
Published in Transactions on Machine Learning Research (9/2025)

Approximate Bayesian Neural Operators:
Uncertainty Quantification for Parametric PDEs

Emilia Magnani emilia.magnani@uni-tuebingen.de
Tübingen AI Center, University of Tübingen

Nicholas Krämer∗ pekra@dtu.dk
Technical University of Denmark

Runa Eschenhagen∗ re393@cam.ac.uk
University of Cambridge

Lorenzo Rosasco lrosasco@mit.edu
MaLGa - DIBRIS, University of Genova, Istituto Italiano di Tecnologia

Philipp Hennig philipp.hennig@uni-tuebingen.de
Tübingen AI Center, University of Tübingen

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6WvIkYsMA8

Abstract

Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear
solution operator of) partial differential equations (PDEs). The current state of the art for
these models does not provide explicit uncertainty quantification. This is arguably even
more of a problem for this kind of tasks than elsewhere in machine learning, because the
dynamical systems typically described by PDEs often exhibit subtle, multiscale structure
that makes errors hard to spot by humans. In this work, we first provide a mathematically
detailed Bayesian formulation of the “shallow” (linear) version of neural operators in the
formalism of Gaussian processes. We then extend this analytic treatment to general deep
neural operators—specifically, graph neural operators—using approximate methods from
Bayesian deep learning, enabling them to incorporate uncertainty quantification. As a result,
our approach is able to identify cases, and provide structured uncertainty estimates, where
the neural operator fails to predict well.

1 Introduction

Neural operators (Kovachki et al., 2023; Li et al., 2020b; 2021a; 2020a; 2021b) are deep learning architectures
designed for reconstruction problems related to partial differential equations (PDEs). They approximate
mappings between infinite-dimensional vector spaces of functions, such that – once trained – solutions of
entire families of parametric PDEs can be represented by a single neural network. However, the learning
process is subject to several sources of uncertainty, which can result in a potentially significant prediction error
because of the nonlinear – and often nonintuitive – interactions of different stages of the approximation. The
goal of this paper is to develop methods for estimating this error at a practically acceptable computational
cost. This kind of functionality is urgently needed in this domain: Due to the intricate and often not intuitive
nature of the dynamical systems described by PDEs, it can be hard for the human eye to detect prediction
errors, even when they are large.

In this paper, we address this gap by developing an approximate Bayesian framework for neural operators
– from a theoretical, and a computational point of view. We begin with a brief review of neural operators.

∗Work mostly done at the University of Tübingen.

1

https://openreview.net/forum?id=6WvIkYsMA8

Published in Transactions on Machine Learning Research (9/2025)

Figure 1: Green’s functions in Equation (6) for different values of λ0 = {3, 4.5, 7.5}. On the left, right-
hand-side functions f , g for the PDE in Equation (5) and respective solutions uf , ug for the correspondent
λ0-value, computed through Equation (4).

Then, using linear, parametric PDEs as guiding examples, we show how their “shallow” (single-layer) base
case allows for an analytic Bayesian treatment using the formalism of Gaussian processes (Rasmussen &
Williams (2006)). This linear case, while primarily of theoretical interest, provides valuable insights and
aims to make this model class more accessible to the Bayesian machine learning community. We then extend
the theoretical analysis to the nonlinear deep case. Here, analytic treatments are no longer possible, so
we fall back on approximations developed for Bayesian deep learning. Specifically, we focus on Laplace
approximations (MacKay, 1992) which are easy to add post-hoc even to pretrained networks, and add only
moderate computational cost relative to deep training without uncertainty quantification (Daxberger et al.,
2021). Our experiments in Section 5 demonstrate that the resulting method effectively captures structure in
the predictive error of graph neural operators, both in the over- and under-sampled regime. In Section 2 we
discuss some theoretical background, and develop a probabilistic framework for neural operators in Section 3.
We discuss related work in Section 4.

2 Background

In this section, we examine how neural operators approximate solution operators for parametric PDEs
through functional observations. If we fix one input of the solution operator, neural operators can be
understood as effectively inverting the differential operator associated with the PDE. In this framework, the
process of learning the operator becomes equivalent to reconstructing the Green’s function, reducing the
problem to a task of function approximation. This perspective, developed in Section 2.1, forms the basis
for the Bayesian approach developed in Section 3.1. Subsequently, in Section 2.2, we outline the iterative
structure of neural operators, their training procedure, and how they relate to Green’s functions.

2.1 PDEs And Green’s Function

One of the main fields of applications of neural operators are families of parametric PDEs of the form(
Lλu

)
(x) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(1)

for some sufficiently well-behaved, bounded domain D ⊂ Rd with boundary ∂D (e.g. open, bounded D with
Lipschitz boundary ∂D), where U ∋ u : D → R, F ∋ f : D → R, λ ∈ Λ, with U , F and Λ appropriate

2

Published in Transactions on Machine Learning Research (9/2025)

f

λ

ψ1(x) ψ2(x) . . . ψL−1(x) uλ,f (x)

(W1, θ)

(W2, θ2) (W3, θ3) (WL−1, θL−1) (WL, θL)

ψ1(f, λ) = σ1

(
W1f(x) +

∫
D

gθ1 (x, y, λ(x), λ(y)), f(y) dy
)

ψL(f, λ) = σL

(
WLψL−1(x) +

∫
D

gθL (x, y, λ(x), λ(y)), ψL−1(y) dy
)

Figure 2: Neural operator architecture NOΘ. Each layer l computes a new function ψl, that contains the
neural network gθ in the integrand. Layer parameters are shown on the corresponding arrows.

function spaces. The precise nature of those function spaces is not important for the remainder of this work.
The function λ parametrises the differential operator Lλ.

Equation (1) defines a solution operator

H : Λ × F → U, (λ, f) 7→ uλ,f (2)

in the sense that H(λ, f)(x) = uλ,f (x) solves the PDE for the given functions λ and f . Even though the
PDE is linear, H is (possibly highly) nonlinear. The operator H is a map between function spaces. The
idea behind neural operators is to approximate the operator H with a single neural network trained on
function observations {fi, ui}N

i=1. Thus, instead of approximating the solution of the PDE for only a fixed f
or λ, neural operators directly infer the operator H. Numerically, the functions f and u are observed on a
discretisation grid of the function domains.

