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Abstract: This paper presents a teleoperation framework designed for online
learning and adaptation of tactile skills, which provides an intuitive interface with-
out the need for physical access to an execution robot. The proposed tele-teaching
approach utilizes periodical Dynamical Movement Primitives (DMP) and Recur-
sive Least Square (RLS) for generating tactile skills. An autonomy allocation
strategy, guided by learning confidence and operator intention, ensures a smooth
transition from human demonstration to autonomous robot operation. Our experi-
mental results with two 7 Degree of Freedom (DoF) Franka Panda robots demon-
strate that the tele-teaching framework facilitates online motion and force learning
and adaptation within a few iterations.

Keywords: Learning from Demonstration, Online Adaptation, Tactile Skill, tele-
operation, Autonomy Allocation

1 Introduction

As robots become increasingly integrated into daily activities such as supporting household chores
and elderly care [1], the complexity of their tasks continues to grow. Learning from Demonstration
(LfD) [2] has emerged as an efficient method to directly transfer expert skills to the robot, thereby
reducing the time required for self-learning [3]. Several approaches, including first-order Dynamical
Systems [4], Gaussian Mixture Model [5], and Dynamical Movement Primitives (DMP) [6, 7, 8]
have been employed to encode the motion skills. However, motion skills alone are insufficient for
complex tasks involving rich contact with the environment. Therefore, the incorporation of force
skills is also essential. In [9], a modulation term is added to DMP to enable environment interaction.
A force profile is encoded in attractor trajectory though admittance relationship in [10]. An explicit
force profile is learned in the format of DMP separately from motion [11]. Robots gain the tactile
skill to handle complex tasks by combining motion and force profiles.

A recent review on LfD [12] categorizes the demonstration method into three types: 1) Kinesthetic
teaching, 2) Teleoperation, and 3) Passive observation. The passive observation method faces chal-
lenges when humans cannot access the robot because replicating the robot’s environment is com-
plicated. Kinesthetic teaching refers to a mode in which the robot is physically guided through a
task by human operators through direct interaction. Although the kinesthetic teaching provides a
user-friendly interface, distinguishing between human guiding and interaction forces with the en-
vironment involves complex algorithms. Consequently, force profiles must be taught separately
through teleoperation in [11]. LfD via teleoperation enables the experts to transfer skills to a robot
that is not easily accessible. By utilizing the tactile sensors of the operator’s device [13], the external
force in kinesthetic teaching is now divided into the operator-applied force and the environment’s
interaction force, simplifying the process of learning tactile skills.

A typical teleoperation system consists of a remote station where a robot executes the tasks and a
human operator station with an input interface to control the remote robot. These input interfaces
vary from a simple Mouse-Keyboard (MK) configuration [14] to intricate Avatar systems showcased
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Table 1: Summary of related work

Motion Force Simultaneous Online Remote
Method . - . . .

learning learning learning adaptation  teaching
IPFS-KTHI[11] v v X X X
PAPM]25] v X X v X
FACT-DS[26] X v X v X
RASHIL-RTSM]27] v X X X v
Ours v v v v v

in the ANA XPRIZE Competition [15]. A commonly used input interface is haptic devices, allowing
experts to teach haptic guidance references [16] or contact-rich tasks [10, 17]. However, due to the
morphological differences between the haptic device and the execution robot, demonstrations using
the haptic device are not very intuitive [18].

In this paper, we design a teleoperation framework that consists of two identical robot arms. One
is located in the workspace to execute the tasks after learning them; the other one interacts with
the human operator to demonstrate the tactile skill and allow the human operator to feel the remote
environment. Our framework with two identical robot arms merges the intuitiveness of kinesthetic
teaching with the capability for force learning to address the problem mentioned earlier in teleoper-
ation. The goal is to learn and adapt periodic tactile skills, encompassing motion and force profiles,
from remote human demonstrations without interrupting skill execution. Compared to the traditional
Leader-Follower teleoperation architecture, the leading role transits between the two robots accord-
ing to the designed autonomy level allocation. During the teaching phase, the human side takes the
lead, and once teaching is complete, the robot in the workspace resumes the leading role and exe-
cutes the tactile skill autonomously. This role-switching mechanism is known as shared autonomy
[19]. The autonomy level allocation relies on metrics such as human intention[20], human ability
[21, 22], or confidence in the learned skills [23]. In our work, autonomy allocation depends on the
user’s intention and confidence in skill learning. Another benefit of autonomy allocation is that our
framework allows humans to intervene and adjust the learned skill online. Typically, adapting to
new skills occurs offline and needs an additional operation to reset the robot [24].

