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ABSTRACT

Neurons in auto-regressive language models like GPT-2 can be interpreted by ana-
lyzing their activation patterns. Recent studies have shown that techniques such as
dictionary learning, a form of post-hoc sparse coding, enhance this neuron-level
interpretability. In our research, we are driven by the goal to fundamentally im-
prove neural network interpretability by embedding sparse coding directly within
the model architecture, rather than applying it as an afterthought. In our study, we
introduce a white-box transformer-like architecture named Coding RAte Trans-
formEr (CRATE), explicitly engineered to capture sparse, low-dimensional struc-
tures within data distributions. Our comprehensive experiments showcase sig-
nificant improvements (up to 106% relative improvement) in neuron-level inter-
pretability across a variety of evaluation metrics. Detailed investigations confirm
that this enhanced interpretability is steady across different layers irrespective of
the model size, underlining CRATE’s robust performance in enhancing neural net-
work interpretability. Further analysis shows that CRATE’s increased interpretabil-
ity comes from its enhanced ability to consistently and distinctively activate on
relevant tokens. These findings point towards a promising direction for creating
white-box foundation models that excel in neuron-level interpretation.

1 INTRODUCTION

Representation learning aims to learn a continuous mapping, to transform a random vector in a high
dimensional space that is sampled from a dataset, to a feature vector in another (typically lower-
dimensional) space (Bengio et al., 2013). Recently, deep learning has witnessed tremendous empir-
ical success in modeling massive amounts of high-dimensional data, and the predominant practice
has been to learn first a task-agnostic representation by pre-training a large neural network, which
is commonly known as the foundation model (Devlin et al., 2019; Radford et al., 2019). Among
language foundation models, the transformers architecture (Vaswani et al., 2017) with Generative
Pre-Training (Radford et al., 2019) (GPT) has recently demonstrated a strong capability of model-
ing sequential data and thus predicting subsequent tokens (Brown et al., 2020; Ouyang et al., 2022).
Such strong capability has emerged significant success in downstream applications (Lewis et al.,
2020; Yang et al., 2023), yet the large neural network is known to be black-box, where the represen-
tations in the model are not independently interpretable, introducing difficulty in designing effective
paradigms for major known challenges of (visual) language models like hallucination (Ji et al.,
2023; Tong et al., 2024), bias (Garrido-Muñoz et al., 2021; Nadeem et al., 2020), and catastrophic
forgetting (Kemker et al., 2018; Zhai et al., 2024).

To interpret the functions of individual modules in the language models, mechanistic interpretation
was proposed to reverse-engineer such models, through identifying meaningful patterns in the data
representations and computational mechanisms of the model components (Olah, 2022; Meng et al.,
2022a). Recent studies on auto-regressive models like GPT-2 have delved into neuron-level inter-
pretation, where the focus is on understanding the activations within the model’s MLP layers (Yun
et al., 2021). This approach helps to reveal the specific roles of individual neurons, which is cru-
cial for precise model editing and control (Meng et al., 2022a;b). Recent research has also proposed
that sparse auto-encoder (SAE)-based dictionary learning effectively promotes mono-semanticity of
neurons, thus enhancing neuron-level interpretability (Bricken et al., 2023). However, as a post-hoc
method, sparse auto-encoders always introduces a non-negative reconstruction loss, which intro-
duces noise for steering the model and imperfect fidelity when interpreting the neurons (Bricken
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1. We have obtained the three-dimensional 
AdS Carroll CS supergravity action by applying 
the method of [@Concha:2016zdb].
2. Onchidium buetschliiStantschinsky, 1907:
383--386, pl. 12, figs 10--12, pl. 13, figs 20a,
20b, 22, 35; [@B7]: 316 (as Oncidium
buetschlii)
3. from the premises stated the
conclusion may be evident to a jurist, to the 
layman it is perplexing

References to specific dates and locations, such as years, 
cities, or other geographical features. 
Score: 31.4

Instructions for creating or modifying code, such as 
comments, function definitions, and template generation. 
Score: 41.0

1. If you build the list from scratch, simply keep
the smallest item yet in an external variable,
so that the answer will be given in O(1).
2. Serializes the sortable's item ids into a form/ 
ajax submittable string. Calling this method
produces a hash that can be appended to any
url.
3. Subjects {#sec2dot2-animals-09 A total of 50
dogs were involved in the study: 20 males (

Sentences related to liquid pumping systems, specifically in 
the context of refrigeration or cooling, and pressures involved. 
Score: 50.2

1: A second conduit means couples, the outlet
of the pump means to an inlet to the expansion
valve to transmit a first portion of the
condensed liquid
2: pressure and boosting the second pressure of
the condensed liquid refrigerant by a
substantially constant increment of pressure
3. Hoffmann's description of *O. keiense* is 
consistent with *Wallaconchis ater*, except for 
the description

Phrases related to statistical analysis and experiment
design, including methods like shrinkage estimation. 
Score: 36.1

1. Additionally, using a criterion from the 
statistical experiment design, we adopt an
adaptive sample selection, together with an
adaptive shrinkage estimation method, to 
simultaneously accelerate the estimation
procedure.
2. We solve these algebraic equations
numerically by a systematic truncation
method.
3. PersonArr.push(person, person2, person3);

Sentences discussing the experience or review of a 
tabletop role-playing game, specifically Dungeons & Dragons. 
Score: 46.5

1. The publication of Dungeons & Dragons
Fourth Edition back in 2008 was highly
anticipated.
2. The Dungeons & Dragons Fourth Edition
Starter Set should have made the prospective
new player go "Wow!”.
3. Where appropriate, values are expressed as 
standard deviation (SD) or standard error of
mean (SEM) of at least triplicate experiments.
Statistical analyses were performed with

Stories about personal experiences, specifically about 
encounters with people and and seeking advice or help. 
Score: 22.5

1. I gain a great deal from objective feedback. A
couple years ago when I got my first negative 
review, I was devastated. I asked a very
successful writer friend of mine how he deals 
with critical reviews.
2. the first thing I knew about it was that I was 
being carried on the back of one of those fellow.
3. Ventriglia F (ed) Neural Modeling and Neural
Networks. Pergamon Press, Oxford Ermentrout
GB (2002)

Figure 1: Instances are systematically identified where the interpretability of CRATE (ours, row
1) outperforms GPT-2 (row 2). For each neuron (rounded box), we show two top activated text
excerpts (excerpt 1 and 2) and one randomly activated excerpt (excerpt 3). Results show that CRATE
consistently activates on and only on semantically relevant text excerpts (first two excerpts), leading
to more precise explanations predicted by agents like Mistral.

et al., 2023). More recent studies also show that sparse auto-encoders are hard to scale up, as there
exists a significant amount of directions in a neuron in larger language models, which makes the
decomposition difficult (Kissane, 2024; Templeton, 2024; Rajamanoharan et al., 2024).

Can we instead build sparsity directly into the language model? In this paper, we develop the
CRATE language model, a GPT-2-size language model that builds sparse coding into the model with a
mathematically principled way. CRATE handles the problems introduced by sparse encoders at scale:
it (i) escapes the loss introduced in reconstructing the language model representations, enabling loss-
free steering, and (ii) escapes the unsteady process of training a sparse auto-encoder. To avoid adding
inconsistency into the language model, we develop on top of a mathematically principled white-box
model framework, named CRATE (Yu et al., 2023a).1 After encoding the text tokens into numbers,
we apply language-domain-specific modifications to the original CRATE architecture and obtain the
token representations. The final representations are then used to predict the next token, while the
intermediate representations gets interpreted.

To this end, the main contribution of this work is to propose a causal language model architecture
based on the CRATE model framework that builds sparsity inherently, that achieves significantly bet-
ter neuron-level interpretability (106% relative increase) than language models with the GPT archi-
tecture under a similar configuration. CRATE forms a family of models from single-layer model up
to a 12-layer configuration. Comparative qualitative analysis of neuron activations between CRATE
and GPT-2 is provided in Figure 1, alongside extensive quantitative evaluations demonstrating that
by explicitly integrating sparse coding into the language model, CRATE achieves markedly improved
interpretability across layers compared to GPT-2, applicable across a wide range of model sizes
under a variety of evaluation metrics.

