::::::::
operator

:
H, is a map between function spaces. The idea behind neural operators

is to approximate the operator G (or H ) with a single neural network trained on function observations
{fi, ui}Ni=1. Thus, instead of approximating the solution of the PDE for only a fixed f

::
or

::
λ, neural operators

directly infer the operator G.

::
H.

:
Numerically, the functions f and u are observed on a discretisation grid of the function domains.

::
In

::::
this

::::::::::
subsection

:::
we

:::
are

::::::::::
interested

:::
the

::::::::::
particular

::::
case

::::::
where

::
λ
::
is
::::::
fixed,

:::
so

:::
the

::::::::
solution

::::::::
operator

::::
can

:::
be

::::::
written

:::
as

G : f 7→ u.
::::::::

(3)

::::
This

::::::::
operator

::::
will

::
be

:::
the

::::
one

:::
we

:::::
want

::
to

:::::::::::
approximate

:::
in

:::
the

:::::
linear

::::::::::
("shallow")

::::
case

:::
in

:::
the

::::
next

:::::::
section.

:::
If

:::
the

:::::::::
differential

::::::::
operator

:::
Lλ::

is
::::::
linear,

::::
the

::::
map

::
G

:::::::
inherits

::::
that

::::::::
linearity.

:
Considering the operator in Equation (3)

is a key
::
an

::::::::::
important step to understand the learning process of neural operators. In fact, observe how G is

the inverse of the operator Lλ. The ::
In

::::
this

:::::::::
simplified

::::
case

::::::
where

:
λ
:::
is

:::::
fixed,

:::
the

:
neural operator is therefore

learning an operator, G, through function observations {fi, ui}Ni=1 that derive from the action of its inverse.
In other words, during training, the neural operator is implicitly learning to invert the differential operator
Lλ. In particular, in the case where the differential operator is linear and admits a Green’s function G, the
solution of Equation (1) can be expressed through integration with the kernel G

uλ(x) =
∫
D

Gλ(x, y)f(y)dy. (4)

Hence, learning the operator G is here equivalent to learn the function G
::::
Gλ, which means that an operator-

learning task can be reduced to that of function-reconstruction. The structure of neural operators in its
one-layer case is inspired by the Green’s solution formula for linear PDEs in Equation (4). We will examine
their architecture, in the more general case, in the next section.

In the general analysis of linear PDEs (we refer to e.g. Evans (2010) for background on PDEs), the
Green’s function G(x, y)

::::::::
Gλ(x, y)

:
represents the impulse response of the linear operator Lλ, that is

Lλ(G)(·, y) = δ(· − y)
:::::::::::::::::::
Lλ(Gλ)(·, y) = δ(· − y)

:
for y ∈ D, where δ denotes the Dirac delta distribution. Note

how Lλ is a linearoperator, whereas the Green’s function is usually nonlinear in
::::::
Despite

:::
Lλ::::::

being
::::::
linear,

:::
the

:::::::
Green’s

::::::::
function

::::
itself

::::
can

:::
be

:::::::::
nonlinear

::
in

:::
in either arguments. To visualize the presented

::::
these

:
concepts,

we consider the
::::::::::::::
one-dimensional

:
boundary value problem(
−∆− λ2

0 Id
)
u(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
(5)
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that admits a
::::::
where

::
in

::::
this

::::
case

::::::
λ0 ∈ R

::
is
::
a
:::::::
(scalar)

::::::::::
parameter,

::::
and

:::
Id

::
is

:::
the

:::::::
identity

:::::::::
operator.

::::
It’s Green’s

functionin closed form, ,
:::
for

::::::::::::::::
λ0 6= nπ ∀n ∈ N,

::
is

:::::
given

:::
by

Gλ0(x, y) := A+B

λ0 sin(λ0) (6)

where we abbreviated

A := H(y − x) sin(λ0x) sin(λ0(1− y)) (7)
B := H(x− y) sin(λ0(1− x)) sin(λ0y), (8)

and H denotes the Heaviside step function.
::::::
Details

::
of

::::
the

:::::::
Green’s

::::::::
function

::::::::::
derivation

:::
are

:::
in

:::::::::::
Appendix A

:
.
:
Equation (5) relates to Equation (1) in the sense that the differential operator Lλ0 = (−∆ − λ2

0 Id) is
parametrised by λ0. ::::::::

Figure 1
:::::
shows

:::::::::
examples

::
of

:
Green’s functions Gλ0 for different values of λ0, as well as

the solutions computed through the formula in Equation (4), are depicted in Figure 1
:::::
along

:::::
with

::::::::
solutions

:::::::::
computed

:::
via

::::::::::::
Equation (4).

Neural operator architecture NOΘ. Each layer l computes a new function ψl, that contains the neural
network gθ in the integrand. Layer parameters are shown on the corresponding arrows. The input function
f enters as an initialisation only in the first layer, while the function λ enters in gθ at every ψl.

2.2
::::::::
Overview

:::
of

:
Neural Operator Essentials

:::::::::
Operators

Before formulating a Bayesian frameworkfor neural operators, we recall

::::::
Neural

:::::::::
operators

::::
are

::::::::::::::::::::
neural-network-based

::::::::::::
architectures

:::::::::
designed

:::
to

::::::::::::
approximate

::::
the

:::::::
general

::::::::
solution

:::::::
operator

:::
H

:::::::
defined

:::
in

:::::::::::::
Equation (2)

:::::
Before

:::::::::::
introducing

::::
our

:::::::::
Bayesian

:::::::::::
framework,

:::
we

::::::
briefly

:::::::
review

:
their

structure. A more thorough explanation of what follows can be found in the work by Kovachki et al. (2023);
Li et al. (2020b; 2021a; 2020a; 2021b).

A neural operator is a neural network architecture designed to approximate the general solution operator
H in Equation (2). For particular cases, such as the operator G in Equation (3) where λ is fixed, or for
operators mapping λ 7→ u (where f is fixed), an analogous construction is straight forward.

Let gθ : D ×D × R× R→ R be a neural network with parameters θ. Define the neural operator NOΘ as a
composition of L ∈ N layers

NOΘ : Λ× F → U,

(λ, f) 7→ (ψL ◦ ψL−1 ◦ ... ◦ ψ1)(λ, f), (9)

where each layer

ψ` : Φ→ Φ, ` = {1, . . . L}, (10)

is defined as a composition of (i) integrating the output of the previous layer against gθ:::
gθ`

, and (ii) combining
the integral with a linear component and an activation function σ,

ψ`(gh:)(x) = σ

(
W`gh:(x) +

∫
D

gθθ`
:

(x, y, λ(x), λ(y))gh
:
(y)dy

)
. (11)

The space Φ in Equation (10) is a vector space of functions mapping from
::::::::::
real-valued

::::::::
functions

:::
on

:
Dto R.

The
:
,
::::
and

:::
the

:
final layer of the neural operator maps into U , so ψL : Φ → U . In

::::::::::::
Equation (11),

::::
W`::

is
::
a

::::::::
learnable

:::::
linear

:::::::::
operator

:::::::::::
(represented

:::
by

:
a
:::::::
matrix

:::::
after

:::::::::::::
discretization),

::::
and

:::
gθ :̀:

is
::::
the

:::::::
integral

::::::
kernel

::
in
::::
the

:::
`-th

::::::
layer.

:::
In

:
practice, the integral cannot be computed in closed-form and a suitable quadrature formula

needs to be employed (which turns the integral into a weighted sum of evaluations of the integrand; see e.g.
Davis & Rabinowitz (2007)). The parameters

:::::::::
parameter

:::
set Θ of NOΘ include the parameters θ of gθ as well

as the weights in each layer W`, i.e. Θ = θ ∪ {W`}L`=1:
is
:::::::::::::::::
Θ = {θ` ∪W`}L`=1. Loosely speaking, one can think

of this construction as a deep neural network (NOΘ) that iteratively approximates the solution uλ,f (see

4
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Equation (2))
::::
with

:::::
linear

:::::::::::::::
transformations

:::
W

:̀:::
and

:::::::::
nonlinear

::::::::::
activation

::::::::
functions

:::
σ,

:
and at every iteration

(layer) employs another neural network (gθ ::
gθ`

). For a visualisation of NOΘ see Figure 2.