In this subsection we are interested in the particular case where λ is fixed, so the solution operator can be
written as

G : f 7→ u. (3)
If the differential operator Lλ is linear, the map G inherits that linearity. Considering the operator in
Equation (3) is an important step to understand the learning process of neural operators. In fact, observe
how G is the inverse of the operator Lλ. In this simplified case where λ is fixed, the neural operator is
therefore learning an operator, G, through function observations {fi, ui}N

i=1 that derive from the action of its
inverse. In other words, during training, the neural operator is implicitly learning to invert the differential
operator Lλ. In particular, in the case where the differential operator is linear and admits a Green’s function
G, the solution of Equation (1) can be expressed through integration with the kernel G

uλ(x) =
∫

D

Gλ(x, y)f(y) dy. (4)

Hence, learning the operator G is here equivalent to learn the function Gλ, which means that an operator-
learning task can be reduced to that of function-reconstruction.

In the general analysis of linear PDEs (we refer to e.g. Evans (2010) for background on PDEs), the Green’s
function Gλ(x, y) represents the impulse response of the linear operator Lλ, that is Lλ(Gλ)(·, y) = δ(·−y) for
y ∈ D, where δ denotes the Dirac delta distribution. Despite Lλ being linear, the Green’s function itself can
be nonlinear in in either arguments. To visualize these concepts, we consider the one-dimensional boundary
value problem (

− ∆ − λ2
0 Id

)
u(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
(5)

3

Published in Transactions on Machine Learning Research (9/2025)

where in this case λ0 ∈ R is a (scalar) parameter, and Id is the identity operator. It’s Green’s function, for
λ0 ̸= nπ ∀n ∈ N, is given by

Gλ0(x, y) := A+B

λ0 sin(λ0) (6)

where we abbreviated

A := H(y − x) sin(λ0x) sin(λ0(1 − y)) (7)
B := H(x− y) sin(λ0(1 − x)) sin(λ0y), (8)

and H denotes the Heaviside step function. Details of the Green’s function derivation are in Appendix A.
Equation (5) relates to Equation (1) in the sense that the differential operator Lλ0 = (−∆ − λ2

0 Id) is
parametrised by λ0. Figure 1 shows examples of Green’s functions Gλ0 for different values of λ0, along with
solutions computed via Equation (4).

2.2 Overview of Neural Operators

Neural operators are neural-network-based architectures designed to approximate the general solution opera-
tor H defined in Equation (2). Before introducing our Bayesian framework, we briefly review their structure.
A more thorough explanation of what follows can be found in the work by Kovachki et al. (2023); Li et al.
(2020b; 2021a; 2020a; 2021b).

Let gθ : D ×D × R × R → R be a neural network with parameters θ. Define the neural operator NOΘ as a
composition of L ∈ N layers

NOΘ : Λ × F → U,

(λ, f) 7→ (ψL ◦ ψL−1 ◦ ... ◦ ψ1)(λ, f), (9)

where each layer

ψℓ : Φ → Φ, ℓ = {1, . . . L}, (10)

is defined as a composition of (i) integrating the output of the previous layer against gθℓ
, and (ii) combining

the integral with a linear component and an activation function σ,

ψℓ(h)(x) = σ

(
Wℓh(x) +

∫
D

gθℓ
(x, y, λ(x), λ(y))h(y) dy

)
. (11)

The space Φ in Equation (10) is a vector space of real-valued functions on D, and the final layer of the neural
operator maps into U , so ψL : Φ → U . In Equation (11), Wℓ is a learnable linear operator (represented by
a matrix after discretization), and gθℓ

is the integral kernel in the ℓ-th layer. In practice, the integral
cannot be computed in closed-form and a suitable quadrature formula needs to be employed (which turns
the integral into a weighted sum of evaluations of the integrand; see e.g. Davis & Rabinowitz (2007)). The
parameter set Θ of NOΘ is Θ = {θℓ ∪Wℓ}L

ℓ=1. Loosely speaking, one can think of this construction as a deep
neural network (NOΘ) that iteratively approximates the solution uλ,f with linear transformations Wℓ and
nonlinear activation functions σ, and at every iteration (layer) employs another neural network (gθℓ

). For a
visualisation of NOΘ see Figure 2. Although the figure shows λ entering in each layer, in practice the kernel
may encode λ in an initial “lifting” layer while using a final “projection” layer to map the function output
back to the physical domain.

Note how NOΘ approximates an operator. While, technically speaking, this means that its training and test
set consist of functions, in the numerical computation, these functions need to be observed on some grid.
Nonetheless, neural operators are resolution-agnostic: their architecture does not depend on a particular
discretization grid, and they can be applied to different resolutions without retraining. Let {λ1, ..., λN } ×
{f1, ..., fM } be a set of training inputs, each of which shall be observed on some mesh X := {x1, ..., xK}.
In total, that makes NK × MK = NMK2 training inputs. Without loss of generality, and for the sake of
simple notation, assume that the solution of the PDE and the respective inputs are observed on the same

4

Published in Transactions on Machine Learning Research (9/2025)

mesh X. Thus, we observe NM solutions u11, ..., uNM , i.e. NMK training outputs – one set of evaluations
at X for each solution unm associated with (λn, fm), n = 1, ..., N , m = 1, ...,M . Each of these outputs is a
function that maps from D to R, thus unm(X) ∈ RK . The relation between inputs and outputs is

unm = H(λn, fm)≈ NOΘ(λn, fm). (12)

While this equation is between functions, once discretised, it becomes an equation between vectors. To be
able to optimise the parameters, we introduce the loss function

L : RK × RK → [0,∞). (13)

The network parameters Θ are then computed by (approximately) solving the minimisation problem

Θ∗ = arg min
Θ

∑
n,m

L(unm(X),NOΘ(λn, fm)(X)), (14)

where we used the above vectorised notation. This minimisation can be carried out with any of the optimisers
popular in deep learning (see e.g. (Le et al., 2011)). Note that by approximating directly the solution operator
H, NOΘ simultaneously learns the entire family of PDEs parametrised by f, λ without the need of re-training
the network for a new λ or f . Considering that these new inputs samples can be out of distribution cases,
which are notoriously harder to predict (Hendrycks & Gimpel, 2017), it is even more important to introduce
uncertainty quantification for these architectures.

2.2.1 The One-Layer (Shallow) Case

A special, shallow version of the neural operator arises by setting L = 1, σ ≡ Id, and W1 = 0, with λ ≡ λ2
0

fixed. In this simplified scenario, we can focus on the operator G : f 7→ u from Equation (3), yielding

NOΘ(f) = NOshallow
θ (f) =

∫
D

gθ(x, y)f(y) dy. (15)

where gθ := gθ1 is now the only learned integral kernel. If gθ is a sufficiently accurate approximation of the
Green’s function, such as Gλ0 in Equation (6), then Equation (15) essentially recovers the classical solution
integral

∫
D
Gλ0(x, y) f(y) dy. Hence, the structure of neural operators in its one-layer (shallow) case is

inspired by the Green’s solution formula for linear PDEs (Equation (4)). In the next section, we provide a
Gaussian process–based probabilistic perspective on this one-layer operator, which lays the groundwork for
a more general Bayesian treatment of multi-layer (deep) neural operators.

