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ENHANCING SPIKING TRANSFORMERS WITH
BINARY ATTENTION MECHANISMS

Guobin Shen, Dongcheng Zhao, Sicheng Shen & Yi Zeng†
Brain-inspired Cognitive Intelligence Lab, Institute of Automation, CAS

ABSTRACT

Spiking Neural Networks (SNNs) are increasingly recognized as an efficient al-
ternative to traditional artificial neural networks. Recent advancements, particu-
larly the integration of SNNs with Transformer structures to create ’SpikFormer’,
have significantly enhanced the performance of SNNs. However, the current non-
spiking form of attention in SpikFormer poses risks of attention value explosion
and still results in high computational costs for SNNs. To address this issue, we
propose a novel binary attention mechanism. By introducing an attention shift
mechanism and adaptive thresholds for neurons, we have successfully binarized
the attention matrices in SpikFormer, leading to more efficient and sparser spiking
neural networks. Experiments on image and neuromorphic datasets demonstrate
that our approach maintains comparable performance to the original SpikFormer
while reducing computational costs.

1 INTRODUCTION

In recent years, Spiking Neural Networks (SNNs) (Maass, 1997) have emerged as a biologically-
inspired and energy-efficient alternative to traditional artificial neural networks, excelling in time-
sensitive and power-constrained applications such as image (Wu et al., 2018; Sengupta et al., 2019;
Duan et al., 2022; Shen et al., 2023a;b) and natural language processing Bal & Sengupta (2023);
Zhu et al. (2023). The advent of ’SpikFormer’ Zhou et al. (2022), which combines Transformer’s
attention mechanism with SNNs’ energy efficiency, has further enhanced their performance Zhou
et al. (2023); Che et al. (2023). However, SpikFormer’s reliance on non-spiking attention mecha-
nisms leads to potential attention value explosion and increased computational costs, contradicting
the low-power ethos of SNNs. Our research addresses this by introducing a novel binary attention
mechanism for SpikFormer, integrating an attention shift mechanism and adaptive neuron thresholds
to binarize attention matrices, resulting in a more efficient, sparser SNN that maintains the system’s
energy efficiency.

2 METHOD
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Figure 1: A. Illustration of SSABin. B. Attention values for different layers on CIFAR10.
In this section, we present our proposed binary attention mechanism for SpikFormer. The Spiking
Self-Attention (SSA) is the central component of the architecture. Given an input feature sequence
X ∈ RT×N×D, the SSA involves three key components: query (Q), key (K), and value (V ). These
components are computed from the input X using learnable linear matrices WQ,WK ,WV ∈ RD×D

as follows:
Q = SNQ(XWQ), K = SNK(XWK), V = SN V (XWV ) (1)

SSA(Q,K, V ) = SN out(
QKT

√
D

V ) (2)
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In Eq. 1 and 2, The SN (·) represents the sequence of spikes generated by the neuron when the input
is I = [I(0), I(1), . . . , I(T )]. I(t) is the input current at step t. In Eq. 2, QKT

√
D

first converts spikes
into floating-point numbers before multiplying with V . However, due to the lack of a Softmax
mechanism, the result of QKT can be quite large, especially after matrix multiplication with V .
This leads to excessively high input currents for SN out, for a detailed definition, please refer to
Appendix A.1. To address this issue, we propose a novel binary attention mechanism. By binarizing
the attention matrix, we transform the attention mechanism into a spiking form, reducing the risk of
high input currents to SN out and decreasing computational costs.

SSABin(Q,K, V ) = SN out(B(QKT ,∆)V − B(QKT ,∆)V ) (3)
B(x) = (x > ∆)⊙ κ (4)

In Eq. 3, SSABin(Q,K, V ) represents the binary spiking self-attention mechanism, where B de-
notes the binarization process applied to the product of QKT . The threshold ∆ is a hyperparam-
eter, determining the binarization cutoff. The term B(QKT ,∆)V − B(QKT ,∆)V represents the
computation after binarization, where the subtraction of the average value B(QKT ,∆)V serves to
normalize the binary attention output. Eq. 4 defines the binarization function B(x), which outputs κ
for values of x greater than the threshold ∆, and 0 otherwise. The operator ⊙ indicates element-wise
multiplication, as shown in Fig. 1.

3 EXPERIMENTS

We evaluate the efficacy of our proposed binary attention mechanism in SpikFormer through a se-
ries of experiments. These experiments are designed to test the performance of our binary spiking
self-attention mechanism (SSABin) in various settings, focusing on image recognition tasks. We
conduct extensive experiments on both traditional image datasets, CIFAR10/100 Krizhevsky et al.
(2009); Xu et al. (2015), as well as on neuromorphic datasets, DVS-CIFAR10 Li et al. (2017) and
N-CALTECH101 Orchard et al. (2015), which present more challenging and dynamic visual inputs.
We use both the SSA and the plain binary version (SSABin) as baselines for comparison. We further
examine the impact of introducing the attention shift mechanism, denoted as B(QKT ,∆)V , and the
adaptive threshold ∆ ̸= 0.

Table 1: Comparison of different attention mechanisms on image and neuromorphic datasets.