This architecture is inspired by the process of solving linear PDEs with Green’s functions: In the case
where L = 1, λ ≡ λ2

0, σ = Id, and W1 = 0, and we consider the mapping G : f 7→ u, the neural operator
approximating G becomes

NOΘ(f) = NOθ(f) =
∫
D

gθ(x, y)f(y)dy.

If gθ is a sufficiently accurate approximation of the Green’s functionGλ0 in Equation (6), Equation (15) is the
solution formula of the PDE in Equation (5). In the next section we will provide a probabilistic formulation
of the one layer architecture in Equation (15) that is based on the formalism of Gaussian processes.

::::::::
Although

:::
the

:::::
figure

::::::
shows

::
λ
::::::::
entering

:::
in

::::
each

::::::
layer,

::
in

::::::::
practice

::::
the

::::::
kernel

::::
may

:::::::
encode

::
λ

::
in

:::
an

::::::
initial

::::::::
“lifting”

:::::
layer

:::::
while

:::::
using

:
a
:::::
final

:::::::::::
“projection”

:::::
layer

:::
to

::::
map

:::
the

::::::::
function

:::::::
output

::::
back

:::
to

:::
the

::::::::
physical

::::::::
domain.

:

Note how NOΘ approximates an operator. While, technically speaking, this means that its training and test
set consist of functions, in the numerical computation, these functions need to be observed on some grid.
:::::::::::
Nonetheless,

::::::
neural

:::::::::
operators

::::
are

::::::::::::::::::
resolution-agnostic:

:::::
their

:::::::::::
architecture

:::::
does

::::
not

:::::::
depend

:::
on

::
a

:::::::::
particular

::::::::::::
discretization

::::
grid,

::::
and

:::::
they

::::
can

:::
be

:::::::
applied

::
to

::::::::
different

::::::::::
resolutions

::::::::
without

::::::::::
retraining.

:
Let {λ1, ..., λN} ×

{f1, ..., fM} be a set of training inputs, each of which shall be observed on some mesh X := {x1, ..., xK}.
In total, that makes NK ×MK = NMK2 training inputs. Without loss of generality, and for the sake of
simple notation, assume that the solution of the PDE and the respective inputs are observed on the same
mesh X. Thus, we observe NM solutions u11, ..., uNM , i.e. NMK training outputs – one set of evaluations
at X for each solution unm associated with (λn, fm), n = 1, ..., N , m = 1, ...,M . Each of these outputs is a
function that maps from D to R, thus unm(X) ∈ RK . The relation between inputs and outputs is

unm = H(λn, fm)≈NOΘ(λn, fm). (12)
While this equation is between functions, once discretised, it becomes an equation between vectors. To be
able to optimise the parameters, we introduce the loss function

L : RK × RK → [0,∞). (13)

The network parameters Θ are then computed by (approximately) solving the minimisation problem

Θ∗ = arg min
Θ

∑
n,m

L(unm(X),NOΘ(λn, fm)(X)), (14)

where we used the above vectorised notation. This minimisation can be carried out with any of the optimisers
popular in deep learning (see e.g. (Le et al., 2011)). Note that by approximating directly the solution operator
H, NOΘ simultaneously learns the entire family of PDEs parametrised by f, λ without the need of re-training
the network for a new λ or f . Considering that these new inputs samples can be out of distribution cases,
which are notoriously harder to predict (Hendrycks & Gimpel, 2017), it is even more important to introduce
uncertainty quantification for these architectures.

2.2.1
:::
The

::::::::::
One-Layer

::::::::::
(Shallow)

:::::
Case

::
A

:::::::
special,

:::::::
shallow

:::::::
version

::
of

:::
the

:::::::
neural

::::::::
operator

:::::
arises

:::
by

:::::::
setting

::::::
L = 1,

:::::::
σ ≡ Id,

::::
and

::::::::
W1 = 0,

::::
with

:::::::
λ ≡ λ2

0

:::::
fixed.

::
In

::::
this

:::::::::
simplified

:::::::::
scenario,

:::
we

:::::
focus

::
on

::::
the

::::::::
operator

::::::::::
G : f 7→ u,

:::::::
yielding

:

NOΘ(f) = NOshallow
θ (f) =

∫
D

gθ(x, y)f(y)dy.
:::::::::::::::::::::::::::::::::::::::

(15)

:::::
where

::::::::
gθ := gθ1::

is
:::::
now

:::
the

:::::
only

:::::::
learned

:::::::
integral

::::::
kernel.

:::
If

::
gθ::

is
::
a
::::::::::
sufficiently

::::::::
accurate

:::::::::::::
approximation

::
of
::::
the

:::::::
Green’s

:::::::
function

:::::
Gλ0 ::

in
::::::::::::
Equation (6),

:::::
then

:::::::::::::
Equation (15)

:::::::::
essentially

::::::::
recovers

:::
the

::::::::
classical

::::::::
solution

:::::::
integral

::::::::::::::::::

∫
D
Gλ0(x, y) f(y) dy.

:::::::
Hence,

::::
the

::::::::
structure

:::
of

::::::
neural

:::::::::
operators

::
in

:::
its

::::::::
one-layer

:::::::::
(shallow)

::::
case

:::
is

:::::::
inspired

:::
by

:::
the

:::::::
Green’s

::::::::
solution

:::::::
formula

::::
for

:::::
linear

::::::
PDEs

:::::::::::::
(Equation (4)

:
).
:::
In

::::
the

:::::
next

:::::::
section,

:::
we

:::::::
provide

::
a
:::::::::
Gaussian

::::::::::::
process–based

::::::::::::
probabilistic

::::::::::
perspective

:::
on

::::
this

:::::::::
one-layer

:::::::::
operator,

::::::
which

::::
lays

::::
the

:::::::::::
groundwork

:::
for

::
a

:::::
more

::::::
general

:::::::::
Bayesian

:::::::::
treatment

::
of

::::::::::
multi-layer

:::::::
(deep)

::::::
neural

:::::::::
operators.

:
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3 Method

Here
::
In

::::
this

:::::::
section,

:
we develop the Bayesian probabilistic framework for neural operators. Section 3.1

explores
::::::
focuses

::
on

:
the special case of a one-layer network, allowing

::::::::
(shallow)

::::::::
network,

::::::
where

:::
we

:::
can

::::::::
leverage

::::::::
Gaussian

:::::::
process

::::::::::
regression

::
to

:::::::
obtain an analytic non-parametric Bayesian treatmentthrough a Gaussian

process model. This setting provides not just a useable algorithm, but also an important conceptual base-
case that is not prominently discussed in previous works on neural operators (including non-Bayesian ones).
In Section 3.2, this “shallow” treatment is extended to the deep setting using a linearisation in form of the
Laplace approximation, which again provides a Gaussian posterior distribution, albeit an approximate one.

3.1 Bayesian Neural Operators and
::
In

::::
The

::::::::
Shallow

:::::
Case

:::::
With

:
Gaussian processes

:::::::::
Processes

Consider the solution operator G : f 7→ u of
:::
We

:::::
begin

:::::
with

:::
the

:::::::
shallow

:::::
neural

::::::::
operator

:::::::::
NOshallow

θ ::::::::::
introduced

::
in

::::::::::::
Equation (15)

:
.
::
In

::::::::::
particular,

:::
we

:::::::
consider

:
the linear PDE in Equation (5). In this case G can be approximated

with a one-layer neural operator, that in its single iteration computes the PDEsolution as the integral

NOθ = uf (x) =
∫
D

gθ(x, y)f(y)dy.

As observed in Section 2.1, this “shallow” form of the neural operator is based on Green’s solution
formulas for linear PDEs.