2 RELATED WORK

Neuron-level Interpretation. Recent studies have provided insights into how auto-regressive mod-
els like GPT-2 work at the level of individual neurons, named neuron-level interpretation. These
studies focus on analyzing activations, which are the outputs from the activation functions within
the model’s multi-layer perceptron (MLP) layers (Yun et al., 2021). Analyzing activations helps

1In the remaining parts of the paper, we use “CRATE” or “CRATE language model” to refer to our language
model architecture, while “original CRATE” denotes the architecture framework described in the literature.
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uncover the roles of language model components, which is significant to applications like precise
modifications and control on the model, known as model editing (Meng et al., 2022a;b). Neuron-
level interpretation is crucial to understanding the mechanisms in a model, including what concepts
are learned in the neurons of the network, whether specific neurons are learning particular concepts,
and how localized/distributed and redundantly the knowledge is preserved within neurons of the
network. A higher neuron-level interpretability indicates that more neurons are interpretable or neu-
rons are more interpretable (Sajjad et al., 2022). As interpretations of the neurons can help localize
the knowledge obtained in a neural network, neuron-level interpretation can be used for editing the
knowledge in models (Meng et al., 2022a;b), model pruning and distillation (Belinkov et al., 2020),
adapting the model to different domains and steering the output (Erhan et al., 2009; Rimsky et al.,
2023), and debugging model errors (Hernandez et al., 2021). Improved neuron-level interpretability
increases reliability and performance in the applications above.

Sparse Auto-encoders. To enhance interpretability, post-hoc sparse coding methods like dictionary
learning (Kreutz-Delgado et al., 2003) are used, but these techniques result in imperfect reconstruc-
tions and thus always introduces loss when steering the model (Conmy, 2023; Bricken et al., 2023).
Literature also indicates that sparse-autoencoders are hard to scale, i.e., a dramatic drop in inter-
pretable features can be observed when models becomes deeper (Kissane, 2024). Additionally, tun-
ing SAE models for larger L values involves extensive hyperparameter tuning and time-consuming
training, requiring multiple metrics (reconstruction rate, L1 loss, number of dead neurons) for re-
liable judgment, which can’t be easily optimized with automatic engineering tricks (Bricken et al.,
2023).

Evaluation of neuron-level interpretability. Metrics now exist to evaluate neuron-level inter-
pretability in language models, examing if neurons trigger on relevant tokens in given contexts (Bills
et al., 2023; Bricken et al., 2023). Recent works have demonstrated that a small number of circuits
in language models are interpretable (Wang et al., 2022; Chughtai et al., 2023), but comprehend-
ing each neuron, out of millions, is vital for thorough model safety audits. Given the prohibitive
cost of human evaluation on such a scale, OpenAI introduced an automated metric using large lan-
guage models for interpretability assessment (Bills et al., 2023), which Anthropic later refined for
sparse activations (Bricken et al., 2023). These methods align closely with human judgment and
have gained broad acceptance within the research community (Conmy et al., 2024; Liu et al., 2023;
Burns et al., 2023; Lieberum et al., 2023). These metrics show that neuron-level interpretability
in auto-regressive models is limited (Sajjad et al., 2022), where the popular hypothesis is that neu-
rons are superpositions of simpler semantics, which makes them fire (produce a high activation) at
multiple semantically distinct sets of tokens (Elhage et al., 2022).

White-box models and structured representation learning. In the domain of structured repre-
sentation learning, white-box models stand out for their ability to generate explicit, structured data
representations that adhere to specific, desirable configurations such as sparsity and piece-wise lin-
earity, as discussed by Gregor and LeCun (2010) and Chan et al. (2022). Within this framework, Yu
et al. (2023a) introduced an innovative approach to constructing deep networks based on unrolled
optimization. Specifically, Yu et al. (2023a) proposed the CRATE model, utilizing an information-
theoretic objective aimed at promoting the compression and sparsity of data towards a predefined
statistical structure. Recently, empirical experiments suggest that the white-box design of CRATE
inherently develops segmentation capabilities from the data representations at both holistic and
component levels with supervised training in the vision domain (Yu et al., 2023b), which directly
motivates us to further explore the data representations within such architecture for language mod-
els. Recent work has also shown that the CRATE framework is scalable: it can be effectively scaled
up to comparable performance as Vision Transformer (ViT) with careful engineering (Yang et al.,
2024). Furthermore, the fine-tuning performance of the pretrained CRATE model is also proven to
be comparable in both the language domain (Yu et al., 2023a) and vision domain (Yang et al., 2024).

3 PRELIMINARIES

This section introduces the original CRATE architecture introduced in Yu et al. (2023a).

Notations. In this paper, we denote the one-hot input tokens by X = [x1, . . . ,xN ] ∈ RV×N ,
where xi ∈ RV×1 represents the i-th one-hot token, N is the total number of input tokens, and
V is the vocabulary size. We use f ∈ F : RV×N → Rd×N to denote the mapping induced by
the model, which is a composition of L + 1 operators (layers) f = fL ◦ · · · f ℓ ◦ · · · f1 ◦ fpre,
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where f ℓ : Rd×N → Rd×N (1 ≤ ℓ ≤ L) represents the mapping of the ℓ-th operator, and fpre :
X ∈ RV×N → Z1 ∈ Rd×N represents the pre-processing layer that transforms the one-hot token
representations X = [x1, . . . ,xN ] to semantic embeddings Z1 = [z1

1 , . . . ,z
1
N ]. We let Zℓ denote

the input token representations of the ℓ-th operator f ℓ for 1 ≤ ℓ ≤ L, so that zℓ
i ∈ Rd denotes the

representation of the i-th token xi before the ℓ-th layer. We denote Z = ZL+1 as the output token
representations of the last (L-th) layer.

Framework, objective, and optimization. The transformation of input data into parsimonious
(piecewise linearized and compact) representations is accomplished by adopting a local signal model
for the marginal distribution of the tokens zi. This statement suggests that the tokens can be approx-
imately considered to occupy a union of several (identified as K) low-dimensional spaces, each
with a dimension p ≪ d. These spaces are characterized by orthonormal bases, represented as
U[K] = (Uk)

K
k=1,Uk ∈ Rd×p. Within the framework of this local signal model, CRATE aims to

optimize the sparse rate raduction objective:
max
f∈F

EZ

[
∆R(Z | U[K])− λ∥Z∥0

]
= max

f∈F
EZ

[
R(Z)− λ∥Z∥0 −Rc(Z;U[K])

]
. (1)

where λ is the sparsification regularizer and Z = f(X). The coding rate R(Z) serves as a close
estimate (following Ma et al. (2007)) for the average amount of bits necessary for encoding the
tokens zi to a precision level ε using a Gaussian codebook. Additionally, Rc(Z | U[K]) represents
the theoretical maximum average amount of bits needed to encode the projection of the tokens onto
each low dimensional subspace defined in the local signal model, specifically U∗

kzi, to the same
precision level ε utilizing a Gaussian codebook, as outlined by Yu et al. (2023a). If the subspaces
are adequately incoherent from each other, the solutions that minimize the object function, viz.
Equation (1), in terms of Z, are associated with subspace configurations that are both incoherent
and aligned with the axes, as pointed out by Yu et al. (2020).

A network aimed at optimizing the sparse coding rate reduction objective through unrolled opti-
mization gradually shifts the distribution of X towards the intended canonical forms, where each
iteration of the unrolled optimization process acts as a layer.

f : X
fpre

−−−−→ Z1 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL+1 = Z
fhead

−−−→ Y , (2)

The iterative optimization framework incorporates multiple design choices, among which is a two-
step alternating minimization approach grounded in robust theoretical principles (Yu et al., 2023a).
This approach delineates two distinct blocks: the MSSA and the ISTA block, collectively defining a
single CRATE layer:

Zℓ+1/2 .
= Zℓ + MSSA(Zℓ | U ℓ

[K]), f ℓ(Zℓ) = Zℓ+1 .
= ISTA(Zℓ+1/2 | Dℓ). (3)

Compression operator: Multi-Head Subspace Self-Attention (MSSA). Given local models U ℓ
[K],

to form the incremental transformation f ℓ optimizing Equation (1) at layer ℓ, CRATE first compresses
the token set Zℓ against the subspaces by minimizing the coding rate Rc( · | U ℓ

[K]). As Yu et al.
(2023a) show, doing this minimization locally by performing a step of gradient descent on Rc( · |
U ℓ

[K]) leads to the so-called multi-head subspace self-attention (MSSA) operation, defined as

MSSA(Z | U[K])
.
=

p

(N + 1)ε2
[U1, . . . ,UK ]

 (U∗
1Z) softmax ((U∗

1Z)∗(U∗
1Z))

...
(U∗

KZ) softmax ((U∗
KZ)∗(U∗

KZ))

 , (4)

In practice, the calculation of the intermediate representations Zℓ+1/2 with the output from the
MSSA block is calculated in a weighted form:

Zℓ+1/2 ≈
(
1− κ · p

(N + 1)ε2

)
Zℓ + κ · p

(N + 1)ε2
· MSSA(Zℓ | U[K]), (5)

where κ > 0 is a learning rate hyperparameter. This block resembles to GPT’s multi-head self-
attention block, but the query, key, and value projection matrices within a single head are all identical
in the MSSA block.

