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Inverse Design Framework With
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Passive Vibration Suppression in
Phononic Structures
Automated inverse design methods are critical to the development of metamaterial systems
that exhibit special user-demanded properties. While machine learning approaches repre-
sent an emerging paradigm in the design of metamaterial structures, the ability to retrieve
inverse designs on-demand remains lacking. Such an ability can be useful in accelerating
optimization-based inverse design processes. This paper develops an inverse design frame-
work that provides this capability through the novel usage of invertible neural networks
(INNs). We exploit an INN architecture that can be trained to perform forward prediction
over a set of high-fidelity samples and automatically learns the reverse mapping with guar-
anteed invertibility. We apply this INN for modeling the frequency response of periodic and
aperiodic phononic structures, with the performance demonstrated on vibration suppres-
sion of drill pipes. Training and testing samples are generated by employing a transfer
matrix method. The INN models provide competitive forward and inverse prediction perfor-
mance compared to typical deep neural networks (DNNs). These INN models are used to
retrieve approximate inverse designs for a queried non-resonant frequency range; the
inverse designs are then used to initialize a constrained gradient-based optimization
process to find a more accurate inverse design that also minimizes mass. The INN-initialized
optimizations are found to be generally superior in terms of the queried property and mass
compared to randomly initialized and inverse DNN-initialized optimizations. Particle
swarm optimization with INN-derived initial points is then found to provide even better solu-
tions, especially for the higher-dimensional aperiodic structures.
[DOI: 10.1115/1.4052300]
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1 Introduction
Inverse design refers to a process of finding the inputs x which

produce the desired value of the outputs y constrained to the follow-
ing mapping f : x→ y, while also minimizing other cost functions in
some cases [1]. Many on-demand designs and hierarchical design
problems can be formulated as inverse design problems; a few
notable examples close to the topic area of this paper include the
design of metamaterials [2–5], nanophotonics [6], and new molec-
ular structures [7–9]. Optimization techniques are by far one of the
most popular approaches to solve inverse design problems [9,10],
which are often modeled as a constrained optimization problem.
Solving inverse problems using optimization for complex nonlinear
systems is in general computationally expensive and in some cases
intractable due to the ill-posed nature of inverse problems [9,11].
There is also a growing body of machine learning applications to
support inverse design [12,13], although their potential use for
on-demand design retrieval remains under-explored. In this paper,
we address these challenges by introducing a novel invertible learn-
ing approach to retrieve approximate inverse solutions on-demand
and use them to accelerate design optimization processes. This
new inverse design framework is particularly tailored to automated
design of metamaterials for vibration regulation, and a 1D phononic

structure problem is used to analyze and demonstrate the frame-
work’s performance in this paper.
In the rest of this section, we present a brief survey of existing

methods to systematically design phononic structures and related
metamaterial systems, followed by a survey of existing work in
using machine learning (ML) techniques for inverse design of
such systems. Thereafter, we introduce the primary contributions
of our work and converge on the key objectives of this paper.

1.1 Design of Phononic Structures and Metamaterials. In
recent years, the notion of using passive periodic, i.e., self-
repeating, individual cells as building blocks for composite-like
structures has significantly grown [14]. Notable among these are
phononic structures in which the building blocks typically take
the form of alternating materials, geometries, or a combination
thereof, as well as metamaterials which comprise locally resonant
inclusions within a host medium. It has been shown that such
systems can be engineered to possess unique characteristics such
as their ability to exhibit extended regions of forbidden wave prop-
agation known as bandgaps [15–17], superior dissipative properties
[18,19], negative effective stiffness [20], unidirectional vibrations
[21], among others. With these capabilities, these systems have
become increasingly popular, and despite manufacturing challenges
[22–24], they are being translated to diverse applications ranging
from acoustics [25,26] and photonics [27,28] to sensing and other
end uses [29,30].
Suppression and mitigation of undesirable structural vibrations

are everlasting challenges in oscillating mechanical platforms and
structures exhibiting elastic deformations. Over the years, this has
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garnered significant attention with research efforts spanning various
passive and active vibration control methods [31–34]. Phononic
structures and metamaterials present an attractive solution to this
problem because of their ability to exhibit bandgaps. The search
for novel features and functionalities in such systems typically
requires analyses that dive into the fundamental constitutive equa-
tions of new architectures or unit cell configurations [35].
However, the design of such structures for engineering applications
or the on-demand discovery of novel structural configurations is
usually more exhaustive and often computationally prohibitive if
a classical iterative approach is taken. Notable work in speeding
up the search of metamaterial design includes the use of simplified
models to design periodic nano-antennas [36] and the use of group
theory to design bianisotropic metamaterials [37], where candidates
are grouped based on their similarity in properties and this group
space is searched based on desired properties given by an user.
However, simplified models may not be available in every
problem or provide adequate fidelity of outcomes. Furthermore,
an increase in the number of properties of interest or non-linearity
of the design/property relationship will limit the application of the
latter approach. These challenges are expected to further increase
if aperiodic designs are to be explored [38–40], since the number
of design variables could increase by an order of magnitude com-
pared to their periodic counterparts.

1.2 Machine Learning Approaches to Inverse Design. The
limitation of classical inverse design methods and the significant
progress made in the field of machine learning in the recent years
have positioned tools such as deep neural networks (DNNs)
[5,41–44] and generative adversarial networks (GANs) [41,45–
48] as valuable alternatives to classical methods. Training them
offline can be (albeit, not guaranteed to be) computationally less
expensive compared to running multiple optimizations, and once
trained, they can be used to answer queries instantaneously.
For instance, Ma et al. [49] used a variational autoencoder-based

generative model to design photonic metamaterials. However, this
approach remains limited to relatively simple designs with less
than ten parameters and requires a significant amount of training
data. Similarly, approaches based on GANs while effective in
inverse design (e.g., nanophotonic structures [45]) usually require
enormous data sets to train. In another work, Chan et al. [50] pro-
posed an approach to accelerate the metamaterial design process
by creating unit cell databases, which can then be used to quickly
design structures by using combinatorial optimization; this
approach is however not amenable to on-demand design retrieval.
Morris et al. [51] used Bayesian network classifiers to design
negative-stiffness metamaterials. This method can find a set of fea-
sible designs and also allows uncertainty analysis. Similarly, Bosta-
nabad et al. [52] proposed an approach called globally approximate
Gaussian process for the design of orthotropic metamaterials, which
uses multiple independent Gaussian process (GP) models trained
over big data sets. As noted above, the provision to retrieve a
single design on-demand is not readily evident in most of these
approaches, and majority of them work when the feature space is
small (as in periodic metamaterials). The former provision is
however available with more recent approaches using pairs of
DNNs and conditional machine learning models, which are
further discussed below.
DNNs are also being increasingly used in the space of metama-

