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Abstract

Biological neural networks learn complex behaviors from sparse, delayed feedback using
local synaptic plasticity, yet the mechanisms enabling structured credit assignment remain
elusive. In contrast, artificial recurrent networks solving similar tasks typically rely on bio-
logically implausible global learning rules or hand-crafted local updates. The space of local
plasticity rules capable of supporting learning from delayed reinforcement remains largely
unexplored. Here, we present a meta-learning framework that discovers local learning rules
for structured credit assignment in recurrent networks trained with sparse feedback. Our
approach interleaves local neo-Hebbian-like updates during task execution with an outer
loop that optimizes plasticity parameters via tangent-propagation through learning.
The resulting three-factor learning rules enable long-timescale credit assignment using only
local information and delayed rewards, offering new insights into biologically grounded
mechanisms for learning in recurrent circuits.

Keywords: reward-driven learning; plasticity; RNNs

1. Introduction

Learning in biological organisms involves changes in synaptic connections (synaptic plas-
ticity) between neurons (Bailey and Kandel, 1993; Mayford et al.; 2012). Synaptic changes
are believed to underlie memory formation and are essential for adaptive behaviour (Hop-
field, 1982). Experimental evidence suggests that synaptic changes depend on the co-
activation of pre- and postsynaptic activity (Bi and Poo, 1998; Sjostrom et al., 2001), and
possibly other local variables available at the synaptic site (Graupner and Brunel, 2012;
Pedrosa and Clopath, 2020). These unsupervised synaptic modifications have explained
activity-dependent circuit refinement during development such as the emergence of func-
tional properties like receptive field formation based on naturalistic input statistics (Martin
et al., 2000; Blais et al., 1997; Brito and Gerstner, 2016; Giitig et al., 2003; Law and Cooper,
1994).

Yet, most organisms routinely solve complex tasks that require feedback through ex-
plicit supervisory or reinforcement signals. These signals are believed to gate or modulate
plasticity, acting in the form of a third factor that scales and also possibly imposes the
direction of the required synaptic modifications (I<usmierz et al., 2017; Sosis and Rubin,
2024) to facilitate long-lasting alignment of representations to behaviourally relevant di-
mensions (Benezra et al., 2024). How error- or reward-related information is propagated
through the recurrent interactions is not yet clear. While prior work has largely focused
on hand-crafted synaptic updates for unsupervised neural circuit self-organization, or bi-
ologically plausible approximations of backpropagation (Miconi et al.; 2018), the space of
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Figure 1: Outline of the proposed meta-learning framework.

plasticity rules capable of supporting structured credit assignment from delayed feedback
remains vastly underexplored.

Backpropagation through time (BPTT), the standard approach for training recurrent
neural networks (RNNs), is biologically implausible since it requires symmetric forward and
backward connections and non-local information (Lillicrap et al., 2016; Guerguiev et al.,
2017). Although recent work has reformulated BPTT into more biologically plausible vari-
ants using random feedback (Lillicrap et al., 2016; Murray, 2019), truncated approxima-
tions, or by learning feedback pathways (Lindsey and Litwin-Kumar, 2020; Shervani-Tabar
and Rosenbaum, 2023), these methods require continuous error signals to refine recurrent
connections.

Here, we adopt a bottom-up approach: instead of imposing hand-designed synaptic
rules, we discover biologically plausible plasticity rules that support learning through de-
layed reinforcement signals via meta-optimisation (Schmidhuber et al., 1996). Building on
recent work (Confavreux et al.; 2023), we parameterise plasticity rules as functions of lo-
cal signals (presynaptic activity, postsynaptic activity, and synapse size) and meta-learn
their parameters within a second reinforcement learning loop. With that, our ongoing work
tackles the following questions:

e Which local learning rules can implement structured credit assignment
under biological constraints?

e Do different plasticity rules give rise to different representations and/or
dynamics?