:::::::
setting,

::::
the

:::::::
PDE’s

::::::::
solution

::::::::
operator

::::::::::
G : f 7→ u

::::
can

:::
be

:::::::::::::
approximated

::::
via

::::::::::::::::::::::::::::::
NOshallow

θ (f) =
∫
D
gθ(x, y) f(y) dy,

::::::
where

:::::::
gθ(x, y)

:::::
plays

::::
the

::::
role

::
of

::::
the

:::::::
Green’s

::::::::
function

::::::::
G(x, y).

:
Since the

considered linear PDE admits an analytic Green’s function G (see Equation (6)), and since the only pa-
rameters of NOΘ are the ones of the neural network gθ ,

:
(i.e. Θ = θ, learning the operator G is here

equivalent
:
),

::::::::
learning

::
G

:::::::
reduces to learning the function G. Therefore, for this setting, one can reformulate

the task of inferring the solution operator G : f 7→ u (which maps between infinite-dimensional vector spaces
of functions) as the inference problem of learning the function G : R2 → R

::::::::::
G : R2 → R.

::::::::::::
Formulating

:::::
the

:::::::::
Problem

:::
as

:::::
GP

::::::::::::
Regression. In contrast to conventional GP regression, instead

of direct observations of G
::::::
directly

::::::::::
observing

::::::
values

::
of

::
G, we only have access to G through the integrals

un =
∫
D
G(x, y)fn(y)dy for every data point fn, n = 1, . . . , N . We define

:::::::
observe

::::::::
integrals

::
of

:::
G

:::::::
against

::::::
various

::::::
input

:::::::::
functions.

:::::::::::
Specifically,

:::
for

::::
each

::::::::
training

:::::
input

::::::::
function

:::
fn,:::

we
:::::::
observe

:

un(x) =
∫
D

G(x, y) fn(y) dy, n = 1, . . . , N.
:::::::::::::::::::::::::::::::::::::::

::::::
Define the integral operator Af = A acting on G as AG =

∫
D
G(·, y)f(y)dy = u(·). Since A

(AG)(·) =
∫
D

G(·, y) f(y) dy.
::::::::::::::::::::::::::

:::::::
Because

::
A

:
is a linear operator

::
in

::
G, a Gaussian likelihood involving these observations (including the limit

case of noise-free observations) remains conjugate to
::::::
ensures

::::::::::
conjugacy

:::::
when

:::
we

:::::
place

:
a GP prior and a

Gaussian posterior can be computed in closed-form (Tanskanen et al., 2020; Longi et al., 2020).

Assume a Gaussian prior G ∼ GP(µ, kθ) with mean function µ : R2 → R and a parametrised kernel
:::
over

:::
G.

::::::::::
Concretely,

:::::::
suppose

:

G ∼ GP
(
µ, kθ

)
, u | G ∼ N

(
AG, σ2),

:::::::::::::::::::::::::::::::::::::

:::::
where

:::::::::::
µ : R2 → R

:::
is

::::
the

::::::
prior

::::::
mean

:
function kθ : R2 × R2 → R. Assuming u | G ∼ N (AG, σ2)

:::
and

:::::::::::::::
kθ : R2 × R2 → R

::
is

:::
the

::::::::::
covariance

::::::
kernel

:::::::::::::
parameterized

:::
by

::
θ.

::::::::
Because

::::
both

::::
the

::::
prior

::::
and

::::
the

:::::::::
likelihood

:::
are

::::::::
Gaussian

::::
with

::
a
::::::
linear

::::::::::
observation

::::::
model, the posterior distribution over G is a Gaussian process

::
G

:::::::
remains

::::::::
Gaussian

::::::::::::::::::::::::::::::::::::::
(Tanskanen et al., 2020; Longi et al., 2020)

:
.
:

6
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:::::::::
Posterior

:::::::
Mean

::::
and

::::::::::::
Covariance.

::::
The

::::::::
resulting

::::::::
posterior

:::::::::::
distribution

::::
over

:::
G

::
is

:::::
again

::
a

:::
GP

:
with mean

and covariance:
:

E[G] = µ + A∗kθ
(
AA∗kθ + σ2

)−1(
u−Aµ

)
,

Cov(G) = kθ − A∗kθ
(
AA∗kθ + σ2

)−1
Akθ,

(16)

where A∗
:::
A∗

:
is the adjoint of A. With the posterior distribution over

:::::::
operator

::
of

:::
A.

::::
To

::::
see

::::
why,

:::::
note

::::
that

:::
we

:::::
have

::
a
:::::::::
standard

::::::::::::::
linear–Gaussian

:::::::
model

:::::::::::::::::
(ui = Afi

G+ σ2),
::::::
where

::::::::::::
observations

:::
ui :::

are
:::::::::
obtained

:::
via

:::
the

::::::
linear

::::::::
operator

:::
A

::::::
acting

:::
on

:
G at hand we can compute

:::::
which

::::::
yields

::
a

:::::::::::
closed-form

:::
GP

:::::::::
posterior

:::::::::::::::::::::::::::
(Rasmussen & Williams, 2006)

:
.

::::::::::::::
Interpretation

:::::
and

::::::::::::
Extensions.

::::
This

::::::::
Gaussian

:::::::::
posterior

:::::::
enables

:::
the

:::::
usual

:::::
suite

::
of
::::::::::
GP-based

::::::::
inference

:::::
tools,

::::
such

:::
as

:::::::::
computing

:
uncertainty estimates on the prediction, draw posterior samples, and exploit all the

other properties of GP regression
:::::::::
predictions

::::
and

:::::::
drawing

:::::::::
posterior

:::::::
samples. Moreover, the versatility of GPs

allows to include prior information about G in the kernel kθ. For example, the fact that Green’s functions
are symmetric, i.e.G(x, y) = G(y, x), can be encoded in kθ (Duvenaud (2014))

:::::
prior

:::::::
domain

:::::::::
knowledge

::::::
about

:::::::
Green’s

::::::::
functions

:::::
(e.g.,

:::::::::
symmetry

::::::::::::::::
G(x, y) = G(y, x))

::::
can

::
be

::::::::::::
incorporated

::::
into

:::
the

:::::
kernel

:::
kθ::::::::::::::::

(Duvenaud, 2014)
. Since the solution u is a linear function of G, the Gaussian posterior over G induces a GP over the solution
u
::::
once

::
G

::
is
::::::::
learned,

::::
any

::::
new

:::::
input

::::::::
function

:::
f∗

::::
can

::
be

::::::::
mapped

::
to

::
a
:::::::::::
distribution

::::
over

:::::::::
solutions

:::
u∗. That is,

::::
even

::
in

::::
this

::::::
simple

:::::::::
“shallow”

::::::::
scenario,

:
we obtain a probabilistic estimate over the PDE solution. Moreover,

since we learned the solution operator G : f 7→ u, we directly obtain an estimate of all the PDEsolutions for
new right hand side functions f∗. In Section 5.1 we use this GP regression framework to learn the solution
operator of

:::::::
solution

::::::::
operator

::
of

:::
th

::::::
PDE.

::
In

:::::::::::
Section 5.1,

:::
we

::::::::::::
demonstrate

:::
the

::::
use

::
of
:::::
this

:::
GP

:::::::::
approach

:::
on

Equation (5).

3.2 From GP To NN
::::::::
Gaussian

::::::::::
Processes

:::
to

::::::
Neural

::::::::::
Networks: Last-Layer Laplace ApproximationOn

Neural Operators

While we can directly use GP regression to obtain uncertainty estimates on PDE solutions for the
:::
the

::::::::
GP-based

:::::::::
approach

:::::
from

:::::::::::
Section 3.1

:::::::
provides

:::
an

:::::
exact

:::::::
Bayesian

::::::::::
treatment

:::
for

:::
the

:::::::
shallow

::
(one-layerneural

operator, this approach cannot be directly applied to deep )
:::::::::
operator,

::
it

::::
does

::::
not

:::::::
directly

::::::
extend

::
to

:::::
deep neu-

ral operators, which contain
:::::
whose

:
non-linearities . However

:::::
break

:::
the

:::::::::::::::
linear–Gaussian

::::::::::
framework.