terial design, with a few examples reported by Ma et al. [53] and
Finol et al. [54] in the photonic and phononic domains, respectively.
A notable (and likely the only one of its kind) DNN-based approach
that explicitly allows both forward and inverse predictions in meta-
material design is evident in the work of Malkiel et al. on nanopho-
tonic structures [42–44]. This approach uses two separate DNNs to
perform forward and inverse modeling. However, the sample
requirement to train the inverse model is quite high, and no implicit
capability of dealing with the non-uniqueness of the inverse
mapping is provided. Moreover, the relation between the forward

and inverse mapping is not rigorously preserved, i.e., with this
approach, satisfication of fInv(fFwd(x)) = x is not guaranteed. This
makes it difficult to reliably retrieve multiple designs in a close
neighborhood of a target property value for analysis and optimiza-
tion purposes.
Here, we are interested in investigating an inverse design frame-

work that allows on-demand retrieval of designs (given user-
specific desired properties), guarantees the fInv(fFwd(x)) = x, rela-
tion, and can work on fairly large input feature spaces as given
by aperiodic structures.
Another emerging class of models being used for inverse design

is conditional generative models. These models improve the effi-
ciency of generative models by conditioning the generator and dis-
criminators on data/class labels for its training. Hodge et al. [55]
used conditional GANs or cGAN to design tensorial meta-surfaces
for radio frequency applications. Here, the spectral response is
added as a condition to limit the output of the generative model,
which however requires further post processing by a simulator
network. Yilmaz and German used a similar structure for inverse
design of airfoils [56], conditioned with parameters such as the
range of the angle of attack for stall instances, and drag and lift coef-
ficients. Nobari et al. proposed another idea of range-constrained
GAN where the conditions are in the form of the range of the vari-
ables [57], which is claimed to provide the advantage of generating
a uniformly distributed design. The main limitation of this approach
is the reliance on a label estimator, which must also be differentiable
and exact. Another related approach uses performance conditioned
diverse GAN (PcDGAN) [58], which enhances the diversity in
output to improve the coverage over design space while maintaining
continuous conditions. This method also requires a differentiable
estimator, which in this case is based on regression and thus affected
by the regression accuracy. Thus overall, conditioned GANs
provide a promising approach to inverse design, while being
limited by the availability and cost of evaluating conditions in real-
world problems (e.g., lift on complex 3D airfoil sections) and their
special training needs (e.g., estimators) in general.

1.3 Research Objectives of This Work. In this paper, which
is a methodological and empirical extension of our 2020 ASME
IDETC paper [59], we explore a new modeling concept—provably
invertible neural networks or INN—to enable on-demand design
and retrieval of both periodic and aperiodic phononic structures.
Here, the design efforts are focused on achieving on-demand vibra-
tion characteristics, namely, desired frequency range(s) with no
resonant peaks, i.e., non-resonant frequency ranges (NRFRs).
Once an INN is trained over samples, each containing a phononic
structure design and its frequency response, the INN can not only
be used to predict the frequency response of other unseen designs
but also executed in reverse to predict a design that corresponds
to a given frequency response. To our knowledge, this is the first
formal exploration of INN for inverse design of structural metama-
terial systems. Thus, we also develop standard DNN models of the
forward problem to compare and contrast the prediction perfor-
mance of the INNs in this application context. In addition, we
develop a forward optimization process for designing such phono-
nic structures while minimizing the structural mass and illustrate
how the novel inverse retrieval approach can significantly acceler-
ate or improve the performance of the forward optimization, com-
pared to conducting a standard constrained forward optimization
(with random initialization) for inverse design.
Thus, the specific objectives of this paper include:

(1) Develop an INN-based modeling approach to represent the
vibration characteristics of phononic structures, along with
DNN models for comparison, both trained on data generated
by a transfer matrix method (TMM).

(2) Develop a TMM-based optimization framework that can be
efficiently initiated with INN-retrieved approximate solu-
tions for the accelerated design of 1D phononic structures.
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(3) Demonstrate the performance of the INN-based inverse
design framework in generating periodic and aperiodic struc-
tures for 1D phononic systems with on-demand lateral vibra-
tion characteristics.

The rest of this paper is structured as follows. In Sec. 2, we
describe the main components of our new inverse design frame-
work. Section 3 presents the problem formulation as applied to
the 1D phononic structure case study. Section 4 presents and dis-
cusses the model prediction and inverse design results, along with
further comparative analysis of periodic versus aperiodic designs
obtained thereof. Section 5 summarizes the concluding remarks.

2 Invertible Neural Network-Based Framework to
Design the Phononic Structure
Figure 1 illustrates the overall design automation framework.

This framework aims to combine INN-based inverse retrieval and
simulation-based optimization to find the optimal configuration of
a given system subject to specific (on-demand) characteristics. A
phononic structure inspired by drill pipes is chosen as a case
study to analyze this framework’s performance and the benefits of
the underlying new inversion concepts. The main components of
the framework as shown in Fig. 1 are as follows:

(i) Generation of samples using a medium fidelity forward
model; in this case, we use the TMM to model the vibration
response of 1D phononic structures.

(ii) Training of the INN on these samples to map periodic and
aperiodic structural designs (inputs) to the output quantity
of interest.

(iii) Instantaneous generation of approximate design solutions
given a desired value of the output, by performing inverse
prediction through the INN.

(iv) Optimization process for inverse design, with the desired
output values set as constraints, and initialized by the
INN-derived approximate inverse solution.

While for the case studies in this paper the TMM is used to gen-
erate the samples, the automated inverse design framework can be
applied to other metamaterial problems beyond the phononic

structures studied here using a pertinent physics-based simulation
to generate the samples. The fundamental concept of inverse retrie-
val of solutions via the INN and its integration with the forward
optimization process is thus expected to work in a wide variety of
on-demand design problems. In any such application, the INN
must be trained on the generated samples to model the “design
� properties” relationship, and it automatically also learns the
reverse “properties � design” relation. For the application consid-
ered here, the property of interest is defined to be the frequency
response of lateral vibrations. The remainder of this section
describes the two main modeling components of our current auto-
mated inverse design framework, namely, the INN and TMM.