Here we demonstrate that different forms of plasticity naturally lead to qualitatively differ-
ent learning trajectories and internal representations, akin to their gradient-based counter-
parts trained with different learning rules.
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2. Method

Network dynamics. We consider recurrent neural networks of firing rate neurons cou-
pled through a synaptic matrix W € RV*N (Sompolinsky et al., 1988; Baralk, 2017), with
additional input and output matrices Wi, € RV*Nim and Wy, € RY*Nout that route task-
relevant input into the recurrent circuit and read out network activation to generate task-
specific outputs (actions). The equations governing the network dynamics are

dx?

= X T W)+ W', 1 = 6(x)= tanh (x), (1)

where x* € RY is the vector of pre-activations (or input currents) to each neuron in the
network, ¢(-) : RN — RY denotes the single-neuron transfer functions, r’* € R is the
vector of instantaneous firing rates, u’ stands for the activity of the Nj, input neurons.
In the terms above, the -! superscript indicates time dependence. Network outputs z! are
obtained from linear read-out neurons as z‘ = Wyrt.

Sparse feedback and parametrized learning rules. We consider networks that learn
cognitive tasks using biologically plausible local learning rules, guided by sparse reinforce-
ment signals R provided only at the end of each training episode. Each synapse between a
pre-synaptic unit j and a post-synaptic unit ¢ maintains an eligibility trace e;; (Izhikevich,
2007), which integrates the history of (co-)activation during the episode. We define the
evolution of eligibility traces with differential equations of the form

det. et. i ! )
5 = Holrj @) — =+ = > bk ()" (@ —at) - =, (2)
€ 0<kii<d;

where 7, is a decay time-scale, Z; is a running average of the pre-activation of neuron i, and
011 € R are learnable coefficients. In contrast to eligibility traces based solely on first-order
correlations (Gerstner et al., 2018), we use here a polynomial expression that captures richer
interactions between pre- and post-synaptic activity. Each coefficient 6 ; can be construed
as a term-specific learning rate, which may be positive (Hebbian), negative (anti-Hebbian),
or zero. In our experiments, we set d = 5.

The recurrent weight matrix W gets updated at the end of each training episode ac-
cording to a reward-modulated learning rule

6 (AW(’L) | @) = MN (u@“), o2 IN,IN) with  [pe™];; = el (R(h) - R(h>) ,

(3)
where with MA (i, 3, V) we denote the matrix normal distribution with mean g € RV*N
and X and V the positive semi-definite matrices are the row- and column-variance, while
superscript h indicates episode index, 17 denotes the learning rate, ez;:g stands for the eligibil-
ity trace accumulated till the end of the h-th episode T}, while R, R stand for the obtained
and the expected reward. Here, we model reward expectations for each type of trial in-
dependently as a running average of past rewards for this trial type (Miconi, 2017). This
update rule enables credit assignment through the interaction between synaptic eligibility
and trial-specific reward prediction error, consistent with neo-Hebbian three-factor learning
rules hypothesized to operate in biological circuits (Gerstner et al., 2018).
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Meta-learning plasticity rules. While previous work has relied on hand-crafted eligibil-
ity trace dynamics and synaptic update rules to train recurrent neural networks with sparse
feedback (Miconi, 2017), we instead adopt a meta-learning approach to learn the parameters
of the plasticity rules. Our framework consists of two nested training loops: (i) an inner loop
in which the recurrent network is trained over several episodes using local learning rules and
sparse reinforcement signals provided at the end of each episode (bio-plausible training),
as described above; and an outer loop that optimizes the plasticity meta-parameters
e = {{Hk,l}zl:o} via gradient descent using tangent-propagation through learning
(forward-mode differentiation through learning) on a meta-loss computed over H training
episodes (trials) . This approach allows the learning rules themselves to
be adapted to the task, rather than be fixed a priori.