The contributions of this work are as follows:

* A tele-teaching framework that enables a manipulator to simultaneously learn force and
motion profile, thereby acquiring tactile skill from a remote demonstration.

* A mechanism for online learning and adaptation of tactile skills without interruption
through the proposed framework.

* The autonomy allocation based on operator intention and skill learning confidence provides
intuitive interaction between operator and robot.

2 Related Work

The main differences between our work and other methods are listed in Table 1. The IPFS-KTHI
method[11] teaches motion and force profiles separately. Motion profiles are taught through Kines-
thetic teaching, and the force profile is taught through a haptic device, which could lead to a lack of
synchronization between motion and force. The RASHIL-RTSM approach[27] integrates a human
sensorimotor system into the robot control loop through a teleoperation setup for remote teaching.
Inspired by this framework, we use a Teacher Robot instead of the human sensorimotor system
for remote teaching. The method most closely related to our periodic motion learning module is
PAPM][25], which focuses only on tactile skills that involve constant contact force rather than learn-
ing force profiles through demonstration. Additionally, we expand the autonomy allocation strategy
from PAPM, initially designed for motion adaptation in a single robot manipulator, to facilitate si-
multaneous motion and force adaptation within our teleoperation framework. For learning about
contact forces, FACT-DS [26] is the closest related work. It aims to develop a compensation model
that corrects force errors caused by non-flat surfaces. Unlike FACT-DS, where force profiles are
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Figure 1: Architecture block diagram for tele-teaching of tactile skill.

position-dependent to adjust for these irregularities, in our work, force profiles are time-dependent,
which allows for learning the forces shown by the user.

The primary innovation of our framework, distinguishing it from existing methods, is the simulta-
neous learning and adaptation of motion and force profiles—essential for tactile skills. This feature
leverages the capabilities of our teleoperation framework, which can distinguish human guiding
forces from external forces exerted on the robot without an additional force-torque sensor.

3 Methodology

3.1 Robot control in tele-teaching

The tele-teaching system consists of two identical robots to enhance the intuitiveness. The Teacher
Robot (TR) is positioned at the human operator side, allowing humans to demonstrate tactile skills
while feeling the tactile feedback of the remote environment. Conversely, the Student Robot (SR)
is located remotely to execute the learned tactile skill. The control architecture described below
illustrates how the Teacher Robot (7R) and Student Robot (SR) interact in terms of motion and
forces to implement this tele-teaching system.

The sensory data of the robot systems including position &, x;, measured external force f}, ¢, feat,s
and the calculated autonomy level n are exchanged through the communication channel and utilized
within the controller (Figure 1). The dynamics of a gravity-compensated 7R is written as,

Mc,t(qt)fét + Cc,t(Qm Qt)fbt = Nuy + .fh’t7 (l)

where M.; € R™*" and the C.; € R™ " are the inertia and Coriolis/centrifugal matrices of
the TR represented in task space with n dimensions, respectively. ; € R™ is the TR end-effector
position represented in the task space. f,, € R" is the force applied by/to the human operator
during the interaction with 7R . u; € R" is the control command generated by the 7R controller,
and 7 € [0,1] is the autonomy level that acts as an activation parameter to the controller. A PD+
controller is employed on 7R to track the position of SR and provide the haptic feedback,

u; = K& + Dy, 2)

where K; € R"*™ and D; € R™*"™ represent the stiffness and the damping matrices, respectively.
Ty = x4 — T denotes the trajectory following error between the TR and the desired trajectory
x4, € R"™, which is transmitted from SR .