2.1 Invertible Neural Networks. INNs are a class of neural
networks that have a unique architecture, which enables their invert-
ibility [60]. When an INN is trained on the well-understood forward
problem, it can capture the inverse model implicitly [60]. A handful
of notable INN architectures have been reported in recent years
[61], with preliminary applications to image reconstruction
[62,63], parameter estimation [60,64], and generative flow model-
ing [65]. In this paper, we chose the INN architecture proposed in
Ref. [60] since it ensures an analytically computable inverse by pre-
serving the nonsingular nature of the Jacobian that encapsulates the
output to input derivatives for each layer of the network.
Figure 2 illustrates the general architecture of our INN implemen-

tation, including the representative invertible INN block showing
information flow in both forward and inverse directions (Figs.
2(a) and 2(b), respectively), as well as the overall network structure
comprising multiple such blocks (Fig. 2(c)). The transformations
encapsulated by an INN block can be expressed as

v1 = u1 ⊙ exp (s2(u2)) + t2(u2)

v2 = u2 ⊙ exp (s1(v1)) + t1(v1)
(1)

where ⊙ represents element-wise multiplication, such that
[ai,j]⊙ [bi,j] = [ai,j × bi,j], with [ai,j] and [bi,j] being two matrices
of equal dimensions. Here, u and v are the inputs and outputs of
the INN and the subscripts 1 and 2 depict two splits of the input
vector. This INN architecture requires the input vector to be split
in order to keep the layer-wise Jacobian a triangular matrix; as in

Fig. 1 Inverse design framework for phononic structures with on-demand frequency response. Top: Training of the INN
model using samples given by TMM, bottom: inverse design process, involving approximate inverse solution retrieval via
INN (executed backwards) given a frequency response query, and optimization process initialized with this solution.
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Ref. [60], for an even-sized input vector (of size 2m, ~m∈ Z+) the
splits are equal, and for an odd sized vector (of size 2m+ 1, ~m ∈
Z+), the splits get assigned m and m+ 1 input elements, respec-
tively. The terms s1, t1 and s2, t2 can be any arbitrarily complicated
functions or transformations of u2 and v1, respectively. Here, they
are embodied by neural networks with fully connected layers and
leaky ReLU activation functions.
The above expressions can be easily inverted if the output v =

[v1, v2] is known based on the expressions:

u2 = (v2 − t1(v1))⊙ exp (−s1(v1))
u1 = (v1 − t2(u2))⊙ exp (−s2(u2))

(2)

The structure shown in Fig. 2(a) constitutes a single representa-
tive INN block. Now, as shown in Fig. 2(c), the overall INN model
is essentially a deeper network composed of a series of these blocks
with permutation layers in between to shuffle the input to the next
block in a pseudo-random manner. This pseudo-random permuta-
tion causes the input vector splits, u1 and u2, to vary between
layers, thereby increasing the inter-variable interaction [60]. The
expressed architecture requires that the model’s input and output
vectors have the same size. If input and output vectors have differ-
ent dimensions, as is the case in our problems, it can be handled as
follows: (i) if the size of input > size of output, another set of vari-
ables called the latent variables are generated from a normal distri-
bution and concatenated to augment the output vector; the size of
the latent variable vector is equal to the difference of the input
and output vector sizes; these latent variables can also be used to
impose additional constraints to mitigate the ill-posed nature of
the inverse prediction. (ii) If the size of input < size of output, the
input vector is either padded with zeros or repeated multiple
times to match the dimension of the output vector [60].
For the phononic structure problem in this paper, the number of

outputs (80) far exceeds the number of the inputs (30 for an aperi-
odic system and 3 for a periodic system). Therefore, we repeat the
design variable vector multiple times to pad the input vector and
make its dimension equal to that of the output vector. The other
model parameters used in the INNs constructed in this paper are
listed in Table 3.
In our application, owing to the manner in which the output space

is encoded, as discussed later in Sec. 3.3, the mapping was observed
to be mostly of one-to-one nature. This gave us the opportunity to
impose a direct loss term for the inverse direction, which is found
to improve training convergence and the accuracy of inverse predic-
tions, compared to the more typical INN loss function that uses
maximum mean discrepancy (MMD) in the inverse direction.
This chosen loss function with the first term representing the
forward prediction loss in terms of mean squared error (MSE)
and the second term representing the direct MSE in the inverse
direction can be expressed as given in Eqs. (3)–(5):

Loss = EMSE(Yij, Ŷ ij) + EMSE(Xij, X̂ij) (3)

EMSE(Xij, X̂ij) =
1
N

∑N
i=1

1
M

∑M
j=1

X̂ij − Xij

( )2
(4)

EMSE(Yij, Ŷ ij) =
1
N

∑N
i=1

1
M

∑M
j=1

Ŷ ij − Yij
( )2

(5)

Here, Yij and Ŷ ij, respectively, represent the true output and the
network prediction of the jth dimension of the ith sample and Xij

and X̂ij, respectively, represent the true input and the inverse
network prediction of the jth dimension of the ith sample. Here,
N andM, respectively, depict the number of samples and the dimen-
sion of the output vector. Similarly, the second term in Eq. (3) can
be obtained by replacing Ŷ ij and Yij with X̂ij and Xij, respectively.
The INN can also be used in cases where there is a many-to-one

mapping, i.e., in cases where multiple inputs map to the same
output. In that case, the loss function used for training the INN as
specified in Ref. [60] is a weighted combination of two terms: (1)
the forward loss and (2) a penalty applied to capture how the distri-
bution of the inputs predicted when the INN is executed in the
reverse direction deviate from the distribution of the actual inputs.
This overall loss function is thus given by

Loss = EMSE(Yij, Ŷ ij) + λEMMD(X̂ij, Xij) (6)

where λ is the weight assigned to the second term.
To capture the deviation of the inversely predicted input distribu-

tion, a kernel-based loss called MMD is used, which is the second
term in Eq. (6). A brief mathematical description of MMD is given
in Appendix A, and further details can be found in Ref. [60]. This
loss function given by Eq. (6) is particularly useful where the
inverse is non-unique (i.e., many-to-one X–Y mapping clearly
exists), and thus latent parameters are used in the INN to enable
the inverse mapping to capture the input distribution and allow
the retrieval of multiple designs by sampling over latent parameters.

2.2 Approximation Model Baselines: Deep Neural Nets.
For the purpose of comparing the INN’s performance in forward
and inverse predictions, and later its further impact in inverse
design retrieval, we develop two different types of DNN models.
These are standard DNN models that can only predict a mapping
in one direction and do not provide bijectivity or explicit invertibil-
ity. The first type of the DNN model, to be called as forward DNN
or DNN-F here onward, maps from the design input X to the prop-
erty output Y and trains over the loss function given by the first term
of Eq. (3). DNN-F is used to benchmark the forward modeling
accuracy of the INN to lay to rest the typical concerns regarding
the loss of expressibility in the INN’s forward predictions,
thereby preserving the utility of INN’s bijectivity, e.g., in retrieving
multiple inverse designs (refer Sec. 3.4). The second type of the
DNN model, to be called as inverse DNN or DNN-I here
onward, maps from the property output Y to the design input X,
and trains over the loss function given by the second term of
Eq. (3). DNN-I is used as a comparative baseline to analyze the
inverse design retrieval performance of the INN.