3 Method

In this section, we develop the Bayesian probabilistic framework for neural operators. Section 3.1 focuses
on the special case of a one-layer (shallow) network, where we can leverage Gaussian process regression to
obtain an analytic non-parametric Bayesian treatment. This setting provides not just a useable algorithm,
but also an important conceptual base-case that is not prominently discussed in previous works on neural
operators (including non-Bayesian ones). In Section 3.2, this “shallow” treatment is extended to the deep
setting using a linearisation in form of the Laplace approximation, which again provides a Gaussian posterior
distribution, albeit an approximate one.

3.1 Bayesian Neural Operators In The Shallow Case With Gaussian Processes

We begin with the shallow neural operator NOshallow
θ introduced in Equation (15). In particular, we consider

the linear PDE in Equation (5). In this setting, the PDE’s solution operator G : f 7→ u can be approximated
via NOshallow

θ (f) =
∫

D
gθ(x, y) f(y) dy, where gθ(x, y) plays the role of the Green’s function G(x, y). Since

the considered linear PDE admits an analytic Green’s function G (see Equation (6)), and since the only
parameters of NOΘ are the ones of the neural network gθ (i.e. Θ = θ), learning G reduces to learning the
function G : R2 → R.

5

Published in Transactions on Machine Learning Research (9/2025)

Formulating the Problem as GP Regression. In contrast to conventional GP regression, instead of
directly observing values of G, we only observe integrals of G against various input functions. Specifically,
for each training input function fn, we observe

un(x) =
∫

D

G(x, y) fn(y) dy, n = 1, . . . , N.

Define the integral operator Af = A acting on G as

(AG)(·) =
∫

D

G(·, y) f(y) dy.

Because A is a linear operator in G, a Gaussian likelihood involving these observations (including the limit
case of noise-free observations) ensures conjugacy when we place a GP prior over G. Concretely, suppose

G ∼ GP
(
µ, kθ

)
, u | G ∼ N

(
AG, σ2),

where µ : R2 → R is the prior mean function and kθ : R2 × R2 → R is the covariance kernel parameterized
by θ. Because both the prior and the likelihood are Gaussian with a linear observation model, the posterior
over G remains Gaussian (Tanskanen et al., 2020; Longi et al., 2020).

Posterior Mean and Covariance. The resulting posterior distribution over G is again a GP with mean
and covariance:

E[G] = µ + A∗kθ

(
AA∗kθ + σ2

)−1(
u− Aµ

)
,

Cov(G) = kθ − A∗kθ

(
AA∗kθ + σ2

)−1
Akθ,

(16)

where A∗ is the adjoint operator of A. To see why, note that we have a standard linear–Gaussian model
(ui = Afi G+ σ2), where observations ui are obtained via the linear operator A acting on G which yields a
closed-form GP posterior (Rasmussen & Williams, 2006).

Interpretation and Extensions. This Gaussian posterior enables the usual suite of GP-based inference
tools, such as computing uncertainty estimates on predictions and drawing posterior samples. Moreover,
prior domain knowledge about Green’s functions (e.g., symmetry G(x, y) = G(y, x)) can be incorporated
into the kernel kθ (Duvenaud, 2014). Since the solution u is a linear function of G, once G is learned,
any new input function f∗ can be mapped to a distribution over solutions u∗. That is, even in this simple
“shallow” scenario, we obtain a probabilistic estimate over the solution operator of th PDE. In Section 5.1,
we illustrate the use of this GP approach on Equation (5).

3.2 From Gaussian Processes to Neural Networks: Last-Layer Laplace Approximation

While the GP-based approach from Section 3.1 provides an exact Bayesian treatment for the shallow (one-
layer) operator, it does not directly extend to deep neural operators, whose non-linearities break the lin-
ear–Gaussian framework. Instead, we can adopt approximate inference methods from Bayesian deep learning
to approximate the posterior distribution p(Θ | D), where D = {λn, fm, unm}, n = 1, . . . , N , m = 1, . . . ,M
are the training data, and Θ are the network parameters. In particular, we use the Laplace approxima-
tion, a relatively simple yet powerful approach to approximate the parameter’s posterior distribution with a
Gaussian (MacKay, 1992; Blundell et al., 2015).

Predictive Distribution. To make predictions at test inputs (λ∗, f∗), we need the predictive distribution

p(u∗ | NOΘ(λ∗, f∗),D) ≈
∫
p(u∗ | NOΘ(λ∗, f∗))q(Θ) dΘ (17)

where q(Θ) ≈ p(Θ | D) is the approximate posterior. In general, computing this predictive distribution
requires further approximation; for example, a local linearization of the neural network (Immer et al., 2020)
yields a Gaussian predictive distribution under a Gaussian likelihood. A simpler yet often effective alternative
is to focus on a last-layer Laplace approximation, as we describe below.

6

Published in Transactions on Machine Learning Research (9/2025)

Laplace Approximation. The Laplace approximation for neural networks is built around the maximum
a-posteriori (MAP) estimate of Θ. Denote the regularized training loss as

L(D; Θ) = r(Θ) +
∑
n,m

ℓ(λn, fm, unm,Θ), (18)

where ℓ corresponds to the negative log-likelihood − log p(unm | NOΘ(λn, fm)) and r(Θ) is the negative
log-prior. Then the MAP weights are

ΘMAP = arg min
Θ

L(D; Θ).

Near ΘMAP, we approximate L(D; Θ) via a second-order Taylor expansion:

ΘMAP = arg min
Θ

L(D; Θ) = arg min
Θ

(
r(Θ) +

∑
n,m

ℓ(λn, fm, unm,Θ)
)
, (19)

where the first-order term disappears at ΘMAP. Then the posterior approximation q(Θ) can be identified as
a Gaussian centered at ΘMAP, with a covariance corresponding to the local curvature:

q(Θ) := N (Θ | ΘMAP, (∇2
ΘL(D; Θ)|ΘMAP

)−1). (20)

Hence, the approximate posterior is Gaussian, centered at ΘMAP, with a covariance given by the inverse
Hessian of the loss at that point.

Practical Advantages. Standard training of neural networks already identifies the local optimum ΘMAP.
Thus, the main additional cost is computing the Hessian ∇2

ΘL(D; Θ) at ΘMAP, once. Moreover, this pro-
cedure can be done post hoc on a pre-trained network, which implies that uncertainty quantification in the
form of a Laplace approximation comes only at a very small computational overhead while also preserving
the predictive power of the maximum a posteriori estimate.