On the SR side, similar dynamics with gravity compensation are written as,

MC,S(qs)iS + CC,S(qs7 qs) =Uus + .fext,s? (3)

where M. s € R"*™ and the C. s € R™*™ are the inertia and Coriolis/centrifugal matrices of the
SR represented in task space, respectively. us € R™ denote the control command to SR :

Us = NUyfic,s + (1 - n)ut,s 4



where the u,f;c s is the unified force/impedance control [28] to follow the reference tactile skill:

Uy fic,s = Um,s + Uf s, (5)

The control command u., s is the impedance controller for tracking motion profile,

Um,s = Mc,s-’iref,s + Cc,s:bref,s + Ks-’is + DsLms (6)

5

where s = T,cf,s — X, is the tracking error and K, € R"*" and D, € R™*" are the impedance
matrices. Moreover, u ¢ ; is a PID controller for force tracking with feed-forward term,

S / Fudt +kaf, ™

where f s = Jrep,s — feur,s represents the tracking error for force. The passivity of the controller
can be ensured by designing an energy tank[29], which provides an “energy budget” and releases
energy for the execution of non-passive control actions by modifying the control command.

The control force u; , for the SR is designed to track the TR through both position and force chan-
nels, i.e.,
Ut,.s = Kt,s(wd,s - ws) + Dt,s((bd,s - ws) + fd’sv . (8)

Notably, for simplicity, only the translational dimensions are considered for the task space coordi-
nate, i.e., n = 3. The orientation is constrained by high impedance, and the null space of the robot
is controlled to maintain a specific joint configuration with best-effort in a compliant manner while
ensuring task execution [30].

3.2 Tactile skill generation

The generated reference tactile skill comprises both motion and force profiles. For the reference
motion profile, a periodic DMP formalism is adopted to generate the reference motion [7]:
djre fys

:iref,s = QQ(O‘x(Bw(mg - wTef,S) - T) + Ar’m(s)) (9)

where o, and 3, are constants, along with the anchor point £, € R". Note that the force profile
is not encoded by the DMP in Eq. 9 due to irreducible noise in the force reference signal fe,: s
from the sensor. Derivatives of the force signal, f'ewt,s and fewt’s, will be too noisy to be effectively
encoded with DMPs. To ensure synchronization across different dimensions, the basic frequency of
the generated tactile skill is determined as the minimum frequency value among all the dimensions.

Q = min{w1 m,wWa,m, - - - s Wnm} (10)

The change rate of the canonical phase is the learned frequency, i.e., § = 2. Additionally, ~,, is a
linear combination of N Radial Basis Functions (RBFs) as following,

S, Wimti(s)
m(s) =r==f—"7-", (11)
TSN )
¥;(s) = exp (h(cos(s —¢;) —1)),1=1,2,--- | N, (12)

where, c; represents the center of RBF, h denotes the width, and r is the amplitude modulation
parameter which is set to 1. Each vector w; ,,, € R™ of the weights matrix w,,, € R™*N is updated
with the Recursive Least Square (RLS) algorithm [31]:

Wim(t+1) =w; n(t) + Pidiag(oim(t + 1)) er i m(t), (13)

where o, € R" is the vector of inverse covariance associated to the weights w; ,,,. Each element
of o, is updated as

1 P, ..(1)?
Pjimt+1)=——|Pjim(t) — )\JA : (14)
‘ Afg o+ Piim(t)




Afg is the forgetting factor affecting the convergence speed. The initial value of Pj; n,(0) is set to 1
to avoid getting stuck at zero.