Method CIFAR10 CIFAR100 DVS-CIFAR10 NCALTECH101

Acc frattn frout Acc frattn frout Acc frattn frout Acc frattn frout

SSA 95.51 0.54 0.52 78.21 0.58 0.52 80.9 0.44 0.82 79.42 0.24 0.39
baseline 95.52 0.26 0.30 78.3 0.30 0.22 80.3 0.12 0.34 78.62 0.30 0.22
w/ shift 95.77 0.16 0.23 78.93 0.31 0.31 81.1 0.09 0.31 80.16 0.27 0.33
w/ mean 95.84 0.23 0.27 79.22 0.10 0.22 79.2 0.21 0.32 79.86 0.14 0.34
SSABin 95.77 0.08 0.08 79.25 0.10 0.09 81.2 0.17 0.26 80.23 0.13 0.30

Tab. 1 presents the performance metrics of our experiments. Across all datasets, it is evident that the
introduction of the attention shift and adaptive threshold significantly enhances the accuracy (Acc)
and reduces the firing rates (fr attn and fr output), which are indicative of computational cost, in
comparison to the SSA and SSABin plain baselines. Notably, SSABin with the adaptive threshold
achieves the best balance between accuracy and efficiency, demonstrating the effectiveness of our
binary attention mechanism in SpikFormer.

4 CONCLUSION

We have proposed a binary attention mechanism for SpikFormer, enhancing its efficiency and spar-
sity. Our evaluations on CIFAR10/100 and neuromorphic datasets confirm that our method main-
tains accuracy while reducing computational costs. The binary attention mechanism, with its at-
tention shift and adaptive threshold, addresses the limitations of traditional SNNs and demonstrates
the viability of energy-efficient, spike-based processing. This advancement marks a significant step
toward practical SNN applications and opens new avenues for optimizing neural computation.
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A APPENDIX

A.1 NEURON MODEL

The LIF neuron model is characterized by its membrane potential dynamics, which are governed by
a differential equation accounting for the leaky integration of synaptic currents. In our SpikFormer
architecture, the LIF model is discretized and implemented as follows:

u(t) = v(t− 1) +
1

τ
(I(t)− v(t− 1))

s(t) = g(u(t)− vth)

v(t) = u(t)(1− s(t)) + vresets(t)
(5)

In this model, u(t) represents the membrane potential at time t, v(t− 1) is the membrane potential
from the previous time step, and I(t) is the input current at time t. The term τ is the membrane time
constant that modulates the potential’s decay towards the resting potential in the absence of input.
The function g(·) is a Heaviside step function that outputs 1 if the membrane potential exceeds the
threshold vth, causing the neuron to spike, and 0 otherwise. After a spike is emitted (s(t) = 1), the
membrane potential v(t) is reset to vreset, a lower value representing the hyperpolarized state of the
neuron post-firing. This reset mechanism introduces a refractory period during which the neuron
is less likely to fire. The LIF neuron thus captures the essential spiking behavior of biological
neurons, allowing our SpikFormer to process information in a temporally dynamic and energy-
efficient manner.

During the training of our SpikFormer model, we encounter non-differentiable components in the
form of the spiking function g and the binary threshold function B. To facilitate gradient-based
optimization, we use surrogate gradient functions for both. Specifically, we employ the Sigmoid
function as the surrogate for the spiking function’s gradient. The Sigmoid function, defined as
σ(x) = 1

1+e−x , is smooth and differentiable, with its gradient given by:

g′(x) = σ(αx)(1− σ(αx)) =
1

1 + e−αx

(
1− 1

1 + e−αx

)
. (6)

As in Eq. 6, α is used to control the width of the approximation function, and in the experimental
section, we use the same hyperparameters as in Zhou et al. (2022), α = 4.

For the binary attention mechanism, where the threshold function B(x) is applied, we approximate
its derivative using the gradient of the Softmax function. The Softmax function for a vector x and
its i-th component is defined as Softmax(x)i = exi∑

j exj , and its gradient with respect to an input xi

can be written as:

dB(x)
dxi

= Softmax(x)i(1− Softmax(x)i) =
exi∑
j e

xj

(
1− exi∑

j e
xj

)
. (7)
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These surrogate gradients are continuous and differentiable, allowing us to apply standard backprop-
agation techniques for training the SpikFormer network. By using these approximations, we can
effectively compute gradients across the otherwise non-differentiable spiking and threshold func-
tions, facilitating the network’s ability to learn from data while retaining the computational benefits
of spiking models.

A.2 HYPERPARAMETER SETTINGS

In our experiments we use the commonly used SpikFormer model Spikformer-4-384 (Zhou et al.,
2022). For training, we set the batch size to 128 to balance computational efficiency and convergence
stability. The membrane time constant (τ ) was determined to be 2, dictating the leakage rate of the
LIF neuron model. The spike intensity κ is set to 1. Following a spike, the membrane potential
resets to vreset, which was set to 0. The attention shift scaling factor ∆ was computed using a
running average during training, and was held constant during testing. The total number of training
epochs was set to 400 to ensure ample learning without overfitting. For the static image dataset, the
simulation step was set to T = 4, while for the neuromorphic dataset, the simulation step was set to
T = 16.