Last-Layer Laplace in Neural Operators. To apply the Laplace method efficiently, one typically de-
composes the network into a fixed feature map corresponding to the first L− 1 layers and a last linear layer
(Snoek et al., 2015). In the graph neural operator by Li et al. (2020b), the last layer is linear in its weights.
This linearity ensures that a Gaussian posterior on the last-layer weights induces a Gaussian distribution
over the operator outputs. Hence, for a Gaussian likelihood the predictive distribution in Equation (17) can
be computed in closed form by using the approximate posterior q(Θ). Note that this predictive distribution is
equivalent to the one of a GP regression problem (Khan et al., 2019). Conceptually, this connects the shallow
GP approach to the deep case, although we are now not approximating the posterior over the parameters of
the Green function, but over the weights of the last layer.

Recent work (Kristiadi et al., 2020; Daxberger et al., 2021) has shown that this approach achieves competitive
performance on many common uncertainty quantification benchmarks compared to more recent alternatives
– despite the low computational overhead. In Section 5, we demonstrate that the same methodology can be
effectively combined with graph neural operator architectures to provide predictive uncertainties for PDE
solutions.

Mesh independence. Neural operators are resolution-agnostic: they do not depend on a specific spatial
discretization and can be applied to different grids without retraining. In graph neural operators, for example,
the message-passing scheme does not require a fixed-resolution grid, making them flexible in handling various
discretizations. This property, although not a primary focus of this work, is inherited by the last-layer Laplace
approximation because it models uncertainty in parameter space rather than in the discretization domain.

4 Related work

The interplay of (parametric) partial differential equation models (see Cohen & DeVore (2015) for a review)
and deep learning has rapidly gained momentum in recent years. Broadly speaking, there are two approaches:

7

Published in Transactions on Machine Learning Research (9/2025)

learning the solution of a given PDE on the one hand, and learning the parameter-to-solution operator of a
family of parametric PDEs on the other hand.

Conventional numerical PDE solvers (e.g. Ames (2014)) and physics-informed neural networks (PINNs)
(Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; Zhu et al., 2019) fall into the first category. In PINNs, the
PDE solution is modelled as a neural network. The differential equation is then translated into an appropriate
loss function, and an approximate PDE solution emerges from automatic differentiation and numerical
optimisation. While the physics-informed neural network formulation extends naturally to PDE inverse
problems (Raissi et al., 2019; Zhu et al., 2019), it brings with it some practical issues like hyperparameter-
sensitivity and complicated loss landscapes (Wang et al., 2021; Sun et al., 2020; Krishnapriyan et al., 2021).
PINNs also need to be retrained once the parametrisation of the PDE (λ or f in the discussion above)
changes.

As described in Section 2.2, neural operators do not face this issue because they learn the parameter-
to-solution operator of a family of parametric PDEs (recall Equation (2)). Conceptualised by Lu et al.
(2021), brought to the limelight by Bhattacharya et al. (2021); Nelsen & Stuart (2021); Li et al. (2020b;a;
2021a;b); Patel et al. (2021); Duvall et al. (2021); Kovachki et al. (2023), neural operators have since been
extended into a range of architectures. These include graph neural operators (Li et al., 2020a), Fourier neural
operators (Li et al., 2021a), multi-wavelet neural operators (Gupta et al., 2021), and physics-informed neural
operators (Li et al., 2024), which integrate data and PDE constraints to simultaneously leverage observed
data and governing equations. For a comprehensive overview of neural operator architectures, we refer
to Azizzadenesheli et al. (2024). Work on universal approximation results for neural operator architectures
include Kovachki et al. (2023; 2021); Lanthaler et al. (2023). In this work, we focus on graph neural operators
(Li et al., 2020b) for our experimental study.

Despite these advances, uncertainty quantification remains relatively underexplored in neural operators.
Recent efforts include Kumar et al. (2024), which combine a wavelet neural operator with a Gaussian process
prior by optimizing hyperparameters via the marginal likelihood; Zou et al. (2024), who propose a Bayesian
extension of DeepONets; and Garg & Chakraborty (2022), who employ variational inference. In parallel,
kernel- and GP-based operator-learning approaches (Batlle et al., 2024a; Magnani et al., 2024; Chen et al.,
2021; Batlle et al., 2024b; Chen et al., 2024) address function-space mappings, and Boullé & Townsend
(2022) focus specifically on learning Green’s functions for PDEs. Our approach differs by providing an
exact, GP-based formulation for the shallow (one-layer) operator under linear PDEs, and a post-hoc last-
layer Laplace approximation for deep graph neural operators. While Magnani et al. (2024) also apply Laplace
approximations in the context of neural operators, their focus is on Fourier neural operators rather than
graph-based architectures. Beyond neural operators, Laplace approximations have also been used in other
neural PDE solvers, such as deep Galerkin methods (Beltran et al., 2024) and PINNs (Izzatullah et al.,
2022). Uncertainty quantification is particularly critical in low-data regimes, where generating training data
requires expensive numerical simulations. Bayesian methods provide a principled way to assess predictive
reliability under such constraints.

Outside the PDE context, approximate Bayesian treatments for neural networks include variational inference
(Graves, 2011; Blundell et al., 2015; Khan et al., 2018; Zhang et al., 2018), Markov Chain Monte Carlo
(Neal, 1996; Welling & Teh, 2011; Zhang et al., 2020), and heuristic methods (Gal & Ghahramani, 2016;
Maddox et al., 2019). Most such approaches require either re-training or specialized sampling mechanisms,
which can be computationally expensive and may alter the optimization process. The Laplace approximation
(MacKay, 1992; Kristiadi et al., 2020; Daxberger et al., 2021) circumvents these downsides by approximating
the posterior around a standard (non-Bayesian) pre-trained computation. This property makes it especially
appealing for neural operators, where training is typically time- and resource-intensive.

5 Experiments

In this section, we apply the theoretical framework from Section 3 to construct Bayesian neural operators
that provide uncertainty estimates. We begin with the shallow case, leveraging the exact Gaussian process
formulation of Section 3.1, and then proceed to the deep setting. By replicating experiments from Li et al.
(2020b), we show that we can effectively detect wrong predictions. In Section 5.3, we evaluate our method

8

Published in Transactions on Machine Learning Research (9/2025)

0 1
0

1

Posterior mean
N = 3 observations Samples

0 1
0

1
N = 8

0 1
0

1
Ground truth

−0.22

0.12

Figure 3: Posterior distribution on Gλ0 for λ0 = 4.5 (and ground truth) after N = 3, 8 observations {fi}N
i=1

with fi shifted Legendre polynomials. The samples show the approximation’s variance, which decreases
when N increases.

on a benchmark for PDEs and compare its performance with other widely used uncertainty quantification
methods.