The goal of RLS is to minimize the error e,.; ,,, which is defined as,
erim(t) = (1= 1) (Ym,alt) — Wim). (15)

Notably, the term (1 — 7)) ensures the error is set to zero when the SR executes autonomously, thus
preventing updates of the weight matrix. The target is defined differently for motion and force. The
motion profile is generated using DMP, and the target is defined as

Vam = g5 — Oa(Bulry — ) = ), (16)
Note that the subscript —,, employed in the previous equations denotes their applicability to motion
profile generation. For the force profile, due to the high noise of the first and second-order derivative
of the measured force signal, the measured external force is directly assigned as the target value,

Vd,f = fewt,s- (17)

Substituting the subscript —,, with —; in the above equations (excluding equation (9)), such that
they are valid for force profile generation, the reference force profile is given as f,.; ; = y.

3.3 Autonomy allocation

Autonomy allocation enables seamless transitions between human intervention and robot autonomy
by assessing two factors: whether a skill has been successfully learned, and whether the user intends
to end the current demonstration or start a new one. If the system determines that the skill has been
learned and no new demonstrations are intended, it transitions to robot autonomy. Conversely, if
the skill learning is incomplete or a new demonstration is indicated, the system reverts to human
intervention mode. The autonomy level 77 € [0, 1] on the SR side indicates whether the human or the
robot is leading during the learning phase. At 7 = 0, the TR complies with the human’s motion, and
the SR is compliant to follow the motion of TR . Throughout the learning and adaptation process, 1
gradually smoothly changes the role of the robot system from compliantly following the human to
following the generated reference tactile skill. After the skill learning and adaptation, the 7 increases
to 1, indicating the learning process ends and the robot system becomes autonomous until the next
human intervention. This autonomy allocation also indicates the role changing between leader and
follower in teleoperation system, as disscussed in Appendix 6.2.1

The rate of change of the autonomy level is defined as,
max{n,,0}, n=0
=90 0<n<l1 (18)
min{nT70}7 77 = 1a

with
e = (ZH) (1= 1, — 1), (19)
where I}, is a value that increases during human intervention for learning a new skill and given by,
| £as I\
Iy = ——— 20
h ( " ) (20)

with appropriate constant \;. This way, by applying external force from the human demonstrator,
the level of autonomy decreases to comply with the human. Moreover,

A=) len N (laIN*, (1AL
IS()\2>+( /\3>+<)\4>, 21
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Figure 2: Block diagram of the Tactile Skill Learning & Adaptation. The motion and force profiles follow the
same procedure. The force profile does not utilize the DMP due to the noise associated with its derivative.

which indicates the confidence of the SR in learning the tactile skill. Here, the || e, || denotes
the error vector, which will be introduced in the next section. During the learning phase, and as the
motion tracking error &, and force tracking error fs gradually goes below a certain threshold A3 and
A4, the value of I decreases. This way, the confidence in learning increases, and thus, the autonomy
level increases. To prevent getting stuck at zero, a small parameter e is introduced in (19), while p
acts as a scaling parameter. A tuning guidance is provided in the Appendix 6.1.1

3.4 Adaptive frequency oscillators

Adaptive frequency oscillators are tasked with identifying the basic frequency {2 of a demonstrated
periodic skill in real time. During the learning and adaptation of a periodic tactile skill, the motion
and the force undergo the same procedure, as illustrated in Figure 2. A generalized state p represents
both motion and force state. In the following equations, the subscript —,, stands for motion profile,
and the state p,,, = xs. To adapt the frequency oscillators for the force profile, we need to replace
the subscript with — ¢ and go through the following formula again, and the state willbe py = feu¢,s.

Following the same approach proposed in [32], the frequency oscillator is adapted by,

0,, = Wy, — (1 =) vm B, sin(0,,) , (22)
W =—1 =) WmEmsin(Oy,)), (23)
Em = diag(pm - ﬁm) ) (24)

where 6,,, € R" is the vector of the corresponding phase, w,, € R™ is the vector of frequencies,
from which the basic frequency 2 is acquired as Equation (10) (the basic frequency 2 is the mini-
mum), v, € R is the coupling strength and E,,, € R™*" is a diagonal matrix considering the error
between the input signal p,, and the estimation of the signal p,,,. The initial values of w,,, and 8,,
are set to a small value to avoid being stuck at zero.