Tangent-propagation through learning. Our goal is to optimise the learning rule pa-
rameters ® to maximise task performance, quantified as the expected cumulative reward
(>, R) obtained after a fixed number of learning episodes. However, the reward R depends
on the network’s output, which is determined by synaptic weights W = {W,, W, W,; },
with W evolving under the update rule (Eq.3). Since weights depend on eligibility traces e;;,
themselves parameterised by ©, the reward depends on the plasticity parameters through
W and @©. Directly computing Vg (>, R) by backpropagating through the learning dynam-
ics is computationally prohibitive since learning requires several hundreds of trials (Lind-
sey and Litwin-Kumar, 2020). We therefore, here, adopt a REINFORCE-inspired esti-
mator (Williams, 1992), which involves computing the gradient of an expected value by
observing outcomes (the rewards) and scaling a measure of what elicited that outcome (the
weight updates) with the associated reward. Thus, we approximate the gradient of the
expected reward by

H H
VoD RMy~ (> Y RMvelogn(AW® @)~ (> Y (R"-RM) Velogn(AW™ | @),
h h h'=h+1 h h'=h+1
(4)

where R stands for the baseline reward, and thus (R—R) denotes the reward prediction error.
Introducing the expression of the plasticity rule, we have in a component-wise formulation
for each dimensional component of the plasticity parameters ©

5 -l H-1 H-1 / TR " " 3,u-(-h)
o () = (S o) LS5 (s i) 2 o

h=1 h=1 HK=h woi=1 j=1

where the expectation (-)g is considered over independent sessions S. This requires the com-
()

putation of the sensitivity of the mean weight update wrt to the plasticity parameters aﬂgzl

over training. To that end, we propagate the gradients of the within-trial pre-activations x’,

de € RN (state tangent), the pre-activation trace X, 1,0};,[ € RY (trace tangent), and

of the eligibility traces of each synaptic pair i7, efj, [z’;€ f]z‘j (eligibility tangent), as well as

inter-trial sensitivities of weight matrices (weight matrix tangent), Ulghg (c.f. Appendix

Sec. C).
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Appendix A. Plasticity gradient with REINFORCE approximation

Following the REINFORCE estimator (Williams, 1992), we approximate the gradient
of the expected reward by

Vo(R) = ((R— R) Vylogn(AW | 0)). (6)

This results from applying the log-derivative trick on the expectation of Eq. 6
Vo(R) = Vi /wmw 10) RAR

= /V@TF(AW | 0) RAR (Leibniz integral rule)

:/W(AW | O)WRdR

= /W(AW | ) Vologm(AW | ) RAR (log-derivative trick)
= (RVglogm(AW | 0)).

~ < (R—R) Vylogm(AW | 9)>'

IS |
reward prediction
error

In the last expression we have introduced the baseline reward R as a control variate (Lemicux,
2014) commonly used for variance reduction of the expectation. This heuristic uses the re-
ward prediction error §R = R — R as a scaling factor for the direction of the update.
This approximation assumes that R is a smooth functional of W and that changes in 6
affect R primarily through their effect on the connectivity W.
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Appendix B. Analysis of dynamics for each network

Numerical solver. We located fixed points by solving for G(x) = 0 with
G(x) = x — Wo(x) - Wi,

using a damped Newton method. To avoid identifying duplicate fixed points, we initialized
from 200 random initial conditions and discarded solutions within a distance of v < le —5
of one another. This resulted in a set of unique fixed points per input condition.

Jacobian definition. We linearized the dynamics at the vicinity of each fixed point x*.
The Jacobian is defined as

J(x*) = —Iy + Wdiag(1 — ¢*(x*)), (7)

and governs the local flow dx = J 0x.
Stability criteria. A fixed point is linearly stable if max R(A(J)) < 0.

Eigenmode analysis. From the eigenvalues and eigenvectors of J, we extracted several
diagnostics:

e Time constants and frequencies: Each mode with eigenvalue A = § + iw corre-
sponds to a decay time —% (if 5 < 0) and an oscillation frequency w/2m.

e Non-normality: Since the Jacobian eigenvectors are not orthogonal, small pertur-
bations can have large transient effects even if all eigenvalue real parts are nega-
tive. Thus, we quantified the departure from normality with the Henrici index
13112 = >=, |Ail? (Murphy and Miller, 2009; Asllani et al., 2018), which is indicative of

transient amplification, where || - || stands for the Frobenius norm.
e Transient gain: We measured max; |[e”?||2 on a grid of times ¢ (Christodoulou et al.,
2022; Asllani and Carletti, 2018), capturing the degree of short-term amplification

even when the dynamics are asymptotically stable.