5.1 Uncertainty Quantification in the Shallow Case with GP regression

We first consider the boundary-value problem from Equation (5) with a fixed parameter λ0 ∈ R. Since
this linear PDE admits a Green’s function G : R2 → R, learning the solution operator G : f 7→ u reduces to
estimating G from integral observations{(

fi, ui =
∫

D

G(·, y) fi(y) dy
)}N

i=1
.

Numerically, each right-hand side function fi and the corresponding solution ui are observed on an evenly
spaced grid X = {x1, . . . xK}. As training functions {fi}, i = 1, . . . , N , we use the first N shifted Legendre
polynomials, evaluated on X. We then place a Gaussian prior G ∼ GP(µ, k) with a zero mean function µ and
a kernel function k : R2 × R2 → R that factorizes into the product k((x0, x1), (y0, y1)) = k1(x0, y0)k2(x1, y1)
where k1 and k2 are Matérn kernels with parameter ν = 2.5 . The integral operator A in Equation (16) is
computed via numerical quadrature.

Figure 3 shows samples from the resulting posterior over G for λ0 = 4.5 when N = 3 and N = 8. Samples
from the posterior are used to visualize the posterior variance. For N = 3, the posterior variance is large,
indicating a high degree of uncertainty. As N increases to 8, the posterior variance diminishes significantly,
yielding a closer approximation to the true Green’s function. Since learning G corresponds to learning the
inverse of the differential operator in Equation (5), the posterior distribution over G can be leveraged to
obtain both an approximation of the solution and an associated error estimate for a new PDE with right-hand
side function f∗.

5.2 Uncertainty Quantification in the Deep Case: Darcy flow

We now showcase the role of uncertainty quantification for graph neural operators, first focusing on a second-
order elliptic PDE. Our primary aim is to demonstrate how Bayesian graph neural operators can identify
regions of uncertainty in solution estimates and mitigate prediction errors in low-sampling regimes.

To recreate the results in Li et al. (2020b) we first use their original code for graph-based neural operators1

using message-passing layers (Kipf & Welling, 2016; Gilmer et al., 2017) with 64 hidden dimensions and
ReLU activations. Training is performed via the Adam optimizer. We then apply our last-layer Laplace
approximation (as outlined in Section 3.2) post hoc, via the library introduced by Daxberger et al. (2021).
This method constructs a full generalized Gauss–Newton approximation (Schraudolph, 2002) of the Hessian of
the training loss at the final-layer weights. Two scalar hyperparameters—the prior precision and observation

1https://github.com/zongyi-li/graph-pde/graph-neural-operator

9

https://github.com/zongyi-li/graph-pde/tree/08ab9d8f8e9d1a6d95017a6f803a53d8a603e66e/graph-neural-operator

Published in Transactions on Machine Learning Research (9/2025)

0 1
0

1

0 1

0.0

0.7

1.4

×10−2

(a) Ground truth (left) and approximation (right).

0 1
0

1

0 1
0.1

0.8

1.6

×10−2

1.1

2.2

4.4
×10−2

(b) Error (left) and standard deviation (right).

Figure 4: The Bayesian neural operator applied to the 2D Darcy flow problem in a low-data regime. The
approximation is poor, and the predictive standard deviation highlights the areas of high error.

noise—are tuned post hoc by optimizing the log marginal likelihood (Immer et al., 2021; Daxberger et al.,
2021).

We consider the second-order elliptic PDE examined in Li et al. (2020b), given by

−∇ · (λ(x)∇u(x)) = f(x), x ∈ D

u(x) = 0 x ∈ ∂D
(21)

where D = [0, 1]2 is the unit square and f ≡ 1. The PDE in Equation (21) represents the steady state of a
two dimensional Darcy flow and arises in several physical applications. Note that even though the PDE is
linear, the parameter-to-solution operator λ 7→ u is not. The neural operator architecture approximates this
operator via a graph-based neural network (Kipf & Welling (2016)). In particular, for the computation of
the integral in Equation (11), the domain D is discretised into a graph-structured data on which the message
passing algorithm of Gilmer et al. (2017) is applied. In Section 5.2 we examine the case where only few data
are available, while Section 5.2 addresses a high data regime.

Low-data Regime We begin by examining the case of sparse observation points on the unit square
D = [0, 1]2 , a common scenario in multi-scale dynamics described by PDEs, where data is often expensive
to obtain. In such cases, the limited data can lead to inaccurate approximations, making it essential to
quantify the uncertainty associated with predictions.

In particular, since the problem is relatively simple, we consider an extreme setting where we train on only
two training functions and subsample only two points from a 16 × 16 grid for each. Figure 4 shows on a
61 × 61 grid that in this setting the NO fails to predict the solution well. As a consequence, our method
exhibits low confidence (high predictive standard deviation) in the prediction, particularly in the areas of
higher error. For readability, the plots use different color scales. This is due to the slight underconfidence of
the Laplace approximation (in the scalar global parameter, not the local structure). Having measures such
as the predictive standard deviation to determine whether the prediction should be trusted is of big practical
benefit for many applications.

High-data Regime The previous section examined a heavily under-sampled scenario, characterized by
a limited amount of training data. While this setup may appear simplified, under-sampling is a common
challenge in practical applications involving high-dimensional problems, where it is often infeasible to densely
sample the domain with pre-computed PDE solutions. In this section, for completeness, we explore the
opposite end of the spectrum—a highly over-sampled regime—and find that good and structured uncertainty
quantification is nevertheless useful here.

Figure 5 shows results on a dense 61 × 61 grid, analogous to the previous one, trained on 100 densely
evaluated 16 × 16 grid solutions. Note, that the model generalizes well from the smaller 16 × 16 grid used
during training to the larger 61 × 61 grid for testing, as previously shown by Li et al. (2020b). Although the
prediction error is generally of good quality (i.e. relative prediction errors are mostly below 10%), the trained
network exhibits an artifact in one, sharply delineated region of the training domain. This is a common
problem with the ReLU features in this architecture, which create piecewise linear predictive regions (Hein

10

Published in Transactions on Machine Learning Research (9/2025)

0 1
0

1

0 1

0.0

0.7

1.4
×10−2

(a) Ground truth (left) and approximation (right).

0 1
0

1

0 1
0.1

2.2

4.4

×10−3

(b) Error (left) and standard deviation (right).

Figure 5: The Bayesian neural operator on the 2d Darcy flow problem in the high-data regime. The
approximation is close to the ground truth. The regions of relatively high error, as well as their magnitude,
are captured by the predictive standard deviation.

et al., 2019). As the figure shows, the Laplace approximation is in fact able to identify and delineate this
region well, and produce an effective, well-calibrated warning about its presence. It is important to note that
this kind of functionality is only possible with the structured uncertainty produced by a Bayesian technique
like the Laplace approximation – i.e. by an approximate posterior measure, rather than a global worst-case
error bound.