2.3 Transfer Matrix Method. The TMM is an analytical
method commonly used to model and depict the dynamics of
elastic structures made up of adjacent blocks [66]. At its core, the

Fig. 2 INN architecture: (a) invertible blocks, (b) permutation block, and (c) entire INN
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TMM tracks the transmission of different forces (or moments as
applicable) and displacements (or rotations as applicable) from
one segment of a structural system to the neighboring one [67].
Therefore, to capture the performance of a tapered elastic structure
or one of varying cross section, it must be discretized to different
cylindrical sub-bodies. This discretization may lead to a loss of
model fidelity due to an insufficient number of discrete segments.
Another limitation of the TMM method are numerical errors,
which are often associated with calculating the analytical response
depending on matrix conditions. In some cases, solving the TMM
requires a high degree of numerical precision in order to remain
computationally stable, which results in increased computational
time.
Here, TMM is used to compute the transmissibility ratio of the

1D phononic structures with respect to lateral vibrations. The
term “transmissibility ratio” refers to the amount of vibrations trans-
mitted from one end of a structure to the other end when subjected
to an external incident excitation. The excitation can be modeled as
a displacement or force based on the boundary conditions. While
the transmissibility ratio is typically below unity within non-
resonant regimes, it jumps significantly during resonance, which
can be detrimental to the health of the structure, delicate compo-
nents, and sensitive payloads.
For an Euler–Bernoulli beam with free-free boundary conditions,

the transmissibility ratio (TR) as given by the TMM method can be
expressed as

TR(ω) = (A × E) − (B × E) − C + D

A = �T[1, 1]

B =
�T[1, 2] × �T[4, 1]

�T[4, 2]

C =
�T[1, 2] × �T[4, 4]

�T[4, 2]

D = �T[1, 4]

E =
�T[3, 2] × �T[4, 4] − �T[3, 4] × �T[4, 2]
�T[3, 1] × �T[4, 2] − �T[3, 2] × �T[4, 1]

(7)

Here, �T is the transfer matrix and ω is the angular frequency
(expressed in rad/s) of the pertinent degree-of-freedom; this is the
lateral displacement in our case studies, as depicted in Fig. 3(a).
Our detailed derivation of the above equations and the composition
of �T for the problem considered here are provided in a public repo-
sitory.2 Here onward, the TMM model will be referred to as the
high-fidelity forward model.

3 Phononic Structure Problem
As our application problem, we chose a cylindrical base-structure

similar to a drill pipe, as shown in Fig. 3(a). The long and slender
geometry of drill pipes makes it susceptible to vibrations. To instill
vibration suppression capabilities, drill pipes can be constructed as
1D phononic structures by adding inserts in the form of annular
rings to their periphery in order to give rise to frequency bandgaps,
i.e., extended regions of forbidden vibrations, as shown in Ref. [68].
The addition of inserts of appropriate geometry, when optimally
placed, was experimentally shown to mitigate high amplitude vibra-
tions, thereby minimizing the possibility of excessive damage to the
drill pipe during operation [69]. Along with the increased design
complexity of the drill pipe augmented with annular rings, this
problem also presents significant modeling complexity as the vibra-
tion characteristics are challenging to represent due to resonances.
These resonances appear as sudden spikes in the transmissibility
ratio, adding numerical irregularity to the data and rendering the
problem a good test-bed for the analysis shown here. In the

remainder of this section, we provide the problem description of
our case studies based on the drill pipe example, the formulation
of the optimization problem for inverse design of this 1D phononic
structure, and the inverse modeling setup used to train INNs.

3.1 Periodic and Aperiodic Structures. In addition to peri-
odic designs as proposed in Ref. [68], we also explore aperiodic
designs that lift the periodic constraints from the inserts. This
enables greater flexibility, while at the same time leading to an
n-fold increase in the dimensionality of the design space that
must be searched (n being the number of inserts), both in the
forward and inverse problems. The increased flexibility thereof
could provide further reduction in mass over a periodic structure,
while seeking to match the desired non-resonant frequency charac-
teristics of the latter. The aperiodic structure could also hypotheti-
cally offer opportunities for reconfiguration during the system’s
lifetime in order to target different frequency ranges where reso-
nance is to be mitigated. A uniform self-repeating pattern, which
is typically the case in phononic and metamaterial structures, does
not inherently provide this flexibility.
Figure 3(a) shows the drill pipe structure with the inserts and

Fig. 3(b) (with the radial dimension enhanced) shows the design
variables to be optimized. Throughout this paper, the number of
inserts is kept fixed at 10. As seen from the figure, the aperiodic
structure is parameterized in terms of di, wi, and ti, where di and ti
are the outer diameter and the thickness of the ith insert, respec-
tively, and wi is the distance between two adjacent inserts. For
the corresponding periodic structure, we therefore only have three
design variables, d, t, and w. The geometry of the base cylindrical
structure and the material properties of the system are listed in
Table 1.

3.2 Optimization Formulation. Our optimization formula-
tion aims to minimize the mass of the phononic structure while
maintaining a range of frequencies within which no resonance
occurs. As such, the constraint violation is represented in terms of
a counter h(x, ωL, ωU) that counts the number of peaks in the fre-
quency response between ωL and ωU, which are, respectively, the

Fig. 3 1D phononic structure (drill pipe with inserts): (a) geom-
etry and physical parameters and (b) design variables

Table 1 Geometrical and material properties

Properties of the phononic structure Value

Length (l) 9 m
Density (ρ) 1800 kg/m3

Elastic modulus (E) 193 GPa
Shear modulus (G) 77.2 GPa
Inner diameter of insert (din) 0.16 m

2https://github.com/adamslab-ub/1D-Phononic-Structure-Design-with-INN
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start and end frequencies of the desired (on-demand) non-resonant
range. In the rest of the paper, [ωL, ωU] is referred to as the NRFR
query. The optimization problem can now be expressed as

min
x

m(x) = ρ ×
∑10
i=1

π

4
(d2i − db)wi

s.t. h(x, ωL, ωU) =
∑ω2

ω1

δ(x, ωi) = 0where

(8)

δ(x, ωi) =
1 if TR(x, ωi) ≥ TR(x, ωi±1)

0 otherwise

{
(9)

In the above equations, ρ is the density of the material of the pipe
and its inserts, and db is the inner diameter of the base pipe. Here, δ
is a binary operator that signifies the existence of a peak in the trans-
missibility ratio at a given frequency. Analogical to a bracketing
approach in line search, the first condition in Eq. (9), i.e.,
TR(x, ωi)≥TR(x, ωi±1), when true indicates the existence of a peak
within the [ωi−1, ωi+1] range, which is designated as a peak at ωi

for ease of modeling and illustrating the resonant peaks.
Figure 3(b) shows the design variables per insert to be optimized,
and Table 2 gives the upper and lower bounds of these variables.
Since we consider 10 rings, there are only three variables for the peri-
odic structure (which involves uniformly spaced identical rings), i.e.,
d w t[ ]; and a total of 30 design variables in the aperiodic struc-
ture, i.e., d1 w1 t1 d2 w2 t2 . . . d10 w10 t10[ ].