:::::::
Instead,

we can use approximate inference techniques
:::::
adopt

::::::::::::
approximate

:::::::::
inference

::::::::
methods

:
from Bayesian deep

learning to obtain an approximation to
:::::::::::
approximate

:
the posterior distribution over the weights p(Θ |D) with

::::::::
p(Θ | D),

::::::
where D = {λn, fm, unm}, for n = 1, . . . , Nand ,

:
m = 1, . . . ,M . Since the computation of the true

posterior is intractable, it is common to use a Gaussian approximation (MacKay, 1992; Blundell et al., 2015)
.
:::
are

:::
the

::::::::
training

:::::
data,

::::
and

::
Θ

:::
are

::::
the

:::::::
network

:::::::::::
parameters.

:::
In

::::::::::
particular,

::
we

::::
use

:::
the

:::::::
Laplace

:::::::::::::
approximation

:
,

:
a
:::::::::
relatively

:::::::
simple

:::
yet

:::::::::
powerful

:::::::::
approach

::
to

::::::::::::
approximate

::::
the

:::::::::::
parameter’s

:::::::::
posterior

:::::::::::
distribution

:::::
with

::
a

::::::::
Gaussian

::::::::::::::::::::::::::::::::::
(MacKay, 1992; Blundell et al., 2015).

:

::::::::::
Predictive

::::::::::::::
Distribution. To make predictions with the approximate posterior q(Θ),

::
at

::::
test

:::::::
inputs

:::::::
(λ∗, f∗),:we need the predictive distribution

p(u∗ | NOΘ(λ∗, f∗),D) ≈
∫
p(u∗ | NOΘ(λ∗, f∗))q(Θ) dΘ (17)

for test functions (λ∗, f∗):::::
where

::::::::::::::::
q(Θ) ≈ p(Θ | D)

::
is
::::
the

::::::::::::
approximate

:::::::::
posterior. In general, computing

this predictive distribution requires further approximation, such as the local linearisation
:::::::
requires

:::::::
further

:::::::::::::
approximation;

:::
for

:::::::::
example,

::
a

:::::
local

:::::::::::
linearization

:
of the neural network (Immer et al., 2020) which results

in
:::::
yields

:
a Gaussian predictive distribution for

:::::
under

:
a Gaussian likelihood. Alternatively, we can use a

::
A

::::::
simpler

::::
yet

:::::
often

::::::::
effective

::::::::::
alternative

::
is

::
to

:::::
focus

:::
on

::
a
:::::::::
last-layer Laplace approximation, a relatively simple

and early form of Bayesian deep learning (MacKay, 1992), on only the last layer of the network. This allows
us to apply Laplace approximations to the intricate architecture of neural operators for efficient uncertainty
quantification

::
as

:::
we

:::::::
describe

::::::
below.

7
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::::::::
Laplace

::::::::::::::::
Approximation. The Laplace approximation for neural networks requires a

:
is

:::::
built

:::::::
around

:::
the

maximum a-posteriori (MAP) estimate which is obtained by minimizing the loss L(D; Θ)
::
of

::
Θ.

:::::::
Denote

::::
the

::::::::::
regularized

:::::::
training

::::
loss

::
as

:

ΘMAP = arg min
Θ
L(D; Θ) = arg min

Θ
r(Θ) +

∑
n,m

`(λn, fm, unm,Θ)., (18)

The empirical risk `(λn, fm, unm,Θ)
:::::
where

::̀:
corresponds to the negative log likelihood

::::::::::::
log-likelihood

− log p(unm | NOΘ(λn, fm)) and the regularizer r(Θ) to the negative log prior distribution − log p(Θ). The
general idea of the Laplace approximation is to construct a local Gaussian approximation to the posterior
p(Θ | D) by using a second order expansionof the loss L(D; Θ) around ΘMAP ::::

r(Θ)
::
is

:::
the

::::::::
negative

:::::::::
log-prior.

:::::
Then

:::
the

:::::
MAP

:::::::
weights

::::
are

ΘMAP = arg min
Θ
L(D; Θ).

:::::::::::::::::::::::

::::
Near

:::::::
ΘMAP,:::

we
:::::::::::
approximate

::::::::
L(D; Θ)

:::
via

::
a
::::::::::::
second-order

::::::
Taylor

::::::::::
expansion:

:

(D;Θ) ≈MAP = arg min
Θ

::::::::::::

L(D; ΘMAP)+1
2(Θ−ΘMAP)T= arg min

Θ
::::::::

(
∇2

ΘLr(D;Θ)|ΘMAP+
∑
n,m

`

:::::

(λn, fm, unm,
::::::::::

Θ−ΘMAP)
)
,

(19)
where the first order

:::::
where

:::
the

::::::::::
first-order term disappears at ΘMAP:::::

ΘMAP. Then the posterior approxima-
tion q(Θ) can be identified as a Gaussian centered at ΘMAP, with a covariance corresponding to the local
curvature:

q(Θ) := N (Θ | ΘMAP, (∇2
ΘL(D; Θ)|ΘMAP

)−1). (20)

That is, the covariance is
::::::
Hence,

:::
the

::::::::::::
approximate

::::::::
posterior

::
is

:::::::::
Gaussian,

::::::::
centered

::
at

::::::
ΘMAP,:::::

with
:
a
::::::::::
covariance

given by the inverse Hessian of the regularized training loss (which is interpreted as an unnormalized negative
log posterior) at the trained weights ΘMAP :::

loss
::
at

:::::
that

:::::
point.

A key practical advantage of this approach is that, since standard

:::::::::
Practical

:::::::::::::
Advantages.

::::::::
Standard training of neural networks already identifies the local optimum ΘMAP,

the only .
:::::::

Thus,
::::
the

:::::
main

::
additional cost is to compute

:::::::::
computing

:
the Hessian ∇2

ΘL(D; Θ) at that
point

:::::
ΘMAP, once. This also means the approximation can be computed

:::::::::
Moreover,

::::
this

::::::::::
procedure

::::
can

::
be

:::::
done

:
post-hoc

:::
post

::::
hoc , for

::
on

:
a
:
pre-trained networks

:::::::
network, which implies that uncertainty quantifica-

tion in the form of a Laplace approximation comes only at a very small computational overhead while also
preserving the predictive power of the maximum a posteriori estimate.

As mentioned before, we can use the decomposition of the neural operator

:::::::::::
Last-Layer

::::::::
Laplace

::::
in

::::::::
Neural

:::::::::::
Operators.

:::
To

::::::
apply

:::
the

::::::::
Laplace

::::::::
method

:::::::::
efficiently,

::::
one

:::::::::
typically

::::::::::
decomposes

::::
the

::::::::
network

:
into a fixed feature map corresponding to the first L − 1 layers and a last lin-

ear layer (Snoek et al., 2015). This is particularly convenient in the case of the architecture considered by
Li et al. (2020b) , since

::
In

::::
the

:::::
graph

:::::::
neural

::::::::
operator

:::
by

:::::::::::::::
Li et al. (2020b)

::::::::::
considered

::
in

::::
this

:::::
work,

:
the last

layer is indeed linear . Due to the linearity in the weights of the last layer, the
:::::
linear

::
in

:::
its

::::::::
weights.