5.3 Evaluation on APEbench

Having qualitatively illustrated the utility of our method, we now present a quantitative evaluation on a
standardized benchmark of PDE problems. We assess uncertainty quantification performance on a diverse
set of 1d equations from APEBench (Koehler et al., 2024), including Burgers’, hyper-diffusion, and Ku-
ramoto–Sivashinsky equations.

To benchmark our approach, we compare it against three widely used uncertainty estimation baselines in
deep learning:

• Deep ensembles (Lakshminarayanan et al., 2017; Hansen & Salamon, 1990), which aggregate pre-
dictions from multiple independently trained models with different random initializations;

• Input perturbations (Pathak et al., 2022), which sample predictions by injecting noise into the input;
• Weight perturbations, which do so by perturbing the model weights.

The latter two methods approximate uncertainty by sampling multiple forward passes and then fitting a
Gaussian distribution via empirical mean and covariance (moment matching). These approaches rely on the
sensitivity of the model to input or parameter changes to reflect predictive uncertainty.

Model and training. Our graph neural operator implementation has four layers with 18 hidden features
each. The model takes the PDE’s initial condition as input and lifts it to a hidden space via a linear
projection. Each graph block: (i) identifies neighboring points within a fixed radius r; (ii) computes a
learned kernel from the query–neighbor coordinates using a small MLP; (iii) aggregates neighbors via a sum
to approximate the integral; and (iv) adds a linear term as (message or) a skip connection. All components
are implemented in jax (Bradbury et al., 2018). We train for 100 epochs on 40 trajectories using mean
squared error loss and Adam, with r ≈ 0.3 on grids of 256 points.

Evaluation. We evaluate models in an autoregressive setup: given the previous 10 time steps, the model
predicts the next one. For the ensemble baseline, we train 10 independently initialized models. Evaluation is
performed on 100 input–output pairs. To quantify uncertainty, we apply a last-layer Laplace approximation
using the full generalized Gauss-Newton (GGN) approximation of the Hessian (Schraudolph, 2002). The
prior precision is selected via grid search, optimizing for marginal negative log-likelihood (NLL). The Laplace
approximation is applied to the weights of the final projection layer, which we linearize to produce the output

11

Published in Transactions on Machine Learning Research (9/2025)

−0.5

0.0

0.5

LL-Laplace

mean

target

−0.5

0.0

0.5

Input Perturbations

mean

target

−0.5

0.0

0.5

Weight Perturbations

mean

target

0.0

0.5

Ensemble

mean

target

Figure 6: Predictive uncertainty of GNO for the 1d Korteweg–De Vries PDE under different UQ methods.
We visualize the predictive mean, 1.96 standard deviation and samples.

predictive distribution. We report standard evaluation metrics: Root mean squared error (RMSE) of the
predictive mean, expected marginal χ2-statistic (Q), and expected marginal negative log-likelihood (NLL):

RMSE =

√√√√ 1
n

n∑
i=1

(ui − ûi)2, Q = 1
n

n∑
i=1

(ui − ûi)2

σ2
i

, NLL = −
n∑

i=1
log
(

1√
2πσ2

i

exp
(

− (ui − ûi)2

2σ2
i

))
.

Here, ui is the ground truth, ûi the predictive mean, and σi the predicted standard deviation for the i-
th test point. RMSE captures pointwise predictive accuracy; lower values indicate better performance.
NLL quantifies how well the predicted distribution explains the data under the Gaussian assumption, with
lower values indicating better calibration. The χ2-statistic assesses whether the predicted variances are
appropriately scaled; values close to 1 suggest well-calibrated uncertainties.

The results show that our approach is generally competitive and often among the best in terms of un-
certainty quantification. While we calibrated the prior precision via grid search, the observation noise
(scaling the Gauss-Newton Hessian) was tuned manually. This value had a noticeable effect on Laplace
performance, and ideally, both hyperparameters should be jointly optimized. Quantitative results for the
Kuramoto–Sivashinsky and Korteweg–De Vries equations are shown in Table 1 and Table 2, with Figure 6
visualizing the predictive mean and uncertainty. Although deep ensembles sometimes match or exceed our
method in predictive accuracy, they require training multiple independent models, which increases compu-
tational cost.

Method RMSE Q NLL
Input perturbations 0.058 1.039 −1.421
Ensemble 0.051 1.447 −1.521
Weight perturbations 0.056 1.015 −1.376
LL-Laplace 0.057 0.960 −1.349

Table 1: Evaluation of UQ methods on the 1d
Kuramoto-Sivashinsky equation.

Method RMSE Q NLL
Input perturbations 0.050 0.762 −1.480
Ensemble 0.066 1.556 −1.456
Weight perturbations 0.052 0.796 −1.338
LL-Laplace 0.049 0.667 −1.599

Table 2: Evaluation of UQ methods on the 1d Ko-
rteweg–De Vries equation.

6 Conclusions

While neural operators have demonstrated competitive performance compared to other numerical methods
and shown promise in outperforming neural network-based approaches on large grids for certain tasks, they
do not come with explicit uncertainty quantification. We addressed this gap by developing an explicit
analytic Bayesian treatment for the linear base-case, and illustrated how we can learn (the distribution
over) solution operators through non-parametric GP regression. For the general deep setting, we focused on
graph neural operators and proposed an efficient approximate Bayesian inference scheme based on Laplace
approximations. Our experiments demonstrate that the proposed approach provides meaningful uncertainty
estimates, both in sparse and dense data regimes.

12

Published in Transactions on Machine Learning Research (9/2025)

If deep learning approaches to the simulation of dynamical systems are to fulfill their potential and be applied
to serious, large-scale partial differential equations (including safety-critical and scientific applications), then
uncertainty quantification as presented here has a crucial role to play in the prevention of accidental and
potentially dangerous prediction errors.

Acknowledgments

E.M. gratefully acknowledges financial support by the European Research Council through ERC CoG Action
101123955 ANUBIS ; the DFG Cluster of Excellence “Machine Learning - New Perspectives for Science”,
EXC 2064/1, project number 390727645; the German Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039A); the DFG SPP 2298 (Project HE 7114/5-1), and
the Carl Zeiss Foundation, (project "Certification and Foundations of Safe Machine Learning Systems in
Healthcare"), as well as funds from the Ministry of Science, Research and Arts of the State of Baden-
Württemberg. E.M. is grateful to the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for support. N.K. was supported by a research grant (42062) from VILLUM FONDEN. N.K.
acknowledges financial support by the Novo Nordisk Foundation through the Center for Basic Machine
Learning Research in Life Science (NNF20OC0062606), and from the European Research Council (ERC)
under the European Union’s Horizon programme (grant agreement 101125993). L.R. acknowledges the
financial support of: the European Commission (Horizon Europe grant ELIAS 101120237), the Ministry of
Education, University and Research (FARE grant ML4IP R205T7J2KP) the European Research Council
(grant SLING 819789), the US Air Force Office of Scientific Research (FA8655-22-1-7034), the Ministry
of Education, the grant BAC FAIR PE00000013 funded by the EU - NGEU and the MIUR grant (PRIN
202244A7YL). This work represents only the view of the authors. The European Commission and the other
organizations are not responsible for any use that may be made of the information it contains.