3.3 Inverse and Forward (Approximation) Modeling. The
INN model is constructed to map the design of the phononic struc-
ture to the frequency response of its lateral vibrations. More speci-
fically, the vector of design variables (di, ti, wi) serve as inputs, and a
vector of 80 transmissibility ratio values (TRi , i = 1, 2, . . . , 80) mea-
sured at equally spaced frequency intervals between 0.1 and
10,000 Hz are treated as the outputs. The forward mapping per-
formed by the INN can be expressed as

f :
DT

WT

TT

⎡
⎣

⎤
⎦ �

TR1

..

.

TR80

⎡
⎢⎣

⎤
⎥⎦ (10)

where D = [ d1, d2, . . . , d10 ], W = [w1, w2, . . . , w10 ], and T =
t1, t2, . . . , t10

[ ]
are the diameter of each ring, their thickness, and

the distance between two rings. The inverse modeling enabled by
the INN is simply the reverse of the mapping shown in Eq. (10),
i.e., given a sample output vector, it can retrieve a prediction of the
corresponding input vector. Note that the design variables are
repeated in order to meet the requirement of the INN to have
equal sized input and output vectors as discussed earlier. Thus,
for aperiodic structures, the input vector is given by
[D, W, T, D, W, T, D, W]T. In the case of periodic structures, the
three variable input vectors are repeated to construct the padded
80-sized input vector. For comparison purposes, standard DNNs
with similar node activation type are also trained. The INN and
DNN models for the periodic and aperiodic structures are trained
using the same optimizer and hyper-parameter setup, which along
with further details of networks are summarized in Table 3.
For the neural network models to be effective in forward predic-

tion and inverse design thereof, it is critical for them to capture the
resonant peaks in the frequency response. We use 80 bins to

discretize the 0.1–10000 Hz frequency space, as an acceptable com-
promise between fidelity of representing the frequency response and
keeping the overall cost of its TMM-based evaluation tractable. To
encourage the INN to accurately capture the resonant peaks found
using the bracketing type approach (given in Eq. (9)) over this dis-
cretized frequency space, we artificially boost the magnitude of
transmissibility ratio at the resonant peaks. More specifically,
while the TR at the identified resonant peaks are observed to be
roughly 2 orders of magnitude greater than the average base TR in
their neighborhood as computed by TMM, we artificially boost
the magnitude of TR at the peaks to a fixed high value of 10−2.
From our numerical experiments, we found this adjustment to
improve the modeling accuracy of the INN and DNN, which are
purposed with identifying the location of the peaks (their exact mag-
nitude being of marginal relevance).
The INNs used later for inverse design retrieval to initiate

forward optimizations are trained with the loss function given by
Eq. (3); this approach provided better inverse prediction accuracy.
The use of latent variables and training with the loss function
given by Eq. (6) was also explored. In that case, a weight setting
of λ= 10−2 was found to work best. Further discussion on this
second training approach and associated outcomes are given in
Appendix B. For training the baseline DNN-F model, only the
first term of Eq. (3) is used as the loss function. For training the
baseline DNN-I model, only the second term of Eq. (3) is used
as the loss function.

3.4 Inverse Design Retrieval Using Invertible Neural
Network. Retrieving Single Design: For the 1D phononic structure
problem studied here, user query can be in practice expected to be
given in terms of a NRFR, [ωL, ωU], as expressed in Eq. (9).
However, the INN is designed to output the entire frequency
response, i.e., the vector of 80 transmissibility ratios
([TR1 , TR2 , . . . , TR80 ]); this output choice was made to partly allevi-
ate the non-uniqueness of the inverse mapping without having to
resort to latent parameters. Hence, the INN needs the entire TR
vector to be fed from the output end for the inverse prediction to
work. For ease of results generation corresponding to each case
study discussed later in Sec. 4.2, we therefore simply picked an
output vector each from the test set that satisfies the [ωL, ωU]
query for each case. In practice, an entire frequency response, con-
taining the query, could be provided by a domain expert, or in other
applications might be readily available as the query itself. While the
primary results shown here uses the above-stated approach to facil-
itate the inverse retrieval and the optimizations initialized thereof
(for brevity of illustration), we have also developed a more gener-
alizable procedure to translate the query to the entire output
vector; this is summarized in the supplemental document,3 along
with example results following from that procedure.

Table 3 Neural network settings

Periodic Aperiodic

Parameter INN DNN INN DNN

Input size 80
Output size 80
Hidden layers 3 5 5 5
Invertible blocks 10 − 10 −
Type Fully connected
Activation func. Leaky ReLU
Learning rate 10−4

Optimizer ADAM
Hyper-param optim. Bayesian optimization
Training data size 5000
Testing data size 1000

Table 2 Design variable bounds

Variable Bounds

di [0.16 m, 0.4 m]
wi [0.075 m, 0.3750 m]
ti [0.15 m, 2.25 m]

3See Note 2.

021707-6 / Vol. 144, FEBRUARY 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/144/2/021707/6761504/m
d_144_2_021707.pdf by Suny At Buffalo, M

anasw
in O

ddiraju on 12 Septem
ber 2024



Retrieving Multiple Designs: The explicit invertibility and bijec-
tivity of the INN can be uniquely used to generate multiple diverse
designs reliably in the close neighborhood of a user-specified target
output. Since a measure of forward error of the INN is available
based on training or cross-validation, this information can be used
to determine a range or confidence interval of the output over
which multiple inputs can be sampled. More specifically, we
derive a set of sample queries from a normal distribution with the
user-queried output as the mean and the training error as standard
deviation.
These sampled queries are then fed into the output side of the

trained INN, which is then executed in reverse to generate a set
of sample input designs. We will use this capability later in the
next section to initiate portion of the population of the particle
swarm optimization (PSO) algorithm used to solve the inverse
design problem given by Eqs. (8) and (9).