:::::
This

:::::::
linearity

:::::::
ensures

:::::
that

::
a

::::::::
Gaussian

:::::::::
posterior

:::
on

::::
the

::::::::
last-layer

::::::::
weights

:::::::
induces

::
a

::::::::
Gaussian

:
distribution over

the function outputswill also be Gaussian
:::::::
operator

:::::::
outputs. Hence, for a Gaussian likelihood the predictive

distribution in Equation (17) can be computed in closed form by using the approximate posterior q(Θ). Note
that this predictive distribution is equivalent to the one of a GP regression problem (Khan et al., 2019).
This directly connects the GP approach for the shallow

::::::::::::
Conceptually,

::::
this

::::::::
connects

:::
the

:::::::
shallow

:::
GP

:::::::::
approach

to the deep case, although we are now not approximating the posterior over the parameters of the Green
function, but over the weights of the last layer.

Kristiadi et al. (2020); Daxberger et al. (2021) showed
::::::
Recent

:::::
work

:::::::::::::::::::::::::::::::::::::::::
(Kristiadi et al., 2020; Daxberger et al., 2021)

:::
has

::::::
shown that this approach achieves competitive performance on many common uncertainty quantification

benchmarks compared to more recent alternatives – despite the low computational overhead. In Section 5

8
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, we empirically demonstrate that last-layer Laplace approximations effectively quantify uncertainty also
in

::::::::
Section 5,

:::
we

::::::::::::
demonstrate

:::::
that

:::
the

:::::
same

::::::::::::
methodology

::::
can

:::
be

::::::::::
effectively

:::::::::
combined

:::::
with

:
graph neural

operator architectures .
::
to

:::::::
provide

:::::::::
predictive

::::::::::::
uncertainties

:::
for

:::::
PDE

:::::::::
solutions.

:

:::::
Mesh

:::::::::::::::
independence.

::::::
Neural

:::::::::
operators

:::
are

::::::::::::::::::
resolution-agnostic:

:::::
they

:::
do

:::
not

:::::::
depend

:::
on

::
a

::::::
specific

:::::::
spatial

::::::::::::
discretization

:::
and

::::
can

::
be

:::::::
applied

::
to

::::::::
different

:::::
grids

:::::::
without

::::::::::
retraining.

::
In

::::::
graph

::::::
neural

:::::::::
operators,

:::
for

::::::::
example,

:::
the

::::::::::::::
message-passing

:::::::
scheme

::::
does

::::
not

::::::
require

::
a
::::::::::::::
fixed-resolution

::::
grid,

:::::::
making

:::::
them

:::::::
flexible

::
in

::::::::
handling

:::::::
various

:::::::::::::
discretizations.

:::::
Our

::::::::
last-layer

::::::::
Laplace

:::::::::::::
approximation

::::::::
inherits

::::
this

::::::::
property

:::::::
because

::
it
:::::::
models

:::::::::::
uncertainty

::
in

:::::::::
parameter

::::::
space

::::::
rather

::::
than

:::
in

:::
the

::::::::::::
discretization

::::::::
domain.

:::
In

:::
our

::::::::::::
experiments

::
in

:::::::::
Section 5,

:::
we

:::::
show

::::
this

::
by

::::::::
training

::
on

::::
one

::::
grid

::::
and

:::::::::::
successfully

::::::::
evaluate

::
on

::::::::
another.

:

4 Related work

The interplay of (parametric) partial differential equation models (see Cohen & DeVore (2015) for a review)
and deep learning has rapidly gained momentum in recent years. Broadly speaking, there are two approaches:
learning the solution of a given PDE on the one hand, and learning the parameter-to-solution operator of a
family of parametric PDEs on the other hand.

Conventional numerical PDE solvers (e.g. Ames (2014)) and physics-informed neural networks (PINNs)
(Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; Zhu et al., 2019) fall into the first category. In PINNs, the
PDE solution is modelled as a neural network. The differential equation is then translated into an appropriate
loss function, and an approximate PDE solution emerges from automatic differentiation and numerical
optimisation. While the physics-informed neural network formulation extends naturally to PDE inverse
problems (Raissi et al., 2019; Zhu et al., 2019), it brings with it some practical issues like hyperparameter-
sensitivity and complicated loss landscapes (Wang et al., 2021; Sun et al., 2020). PINNs also need to be
retrained once the parametrisation of the PDE (λ of f) changes.

As described in Section 2.2, neural operators do not face this issue because they learn the parameter-
to-solution operator of a family of parametric PDEs (recall Equation (2)). Conceptualised by Lu et al.
(2021), brought to the limelight by Bhattacharya et al. (2021); Nelsen & Stuart (2021); Li et al. (2020b;a;
2021a;b); Patel et al. (2021); Duvall et al. (2021); Kovachki et al. (2023), neural operators have since been
extended into a range of architectures. These include graph neural operators (Li et al., 2020a), Fourier
neural operators (FNOs) (Li et al., 2021a), multi-wavelet neural operators (Gupta et al., 2021), and physics-
informed neural operators (Li et al., 2024), which integrate data and PDE constraints to simultaneously
leverage observed data and governing equations in operator learning. For a comprehensive overview of
neural operator architectures, we refer to Azizzadenesheli et al. (2024). Work on universal approximation
results for neural operator architectures include Kovachki et al. (2023; 2021); Lanthaler et al. (2023).

::
In

::::
this

:::::
work,

:::
we

:::::
focus

:::
on

:::::
graph

::::::
neural

:::::::::
operators

::::::::::::::::
(Li et al., 2020b)

::
for

::::
the

::::::::::::
experimental

:::::::
studies.

:

Despite these advances, uncertainty quantification remains underexplored in the context of
::::::::::
uncertainty

::::::::::::
quantification

:::::::
remains

:::::::::
relatively

::::::::::::::
underexplored

:::
in

:
neural operators. Efforts in this direction

::::::
Recent

:::::
efforts

:
include Kumar et al. (2024), which incorporate a Gaussian process prior with a mean function

derived from
:::::::
combine

:
a Wavelet Neural Operator , optimizing hyperparameters through

:::
with

::
a
:::::::::
Gaussian

::::::
process

::::::
prior

:::
by

::::::::::
optimizing

::::::::::::::::
hyperparameters

::::
via

:
negative log-marginal likelihoodminimization. Other

Bayesian operator frameworks include Zou et al. (2024), which integrates Bayesian uncertainty into
DeepONets, and Garg & Chakraborty (2022) , which employs ,

:::::
and

::::::::::::::::
Zou et al. (2024),

:::::
who

::::::::
propose

::
a

::::::::
Bayesian

:::::::::
extension

:::
of

::::::::::::
DeepONets.

:::::
In

:::::::::
addition,

:::::::::::::::::::::::::::
Garg & Chakraborty (2022)

::::
apply

::
variational infer-

ence for uncertainty quantification. Kernel and Gaussian process frameworks for learning operators
between function spaces have also been investigated by Batlle et al. (2024a) and Magnani et al. (2024)
. Regarding non-neural network approaches for learning operators/PDEs, Gaussian process-based
methods have been explored by Chen et al. (2021); Batlle et al. (2024b); Chen et al. (2024), whereas
Boullé & Townsend (2022) focus on learning the ,

::::::
while

::::::
kernel-

::::
and

:::::::::
GP-based

::::::::::::::::
operator-learning

::::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Batlle et al., 2024a; Magnani et al., 2024; Chen et al., 2021; Batlle et al., 2024b; Chen et al., 2024)
::::::
address

::::::::::::::
function-space

:::::::::
mappings.

::::::::
Finally,

:::::::::::::::::::::::::
Boullé & Townsend (2022)

::::
focus

::::::::::
specifically

:::
on

::::::::
learning Green’s

function associated with PDEs.
::::::::
functions

:::
for

:::::::
PDEs.

::::
Our

:::::::::
approach

::::::
differs

::
by

:::::::::
providing

:::
an

::::::
exact,

:::::::::
GP-based

9
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::::::::::
formulation

::::
for

:::
the

::::::::
shallow

:::::::::
(one-layer)

:::::::::
operator

::::::
under

::::::
linear

:::::::
PDEs,

::::
and

::
a
::::::::
post-hoc

::::::::
last-layer

::::::::
Laplace

:::::::::::::
approximation

:::
for

:::::
deep

:::::::
graph

::::::
neural

::::::::::
operators.