References
William F Ames. Numerical Methods for Partial Differential Equations. Academic Press, 2014.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and Anima
Anandkumar. Neural operators for accelerating scientific simulations and design. Nature Reviews Physics,
pp. 1–9, 2024.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive for
operator learning. Journal of Computational Physics, 496:112549, 2024a. ISSN 0021-9991.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive for
operator learning. Journal of Computational Physics, 496:112549, 2024b.

Christian Jimenez Beltran, Antonio Vergari, Aretha L Teckentrup, and Konstantinos C Zygalakis.
Galerkin meets laplace: Fast uncertainty estimation in neural pdes. In ICLR 2024 Workshop on
AI4DifferentialEquations In Science, 2024.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model Reduction
And Neural Networks For Parametric PDEs. The SMAI Journal of computational mathematics, 7:121–157,
2021.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In ICML, 2015.

Nicolas Boullé and Alex Townsend. Learning elliptic partial differential equations with randomized linear
algebra. Foundations of Computational Mathematics, pp. 1–31, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

13

http://github.com/jax-ml/jax

Published in Transactions on Machine Learning Research (9/2025)

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning nonlinear
PDEs with Gaussian processes. Journal of Computational Physics, 447:110668, 2021.

Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse Cholesky factorization for solving nonlinear PDEs
via Gaussian processes. Mathematics of Computation, 2024.

Albert Cohen and Ronald DeVore. Approximation of high-dimensional parametric PDEs. Acta Numerica,
24:1–159, 2015.

Philip J Davis and Philip Rabinowitz. Methods of Numerical Integration. Courier Corporation, 2007.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux – effortless Bayesian deep learning. In NeurIPS, 2021.

James Duvall, Karthik Duraisamy, and Shaowu Pan. Non-linear independent dual system (nids) for
discretization-independent surrogate modeling over complex geometries. arXiv:2109.07018, 2021.

David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, University of Cam-
bridge, 2014.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In ICML, 2016.

Shailesh Garg and Souvik Chakraborty. Variational bayes deep operator network: a data-driven bayesian
solver for parametric differential equations. arXiv preprint arXiv:2206.05655, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. In ICML, 2017.

Alex Graves. Practical variational inference for neural networks. In NeurIPS, 2011.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential equa-
tions. In NeurIPS, volume 34, 2021.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern analysis and
machine intelligence, 12(10):993–1001, 1990.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why ReLU networks yield high-confidence
predictions far away from the training data and how to mitigate the problem. In CVPR, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. ICLR, 2017.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian neural networks
via local linearization. In AISTATS, 2020.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan. Scal-
able marginal likelihood estimation for model selection in deep learning. In ICML, 2021.

Muhammad Izzatullah, Isa Eren Yildirim, Umair Bin Waheed, and Tariq Alkhalifah. Laplace HypoPINN:
physics-informed neural network for hypocenter localization and its predictive uncertainty. Machine Learn-
ing: Science and Technology, 3(4):045001, oct 2022.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava.
Fast and scalable Bayesian deep learning by weight-perturbation in adam. In ICML, 2018.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate inference
turns deep networks into Gaussian processes. In NeurIPS, 2019.

14

Published in Transactions on Machine Learning Research (9/2025)

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907, 2016.

Felix Koehler, Simon Niedermayr, Rüdiger Westermann, and Nils Thuerey. APEbench: A benchmark for
autoregressive neural emulators of PDEs. In NeurIPS, 2024.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds
for Fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
PDEs. JMLR, 24(89):1–97, 2023.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in neural information processing
systems, 34:26548–26560, 2021.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes overconfidence
in relu networks. In ICML, 2020.

Sawan Kumar, Rajdip Nayek, and Souvik Chakraborty. Neural operator induced Gaussian process framework
for probabilistic solution of parametric partial differential equations. arXiv preprint arXiv:2404.15618,
2024.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In NeurIPS, 2017.

Samuel Lanthaler, Zongyi Li, and Andrew M Stuart. The nonlocal neural operator: Universal approximation.
arXiv preprint arXiv:2304.13221, 2023.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimiza-
tion methods for deep learning. In ICML, 2011.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
NeurIPS, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. In
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. ICLR,
2021a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Markov neural operators for learning chaotic systems. arXiv:2106.06898, 2021b.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzade-
nesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential equa-
tions. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Krista Longi, Chang Rajani, Tom Sillanpää, Joni Mäkinen, Timo Rauhala, Ari Salmi, Edward Hæggström,
and Arto Klami. Sensor placement for spatial Gaussian processes with integral observations. In UAI, pp.
1009–1018. PMLR, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

15

Published in Transactions on Machine Learning Research (9/2025)

David JC MacKay. The evidence framework applied to classification networks. Neural computation, 4(5):
720–736, 1992.

Wesley Maddox, T. Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon Wilson. A simple
baseline for Bayesian uncertainty in deep learning. In NeurIPS, 2019.

Emilia Magnani, Marvin Pförtner, Tobias Weber, and Philipp Hennig. Linearization turns neural operators
into function-valued Gaussian processes. arXiv preprint arXiv:2406.05072, 2024.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Nicholas H Nelsen and Andrew M Stuart. The random feature model for input-output maps between Banach
spaces. SIAM Journal on Scientific Computing, 43(5):A3212–A3243, 2021.

Peter J Olver et al. Introduction to partial differential equations, volume 1. Springer, 2014.

Ravi G Patel, Nathaniel A Trask, Mitchell A Wood, and Eric C Cyr. A physics-informed operator regression
framework for extracting data-driven continuum models. Computer Methods in Applied Mechanics and
Engineering, 373:113500, 2021.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. FourCastNet: A
global data-driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and
Machine Learning. MIT Press, January 2006.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, 14(7):1723–1738, 2002.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differ-
ential equations. Journal of Computational Physics, 375:1339–1364, 2018.