Sparsification operator: Iterative Shrinkage-Thresholding Algorithm (ISTA). The remaining
term to optimize in Equation (1) is the difference of the global coding rate R(Z) and the ℓ0 norm
of the tokens, which together encourage the representations to be both sparse and non-collapsed. Yu
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et al. (2023a) show that local minimization of this objective in a neighborhood of the intermediate
representations Zℓ+1/2 is approximately achieved by a LASSO problem with respect to a sparsi-
fying orthogonal dictionary Dℓ ∈ Rd×h. Taking an iterative step towards solving this LASSO
problem gives the iterative shrinkage-thresholding algorithm (ISTA) block (Wright and Ma, 2022;
Yu et al., 2023a). The ReLU nonlinearity appearing in this block arises from an additional non-
negativity constraint on the representations in the LASSO program, motivated by the goal of better
separating distinct modes of variability in the token distribution:

Zℓ+1 = f ℓ(Zℓ) = ReLU(Zℓ+1/2 + ηDℓ∗(Zℓ+1/2 −DℓZℓ+1/2)− ηλ1)
.
= ISTA(Zℓ+1/2 | Dℓ). (6)

4 THE CRATE LANGUAGE MODEL

This section introduces the difference between our work and the original CRATE paper (Yu et al.,
2023a), thus introducing what changes we made to the CRATE architecture. We first note that the
task in this work is different: we apply the CRATE architecture to the next-token prediction task in the
language domain. while the original CRATE paper applies the architecture to the image classification
task in the vision domain. This difference leads to differences in the architecture design: (i) we apply
a causal mask to the original CRATE model to avoid the model seeing tokens after the current token,
and (ii) we change the embedding layer and heads of the original CRATE model.

Second, we’re interested in interpreting the neurons within CRATE on the next-token prediction task
and making direct comparisons to the GPT architecture. As neuron-level interpretation is commonly
evaluated on the hidden states in the FFN block of the GPT model (Bills et al., 2023; Bricken et al.,
2023), (iii) we increase the hidden dimension of the ISTA block of the original CRATE model to
align with the hidden dimension of the FFN block of the GPT model. We thus call the new ISTA
block the ISTA-overcomplete block.

Below we show specific definitions of the modifications we made. We illustrate the architecture
in Figure 6, show implementation details in Appendix A, and discuss about the learning process
in Appendix A.5.

Embedding and Head. In order to apply the CRATE architecture to the language domain, we define
the pre-processing layer fpre that transforms tokens into position-aware semantic embeddings, and
define post-processing head fhead(Z) that maps the representations to output token distributions:

fpre(X) = Esem(X) +Epos, fhead(Z) = W headZ, (7)

where Esem is a semantic embedding matrix that maps input tokens xi to embedding vectors in Rd,
Epos ∈ Rd×N is a positional embedding matrix, and W head ∈ RV×d maps the (contextualized)
token representations ZL+1 to the distribution of the next token. All parameters mentioned are
learnable.

MSSA Block. To align with the next word prediction task used in GPT (Radford et al., 2019), we
replace the attention matrix in MSSA (Equation (4)) with a causally masked self-attention, defined as

softmax ((U∗
kZ)∗(U∗

kZ)) → softmax (CausalMask((U∗
kZ)∗(U∗

kZ))) ,

where CausalMask(M)ij =

{
Mij , i ≤ j

−∞, i > j.

(8)

ISTA Block. To investigate the neuron interpretability of the activation matrix A ∈ Rh×N , we
design an overcomplete version of the ISTA block (Equation (6)) with Dℓ ∈ Rd×h where h =
nd, and n = 4 to keep a fair comparison to GPT (also same as standard transformer architecture
proposed in Vaswani et al. (2017)):

At
.
= ISTA(Zℓ+1/2 | Dℓ),

Ak = ReLU(Ak−1 − η(Dℓ)∗(DℓAk−1 −Z)− η · λ · 1), A0 = 0, k ∈ [t],

Zℓ+1 = DℓAt

(9)

Here, η > 0 is the step size, λ > 0 is the sparsification regularizer, and t is the number of ISTA
iterations. In practice, we set t = 2 to keep computation efficient. The ISTA block resembles the
MLP block in the GPT model, but with a relocated skip connection.
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5 EMPIRICAL EXPERIMENTS

We examine the next token prediction performance and neuron interpretability of CRATE in this sec-
tion. We detail the architecture, size, pre-training recipe (Section 5.1), performance (Section 5.2),
and neuron-level interpretability (Section 5.3) of CRATE compared to the standard transformer ar-
chitecture. In this section, we denote K as the number of attention heads, d as the dimension of the
residual stream in the model, and h as the hidden (inner) dimension of the ISTA/MLP module.

5.1 SETUP

Model architecture and size. The CRATE model is designed with various sizes L ∈ {1, 2, 3, 6, 12},
where each size matches the GPT configurations for direct comparisons, as shown in Section 5.1.
Configurations for L ∈ {1, 2, 3} adhere to GPT models as per Bricken et al. (2023), while
L ∈ {6, 12} follow configurations from Sanh et al. (2019) and Radford et al. (2019), respectively.
Notably, CRATE maintains approximately 2/3 the size of GPT at scale. Both models utilize the Byte-
level BPE tokenizer with a 50,257 vocabulary size, following Radford et al. (2019). We explain the
difference between CRATE and GPT in parameter size to GPT in Appendix A.1.

Model Config d K L h CRATE GPT

1L 128 4 1 512 6.54M 6.64M
2L 128 4 2 512 6.64M 6.83M
3L 128 4 3 512 6.74M 7.03M
S(mall) 768 12 6 3,072 55.9M 81.1M
B(ase) 768 12 12 3,072 81.2M 123.6M

Table 1: Model configuration of CRATE and model size comparison to GPT.

Datasets and optimization. We pre-train both models using the next token prediction task on the
uncopyrighted Pile dataset (Gao et al., 2020) using the Adam optimizer (Kingma and Ba, 2015).
Following Bricken et al. (2023), we pre-train both CRATE and GPT of smaller sizes (L ∈ {1, 2, 3})
on 100 billion tokens with a context window of 1,024 tokens. Following the pre-training setup
in Karpathy (2022) and scaling law in Touvron et al. (2023), we pre-train using 100 billion tokens
for the Small models, and 160 billion tokens for the Base models.2 It takes 4 days to pre-train
CRATE-Base on 160 billion tokens with 32 A5000 GPUs.

5.2 PERFORMANCE

This section demonstrates that CRATE, despite not outperforming GPT-2, still generates reasonable
predictions, as evidenced through quantitative and qualitative comparisons.

We observe that both training and validation loss curve of CRATE-Base on the Pile dataset converges
well, as presented in Figure 2 (left). Although the convergence is slower than GPT, the loss curve of
CRATE keeps decreasing after training on 160 billion tokens, while GPT already tends to converge.

We also demonstrate the zero-shot validation loss curve of CRATE evaluated on OpenWebText as
well as other datasets (Radford et al., 2019) in Figure 2 (right). Results show that CRATE effectively
learns transferable representations across a number of datasets, and achieves comparable perfor-
mance to GPT after full training on the 160 billion tokens. We also demonstrate the scalability of
the CRATE architecture by comparing the validation loss of CRATE and GPT with respect to the
model size in Figure 3 (left). Results show that the performance of CRATE is close to GPT across
all model sizes. However, we do recognize that forcing sparsification in a model potentially leads
to a higher compute cost on the next-token-prediction objective, which aligns with observations
in Bricken et al. (2023) that enabling monosemanticity might hurt model performance.

Qualitative examples from CRATE and GPT are demonstrated in Figure 3 (right). We conclude
that CRATE can make reasonable predictions, encouraging us to further look into its neuron-level
interpretability.