4 Results and Discussion
4.1 Modeling Performance of the Invertible Neural

Network. We train two INNs each for the aperiodic and the peri-
odic structure. In both cases, a training set of 5000 samples are gen-
erated using Latin hypercube sampling or LHS (with maximin
criterion) with their function values evaluated using the TMM.
The choice is based on numerical experiments with various training
set sizes, details of which are provided in Appendix C. To compare
the modeling accuracy of the two INNs, we also train two corre-
sponding pairs of DNNs (DNN-F and DNN-I) on the same
sample sets. The prediction performance of the models is tested
on 1000 unseen samples each for the aperiodic and periodic struc-
tures, which are also generated using LHS. The training settings for
the NN models are summarized in Table 3. Figure 4 illustrates the
testing error for the INN in the forward and inverse directions and
those of the corresponding DNN-F and DNN-Imodels for the peri-
odic and aperiodic cases. The error is represented in terms of the
MSE of the output vector per sample, shown as a distribution
over the entire test data set. Here, the MSE over each
(range-normalized) test sample is given by

Forward: MSEFwd(Xi) =
1
80

∑80
j=1

Ŷ ij − Yij
( )2

(11)

Inverse: MSEInv(Yi) =
1
80

∑80
j=1

X̂ij − Xij

( )2
(12)

As seen from Fig. 4, for the periodic case, the forward prediction
error of INN (median MSEFwd of 0.006) is slightly better than that
of the DNN-F (median MSEFwd of 0.017), with the INN also

providing better robustness (lower variance). For the aperiodic
case, the forward prediction accuracy of INN and DNN-F are com-
parable. Unlike in the case of forward prediction, Fig. 4 shows that
for inverse prediction, the model errors are noticeably greater in the
aperiodic case compared to the periodic case. The better accuracy
achieved in the periodic case could be attributed to the presence
of distinct bandgaps in the corresponding periodic structures, and
that the change in the output (TR) is highly sensitive to changes in
any input. The latter is because there are only three variables that
regulate the shape of all the identical inserts in the periodic case,
in contrast to 30 in the aperiodic case. For this inverse prediction,
the INN performs better than the DNN-I for the periodicI and
aperiodic cases, in terms of median MSEInv values, as seen from
Fig. 4.
Figure 5 illustrates the frequency response predicted by the INN

and DNN-Fmodels over a representative periodic and aperiodic test
sample each, showing the predicted transmissibility ratio and the
corresponding ground truth given by TMM. It can be seen that, in
the periodic case (Fig. 5(a)), there is a large variance between the
non-peak values, thereby favoring the model to learn the difference
between a normal frequency range and a bandgap. In the aperiodic
case (Fig. 5(b)), the difference between non-peak values is less dis-
tinct. Hence, both the INN and DNN models do better in the peri-
odic case (compared to the aperiodic case), in terms of tracking
the frequency response. In both cases, while the INN predicts a
few spurious peaks in frequency ranges where none exist (e.g.,
between ∼1.0 and 2.2 kHz in Fig. 5(a)), it does well in capturing
almost all of the true peaks that do exist.

4.2 Optimization Initialized With Inverse Design
Retrieval. Inverse Design Case Studies: Now the INN can be
used to on-demand retrieve the phononic structure design corre-
sponding to a (user-queried) frequency response. This is achieved
by feeding the desired output (user query) to the INN, and
running it backwards, as shown in Fig. 2c. Here, we explore the
effectiveness of using such a retrieved design to initialize a
forward optimization process for finding a more accurate inverse
design that satisfies the user-requested properties as well as mini-
mizes mass, i.e., solves Eqs. (8)–(9). The high-fidelity TMM
model is used for all forward optimizations performed in this
paper. We consider two cases, each connected with a distinct
(desired) NRFR of a span of 1.5 kHz, which are listed in Table 4.
For each case, the user query is first translated to an output fre-
quency response, as discussed in Sec. 3.4. The trained INNs for
the aperiodic and periodic structures are then executed in reverse
to predict the aperiodic and periodic designs corresponding to that
demanded frequency response.
Forward Optimization Approach: Two different optimization

approaches are used here. Primarilywe use a standard gradient-based
solver, the sequential quadratic programming (SQP) [70], and
further analyses is provided only for the results obtained with
SQP. This SQP is implemented using MATLABs built-in optimization
toolbox. Our choice of SQP is deliberate. We intended to eliminate
any additional stochastic effects attributed to the optimizer (which
would otherwise make further analyses challenging). However, as
we will see later, the problem tends to be multi-modal. Hence, to
provide insightful global comparisons and allow the use of good
training samples (those with the smallest violation of the user’s
NRFR query) to create a more effective baseline, we also apply a
well-known implementation of the particle swarm optimization
(PSO) algorithm suited for constrained high-dimensional problems
[71]. To account for its stochastic effects, the PSO algorithm is run
10 times each with the INN-based initialization and corresponding
baseline (discussed later). The settings used for the SQP optimization
and PSO solvers are given in Appendix D. Note that, this inverse
design framework can readily incorporate other approaches for
forward optimization, including genetic algorithms, Bayesian opti-
mization, or surrogate-based optimization [72] with the INN used
as the forward surrogate model.Fig. 4 Modeling error (MSE) of INNs and DNNs on test samples
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Baselines for Comparison: To conduct comparative analyses of
the performance of the INN-initialized optimization approach to
inverse design, we have created a suite of three baselines. The
first two are used with SQP and are defined as: (i) random initiali-
zation: we run 10 SQP optimizations with 10 different random
designs, each drawn from a random uniform distribution over the
design space. (ii) Inverse DNN (DNN-I) initialization: we run a
single SQP optimization with the initial point retrieved by executing
the trained inverse DNN-I model. These baselines are compared
with the outcomes of the SQP optimization initialized with a
single retrieved design given by the INN for each user query
case. The third baseline called prior sample set initialization,
which is implemented with PSO, uses the following initial popula-
tion: 10 designs are selected from the training sample set (used for
training the INN and DNNs) based on zero or the smallest constraint
violation with respect to the user query, which is combined with 50
random designs given by Sobol-sequence sampling used as default
in the chosen PSO algorithm [71] for every run of the PSO algo-
rithm. This baseline is compared with an INN-initialized PSO,
where 10/60 of the initial points are generated through the INN as
described in Sec. 3.4, and the remaining 50/60 initial points are gen-
erated randomly as in the above-stated baseline, both for every run
of the PSO algorithm with this initialization. The optimum designs
resulting from the baselines and the corresponding INN-initialized
optimizations are compared mainly in terms of the constraint viola-
tion (i.e., how well they satisfy the user query) and secondarily in
terms of mass (which is premised to matter only when comparing
feasible designs). All optimization runs are terminated at 300
(TMM-based) function evaluations.
SQP Optimization Results: Table 4 lists the SQP optimization

results for the two NRFR query cases. Figure 6 shows the constraint
violation of the initial designs generated using the INN and the other
baselines. From Fig. 6, it can be seen that both the INN and the