Let V be the running average of B(QKT ,∆)V . After each batch, we update V using the momentum
µ as follows:

V new = µ · V old + (1− µ) · B(QKT ,∆)V (8)

where µ is the momentum term, set to 0.99 in our experiments. This running average is computed
during the training process and is fixed during the testing phase.

We employ a direct encoding strategy (Wu et al., 2019) where the first layer of the network functions
as the encoding layer. This method has been deliberately chosen for its ability to preserve accuracy
while significantly reducing the simulation length, a crucial factor in enhancing the computational
efficiency of our spiking neural network. The encoding layer receives external stimuli and converts
them into a steady stream of input currents. By doing so, it not only maintains a consistent input
format but also ensures compatibility with various data formats. This approach facilitates seamless
integration of the same network architecture with different data representations, allowing our model
to be versatile and applicable to a wide range of tasks without the need for structural adjustments.
This encoding method is widely used in SNNs. This encoding method is widely used in SNNs (Zhou
et al., 2022; Shen et al., 2022; 2023a; Wu et al., 2018; Duan et al., 2022; Zhu et al., 2023; Zhou et al.,
2023; Che et al., 2023).

A.3 COMPUTATIONAL COST ANALYSIS

We present an analysis of the synaptic operations (SOPs) and energy consumption for our proposed
binary attention mechanism in the SpikFormer model. Synaptic operations (SOPs) (Zhou et al.,
2022; Indiveri et al., 2015) are indicative of the computational load placed on the network during
inference and are directly related to the energy efficiency of the model.

The Synaptic Operations (SOPs) are calculated by counting the number of operations required dur-
ing the forward pass of the network, as defined in Equation 9, where fr represents the average firing
rate of the network and T represents the number of simulation time steps. FLOPs are the network’s
floating-point operations. This metric serves as a proxy for the computational complexity and poten-
tial energy usage of the network. Table 2 displays the SOPs for different datasets and configurations
of our SpikFormer model. As shown, our proposed SSA Bin mechanism consistently requires fewer
SOPs across all datasets compared to the baseline and other variants, illustrating the computational
savings achieved by our approach.

SOPs = fr × T × FLOPs (9)

Assuming a linear relationship between SOPs and energy usage, energy consumption is estimated
based on the number of SOPs. Following the methodology of (Zhou et al., 2022; Indiveri et al.,
2015; Hu et al., 2021), the energy cost per SOP is approximated to be 77 fJ. The energy values,
expressed in millijoules (mJ), are summarized in Table 2. These values confirm the efficiency of the
SSABin model, which exhibits lower energy consumption across all datasets, thereby validating
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the effectiveness of our binary attention mechanism in reducing the overall energy footprint of the
SpikFormer architecture.

Table 2: Synaptic operations (SOPs) and energy consumption for different configurations of the
SpikFormer model across various datasets.

SOP (G)

Dataset CIFAR10 CIFAR100 DVS-CIFAR10 NCALTECH101

SSA 1.29 1.32 5.73 5.91
baseline 0.78 0.83 3.76 3.94
w / shift 0.69 0.82 3.17 3.76
w / mean 0.64 0.71 3.64 3.27
SSABin 0.51 0.54 3.22 3.16

Energy (mJ)

SSA 0.099334 0.101 0.441 0.455
baseline 0.060 0.064 0.289 0.303
w / shift 0.053 0.063 0.244 0.289
w / mean 0.049 0.055 0.280 0.252
SSABin 0.039 0.041 0.248 0.243

The reduction in SOPs and energy consumption demonstrates the practical benefits of our binary
attention mechanism, addressing the reviewer’s concern and highlighting our contribution towards
creating more efficient Spiking Neural Networks.

A.4 DATASET

Here, we outline the datasets utilized in our experiments to evaluate the performance of the proposed
binary attention mechanism in SpikFormer. The datasets include:

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009; Xu et al., 2015) CIFAR10 and CIFAR100 are
widely-used image datasets consisting of 60,000 color images categorized into 10 and 100 classes,
respectively. Each image is 32 × 32 pixels in size. These datasets are benchmarks for image clas-
sification tasks and allow for the assessment of the model’s performance in terms of accuracy and
efficiency.

DVS-CIFAR10 (Li et al., 2017) The DVS-CIFAR10 dataset is a neuromorphic dataset derived
from the CIFAR10 dataset. It is generated using a Dynamic Vision Sensor (DVS), which captures
pixel changes in the form of events or ’spikes’. This dataset is particularly suited for temporally-
sensitive models and evaluates the SpikFormer’s ability to process spatio-temporal data.

N-CALTECH101 (Orchard et al., 2015) N-CALTECH101 is another neuromorphic dataset,
which is a spiking version of the well-known CALTECH101 dataset (Fei-Fei et al., 2004). It con-
tains spike events captured by a DVS camera from the original CALTECH101 images. This dataset
challenges the model’s capability to handle more complex and varied visual patterns in a spike-based
processing framework.
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