2Practicaly, we train with a batch size of 768 for 125,000 iterations for L ∈ {1, 2, 3, 6}, and a batch size of
256 for 600,000 iterations for L = 12.
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Figure 2: Left: loss curve when pre-training CRATE-Base and GPT-Base on the Pile dataset. Right: zero-shot
validation loss of CRATE evaluated on a variety of datasets (Pile, LAMBADA, OpenWebText and WikiText).
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Figure 3: Left: Validation loss of CRATE compared to GPT on the Pile dataset, with respect to the model size.
Right: Qualitative examples of predictions made by our models and the official models. The tokens in blue are
considered good. We compare CRATE-Base to GPT2-Base on the next word prediction task.

5.3 INTERPRETABILITY

In order to quantitatively evaluate the interpretability of the neuron activations, we adopt the large
language model-based approach introduced in Bills et al. (2023) and Bricken et al. (2023). We
demonstrate the algorithm for scoring interpretations in Algorithm 1. We retrieve the sparse code
At (activations after the ReLU unlinearlity in the ISTA block) of CRATE for interpretation, and
compare with activations from the MLP block of GPT.

Algorithm 1 Interpretability Evaluation Algorithm (Bills et al., 2023)

1: Inputs: Input token set S (in text form) and its activation matrix A ∈ Rh×T×B at ℓ-th layer,
where T is the length of a single text excerpt, and B is the number of text excerpts in the corpus.

2: Models: Explanation model F1 , simulation model F2.
3: for i ∈ [d] do
4: S′ ∼ S,A′ ∈ Rh×T×b ∼ A : Retrieve b text excerpts of T tokens, together with the

corresponding activation matrices.
5: ki = F1(S

′,A′
i,∗) : Explain common patterns retrieved activations of i-th neuron.

6: Ã′
i,∗ = F2(ki,S

′) : Use the explanation to simulate scores given only the tokens, not
including true activations.

7: ρi = ρ(A′
i,∗, Ã

′
i,∗) : Calculate correlation between the accurate and simulated activations.

8: end for
9: Output: Averaged interpretation score over all neurons s = Ei∈[d](ρi).

In practice, we adopt three evaluation metrics: two from OpenAI (top-and-random and random-
only) (Bills et al., 2023) and one from Anthropic (Bricken et al., 2023). We adopt the official
implementation from Wu et al. (2023), where details on the implementation are elaborated in Ap-
pendix B. Note that the Anthropic metric has much shorter text excerpts than the OpenAI metrics,
so it is biased to sparse activations. For all evaluations, we discard the last layer of CRATE and
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Mean (↑, darker green means more interpretable) Variance (↓, darker red means less steady)
Top-and-Random Random-only Anthropic Top-and-Random Random-only Anthropic
CRATE GPT CRATE GPT CRATE GPT CRATE GPT CRATE GPT CRATE GPT

1L 3.9 8.8 4.8 8.9 10.1 14.2 0.0 0.0 0.0 0.0 0.0 0.0

2L 8.05 4.2 6.95 1.95 11.35 10.2 0.06 0.01 1.1 0.12 0.0 0.25

3L 9.1 3.57 8.43 1.37 11.23 9.2 0.26 7.51 1.2 1.93 1.14 19.21

6L 7.96 5.4 6.36 3.14 10.4 8.52 2.29 20.85 1.87 18.39 2.01 32.56

12L 6.8 6.34 5.12 2.67 8.88 8.65 7.09 11.35 2.83 7.48 18.3 24.65

Table 2: Mean and variance of the average interpretability across layers for different model sizes.
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Figure 4: Interpretation scores evaluated using the OpenAI Random-only metric, Top-and-Random metric,
and Anthropic metric, respectively. Top: interpretation scores of CRATE and GPT for L = 12. Middle:
interpretation scores of CRATE and GPT for L = 6. Bottom: interpretation scores of CRATE, GPT, and GPT
with sparse auto-encoder for L ∈ {1, 2, 3}. Variance bars are normalized to 1/10 of its original size.

GPT, according to the empirical observation that the last layer of CRATE is biased to the pre-training
task (Yu et al., 2023b).

CRATE achieves markedly improved and more steady neuron-level interpretability across
layers compared to GPT-2, applicable across a wide range of model sizes. We show evalua-
tion results of the interpretability of CRATE and GPT averaged across layers in Table 2 (left). We
observe that the interpretability of CRATE comprehensively outperforms GPT on all metrics for
L ∈ {2, 3, 6, 12}. When averaging the mean interpretability across all metrics, CRATE outperforms
GPT up to strikingly 45.1% when L = 6, and up to 16.3% when L = 12. We also present the layer-
wise interpretation scores in Figure 4, which shows that CRATE has higher interpretability than GPT
on almost all layers using the OpenAI metrics, and is slightly better than GPT using the Anthropic
metric. For detailed distributions of the layer-wise scores of CRATE-Base compared to GPT-Base on
different metrics, refer to Appendix D.

The variances of the average interpretation scores of CRATE and GPT across layers are shown in Ta-
ble 2 (right). From the results we draw a solid conclusion that the interpretability of CRATE is much
more steady than GPT across all model sizes. Figure 4 further demonstrates a clear pattern that, for
all model sizes, CRATE maintains a higher interpretability than GPT among almost all layers.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The built-in sparse coding approach introduces consistent and specific neuron-level behaviors.
The strong interpretability of CRATE on the OpenAI top-and-random metric and the Anthropic met-
ric, as shown in Figure 4, indicates its consistent behavior on relevant tokens. These two methods
contain a large portion of top-activated text excerpts, so they are valid for measuring whether the
activations are consistent with the summarized explanation (Bills et al., 2023; Bricken et al., 2023).
Additionally, the larger interpretability gap of CRATE and GPT on the OpenAI random-only metric
versus the top-and-random metric highlights the specificity of CRATE in avoiding firing on irrele-
vant tokens. The random-only metric usually includes highly irrelevant text excerpts, so it effec-
tively measures the capability of the language model to avoid activating on semantically irrelevant
tokens (Bills et al., 2023).

Qualitatively, we refer back to the qualitative examples shown in Figure 1. We list three neurons
from CRATE (row 1) and GPT (row 2), respectively. For each neuron, we show two top-activated
text excerpts and one random excerpt. Results show that CRATE is able to consistently activate on
sementically similar tokens within the most relevant text excerpts, and does not activate on random
tokens that are semantically distinguished from the top tokens. This promotes a more precise ex-
planation given by the explanation model (Mistral in the figure). On the other hand, GPT is much
worse at distinguishing tokens from different contexts, because it also has high activations on ran-
dom text excerpts where the semantic meanings deviate from the top activations a lot. As a side
note, we also analyze the activation sparsity of CRATE and GPT in Appendix C.

Comparing CRATE to GPT with post-hoc sparse auto-encoders. We follow Bricken et al. (2023)
and train SAEs for models with layers L ∈ {1, 2, 3}, using output activations from GPT on the
Pile dataset’s training split, leading to the GPT-SAE model. Details on the SAEs’ architecture and
training are in Appendix E.

The interpretability scores of GPT-SAE compared to CRATE and GPT, as depicted in Figure 4, reveal
that under the long-context OpenAI metrics, GPT-SAE matches GPT but falls short of CRATE. This
is attributed to its neuron activations becoming nearly 99% sparse after sparse auto-encoding, dimin-
ishing interpretability in long contexts. Conversely, under the Anthropic metric, GPT-SAE surpasses
both GPT and CRATE in interpretability, corroborating findings in Bricken et al. (2023) that post-hoc
approaches enhance short-context interpretability, often a sign of mono-semanticity. However, the
interpretability of GPT-SAE on the Anthropic metric decreases significantly when ℓ increases, while
CRATE remains steady. Further qualitative comparisons are can be found in Appendix F.

Besides its good performance on the Anthropic metric, the post-hoc dictionary learning approach
requires considerable manual effort. To get a taste, training a sparse auto-encoder for a single GPT
layer takes 4 hours when h = 512 and a day when h = 3072 on an A100 GPU.

OpenAI TaR Anthropic
CRATE-SAE - CRATE -10.2 +34.8
GPT-SAE - GPT +6.5 +38.1

Table 3: Interpretability improvement of CRATE and GPT after applying SAE. Results are obtained by
subtracting the interpretation scores of the language model and the SAE model trained on that language model.
Results consistently show that the interpretability improvement of CRATE-SAE over CRATE is smaller than
GPT-SAE over GPT, indicating more optimal representations of CRATE over GPT.