Note that the bigger the coupling strength v, the faster the adaptive frequency oscillator converges
[31], but the more unstable when w is closer to zero. The learning rate p,, also impacts the con-
vergence speed and algorithmic stability. A detailed sensitivity analysis of coupling strength and
learning rate and the tuning strategy is provided in Appendix 6.1.2.

The :th element of the estimation p,,, is computed as
M
Piom = (i km c08(kb; ) + Biem S (Kb; 1)), i = 1,2, ...,m, (25)
k=0
where M denotes the number of Fourier components. The amplitudes ; x pm, , Bi.k,m are updated
as follows,

Qi km (1 =n) pm cos(kb;m) € m

: = . ' ’ (26)
ﬁi,k,m (1 - 77) Hm Sln(kei,m) €im

As the frequency (2 is the denominator in the DMP expression in Eq. 9 and 16, thus we set a lower

bound to the frequency in the experiment for safety.



Figure 3: Experimental tele-teaching setup consists of two identical 7DOF robot arms. One robot executes a
tactile skill, and the other robot is used to demonstrate or modify the skill over a teleoperation framework.
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Figure 4: Experimental results of the proposed tele-teaching framework. A human operator demonstrates and
modifies different periodic tactile skills to the SR through TR . a) and b) SR’s end-effector position s and DMP
reference trajectory ..y, s, c) The contact force of SR fe.+,s and reference force fr.y,s, d) Basic frequency of
motion wy, wy and of force w. and e) Autonomy level 7. f) to j) The final encoded DMP trajectories on the XY
plane for every learning cycle. The results show that the SR can quickly learn and adapt the tactile skill.

4 Experiments and Results

4.1 Experiment setup

The experimental setup consists of two 7 Degrees of Freedom (DoF) Franka Panda robots [33], as
depicted in Figure 3. A sponge is fixed to the end-effector of the SR to interact with the table surface.
The operator interacts with TR directly by grasping the robot end-effector. The data between TR and
SR is transmitted through User Datagram Protocol (UDP) with negligible communication delay.
The user demonstrates tactile skills on the TR, including motion on the XY plane and force in the Z
direction. A series of different tactile skills is performed continuously to illustrate the simultaneous
motion and force learning and adaptation capability of our tele-teaching framework. The values of
the parameters used in the experiment can be found in Appendix 6.1.



4.2 [Experiment procedure and results

The experiment encompasses the demonstration of five periodic tactile skills denoted as Sy, - - - , S5
with planar XY motion and contact force in the Z direction. Specifically, the skills contain,

» Si: aclockwise circular motion with a large changing contact force,

* Sy: a counter-clockwise circular motion with a small changing contact force,
* S3: alinear motion with forceful push and gentle pull,

* S4: an oo shape along the Y axis with reduced interaction force

* Ss: an oo shape along the X axis with increased interaction force

The outcomes of the demonstrated tasks are depicted in Figure 4. We start the first demonstration
of the S; at around ¢t = 16s. After five iterations (around ¢ = 26s) of repetition, the reference
tactile skill converges to the user’s demonstration, which suggests higher confidence in learning.
Meanwhile, the basic frequency of the motion and force converge at the same value, around ) =
2.4rad/s. The convergence of the signal shape and frequency increases the autonomy level. The
operator can feel that the robot becomes less compliant, indicating the acquisition of the new skill.
After two more iterations at ¢ = 33s, SR gains full autonomy and continuously reproduce the learned
tactile skill. At around ¢ = 41s, the operator initiates modifications to the previous skill, increasing
the external force fj,+ on TR, and the tracking errors make 7 drop quickly. Thus, it returns to
the human demonstration mode and starts a new learning cycle. This process repeats for skills
So, -+, Ss, respectively. 2

Overall, it takes around six iterations (16s) to learn skill S; and S with a minimal frequency at
around 2.4rad/s, three iterations (6s) for S5 with 1.0rad/s, and six iterations (23s) for Sy and
Ss with 1.5rad/s and 1.3rad/s. Notably, the frequency of 1.0rad/s in S3 does not represent the
actual frequency of the linear skill but rather the predefined minimal allowable frequency to prevent
significant changes in DMP acceleration, as implicitly depicted in Eq. 16.