:::::::::::
Although

::::::::::::::::::::
Magnani et al. (2024)

::::
also

:::::::
employ

::::::::
Laplace

::::::::::::::
approximations,

:::::
their

:::::
focus

::
is

:::
on

:::::::
Fourier

::::::
neural

:::::::::
operators

::::::
rather

::::
than

::::::::::::
graph-based

::::::::::::
architectures.

Uncertainty quantification is particularly critical in low-data regimes, where generating training data is
computationally expensive due to the reliance on numerical PDE solutions. Bayesian methods offer a
principled framework to address this challenge, providing insights into the reliability of predictions even
when data is sparse. In the experiments below, we present an initial demonstration of the potential of
uncertainty quantification for neural operators and discuss its potential implications for future developments
in this field.

A principled approach to uncertainty quantification is generally provided by Bayesian deep learning. Besides
the Laplace approximation, which has been discussed in Section 3.2, there are many more approximate
Bayesian methods for inferring the neural networks ’ weights. These

:::::::
Outside

:::
the

:::::
PDE

:::::::
context,

::::::::::::
approximate

::::::::
Bayesian

::::::::::
treatments

:::
for

::::::
neural

:::::::::
networks

:
include variational inference (Graves, 2011; Blundell et al., 2015;

Khan et al., 2018; Zhang et al., 2018), Markov Chain Monte Carlo (Neal, 1996; Welling & Teh, 2011;
Zhang et al., 2020), and heuristic methods (Gal & Ghahramani, 2016; Maddox et al., 2019). Typically,
they employ a Gaussian posterior approximation. One crucial advantage of the Laplace approximation over
many of these methods is that it can be applied post-hoc, i.e. it is not only cheap but also preserves the
estimate returned by the preceding

:::::
Most

::::
such

:::::::::::
approaches

::::::
require

::::::
either

::::::::::
re-training

:::
or

:::::::::
specialized

:::::::::
sampling

:::::::::::
mechanisms,

::::::
which

:::
can

:::
be

:::::::::::::::
computationally

:::::::::
expensive

::::
and

::::
may

:::::
alter

:::
the

::::::::::::
optimization

:::::::
process.

:::::
The

:::::::
Laplace

:::::::::::::
approximation

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(MacKay, 1992; Kristiadi et al., 2020; Daxberger et al., 2021)

:::::::::::
circumvents

:::::
these

::::::::::
downsides

::
by

::::::::::::::
approximating

:::
the

:::::::::
posterior

::::::
around

:
a
::::::::
standard

::
(non-Bayesiancomputation. In contrast, other methods

require retraining the network, which can be expensive and may degrade predictive performance. Retraining
often alters the optimization process, necessitating additional tuning and further increasing computational
costs

:
)
::::::::::
pre-trained

:::::::::::::
computation.

:::
As

:::
we

::::::::::::
demonstrate,

::::
this

::::::
makes

::
it

:::::::::
especially

:::::::::
appealing

:::
for

::::::
neural

:::::::::
operators

:::::
where

::::::::
training

:::
can

:::
be

:::::
time-

::::
and

::::::::::::::::
resource-intensive.

5 Experiments

Posterior distribution on Gλ0 for λ0 = 4.5 (and ground truth) after N = 3, 8 observations {fi}Ni=1 with fi
shifted Legendre polynomials. The samples show the approximation’s variance, which decreases when N
increases.

In this sectionwe exploit the theoretical analysis developed in Section 3
:
,
:::
we

:::::
apply

:::
the

::::::::::
theoretical

::::::::::
framework

::::
from

:::::::::
Section 3 to construct Bayesian neural operators delivering

::::
that

:::::::
provide

:
uncertainty estimates. We use

the analytic GP framework of Section 3.1to build a non-parametric Bayesian neural operator in the "shallow"
case, then extend our method

:::::
begin

::::
with

::::
the

::::::
shallow

::::
case,

::::::::::
leveraging

:::
the

:::::
exact

::::::::
Gaussian

:::::::
process

:::::::::::
formulation

::
of

::::::::::
Section 3.1

:
,
::::
and

::::
then

::::::::
proceed

:
to the deep case. We reproduce the experiments on neural operators as

carried out by Li et al. (2020b) to
:::::::
setting.

:::
By

::::::::::
replicating

:::::::::::
experiments

:::::
from

:::::::::::::::
Li et al. (2020b)

:
,
:::
we show that

we can effectively detect wrong predictions.

5.1 Uncertainty Quantification in the Shallow Case with GP regression

Consider the boundary value problem in Equation (5) for a fixed λ0 ∈ R. As discussed in Section 3.1, since
the PDE is linear and admits the Green’s function G : R2 → R in Equation (6), inferring

:::
We

::::
first

::::::::
consider

:::
the

::::::::::::::
boundary-value

:::::::
problem

:::::
from

:::::::::::::
Equation (5)

:::
with

::
a
:::::
fixed

::::::::::
parameter

:::::::
λ0 ∈ R.

:::::
Since

::::
this

::::::
linear

:::::
PDE

::::::
admits

::
a

:::::::
Green’s

:::::::
function

:::::::::::
G : R2 → R,

::::::::
learning the solution operator G : f 7→ u is equivalent to learning the function G

given integral observations {fi, ui =
∫
D
G(·, y)fi(y)dy}N

i=1. Note that every observation point is a function,
numerically observed on a grid X = {x1, . . . xK}:::::::::

G : f 7→ u
:::::::
reduces

::
to

::::::::::
estimating

::
G

::::
from

::::::::
integral

:::::::::::
observations

{
(fi, ui =

∫
D

G(·, y) fi(y) dy)
}N
i=1.

::::::::::::::::::::::::::::::

:::::::::::
Numerically,

:::::
each

:::::::::
right-hand

:::::
side

:::::::
function

:::
fi ::::

and
:::
the

:::::::::::::
corresponding

::::::::
solution

::
ui::::

are
::::::::
observed

:::
on

:::
an

::::::
evenly

::::::
spaced

::::
grid

:::::::::::::::
X = {x1, . . . xK}. As training points {fi}Ni=1 (right hand functions of the PDE in Equation (5))

10
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0 1
0

1

Posterior mean
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0 1
0

1
N = 8

0 1
0

1
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−0.22

0.12

Figure 3:
::::::::
Posterior

:::::::::::
distribution

::
on

::::
Gλ0:::

for
::::::::
λ0 = 4.5

:::::
(and

:::::::
ground

::::::
truth)

:::::
after

::::::::
N = 3, 8

:::::::::::
observations

:::::::
{fi}Ni=1

::::
with

::
fi:::::::

shifted
:::::::::
Legendre

::::::::::::
polynomials.

:::::
The

::::::::
samples

:::::
show

:::
the

:::::::::::::::
approximation’s

:::::::::
variance,

::::::
which

:::::::::
decreases

:::::
when

::
N

:::::::::
increases.

:

::::::::
functions

:::::
{fi}, we use the first N Legendre polynomialsshifted on the interval [0, 1] and observed on an evenly

spaced grid X = {x1 = 0, . . . x9 = 1}. We assume
::
N

::::::
shifted

:::::::::
Legendre

::::::::::::
polynomials,

::::::::
evaluated

:::
on

:::
X.

:::
We

:::::
then

::::
place

:
a Gaussian prior G ∼ GP(µ, k) with a zero mean function µ and a kernel function k : R2 × R2 → R

that factorizes into the product k((x0, x1), (y0, y1)) = k1(x0, y0)k2(x1, y1) where k1 and k2 are Matérn kernels
with parameter ν = 2.5 . To compute the integral operator A in Equation (16) we use numerical integration.
:::
The

::::::::
integral

::::::::
operator

::
A

::
in

::::::::::::::
Equation (16)

:
is
::::::::::
computed

:::
via

:::::::::
numerical

:::::::::::
quadrature.