Does CRATE have more optimal representation than GPT in terms of interpretability? Alterna-
tively, we train SAE models upon the CRATE model, and compare the interpretability improvement
of CRATE-SAE over CRATE to the interpretability improvement of GPT-SAE over GPT. As shown
in Table 3, the improvement of interpretability of CRATE-SAE over CRATE is smaller than GPT-
SAE over GPT under both OpenAI and Anthropic metrics. This suggests that CRATE has more
optimal representations than GPT in terms of interpretability. Experimental details can be found
in Appendix E.

5.4 DISENTANGLING INTERPRETABILITY FROM OTHER FACTORS

Is the improved interpretability due to performance gap? We first investigate whether the in-
terpretability improvement is due to worse performance by comparing the interpretability of two
different checkpoints of CRATE (intermediate checkpoint and full checkpoint). Results in Table 4
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Checkpoint Loss 0 1 2 3 4 5 6 7 8 9 10 11 Avg

79B Tokens 2.38 13.9 8.3 6.5 6.0 4.3 6.7 5.1 4.6 3.7 5.2 8.0 2.8 6.3
158B Tokens 2.29 13.6 8.2 6.7 5.4 5.0 7.2 5.1 5.1 3.6 5.5 9.4 5.3 6.7

Table 4: Validation loss and interpretability of the CRATE model at different checkpoints. The interpre-
tation scores are under the OpenAI TaR metric.

1 2 3 4 5

CRATE-1L, Layer 0 CRATE-2L, Layer 1

“3”, “1”, “2”, “4”, “5”

“-itely”, “-inately”, “-ically”

No Intervention

+ adverbs (2)

+ whitespaces (12) “\t”,  “   ”, “===”

+ citations (24)

+ sequences (36)

“])”, “.;”, “],”

“-----”, “=====”

+ capital (41) “ETHOD”, “JECT”, “LGBT”

1 2 3 4 5 “3”, “1”, “2”, “4”, “5”

“+=”, “=”, “-+”, “=-”

No Intervention

+ tablemakers (13)

+ names (40) “-abeth”,  “Mrs”, “Dianne”, “McK”

+ hex numbers (47)

+ sequences (53)

“\x00”, “00007”, “ffff”

“---------”, “========”

Figure 5: Qualitative examples on logit effects of manually activating feature (i) in CRATE. Text shown on
the right side are the most positive changes in token prediction probability. The logit effects align with feature
interpretations.

show that the interpretability of the intermediate checkpoint is lower than the full checkpoint, which
suggests that “sacrificing” performance does not necessarily introduce better interpretation scores.

Another piece of evidence is that CRATE-2L has higher interpretability scores than CRATE-1L. As
shown in Figure 3 (left), CRATE-2L has much better performance than CRATE-1L on the next-token
prediction task. On the other hand, as shown in Table 2, the interpretability of CRATE-2L is also
much higher than CRATE-1L. Thus, a lower performance does not necessarily introduce higher in-
terpretability.

Is the interpretability gap due to number of parameters? We observe that CRATE-Base (81.2M)
has a similar number of parameters as GPT-Small (81.1M). However, results in Table 2 indicate that
the interpretability of CRATE-Base is higher than GPT-Small on all metrics, and their layer-wise
interpretation scores are also different in Figure 4. This evidence suggests that two models with
similar number of parameters does not necessarily have similar interpretability.

Another piece of evidence is that the interpretability of CRATE/GPT-1L all the way up to
CRATE/GPT-12L does not have a consistent trend of increasing/decreasing interpretability, but their
number of parameters both monotonously increases. This indicates that a model with larger number
of parameters does not necessarily has better/worse interpretability.

Steering the CRATE model. Following Bricken et al. (2023), we manually activate some neurons
and observe the logit effects (changes of the token probability of the language model head). Some
qualitative examples are shown in Figure 5. Compared to the lossy steering of the SAE models,
CRATE are steered without loss. Discussions on the lossy steering process can be found in Ap-
pendix E.6.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

In this paper, we demonstrated that replacing the standard transformer architecture with the white-
box model CRATE as a foundational architecture significantly improves the interpretability. Our
empirical findings on the capability of CRATE to be consistent and distinctive on the neuron-level
activations underscore the importance of the white-box design in developing better language foun-
dation models, fostering optimism that the introduction of built-in sparse coding approaches will
catalyze further advancements in neuron-level interpretations.

Despite these findings, we acknowledge that the performance of CRATE is not as good as GPT on
the next-token prediction task, which is potentially due to the introduction of the ISTA operator
that introduces sparsity. This aligns with previous work suggesting that the performance might drop
when explicitly introducing sparsity (Bricken et al., 2023). Future work should investigate towards a
better trade-off between performance and interpretability of language models with built-in sparsity.
It would also be meaningful to research on more qualitative mechanisms in the white-box language
model and how to use these mechanisms for downstream edits.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our work, we will open-source the model checkpoints and training
infrastructure. We have included the model architecture in Section 4, pre-training recipe (including
dataset and hyper-parameters) in Section 5.1, interpretability evaluation in Section 5.3, and SAE
training setup in Appendix E.2.

ETHICS STATEMENT

By improving the interpretability of language models, our work promotes a deeper understanding of
their mechanisms, aiding in the identification and mitigation of potential risks, thereby supporting
transparency and responsible AI development. On the language model side, this research pretrains
a GPT-2-sized language model on publicly available data, with no intentional inclusion of harmful
content. The model’s moderate size and data scope reduce the likelihood of generating harmful or
out-of-distribution outputs. However, risks associated with intentionally training models on harmful
datasets, which can lead to biased or unsafe generations, must be considered.
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A DETAILS ON THE CRATE ARCHITECTURE

A.1 PARAMETER SIZE OF CRATE AND GPT

CRATE is smaller than GPT because of the architecture difference. The vanilla GPT architecture
has two main parameterized blocks: Attention block and MLP block.

Parameter size of the MSSA Block. In CRATE, the MSSA block resembles the Attention block, but
instead of K, Q, V matrices, we only have one matrix. Therefore, compared to standard transformers,
CRATE uses 1/3 of the parameters for the multi-head attention part.

Parameter size of the ISTA block. The MLP block in vanilla GPT has one parametric matrix that
transforms the input representations to the inner space (usually 4x larger), and another parametric
matrix that transforms the inner representations back to the output space (as large as the input space).
In CRATE, the MLP block is replaced by the ISTA-overcomplete block, which transforms the input
representation to the overcomplete basis (4x larger) and transforms back with the same parametric
matrix. Therefore, compared to standard transformers, CRATE uses 1/2 of the parameters for the
MLP part.
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Figure 6: Block architecture for the CRATE language model, where Sλ(x) = ReLU(x − η · λ · 1).
Differences from the original architecture mentioned in Yu et al. (2023a) are marked bold: we (1)
add a causal mask Mask(·) and (2) over-parameterize the ISTA block.

A.2 OVERALL ARCHITECTURE

The overall architecture is visualized in Figure 6.

A.3 CAUSAL MSSA BLOCK

This process can be implemented by PyTorch-like code shown in Algorithm 2.

Algorithm 2 PyTorch-Like Code for Causal MSSA Forward Pass

1 class CausalMSSA(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 assert config.n_embd % config.n_head == 0
5 self.c_attn = nn.Linear(config.n_embd, config.n_embd, bias=False)
6 self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=True)
7 self.attn_dropout = nn.Dropout(config.dropout)
8 self.resid_dropout = nn.Dropout(config.dropout)
9 self.n_head = config.n_head

10 self.n_embd = config.n_embd
11 self.dropout = config.dropout
12 self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.

block_size)).view(1, 1, config.block_size, config.block_size)) # causal mask
13

14 def forward(self, x, enhanced_feature_id=None):
15 B, T, C = x.size()
16 qkv = qkv.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
17 att = (qkv @ qkv.transpose(-2, -1)) * (1.0 / math.sqrt(qkv.size(-1)))
18 att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
19 att = F.softmax(att, dim=-1)
20 att = self.attn_dropout(att)
21 y = att @ qkv
22 y = y.transpose(1, 2).contiguous().view(B, T, C)
23 y = self.resid_dropout(self.c_proj(y))
24 return y
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A.4 OVER-COMPLETE ISTA BLOCK

To give a better idea of how Equation (9) works, we expand the two-iteration process (t = 2). Given
Dℓ ∈ Rd×h, we expand the first ISTA step to

A0 = 0,

A1 = Sλ

(
A0 − η · (Dℓ)∗(DℓA0 − LN(Zℓ+1/2))

)
= ReLU

(
η · (Dℓ)∗LN(Zℓ+1/2)− ηλ

)
.