¢ Readout alignment: We computed the overlap of the corresponding readout vec-
tor wout with the eigenvectors of J, to identify which eigenmodes directly influence
network output. For each mode i, we characterise the alignment by

a; = ||{(Wout, vi) ||, (8)

where v; are the normalized right eigenvectors of J. Large a; values indicate that the
corresponding ¢-th mode contributes strongly to the output. In strongly non-normal
systems we additionally verified projections using left—right biorthogonal eigenvectors.

e Susceptibility: We computed the linear response p = (—J)~ Wi, quantifying the
steady-state sensitivity of each neuron to perturbations in the input.
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Appendix C. Tangent-propagation through learning

Tangent-propagation through single trial time. To be able to compute the gradient
of the weight updates with respect to the plasticity parameters, we propagate the gradi-
ents of the within-trial pre-activations x?, XZ,Z e RN (state tangent), the pre-activation
trace X!, zb’,;,f € RY (trace tangent), and of the eligibility traces of each synaptic pair
gj, [Z};Azj (eligibility tangent). Thus we define the following within-trial tangents
(sensitivities) with respect to the plasticity parameter 6y ¢

ij, €

ox! , . Ox! . . Oel

t - 77 E D e = —
X”_%k,/ COr T Zj g Dore 9)

We assume that the reward and baseline reward R and R are not directly related to the
plasticity parameters 0}, ¢, and thus we treat these variables and the reward prediction error
as f-independent.

For convenience we define o = dt/7, and denote the derivative of the single neuron
activation function with d¢(z) = ¢'(x)dz. The forward equations for these sensitivity
parameters are

. h
Xi5t =Xk o= Xt + WO (ding(¢/(x") - xie) + U x')
'ﬁb]i;l = Qg "nblg,ﬁ + (1= az) X}i;l’

2t = af, +dt (Ax) @ (rf)" (10)

F ALY [0 A AR Wl — i) @ (1) + r (Ax) @ () (ding(9/(x1)) - x

Ky

where diag(y) denotes the matrix with y in the main diagonal, ® denotes the outer product,
while

(11)

stands for the inter-trial weight matrix tangent. The initial conditions for the three
sensitivity parameters are zero at the beginning of each trial x%z = 0, 'l,bg,e = 0, and

7z =0.
k0
At the end of each trial A we have
oph
901, = néR(h) Zz’le . (12)

Propagating sensitivities through-learning (across trials). The derivative of the
weights of trial A + 1 w.r.t. 0, accumulates the across trial sensitivities

h ny | O .
Ul = ul) + Sa  vith uy) =o. (13)

This sensitivity Ulghg couples back into the state tangent through the Ulghg r! term, which

captures how 0y, ¢ affects later trials through the modified weights of earlier trials.

t
%

) 9y
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C.1. Validation of weight updates gradients wrt plasticity parameters

To validate the gradients wrt plasticity parameters obtained through forward mode dif-
ferentiation, we compare both single-trial and multi-trial gradients (for H = 500 trials)
obtained with finite differences (FD) to those computed through forward mode differen-
tiation (FM). To avoid observing discrepancies between the two version of the gradients,
we employ the same noise and environment input in all simulations. For this experiment
we considered only 033 = 1 nonzero, while all other entires of ® were zero. For the finite
difference calculation, we run the training with 6+ ¢ and 0 — e for ¢ = 10~% and approximate
the gradient of the weight update with respect to the plasticity parameter as

dAW - AW (Qk,é +e)— AW~ (Hk,é —e€)
dek’g - 2¢e '

(14)

The resulting two version of the gradients are in very close agreement throught all 500 trials
(Fig. 2).
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Figure 2: Validation of forward-mode gradient (FM) computation for the weight
update wrt plasticity parameters f against numerical gradients (FD).
a. Comparison of numerical gradient for per-trial weight update AW wrt
plasticity parameter ¢33 against the gradient obtained through forward mode
differentiation for trials 1,250,500 . b. Comparison of cumulative gradient com-
puted over 500 trials for the weight update wrt plasticity parameters obtained
numerically and through forward mode differentiation. The forward-mode dif-
ferentiation provides an exact estimation of the plasticity update gradients. c.
Relative gradient error per trial computed as || 49W Fu — AW FDH /|| 4o W FDH
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