:

The posterior distribution over G, as inferred in Equation (16), is illustrated in Figure 3 . The figure shows
the posterior distribution for G after N = 3 and N = 8 function observations

::::::::
Figure 3

:::::
shows

::::::::
samples

:::::
from

:::
the

:::::::::
resulting

:::::::::
posterior

::::
over

:::
G

:::
for

::::::::
λ0 = 4.5

:::::
when

:::::::
N = 3

::::
and

::::::
N = 8. Sam-

ples from the posterior are used to visualize the posterior variance. For N = 3, the samples exhibit
high variability, corresponding to a high posterior variance and indicating that the approximation remains
imprecise. In contrast, with N = 8 observations

::::::
N = 3,

::::
the

:::::::::
posterior

::::::::
variance

::
is

::::::
large,

:::::::::
indicating

::
a
:::::
high

::::::
degree

::
of

:::::::::::
uncertainty.

:::
As

:::
N

::::::::
increases

::
to

::
8, the posterior variance is significantlyreduced, leading to a more

accurate estimate of G
:::::::::
diminishes

:::::::::::
significantly,

::::::::
yielding

:
a
::::::
closer

:::::::::::::
approximation

:::
to

:::
the

::::
true

::::::::
Green’s

:::::::
function.

Since learning G corresponds to learning the inverse of the differential operator in Equation (5), the posterior
distribution over G can be leveraged to obtain both an approximation of the solution and an associated error
estimate for a new PDE with right-hand side function f∗.

5.2 Uncertainty Quantification in the Deep Case

In this section, we highlight the importance

:::
We

::::
now

:::::::::
showcase

:::
the

::::
role

:
of uncertainty quantification in the context of

::
for

::::::
graph

:
neural operators, using

:::::::
focusing

:::
on

:
a second-order elliptic PDEas a representative example. Our results demonstrate that Bayesian

:
.
::::
Our

::::::::
primary

::::
aim

::
is

::
to

::::::::::::
demonstrate

::::
how

:::::::::
Bayesian

:::::
graph

:
neural operators can effectively identify regions

of uncertainty in solution estimates and mitigate prediction errors in low-sampling regimes. Although our
experiments are limited to the linear case, these findings suggest that uncertainty quantification may play a
critical role in extending neural operators to more complex, nonlinear settings.

To recreate the results in Li et al. (2020b) we use their original code .
::
for

:::::::::::
graph-based

::::::
neural

:::::::::
operators1

:::::
using

::::::::::::::
message-passing

::::::
layers

:::::::::::::::::::::::::::::::::::::::
(Kipf & Welling, 2016; Gilmer et al., 2017)

::::
with

:::
64

:::::::
hidden

:::::::::::
dimensions

::::
and

::::::
ReLU

::::::::::
activations.

::
As discussed in Section 3.2, our Bayesian framework computes Gaussian approximations of

the posterior p(Θ | D) through Laplace approximations. For an efficient implementation of the
::::::::
Training

::
is

:::::::::
performed

:::
via

:::
the

::::::
Adam

:::::::::
optimizer.

::::
We

::::
then

::::::
apply

:::
our

:
last-layer Laplace approximation , we use the software

:::
(as

:::::::
outlined

::
in

::::::::::
Section 3.2

:
)
::::
post

::::
hoc,

:::
via

::::
the library introduced by Daxberger et al. (2021). We use a last-layer

Laplace approximation with
::::
This

:::::::
method

:::::::::
constructs

:
a full generalized Gauss-Newton

:::::::::::::
Gauss–Newton approx-

imation (Schraudolph, 2002) of the Hessian . There are two scalar hyperparameters,
::
of

:::
the

::::::::
training

:::
loss

:::
at

1https://github.com/zongyi-li/graph-pde/graph-neural-operator
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Figure 4: The Bayesian neural operator applied to the 2D Darcy flow problem in a low-data regime. The
approximation is poor, and the predictive standard deviation highlights the areas of high error.

:::
the

:::::::::
final-layer

::::::::
weights.

:::::
Two

::::::
scalar

:::::::::::::::::
hyperparameters—the prior precision and the observation noise. Both

are tuned post hoc via
::::::::::
observation

::::::::::
noise—are

::::::
tuned

:::::
post

:::
hoc

:::
by optimizing the log marginal likelihood

(Immer et al., 2021; Daxberger et al., 2021)
:::::::::::::::::::::::::::::::::::::::
(Immer et al., 2021; Daxberger et al., 2021).

We consider the second-order elliptic PDE examined in Li et al. (2020b), given by

−∇ · (λ(x)∇u(x)) = f(x), x ∈ D
u(x) = 0 x ∈ ∂D

(21)

where D = [0, 1]2 is the unit square and f ≡ 1. The PDE in Equation (21) represents the steady state of a
two dimensional Darcy flow and arises in several physical applications. Note that even though the PDE is
linear, the parameter-to-solution operator

::::::::::::::::
F : Λ→ U, λ 7→ u

:
is not. The nonlinear solution operator

F : Λ→ U, λ 7→ u

is approximated with a type of neural operator architecture based on graph neural network structures
::::::::::::
approximates

::
F

:::
via

:
a
:::::::::::
graph-based

::::::
neural

::::::::
network (Kipf &Welling (2016)). In particular, for the computation

of the integral in Equation (11), the domain D is discretised into a graph-structured data on which the
message passing algorithm of Gilmer et al. (2017) is applied. In Section 5.3 we examine the case where only
few data are available, while Section 5.4 addresses a high data regime.

5.3 Low-data Regime

We begin by examining the case of sparse observation points on the unit square D = [0, 1]2 , a common
scenario in multi-scale dynamics described by PDEs, where data is often expensive to obtain. In such cases,
the limited data can lead to inaccurate approximations, making it essential to quantify the uncertainty
associated with predictions.

In particular, since the problem is relatively simple, we consider an extreme setting where we train on only
two training functions and subsample only two points from a 16 × 16 grid for each. Figure 4 shows on a
61 × 61 grid that in this setting the NO fails to predict the solution well. As a consequence, our method
exhibits low confidence (high predictive standard deviation) in the prediction, particularly in the areas of
higher error. For readability, the plots use different color scales. This is due to the slight underconfidence of
the Laplace approximation (in the scalar global parameter, not the local structure). Having measures such
as the predictive standard deviation to determine whether the prediction should be trusted is of big practical
benefit for many applications.

5.4 High-data Regime

The previous section examined a heavily under-sampled scenario, characterized by a limited amount of
training data. While this setup may appear simplified, under-sampling is a common challenge in practical
applications involving high-dimensional problems, where it is often infeasible to densely sample the domain

12
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Figure 5: The Bayesian neural operator on the 2d Darcy flow problem in the high-data regime. The
approximation is close to the ground truth. The regions of relatively high error, as well as their magnitude,
are captured by the predictive standard deviation.

with pre-computed PDE solutions. In this section, for completeness, we explore the opposite end of the
spectrum—a highly over-sampled regime—and find that good and structured uncertainty quantification is
nevertheless useful here.

Figure 5 shows results on a dense 61 × 61 grid, analogous to the previous one, trained on 100 densely
evaluated 16 × 16 grid solutions. Note, that the model generalizes well from the smaller 16 × 16 grid used
during training to the larger 61× 61 grid for testing, as previously shown by Li et al. (2020b). Although the
prediction error is generally of good quality (i.e. relative prediction errors are mostly below 10%), the trained
network exhibits an artifact in one, sharply delineated region of the training domain. This is a common
problem with the ReLU features in this architecture, which create piecewise linear predictive regions (Hein
et al., 2019).

As the figure shows, the Laplace approximation is in fact able to identify and delineate this region well,
and produce an effective, well-calibrated warning about its presence. It is important to note that this kind
of functionality is only possible with the structured uncertainty produced by a Bayesian technique like the
Laplace approximation – i.e. by an approximate posterior measure, rather than a global worst-case error
bound.