(10)

The second ISTA step continues the process from the initialized sparse code A1:

A2 = Sλ

(
A1 − η · (Dℓ)∗(DℓA1 − LN(Zℓ+1/2))

)
= ReLU

(
A1 − η · (Dℓ)∗(DℓA1 − LN(Zℓ+1/2))− ηλ

)
,

(11)

which can be decomposed to:

G1 = (Dℓ)∗DℓA1

G2 = (Dℓ)∗ · LN(Zℓ+1/2)

G = η · (G2 −G1)− η · λ
A2 = ReLU(A1 +G)

(12)

where A2 is the output sparse code. At last, we convert the output sparse code from the coding rate
space back to the original representation space:

Zℓ+1 = DℓA2 (13)

This process can be implemented by PyTorch-like code shown in Algorithm 3.

Algorithm 3 PyTorch-Like Code for Over-complete ISTA Forward Pass

1 class ISTA(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 self.weight = nn.Parameter(torch.Tensor(4 * config.n_embd, config.n_embd)) # h*d
5 with torch.no_grad():
6 init.kaiming_uniform_(self.weight)
7 self.step_size = 0.1
8 self.lambd = 0.1
9

10 def forward(self, x, enhanced_feature_id=None):
11 z_init = F.relu(self.step_size * F.linear(x, self.weight, bias=None) - self.

step_size * self.lambd) # A1
12 x1 = F.linear(z_init, self.weight.t(), bias=None)
13 grad_1 = F.linear(x1, self.weight, bias=None)
14 grad_2 = F.linear(x, self.weight, bias=None)
15 grad_update = self.step_size * (grad_2 - grad_1) - self.step_size * self.lambd
16 output_sparse_code = F.relu(z_init + grad_update) # A2
17 output = F.linear(output_sparse_code, self.weight.t(), bias=None)
18 return output
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Figure 7: CRATE iteratively compresses (MSSA block) and sparsifies (ISTA block) the token rep-
resentations (colored points) across its layers from 1 to L, transforming them into parsimonious
representations aligned on axes (colored lines) with distinct semantic meanings.
A.5 DETAILS OF THE LEARNING PROCESS

The desired optimization process is illustrated in Figure 7. The process starts with random token
representations (Z1). Through successive layers, the representations (Zℓ) are compressed to align
with the axis via the MSSA block, forming Zℓ+1/2 that are semantically more consistent among rel-
evant tokens. This is then refined by sparse coding (the ISTA block) to produce the representations
Zℓ+1 that align on incoherent axes, leading to semantically more specified token representations.
Repeated across layers, this culminates in distinct token representations ZL+1 aligned on unique se-
mantic axes. More detailed explanation of this optimization process can be found in Appendix A.5.

We elaborate the learning process of CRATE in this section, with a close reference to Figure 7.

In Figure 7, what is the space the points are drawn in? The space is the representation space
(of layer ℓ). Because the model is pretrained with next-token prediction in the language domain, the
space is specifically a semantic space. Thus, each point (token) has a semantic representation in this
high-dimensional space.
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Figure 8: Illustration of the concepts of the activation matrix and poly-semanticity.

How do the layouts of the points suggest mono or poly-semanticity? First, each axis (red/yel-
low) in the figure represents a neuron/feature visualized in the semantic space. We visualized the
activation matrix At in Figure 8. For example, when L ∈ {1, 2, 3}, the model dimension is 128,
which means that the overcomplete basis of ISTA will have a dimension of 512, introducing 512
features. Now if we input a sequence of 256 tokens, the activation matrix will have a shape of
[512, 256].

Poly-semanticity means that token representations in the semantic space are clustered as a broader set
of semantic meanings - that is, each neuron has a broader set of semantic meanings. For example, in
the gray box on the top left of Figure 7, both yellow- and red-backgrounded tokens represent either
a number or a capitalized token. This corresponds to multiple high activations in the feature, where
the tokens that activated this feature can either be a number or a capitalized token, which is shown
in Figure 8 (where pink squares represent high activations).
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In the compression phase, the token representations are pushed towards the semantic axes, so that
the tokens will activate on fewer features but will gain higher activations on these features - which
is essentially an activation condensing process.

In the sparsification phase, the neurons (axes) are made further from each other, meaning that the
features have less semantic overlap with each other. In this case, the results will become the gray
box on the top right side of Figure 7, indicating that each neuron has distinct semantic meanings,
like “numbers” or “capitalized tokens”.

Note that this is a minimal example. In practice, tokens appear in context.

B DETAILS ON INTERPRETABILITY EVALUATIONS

This section details the implementation details of the interpretability evaluations.

In practice, we adopt three evaluation metrics: two from OpenAI (Bills et al., 2023) and one from
Anthropic (Bricken et al., 2023). As the Anthropic metric is a closed-source follow-up of OpenAI,
we start from the official implementation provided by OpenAI (Wu et al., 2023) for both metrics.

For each layer, we use randomly sampled 8, 000 text excerpts of 1, 024 tokens each, which sums
up to 8M tokens in total, from the test split of the uncopyrighted Pile dataset, to evaluate the inter-
pretability scores.

B.1 PARAMETERS OF EVALUATION METRICS

Comprehensive parameter settings are shown in Table 5. For the OpenAI metrics, each input text
excerpt contains 64 tokens. For the OpenAI top-and-random metric, we use 5 top activated excerpts
for explanation, and a mixture of 5 top activated and 5 randomly activated excerpts for simulation.
For the OpenAI random-only metric, we only use 5 randomly activated excerpts for simulation.

For the Anthropic metric, each text excerpt contains only 8 tokens. For the explanation model,
we input 15 top activated excerpts, 5 randomly activated excerpts, and 22 excerpts from different
activation quantiles. To elaborate, we evenly divide the activation range into 11 quantiles, where we
pick 2 excerpts from each of them. For the simulation model, we input 10 top activated excerpts,
5 randomly activated excerpts, 22 quantiled excerpts, and 10 top activated out-of-context (OOC)
excerpts. Our implementation of the OOC excerpts is to cut the input text excerpt into length of only
3 tokens.

Table 5: Evaluation parameter settings of the OpenAI and Anthropic approach.

Explanation Simulation
#Token #Top #Rand #Qua #Top #Rand #Qua #OOC

OpenAI TaR 64 5 5 5
Rand 64 5 5

Anthropic 8 15 5 2 · 11 10 5 2 · 11 10

B.2 DISCUSSION ON FOCUS OF DIFFERENT MEASURES

The OpenAI random-only metric is the easiest to interpret. As noted by Bills et al. (2023), the
random-only metric considers an explanation’s ability to capture the neuron’s representation of fea-
tures in the pre-training distribution, because the simulated tokens are uniformly randomly sampled
from the validation set of the pre-train dataset. However, the random-only scoring with small sam-
ple size risks failing to capture behavior, due to lacking both tokens with high simulated activations
and tokens with high real activations. Top-and-random scoring addresses the latter, but causes us to
penalize falsely low simulations more than falsely high simulations, and thus tends to accept overly
broad explanations.

The Anthropic metric, on the other hand, puts more focus on the mono-semanticity of the activations,
as noted by Bricken et al. (2023). For sparse features, which don’t fire on most random samples,
evaluating across a wide range of activations effectively tests the model’s ability to distinguish a
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feature’s large activations from zero, and the short text excerpts make it easier for the simulation
model to identify the sparse activations.

B.3 MORE ACCESSIBLE EVALUATION

To reduce compute cost, we use Mistral-7B-instruct as the explanation model, and LLaMA-2-7B
as the simulation model. We empirically prove that these replacements does not affect the conclu-
sions of apple-to-apple comparison between CRATE and GPT below.

Explanation model. In the official implementation (Wu et al., 2023), the explanation model is
gpt-4. According to ablations described in Bills et al. (2023), it also makes sense to use the
sligtly cheaper model gpt-3.5-instruct. Due to the high compute cost, we use the open-source
model mistral-7b-instruct instead. We demonstrate the performance of gpt-3.5-turbo and
mistral-7b-instruct using the OpenAI random-only and top-and-random metrics in Table 6.
Results show that the change of model doesn’t significantly change the scores, and doesn’t affect
conclusions at all.