In summary, the proposed tele-teaching framework realizes online learning and adaptation of dif-
ferent tactile skills in only a few demonstration shots. The successful learning of the above five
tactile skills, which differ spatially and temporally, verifies the proposed approach’s effectiveness
in simultaneous motion and force learning, online adaptation and remote teaching listed in Table
1. Furthermore, the autonomy allocation module obviates the need for robot resets between tactile
skills, enabling seamless transitions between robot autonomy and human demonstration. This mod-
ule empowers human operators to take over the control as needed, augmenting safety and reliability.

5 Conclusion and Future Work

This work develops a tele-teaching framework to enable real-time learning and adaptation of tactile
skills from remote demonstration. Tactile skills demonstrated through the Teacher Robot are seam-
lessly transferred online to the Student Robot located remotely. Our approach distinctively integrates
motion and force into a single cohesive tactile skill.The tele-teaching framework demonstrates re-
markable speed and efficiency in adapting to new tactile skills. The adaptation occurs smoothly
within just a few iterations. The autonomy allocation is based on the learning confidence and the
operator’s intentions. This strategy not only ensures smooth transitions between human demonstra-
tion and autonomous robot execution but also empowers the user to dictate the cessation or initiation
of teaching phases.

We currently focus on simple periodic tactile skills with only translational motions and forces. Since
the motion component is represented by Dynamic Movement Primitives (DMPs), the limitations as-
sociated with periodic DMPs are also applicable to our framework. Future works include exploring
complex tactile skills that involve changes in orientation, potential stability issues led by communi-
cation delays, and expanding into deeper human-robot collaboration such as rehabilitation tasks.

’The experiment video is available at https://youtu.be/LYnUJ0cYJIgs


https://youtu.be/LYnUJ0cYJgs
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6 Appendix

6.1

Guidance for parameter tuning

In the table 2, we list all the parameters and their values and range used during the experiment.
Note that we dynamically adjust the parameters within a specific range. In the table 3, we explain
the effects of the key parameters for every module in our system, including autonomy allocation,
adaptive frequency oscillators(AFO), and recursive least squares(RLS).
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Table 2: Parameter values and ranges used during the experiment.

Param Value Param | Value || Param Value Param | Value
A1 25 A2 0.04 A3 0.06 A4 5
VUm [10,100] vy 2 L, [0.02,0.8] I [1,10]
N 50 M 1 Atg [0.99, 0.9996] p 0.8
@, 20 Be 5 € 0.01 h L

Table 3: Summary of the key parameters

Module Parameter Feature

Autonomy Allocation A1 Sensitivity to new demo
A2,3.4 Tolerance for learning error
p Smoothness of the transitions

Coupling strength:

convergence speed and stability

Learning rate:

Hom. f convergence speed and stability
Number of Fouriers:

Adaptive Frequency Oscillators

M complexity of the skill
. Number of RBFs:
Recursive Least Square N complexity of the skill
A\ Forgetting factor: how sensitive to
fa new coming data

6.1.1 Autonomy allocation

The autonomy allocation module in our framework acts as a mechanism that is both aware of learn-
ing confidence and responsive to user intentions, employing heuristic methods. The assessment
of whether a skill has been successfully learned depends on various factors, including learning er-
rors related to motion, force, and frequency, as well as the external force applied to the Teaching
Robot, which indicates user intentions, such as initiating a new demonstration. Parameters within
the autonomy allocation module are configured to set thresholds based on these criteria.

Given that variations in sensor and robot hardware can affect performance, it is essential to ad-
just these thresholds to align with the system’s specific characteristics. To assist in this calibration
process, we provide guidance on effectively tuning the parameters involved in autonomy allocation.