DNN-I predict better initial points in the periodic space as com-
pared to the aperiodic space. Their performances in retrieving
inverse designs are comparable and are in general better than
random initialization, as seen from Fig. 6. From Table 4, it is appar-
ent that in terms of feasibility of the final solutions, i.e., whether the
NRFR query is met or not, the proposed INN-initialized optimiza-
tion approach performs much better than the median performing
run of randomly initialized optimizations. For periodic structures,
the median random initialization fails to provide feasible solutions
in all cases, while the INN and DNN-I initialized optimizations
lead to feasible solutions in all cases. Moreover, at similar feasibility

Fig. 5 Transmissibility ratios showing the frequency response of the phononic structure’s vibrations as a representative
example of INN forward prediction on (a) periodic design and (b) aperiodic design

Table 4 SQP optimization results for the inverse design of the 1D phononic structure given NRFR query—single run each with INN
and DNN-I initializations, and best/median of 10 runs with random initialization

Periodic: final solution Aperiodic: final solution

NRFR query ωL to ωU (Hz) Optimization initializationa Constraint violation Mass (kg) Constraint violation Mass (kg)

4000–5500 Hz Random, besta 1 (infeasible) 735.9 2 (infeasible) 376.6
Random, medianb 3 (infeasible) 514.9 5 (infeasible) 181.3

INN 0 671.2 2 (infeasible) 370.9

DNN 0 921.8 2 (infeasible) 475.4
6500–8000 Hz Random, besta 0 566.2 3 (infeasible) 433.2

Random, medianb 4 (infeasible) 232.3 4 (infeasible) 367.1
INN 0 583.2 3 (infeasible) 246.9
DNN 0 691.14 3 (infeasible) 353.5

aRandom, best: the best results, sorted in terms of feasibility and then mass, out of the 10 optimization runs that use random initialization.
bRandom, median: the median results, sorted in terms of feasibility and then mass (among solutions with median feasibility), out of the 10 runs.

Fig. 6 Net constraint violation (i.e., number of resonant peaks in
the user-specified NRFR) of the solution used to initialize SQP
optimization
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performance, the INN initialized optimizations lead to smaller mass
values compared to those initialized by DNN-I, across all cases. In
the aperiodic case, the best of random initialization runs perform
better than the INN and DNN-I initialization in the 4.0–5.5 kHz
range; the relatively poorer performance of both INN and DNN-I
in aperiodic cases can be attributed to the poorer accuracy in retriev-
ing inverse designs, as discussed earlier in Sec. 4.1. Figure 7 shows
the convergence history of the SQP optimizations for the 6.5–
8.0 kHz constraint case to elucidate how the INN and DNN-I ini-
tializations help in the subsequent optimization performance, com-
pared to the median run of random initialization.
PSO Results: Table 5 summarizes the optimization results

obtained in the best and median performing runs out of the 10
runs of the PSO algorithm, respectively, with the baseline and the
INN initialization. Comparing the results of the best and median
performing runs shows that the PSO provides robust results (i.e.,
low variance) in this application. In this case, while INN provided
suitable initializations (with constraint violation of 0 or 1) in
some runs, in some of the other runs one of the random initial
points in the population was observed to have the lowest constraint
violation. As a result, the performance of INN initialization and the
baseline (with top training samples), both of which use 50/60
random initial points, are observed to be similar in terms of
finding feasible solutions. However, as seen from Table 5, INN ini-
tializations result in optimal solutions with lower mass values com-
pared to the baseline. It is also important to note that the PSO
approach performs substantially better than the SQP approach (irre-
spective of the initialization) in finding feasible solutions for aperi-
odic structures.

4.3 Periodic Versus Aperiodic Designs. As seen from the
results listed in Table 4 and convergence histories in Fig. 7, it is

easier to find feasible periodic structures (i.e., with no resonance
peaks) compared to feasible aperiodic structures, given the same
NRFR query. This observation is also evident from the frequency
response of the optimum designs obtained with INN-initialized
optimization—with the optimized periodic design showing a large
bandgap extending well beyond the queried NRFR range (Fig. 8),
while the aperiodic design just about satisfies the constraint
(Fig. 8). This is understandable given that bandgap formation in
elastic structures at the finite level is rooted in multiplicity effects
that require a large number of self-repeated cells, as described in
Ref. [73]. While aperiodic designs have no such unique vibration
transmission features, they are helpful in cases where the required
non-resonant range is not very wide.

Fig. 7 Convergence history of SQP optimizations with different initialization for the NRFR query of 6.5–8.0 kHz: (a) periodic
structure and (b) aperiodic structure

Table 5 PSO results (best/median of 10 runs) for the inverse design of the phononic structure given NRFR query

Periodic: final solution Aperiodic: final solution

Constraint
violation Mass

Constraint
violation Mass

NRFR query ωL to ωU (Hz) Optimization initialization Median Best Median Best Median Best Median Best

4000–5500 Hz Prior sample set 1.0000 0.0000 625.3415 679.0066 0.0000 0.0000 356.2176 349.9246
INN 1.0000 0.0000 530.4582 674.0474 0.0000 0.0000 365.1117 346.8808

6500–8000 Hz Prior sample set 0.0000 0.0000 640.6702 634.1198 0.0000 0.0000 559.2052 557.6745
INN 0.0000 0.0000 618.62902 611.4982 0.0000 0.0000 560.3241 534.2124

Fig. 8 INN-initialized SQP optimization results for the NRFR
query of 6.5–8.0 kHz: frequency response (TR versus freq.) of
the periodic and aperiodic designs
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On the other hand, by lieu of the flexibility inherent to the aperi-
odic structure, we are able to find aperiodic designs with signifi-
cantly smaller mass than their periodic counterparts as shown in
Table 5. While, in principle, the aperiodic structure space is a super-
set of the periodic structure space, better solutions are not always
found with the generalized aperiodic problem definition. This is
mainly because of the significantly increased computational cost
of both INN modeling and forward optimization of aperiodic struc-
tures, attributed to their higher-dimensional design space (30 versus
3 in our case studies). Note that, in this paper, both the periodic and
aperiodic cases were allowed similarly sized data set for INN train-
ing, and the same number of maximum function evaluations during
optimization, thus limiting the achievable performance with the
aperiodic case.