Table 6: Interpretability measure of GPT, GPT-SAE and CRATE-GPT on the Pile dataset based on the OpenAI
metrics. Explanation model: Mistral-7B-instruct/GPT-3.5-turbo. Simulation model: LLaMA-2-7B.

mistral-7b-instruct ρ (Random-only) (%, ↑) ρ (Top-and-Random) (%, ↑)
Model Size Loss Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

CRATE-1L 6.54M 4.06 4.8 - - 3.9 - -
CRATE-2L 6.64M 3.55 8.0 5.8 - 7.8 8.3 -
CRATE-3L 6.74M 3.46 9.0 9.4 6.9 9.6 9.3 8.4

GPT-1L 6.64M 3.83 8.9 - - 8.8 - -
GPT-2L 6.83M 3.23 2.3 1.6 - 4.3 4.1 -
GPT-3L 7.03M 3.11 3.1 −0.3 1.3 7.3 0.8 2.6

GPT-1L (16x SAE) 2.9 - - 5.4 - -
GPT-2L (16x SAE) 3.5 1.8 - 7.4 4.2 -
GPT-3L (16x SAE) 3.2 2.3 1.1 9.6 5.0 4.5

GPT-3.5-turbo ρ (Random-only) (%, ↑) ρ (Top-and-Random) (%, ↑)
Model Size Loss Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

CRATE-1L 6.54M 4.06 4.8 - - 3.9 - -
CRATE-2L 6.64M 3.55 8.2 6.0 - 7.5 8.0 -
CRATE-3L 6.74M 3.46 9.1 9.2 6.9 9.5 9.1 8.3

GPT-1L 6.64M 3.83 9.0 - - 9.0 - -
GPT-2L 6.83M 3.23 2.2 1.6 - 4.3 4.4 -
GPT-3L 7.03M 3.11 3.0 −0.3 1.2 7.0 3.1 3.0

GPT-1L (16x SAE) 2.6 - - 4.7 - -
GPT-2L (16x SAE) 3.4 1.6 - 5.0 2.9 -
GPT-3L (16x SAE) 2.8 1.8 1.2 7.4 3.8 3.2

Simulation model. The official implementation of the simulation model utilizes
text-davinci-003 (now named gpt-3.5-turbo-instruct), which no longer supports retrieving
the logprobs through the API, so we use LLaMA-2-70B as an equally capable replacement (Touvron
et al., 2023). For more accessible evaluations, we use LLaMA-2-7B instead. We show the difference
in interpretability caused by different simulation model size on LLaMA-2-7B and LLaMA-2-70B
in Table 7. Empirical results show that although LLaMA-2-7B has overall lower scores and
higher variance than LLaMA-2-70B, it doesn’t affect essential conclusions about the apple-to-apple
comparison between CRATE and GPT.
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Table 7: Interpretability measure of GPT and CRATE-GPT on the Pile dataset based on the OpenAI Top-and-
random metric. Explanation model: GPT-3.5-turbo. Simulation model: LLaMA-2-7B/LLaMA-2-70B.

Interpretability (7B) (%, ↑) Interpretability (70B) (%, ↑)
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

CRATE-1L 3.9 - - 6.4 - -
CRATE-2L 7.5 8.0 - 7.4 7.1 -
CRATE-3L 9.5 9.1 8.3 10.4 7.4 6.5

GPT-1L 9.0 - - 13.4 - -
GPT-2L 4.3 4.4 - 6.4 7.8 -
GPT-3L 7.0 3.1 3.0 10.1 3.2 6.3

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

7B CRATE-6L 10.5 7.4 5.8 8.0 8.1 5.7
GPT-6L 13.7 5.2 1.9 0.6 5.6 6.9

70B CRATE-6L 10.1 6.5 7.0 8.3 9.4 0.7
GPT-6L 14.5 6.2 2.5 0.7 3.9 4.1

C ANALYSIS ON ACTIVATION SPARSITY

We demonstrate the activation sparsity of CRATE compared to GPT in Figure 9. We observe that
the activations of CRATE are higher than GPT. One might have the confusion about why CRATE
is designed to be sparse but the activations evaluated is denser than GPT. Note that the sparsity
evaluated in standard transformer model is output from the hidden layer of the MLP layer, which is
the activation matrix A before applying to the residual stream, as shown in Figure 10. The actual
representations in standard transformers, which are after applying the residual stream, are not sparse
at all. In contrast, the sparsity evaluated in CRATE is the actual representations At (including the
residual stream).
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Figure 9: Layer-wise activation sparsity of CRATE and GPT. Left: 6L models. Right: 12L models.

Figure 10: Extracting sparse code At from CRATE and hidden layer output A from GPT.
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We also present the activation dynamics of CRATE and GPT with the progression of the pre-training
process in Figure 11. We observe a strong trend that the sparsity of CRATE monotonically decreases
in the early stage (trained on 1.6B tokens), which aligns with the design purpose. In the late stage
(16B, 160B tokens), the sparsities in the early sites (L < 12) significantly decreases, which also
aligns with the design purpose. On the other hand, GPT never appears to have a decreasing trend of
activation sparsity over layers across the whole pre-training stage, indicating a systematic difference
between the sparsity dynamics between CRATE and GPT. One counter-intuitive observation is that
the decreasing trend fades as the stage moves on. Our hypothesis is that CRATE overfits on the next
token prediction task due to the large amount of tokens trained.

2 4 6 8 10 12

Layer index - 

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ar

sit
y 

[IS
TA

 b
lo

ck
]

Measure output sparsity across layers (CRATE)
1.6B
16B
160B

2 4 6 8 10 12

Layer index - 

0.0

0.1

0.2

0.3

0.4

Sp
ar

sit
y 

[IS
TA

 b
lo

ck
]

Measure output sparsity across layers (GPT)
1.6B
16B
160B

Figure 11: Layer-wise activation sparsity w.r.t. tokens trained. Left: CRATE language model. Right:
GPT.

D DETAILS ON INTERPRETATION SCORE DISTRIBUTIONS

We visualize the distributions of layer-wise interpretation scores of CRATE and GPT with L = 12
in Figure 12. We exclude cases where activations sampled from GPT-Base (random-only metric)
are all zeroes, as in these cases the correlation ρ will be undefined. This results in a smaller number
counted in the GPT activations in the first two rows.

E DETAILS ON SPARSE AUTO-ENCODER

E.1 SPARSE AUTOENCODER AND DICTIONARY LEARNING

The dictionary learning model is an MLP with a single hidden layer. It is trained as an auto-encoder
using input weights as the encoder that maps the input activations to a higher dimension, and output
weights as the decoder. Formally, given activation a ∈ Rh sampled from A ∈ Rh×N , the encoder
W1, b1 with dimension multiplicator µ maps the activations to a hidden representation h ∈ Rµh,
whereas the decoder W2, b2 maps the representation back to the original dimension â ∈ Rh. The
dictionary learning objective can thus be expressed as

ā = a− b2 (14)
h = ReLU(W1x̄+ b1) (15)
â = W2h+ b2 (16)

L =
1

|A|
∑
a∈A

∥a− â∥22 + λ∥h∥1 (17)

E.2 DETAILED SETUP

We train the sparse auto-encoders on the train split of the uncopyrighted Pile dataset until conver-
gence. Following Bricken et al. (2023) and Conmy (2023), we adopt the resampling strategy to
re-train the dead features, and the learning rate scheduling strategy to improve recovery rate. For
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Figure 12: Distribution of the interpretation scores over CRATE-12L and GPT-12L. x-axis: interpre-
tation score. y-axis: count of neurons falling in the corresponding interval of interpretation score.

implementation, we mainly follow Conmy (2024), with λℓ1 = 1.6 × 10−4, α = 1.2 × 10−3 for all
sizes of models. We evaluate using the average loss of randomly sampled batches on the validation
split of the uncopyrighted Pile dataset.

E.3 LOSS CURVE

The loss curves of training the sparse auto-encoders are shown in Figure 13. Generally, resampling
boosts the performance of the reconvery score, which aligns with the conclusions shown in Bricken
et al. (2023) and Conmy (2023). We also observe an increasing trend of performance with the
increases of the SAE multiplication factor µ and model size L.
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Figure 13: Left: The recovery scores of GPT-1L (ℓ = 0) with SAE multiplication factors µ =∈
{1, 4, 16}. Right: The reconstruction loss of SAE with µ = 16 on different sizes of GPT models
L ∈ {1, 2, 3}, averaged across all layers.