A1 is a force threshold, affecting how sensitive to new demonstration intention. When the demon-
stration force on the Teacher Robot is larger than A;, the Teacher Robot will gain the leading role.
indicating readiness to receive a new demonstration.

Other A2 3 4 indicates how tolerant to the learning error in frequency(\2), motion(A3), and force(A4).
As human demonstration always contains noises, large A2 3 4+ means more tolerance/less sensitivity
to learning error. Too small A2 3 4 can cause longer learning iterations, and too large A3 3 4 can cause
insufficient learning of the tactile skills.

p affects how smooth the transition between robot autonomy to human intervention mode. Larger p
leads to a more smooth transition. A common choice is set around 1.

6.1.2 Adaptive Frequency Oscillators

Coupling strength v, ; and learning rate ., s are the critical parameters for adaptive frequency
oscillators(AFO). They are related to the convergence speed, algorithm stability, and accuracy of the
AFO. Regarding the number of fouriers M, we find that M = 1 is already enough for the periodic
skills demonstrated in this paper.

A sensitivity analysis of these two parameters provides insights into how changes in coupling
strength and learning rate impact the learning process of the motion’s frequency. Note that the
analysis also applies to learning the force’s frequency. Figure. 5 illustrates the effect of different set-
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Figure 5: Comparison between various coupling strength v,,, and learning rate p,, values within a single skill
context. a) The target periodic demonstration. b) The estimated frequency of the target demonstration with
various values of v, and a fixed p,,. ¢) The estimated frequency with various values of y,, and a fixed vp,.
d) The estimation of frequency through error-driven dynamic coupling strength and learning rate adjustments,
where v, and p,, gradually decrease from 100 and 2 to 1 and 0.02, respectively, as the error diminishes.

tings for coupling strength v,,, and learning rate (,,, on learning performance, with the target motion
recorded from actual demonstrations of circular motions on the robot. The analysis of the coupling
strength in the Figure. 5b) reveals that a higher coupling strength leads to quicker convergence
but introduces larger initial oscillations. The analysis of the learning rate in the Figure. 5c) shows
that a higher learning rate accelerates convergence but will cause instability when above a certain
threshold. In summary, there is a trade-off between achieving rapid convergence and minimizing
oscillations when tuning the coupling strength and learning rate.

Building on the insights from our sensitivity analysis, we propose an error-driven dynamic adjust-
ment for the parameters v, ¢ and fi,,, r. Note that here we use the error between input signal and the
estimation of the signal in AFO. This strategy is designed to ensure rapid convergence when errors
are large and to mitigate oscillations when errors are small. Specifically, both the coupling strength
and learning rate are configured to decay progressively as the error decreases. The implementation of
this dynamic adjustment is demonstrated Figure. 5d). The results indicate that, compared to scenar-
ios with fixed parameters, this adaptive method maintains swift convergence while simultaneously
minimizing oscillations, thus optimizing the learning process for adaptive frequency oscillators.

To show the sensitivity of coupling strength and learning rate in AFO when learning different skills.
We test the performance of frequency learning with varying sets of parameters across the five peri-
odic tactile skills demonstrated in the experiment section. As shown in the Figure. 6a), the frequency
of motions in the y-dimension changes after every new demonstration. Figure 6d) reflects the robust-
ness of our dynamic coupling strength and learning rate adjustment under different skills. Compared
to the fixed setting shown in Figure 6b) and c), we observe faster convergence when adapting to a
new skill and fewer oscillations(more accuracy) for the steady-state of learned frequency.