5 Concluding Remarks
In this paper, we studied the application of INNs as a nascent

machine learning tool to enable on-demand inverse design of pho-
nonic structures. The specific type of INN architecture exploited
here allows guaranteed invertibility, i.e., fInv(fFwd(x)) = x, with
the backward (inverse) mapping learned for free when the INN is
trained to perform forward prediction. For demonstration purposes,
a 1D phononic structure embodying drill pipes with annular rings
was considered, where the inverse design goal is to mitigate reso-
nance peaks in lateral vibrations, over user-queried (demanded) fre-
quency ranges. To further highlight the effectiveness of INN in
modeling large-sized design-feature spaces, we considered an ape-
riodic structure involving 30 design variables, in addition to the
typical periodic structure with a self-repeating ring pattern (involv-
ing three design variables). We employed the TMM, which is an
analytical approach to model the dynamic behavior of phononic
structures and locally resonant metamaterials, to compute the fre-
quency response of the set of designs used for training and testing
the INN models.
The INN model provides promising accuracy in forward and

inverse prediction, especially in comparison to corresponding
DNN models trained with similar settings. The inverse prediction
errors, with a median MSE of 0.07 over unseen normalized test
samples, while slightly higher than the forward prediction errors,
are acceptable—as later demonstrated through the INNs’ effective
usage in inverse design retrieval. In this first-of-its-kind application
of INN, we used the entire frequency response (represented by a
vector of transmissibility ratios) as the output to facilitate reduced
non-uniqueness of the inverse mapping. To directly model more
compact and pragmatic property specifications, e.g., specified band-
gaps, and allow additional conditions (e.g., mass), future work will
explore the concept of latent variables used in training the INN,
such that the quality of the inverse mapping is still preserved. How
the use of latent variables might affect the cost and stability of the
INN training process however remains an open question. For
example, in problems where the output-to-input mapping is non-
unique, we recommend the use of latent variables in the network
and MMD in the loss function, as opposed to directly using the
MSE in the reverse direction. Now while the latter could lead to
mode collapse and oscillations during training, the former often com-
promises the accuracy of the inverse predictions. Thus, better trade-
offs combining MMD and MSE in the reverse direction must be
explored in the future, especially for problems presenting
many-to-one X-Y data.
Our inverse design framework also integrates the INN model and

the inverse DNN model with forward optimization in a manner
where the INN (or the inverse DNN) can be used to instantaneously
retrieve an approximate inverse design solution given a frequency
response containing a queried non-resonant range. This initial
point is then used to start a SQP-based optimization process that
implements the user query as a constraint and minimizes the struc-
tural mass. Over two different NRFR specifications, we show that
INN provides effective initialization for the optimization process

especially for periodic structures, while the higher inverse prediction
errors in the case of aperiodic structures continue to pose barriers to
the search of feasible solutions. Moreover, INN performance is
found to be in general superior in terms of feasibility (i.e., the
absence of resonance peaks in the specified range) and mass com-
pared to optimized designs respectively generated with random ini-
tialization and the inverse DNN model. A second optimization
implementation based on PSO was found to provide even better
results (e.g., feasible solutions in all aperiodic structure cases),
when initialized with multiple designs generated via INN, applied
in reverse on the specified NRFR query with added noise. In these
inverse design retrieval contexts, note that every user query is not
guaranteed to have a feasible solution within the given problem
setup, a common issue in inverse retrieval. With such an infeasible
query, our INN is expected to predict a design that gives relatively
small violations of the queried property. Therefore, exploring new
techniques to identify feasible/infeasible queries is an important
direction of further research for the inverse design community.
Here, we have used a fairly straightforward optimization

approach, in order not to dilute the main contribution of this
paper, which lies in demonstrating the construction and use of
INN for inverse design retrieval. Nevertheless, in future, it would
be critical to explore more creative integration of INN and multi-
fidelity optimization, e.g., where the INN can also be both used
for forward evaluations (like a metamodel) during optimization,
and refined in situ for intermediate inverse retrieval as and when
needed—this would be to further accelerate the overall inverse
design process. In addition, while this paper presented initial
evidence of the effectiveness of INNs in the inverse design of
large-featured aperiodic structures, application to more complex
problems such as 2D and 3D aperiodic metamaterial systems (and
comparison with other emerging inverse modeling techniques
such as GANs) are needed to further elucidate the usability and lim-
itations of the INN-based approach.
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Appendix A: Maximum Mean Discrepancy in Invertible
Neural Network
The loss function over which INN is trained using the MMD term

to facilitate the accuracy of the reverse mapping. This MMD can be
expressed as

MMD(p(z)‖q(z)) = E p(z),p z′( ) k z, z′
( )[ ]

+ Eq(z),q z′( ) k z, z′
( )[ ]

− 2E p(z),q z′( ) k z, z′
( )[ ]

(A1)

where p(z) and q(z) are the two distributions to be compared, E
is the expectation operator, and k(z, z′) can be any universal
kernel. In this paper, we use the inverse multiquadratic kernel,
k(x, x′) = 1/(1 + ‖(x − x′)/h‖22).

Appendix B: Invertible Neural Network With Latent
Parameters and Maximum Mean Discrepancy Loss
Term
Effect of Varying λ on INN Performance: Here, we use the loss

function given by Eq. (6). To study the impact MMD has on the

4See Note 2.
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forward and inverse prediction errors of the INN, we trained the
INN using different values of λ on the periodic structure samples,
and the corresponding testing errors (MSE) on unseen 300
samples are presented in Fig. 9. In this case, we also use 10 latent
variables, and as the number of outputs is greater than the
number of inputs, we replicated the information in the input layer
to match the sum of output dimensions and 10 latent variables.
From the testing results, it can be seen that the error decreases
when λ is increased from 0.001 to 0.01, but then increases when
the value of λ is increased beyond 0.01. This variation might be
because the higher weightage of the inverse MMD loss overshad-
ows the direct forward loss function, and restricts the model to sub-
optimal configurations. On the other hand, having a low weight for
the MMD loss leads to the model being free to learn routines which
map out-of-domain inputs to outputs in the current domain, leading
to a loss in the inverse performance.

Appendix C: Identifying Training Data Set Size
Figure 10 shows the change in the forward and inverse prediction

accuracy of the INN, in terms of MSE, when the size of the training
data on periodic samples is varied. In all of these cases, the training
process is terminated at 30 iterations for time tractability and ease of
comparison. The accuracy of the trained INN is measured on a test
data set of 1000 samples. From Fig. 10, it can be observed that a
training data set of 5000 samples provides a reasonable balance

between accuracy and computational cost (the latter, as expected,
scales linearly with the number of samples).

Appendix D: Optimization Settings
Some of the high-level settings used in implementing the SQP

(under MATLAB’s in-built optimization toolbox) and PSO [71] in
this paper are given in Table 6. Remaining settings are kept at
their default values.
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