6 Conclusions

We provided a theoretical Bayesian framework for neural operators. While these recently introduced ar-
chitectures have demonstrated competitive performance compared to other numerical methods and shown
promise in outperforming neural network-based approaches on large grids for certain tasks, they do not
come with explicit uncertainty quantification. We developed an explicit analytic Bayesian treatment for
the linear base-case, and illustrated how we can learn (the distribution over) solution operators through
non-parametric GP regression. We provided an effective and efficient approximate Bayesian treatment for
the full, deep case through the use of Laplace approximations. In experiments, our approach is able to
quantify predictive uncertainty both in the sparsely and densely sampled regime. In the former, it produces
structured uncertainty across the predictive domain. In the latter, it is able to precisely detect and delineate
regions where the predictive estimate fails to approximate the true solution well. The code used to produce
the results herein will be released with the final version of this paper.

If deep learning approaches to the simulation of dynamical systems are to fulfill their potential and be applied
to serious, large-scale partial differential equations (including safety-critical and scientific applications), then
uncertainty quantification as presented here has a crucial role to play in the prevention of accidental and
potentially dangerous prediction errors.
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A
:::::::::::
Appendix

A.1
::::::::::
Derivation

::
of

::::
the

::::::::
Green’s

::::::::
function

:::
for

::::
the

:::::::::::::::
one-dimensional

:::::::::
Dirichlet

::::::::
problem

:::
We

::::::::
consider

:::
the

:::::::::::::::
one-dimensional

:::::::::
boundary

:::::
value

::::::::
problem

Lλ0u (x) =
(
−∆− λ2

0 Id
)
u(x) = d2

dx2u(x) − λ2
0 u(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(22)

:::
The

:::::::
Green’s

::::::::
function

::::::::
Gλ0(x, y)

::::::
solves,

:::
for

:::::
each

:::::
fixed

::::::::
y ∈ [0, 1],

:

Lλ0 [Gλ0( · , y) ](x) = δ(x− y), with Gλ0(0, y) = Gλ0(1, y) = 0.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Step

::
1:

:::::::
Solve

::::
the

::::::::::::::
homogeneous

:::::::::
equation

::::::
away

::::::
from

::::::
x = y.

:::
For

:::::::
x 6= y,

:::
the

:::::
Dirac

::::::
delta

::
is

::::
zero,

:::
so

:::
Gλ0::::::::

satisfies
:::
the

::::::::::::
homogeneous

::::::::
problem

:

− d2

dx2Gλ0(x, y) − λ2
0Gλ0(x, y) = 0.

::::::::::::::::::::::::::::::::

::::::
Hence,

:::
for

::
a

::::
fixed

:::
y,

Gλ0(x, y) =
{
A(y) sin

(
λ0 x

)
+B(y) cos

(
λ0 x

)
, x < y,

C(y) sin
(
λ0 x

)
+D(y) cos

(
λ0 x

)
, x > y.

:::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
Imposing

:::
the

:::::::::
boundary

:::::::::
condition

::::::::::::
Gλ0(0, y) = 0

:::::::
implies

:::::::::
B(y) = 0.

::::::
Thus

Gλ0(x, y) =
{
A(y) sin

(
λ0 x

)
, x < y,

C(y) sin
(
λ0 x

)
+D(y) cos

(
λ0 x

)
, x > y.

:::::::::::::::::::::::::::::::::::::::::::::::::

(23)

:::
The

:::::::::
condition

::::::::::::
Gλ0(1, y) = 0

:::::
then

::::::::
imposes

C(y) sin(λ0) +D(y) cos(λ0) = 0 (Condition 1).
:::::::::::::::::::::::::::::::::::::::::::

:::::
Step

::
2:

:::::::::
Enforce

:::::::::::
continuity

::
at

:::::::
x = y.

:::::::
Because

::::
Gλ0:::::

itself
:::::
must

:::
be

::::::::::
continuous

::
at

::::::
x = y,

:::
we

:::::::
require

:

lim
x→y−

Gλ0(x, y) = lim
x→y+

Gλ0(x, y).
::::::::::::::::::::::::::::::

::::
That

:::
is,

:

A(y) sin
(
λ0 y

)
= C(y) sin

(
λ0 y

)
+D(y) cos

(
λ0 y

)
(Condition 2).

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Step

::
3:

::::::::
Impose

::::
the

::::::
jump

::::::::::
condition

:::
on

::::
the

::::::::::::
derivative.

::
By

::::::::::
integrating

::::::::::::::::::::::::::
Lλ0 [Gλ0(·, y) ](x) = δ(x− y)

:::::
across

::
a
:::::
small

:::::::
interval

:::::::
around

::::::
x = y

:::
we

:::
get

:

−
∫ y+ε

y−ε
G′′λ0

(x, y) dx =
∫ y+ε

y−ε
δ(x− y) dx = 1.

::::::::::::::::::::::::::::::::::::::::::

:::::
Since ∫ y+ε

y−ε
G′′λ0

(x, y) dx = G′λ0
(y + ε, y) − G′λ0

(y − ε, y),
::::::::::::::::::::::::::::::::::::::::::::::

::
we

::::
get

:::::::::::::::::::::::::::::::::::
−
[
G′λ0

(y + ε, y) − G′λ0
(y − ε, y)

]
= 1,

::::::
hence

G′λ0
(y+, y)−G′λ0

(y−, y) = −1 (Condition 3).
:::::::::::::::::::::::::::::::::::::::::::
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:::::
Step

::
4:

::::::::
Solve

:::
for

:::::
the

:::::::::::::
coefficients.

::::::
Solving

:
equation 23

:::
and

::::::::::
Conditions

:::::
1,2,3

::::::
leads

::
to

::::
the

:::::::
known

::::::::::
closed-form

::::::::::
expression

:::
for

::::::::
λ0 6= nπ:

:

Gλ0(x, y) = 1
λ0 sin(λ0)

sin
(
λ0 x

)
sin
(
λ0 (1− y)

)
, x ≤ y,

sin
(
λ0 y

)
sin
(
λ0 (1− x)

)
, x ≥ y.

::::::::::::::::::::::::::::::::::::::::::::::::::::

::
In

:::
the

::::::::
notation

::
of

::::::::::::
Equation (6)

:
,
:::
one

::::
can

:::::::::::
equivalently

:::::
write

::::
this

::::::::
piecewise

:::::::::
definition

::
in

::::::
terms

::
of

:::
the

:::::::::
Heaviside

::::
step

:::::::
function

:::
H.

:

:::::
Step

::
5:

:::::::
Verify

::::
the

:::::::::::::::::
non-degeneracy

::::::::::
condition.

::
If

::::::::
λ0 = nπ

:::
for

:::::
some

::::::
n ∈ N,

:::::
then

:::::::::::
sin(λ0) = 0,

:::
and

::::
the

:::::
above

:::::::
formula

::::::::
becomes

::::::::
singular.

::::::::
Indeed,

::
in

::::
that

:::::
case,

::::
the

::::::::::::
homogeneous

::::::::
problem

::::
with

:::::::::
boundary

::::::::::
conditions

::::::::::::::
u(0) = u(1) = 0

:::
has

::::::::::
non-trivial

:::::::::
solutions,

::::::
which

:::::::::
obstructs

:::::::::::
invertibility

::
of

:::::
Lλ0 .::::::

Thus,
::::
the

:::::::
Green’s

::::::::
function

::::
(and

::::::
hence

:::
the

:::::::
unique

::::::::
solution)

::
is

::::
well

:::::::
defined

:::::
when

::::::::
λ0 6= nπ.

:

::::
This

:::::::::
completes

:::
the

::::::::::
derivation.

::::
For

:::::::
further

::::::
details

:::
on

:::::::
Green’s

::::::::
functions

::::
and

:::::::
partial

::::::::::
differential

:::::::::
equations,

:::
we

::::
refer

::::
e.g.

::
to

:::::::::::::::::::::::::::::::::::
Stakgold & Holst (2011); Evans (2010)

:
.
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