6.1.3 Recursive Least Square

The forgetting factor in the Recursive Least Squares (RLS) algorithm plays a crucial role in deter-
mining how much historical data influences current model updates. It dictates the size of a ”sliding
window” of historical data considered in the regression. For periodic skills, a good choice of the
forgetting factor is intricately linked to the periods of the demonstrated skill. This relationship spec-
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Figure 6: Comparison between various coupling strength v,,, and learning rate p,, values across five different
periodic skills. a) The target periodic demonstration. b) The estimated frequency with various values of v,
and a fixed pn,. c) The estimated frequency with various values of i, and a fixed v,,. d) The estimation of
frequency through error-driven dynamic coupling strength and learning rate adjustments, where v, and pn,
gradually decrease as the error diminishes.

ifies the number of demonstration cycles considered relevant for updating the learning model. An
approximate relationship exists between the forgetting factor and the time window size over which
historical data remains significant within the RLS framework. This relationship can be expressed
mathematically, as shown in Equation 27. A larger forgetting factor expands the time window over
which historical data is considered valid, thereby incorporating more past data in the regression.

1 1
=k x = 27
-, 0 7)

where ﬁ is the estimated time window. k decides how many rounds of demonstrations are con-
9
sidered. If £ is set to four, the learned skill is approximately an average of four last demonstrations.

The RLS adapts slowly to recent changes, with a high Ay,. Conversely, a low Ay, makes RLS
sensitive to new observations. To clearly show how the forgetting factor affects the learning proce-
dure, we compare three sets of constant forgetting factors(k = 0.5, 2, 8) under three nearly identical
demonstrations of a circular movement on the x-y plane. It is challenging to maintain identical force
profiles, so we omitted the force in this experiment. As shown in Figure 7a) and b), a small forget-
ting factor(when k = 0.5) helps quick convergence at the beginning of a new demonstration, trivial
demonstration divergence will lead to shape distortion(between 21s and 27s). As the robot becomes
less compliant with the user during the autonomy transition, it is hard for the user to demonstrate
identical motions. Therefore, a larger forgetting factor is necessary during the transition to make it
less sensitive to recent data. However, as shown in Figure 7e) and f), a larger forgetting factor(when
k = 8) leads to less sensitivity to recent changes, resulting in a longer convergence time.

In conclusion, the optimal forgetting factor setting is a small value corresponding to & = 0.5 when
the error is big, and a large value corresponds to, e.g., Kk = 2 ~ 8 when the error is small. The set
of forgetting factors follows an error-driven dynamic adjustment, increasing for rapid convergence
during significant errors and decreasing for stable autonomy transitions during minor errors. Note
that here we use the error between the input signal and the learned signal in RLS. Regarding the
number of RBFs N, we find that the common setting of N ranging from 30 to 50 fits to the skills
demonstrated in this paper.
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6.2 Teleoperation system
6.2.1 Role allocation between 7R and SR

The autonomy level 7 dictates role allocation between the human and the robot system, resulting in
the role change of the TR and SR . When 1 = 0, the SR completely follows the TR by both position
and force channel. However, when the learning process finishes with 7 = 1, the 7R transitions into
a follower role, synchronizing its motion with the SR . Traditional leader-follower structure does
not include the autonomy level, and SR only follows the 7R by force. We realize that using both
position and force channels from 7R to SR is necessary in the tele-teaching framework. If only
the force channel were used, minor position deviations would exist between TR and SR during the
learning process(n=0) because the two robot arms are not entirely identical in practice. As the au-
tonomy level rises, the leading role transits from 7R to SR . TR would follow SR gradually more in
the motion channel, and the minor position deviations would be compensated. However, the human
operator at TR ’s side would feel that the SR learns a different motion. Therefore, the operator tends
to naturally resist the compensation and keep the original demonstration, making the autonomy level
7 fall again. The minor position deviations lead to unsmooth leading role transitions from 7R to SR
, resulting in unsuccessful tactile skill transfer. Furthermore, LfD via teleoperation presents certain
drawbacks. Reference [18] shows that demonstrating a peg-in-hole task through teleoperation using
a haptic device is more difficult for the operator than kinesthetic teaching. Users tend to demon-
strate trajectory with higher variance. However, the method proposed in this work offers potential
improvements. Another concern might be the stability issue with sub-optimal communication qual-
ity, leading to delays and packet loss. This problem can be alleviated by passivity-based methods
like the Time Domain Passivity Approach (TDPA) [34, 35] or energy-based methods [36, 37].
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