David B. Skinner. Part IB Mathematical methods lecture notes (Michaelmas term 2014): “7. Green’s
functions for ordinary differential equations”. Lecture notes, Department of Applied Mathematics and
Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, 2014. URL https:
//www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md.
Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable Bayesian optimization using deep neu-
ral networks. In ICML, 2015.

Ivar Stakgold and Michael J Holst. Green’s functions and boundary value problems. John Wiley & Sons,
2011.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on
physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and
Engineering, 361:112732, 2020.

Ville Tanskanen, Krista Longi, and Arto Klami. Non-linearities in Gaussian processes with integral obser-
vations. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP),
pp. 1–6. IEEE, 2020.

16

https://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf
https://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf

Published in Transactions on Machine Learning Research (9/2025)

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML,
2011.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger B. Grosse. Noisy natural gradient as varia-
tional inference. In ICML, 2018.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical stochastic
gradient MCMC for Bayesian deep learning. In ICLR, 2020.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled
data. Journal of Computational Physics, 394:56–81, 2019.

Zongren Zou, Xuhui Meng, Apostolos F Psaros, and George E Karniadakis. Neuraluq: A comprehensive
library for uncertainty quantification in neural differential equations and operators. SIAM Review, 66(1):
161–190, 2024.

17

Published in Transactions on Machine Learning Research (9/2025)

A Appendix

A.1 Derivation of the Green’s function for the one-dimensional Dirichlet problem

We consider the one-dimensional boundary value problem

Lλ0u (x) =
(

− ∆ − λ2
0 Id

)
u(x) = d2

dx2u(x) − λ2
0 u(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
(22)

The Green’s function Gλ0(x, y) solves, for each y ∈ [0, 1],

Lλ0 [Gλ0(· , y)](x) = δ(x− y), with Gλ0(0, y) = Gλ0(1, y) = 0.

Step 1: Solve the homogeneous equation away from x = y. For x ̸= y, the Dirac delta is zero, so
Gλ0 satisfies the homogeneous problem

− d2

dx2Gλ0(x, y) − λ2
0 Gλ0(x, y) = 0.

Hence we can express the Green’s function Gλ0 in terms of the homogeneous equation solution. In the case
of Equation (22) (considering also the boundary conditions) we have

Gλ0(x, y) =
{
A(y) sin

(
λ0 x

)
, 0 ≤ x < y,

B(y) sin
(
λ0(1 − x)

)
, y < x ≤ 1.

(23)

where A and B might also depend on λ0.

Step 2: Enforce continuity at x = y. Since in this case Gλ0 is continuous at x = y, we require

lim
x→y−

Gλ0(x, y) = lim
x→y+

Gλ0(x, y).

That is,
A sin

(
λ0 y

)
= B sin

(
λ0(1 − x)

)
(Condition 1).

Step 3: Impose the jump condition on the derivative. By integrating Lλ0 [Gλ0(·, y)](x) = δ(x− y)
across a small interval around x = y we get

−
∫ y+ε

y−ε

G′′
λ0

(x, y) dx =
∫ y+ε

y−ε

δ(x− y) dx = 1.

Since ∫ y+ε

y−ε

∂

∂x2Gλ0(x, y) dx = ∂

∂x
Gλ0

∣∣
x=y+ε

− ∂

∂x
Gλ0

∣∣
x=y−ε

,

we get −
[

∂
∂xGλ0

∣∣
x=y+ε

− ∂
∂xGλ0

∣∣
x=y−ε

]
= 1, hence ∂

∂xGλ0

∣∣
x=y+ − ∂

∂xGλ0

∣∣
x=y− = −1 For Equation (23)

that is
−A cos(λ0y) −B cos cos(λ0(1 − y)) = − 1

λ0
(Condition 2).

Step 4: Solve for the coefficients. Solving for Conditions 1 and 2 leads to the known closed-form
expression for λ0 ̸= nπ:

Gλ0(x, y) = 1
λ0 sin(λ0)

sin
(
λ0 x

)
sin
(
λ0 (1 − y)

)
, x ≤ y,

sin
(
λ0 y

)
sin
(
λ0 (1 − x)

)
, x ≥ y.

One can equivalently write this piecewise definition in terms of the Heaviside step function H (as in Equa-
tion (6)).

18

Published in Transactions on Machine Learning Research (9/2025)

Step 5: Verify the non-degeneracy condition. If λ0 = nπ for some n ∈ N, then sin(λ0) = 0, and the
above formula becomes singular. Indeed, in that case, the homogeneous problem with boundary conditions
u(0) = u(1) = 0 has non-trivial solutions, which obstructs invertibility of Lλ0 . Thus, the Green’s function
(and hence the unique solution) is well defined when λ0 ̸= nπ.

This completes the derivation. For further details on Green’s functions and partial differential equations,
we refer e.g. to Stakgold & Holst (2011); Evans (2010); Olver et al. (2014). A derivation of this Green’s
function is also given in Skinner (2014).

B Additional results

Here we provide some additional experimental results.

Method RMSE Q NLL
Input perturbations 0.047 0.802 −1.584
Ensemble 0.045 0.899 −1.794
Weight perturbations 0.047 0.860 −1.481
LL-Laplace 0.047 0.861 −1.639

Table 3: Evaluation of UQ methods on the 1d Burg-
ers equation.

Method RMSE Q NLL
Input perturbations 0.031 1.107 −2.022
Ensemble 0.011 0.084 −2.364
Weight perturbations 0.031 1.135 −1.972
LL-Laplace 0.031 0.962 −2.021

Table 4: Evaluation of UQ methods on the 1d hyper-
diffusion equation.

Method RMSE Q NLL
Input perturbations 0.049 0.992 −1.461
Ensemble 0.059 0.679 −1.577
Weight perturbations 0.047 0.796 −1.658
LL-Laplace 0.049 0.826 −1.656

Table 5: Evaluation of UQ methods on the 1d Fisher
equation.

Method RMSE Q NLL
Input perturbations 0.042 1.000 −1.656
Ensemble 0.034 2.021 −2.356
Weight perturbations 0.046 0.067 −0.431
LL-Laplace 0.042 0.971 −1.830

Table 6: Evaluation of UQ methods on the 1d
nonlinear-diffusion equation.

19

	Introduction
	Background
	PDEs And Green's Function
	Overview of Neural Operators
	The One-Layer (Shallow) Case

	Method
	Bayesian Neural Operators In The Shallow Case With Gaussian Processes
	From Gaussian Processes to Neural Networks: Last-Layer Laplace Approximation

	Related work
	Experiments
	Uncertainty Quantification in the Shallow Case with GP regression
	Uncertainty Quantification in the Deep Case: Darcy flow
	Evaluation on APEbench

	Conclusions
	Appendix
	Derivation of the Green's function for the one-dimensional Dirichlet problem

	Additional results