E.4 PERFORMANCE

The performance of sparse auto-encoders of CRATE-GPT and GPT under a variety of settings (model
L, ℓ and sparse autoencoder width multiplication factor µ) are shown in Table 8. The percentages of
dead neurons for all layers of L ∈ {1, 2, 3} are less than 1%.

Table 8: Reconstruction loss and recovery score of the sparse autoencoders on CRATE and GPT.

µ = 16 Reconstruction Loss (↓) Recovery Score (%, ↑)
Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

GPT-1L 6.64M 3.83 4.35 - - 95.0 - -
GPT-2L 6.83M 3.23 3.50 3.45 - 95.2 92.2 -
GPT-3L 7.03M 3.11 3.38 3.39 3.29 94.6 94.8 92.4

CRATE-1L 6.54M 4.06 4.33 - - 93.6 - -
CRATE-2L 6.64M 3.55 4.12 3.80 - 95.7 95.7 -
CRATE-3L 6.74M 3.46 4.05 3.99 3.77 93.0 93.9 95.0

µ = 4 Reconstruction Loss (↓) Recovery Score (%, ↑)
Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

GPT-1L 6.64M 3.83 4.34 - - 93.7 - -
GPT-2L 6.83M 3.23 3.59 3.56 - 92.7 88.6 -
GPT-3L 7.03M 3.11 3.45 3.50 3.34 92.2 94.9 89.9

CRATE-1L 6.54M 4.06 4.39 - - 92.1 - -
CRATE-2L 6.64M 3.55 4.37 3.93 - 93.7 93.8 -
CRATE-3L 6.74M 3.46 4.03 4.11 3.81 92.6 92.6 92.6

µ = 1 Reconstruction Loss (↓) Recovery Score (%, ↑)
Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

GPT-1L 6.64M 3.83 4.93 - - 95.0 - -
GPT-2L 6.83M 3.23 3.89 3.75 - 89.0 82.2 -
GPT-3L 7.03M 3.11 3.63 3.61 3.58 86.9 91.0 84.9

CRATE-1L 6.54M 4.06 4.69 - - 86.2 - -
CRATE-2L 6.64M 3.55 4.68 4.29 - 90.4 88.9 -
CRATE-3L 6.74M 3.46 4.39 4.38 4.16 97.0 89.2 88.1

E.5 INTERPRETABILITY

Does CRATE have more optimal representation than GPT in terms of interpretability? As it’s
hard to decide how much interpretability gain it is from CRATE to CRATE-SAE directly (as ex-
plained in Section 5.3), we compare the interpretability improvement of CRATE-SAE over CRATE
to the interpretability improvement of GPT-SAE over GPT.
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The interpretability of GPT-SAE is already included in Figure 4. The interpretability of CRATE-
SAE under the OpenAI TaR and Anthropic metrics are shown in Table 9.

Table 9: Interpretability of CRATE-SAE under the OpenAI TaR and Anthropic metics.

OpenAI TaR (↑) Anthropic (↑)
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

1L 6.0 - - 17.9 - -
2L 7.7 5.2 - 21.7 12.4 -
3L 7.2 6.4 4.6 19.3 18.4 11.6

E.6 STEERING THE LM OR SAE

In comparison to post-hoc trained SAEs, built-in sparsification processes, such as the one we pro-
posed in this paper, have the potential to be steered with perfect fidelity. As visualized in Figure 14,
post-hoc approaches like SAE require steering the model with the decomposed hidden states h,
whose encoding and decoding processes are both lossy. An imperfect reconstruction systematically
leads to distortions of the steering signal upon the hidden states, and thus affects downstream appli-
cations of the GPT-SAE model. In contrast, CRATE doesn’t include any approximation that distorts
the steering signal, so the signal can be propagated without loss of fidelity. This conclusion does not
change whether the performance of GPT-SAE outperforms CRATE or not.

ISTA FFN

SAE 
Encoder

SAE 
Decoder

Imperfect

Coding

Figure 14: Illustration of steering a language model directly or using SAE.

F FURTHER QUALITATIVE RESULTS ON INTERPRETABLE NEURONS

This section lists some further qualitative examples of tokens and their activations when L = 3,
including examples of the GPT-SAE activations. Specifically, we demonstrate two neurons in each
model. Tokens with a deeper blue background have a higher activation. Explanations ki and scores
si are obtained by Algorithm 1.

F.1 CRATE-3L, LAYER 0, NEURON 288

OpenAI Evaluation Score: 0.44478400135318646
Explanation: information related to the regulation of mRNA expression and its role in carbohydrate
metabolism, with a focus on CRC cells and gene signaling in the context of cancer development.
Top Activations
animal models of cart ilage degradation ([ @ b 41 - mm r - 16 - 04 - 38 41 ]). Among
these cytok ines , IL - 1 β is highly overe xp ressed in the cart ilage and in
the syn ov ial tissue , while the expression of IL - 1 receptor antagonist ([
@ b 42 - mm r -
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raft s . Moreover , AC OX 1 overe xp ression atten uated the aug mentation of
migration and invasion of CRC cells by mi R - 15 b - 5 p overe xp ression . In
conclusion , our study demonstrated a functional role of the S IRT 1 / mi R -
15 b - 5 p / AC OX 1 axis
Random Activations
ed with Peter Braun , the Mor av ian \n mission ary in Ant ig ua ; and to that
correspondence he owed in part his \n interest in missionary work . But that
was not the end of the Bre thren ’s \n inf luence . At all meetings addressed
by the founders of the proposed \n Soc iety , the speaker repeatedly

ESA ) and the American Association for the Advance ment of Science ( AA AS
) have well - developed and successful science policy fellows hips . These
programs acknowledge that scientists can play important roles in directing
new laws and policies in their field , and that their expertise is needed
for effective decision - making \ [[ @ B 81 - in

Anthropic Evaluation Score: 0.2813215497394413
Explanation: Phrases related to molecular biology and gene expression, specifically in the context
of mRNA transcription and its activation or inhibition. Additionally, there are mentions of certain
proteins (IPOTENT, cytokine, IRT), cellular processes (proliferation,
Top Activations
b - 5 p overe xp ression .

cases showed EG FR overe xp ression .

, TL R 2 overe xp ression in

IL - 1 β mRNA expression in the
Random Activations
G . al bid us * T MW

had suffered from heat contact ur tic aria

" al ive ": true , \n
= mm pack us ep

F.2 GPT-3L, LAYER 2, NEURON 289

OpenAI Evaluation Score: -0.3236237946813878
Explanation: The provided text contains multiple sections, but the activations given for Neuron 4
seem to be related to genetic and statistical data (e.g., population, CI, percent, risk association, and
recessive models). Given this, the main thing this neuron does is identify
Top Activations
in Asian population . Similarly , in Caucasian population , the rs 499 776
polymorph ism attributes risk association in hom ozyg ote OR 0 . 70 ( 95 % CI
[ 0 . 50 - 0 . 98 ]), dominant OR 3 . 57 ( 95 % CI [ 2 . 34 - 5 . 27 ]), and recess
ive models OR 0

* SE * = 0 . 04 40 , * t * = - 1 . 07 75 , * p * \ > 0 . 05 , 95 % CI (- 0 . 13 38 ,
0 . 0 390 ) for the Slov ak ian villagers story \ ], therefore indicating full
mediation by exoner ations and out - group focused emotions

Random Activations
long er the vortex , it ’s the smooth current of rotating air which is next
to \n the vortex , and we use the upd raft of this air ." Taking advantage of
the free \n lift in this upd raft of air is called " wake - energy retrieval
." ... on long - \n haul flights , fuel savings of between

ushing . \n\n S igh called her supervisor . Sergeant Sweeney and
Deputy Ray responded \n \n and moved Don ery so that S igh could search his
cell . Don ery had been in his new \n \n cell for less than five minutes
when the toilet overfl owed and water began flowing out \n \n of
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Anthropic Evaluation Score: 0.06532542667915378
Explanation: strings containing specific numbers and alphanumeric characters, such as ”CI-50-.”,
”e-44-”, ”87-̈”, and ”f-̈”. Additionally, it activates slightly for certain words like ”cost”, ”weeks”,
”disability”, and
Top Activations
95 % CI [ 0 . 50 -

95 % CI , 0 . 13 -

f \" ], [ 0 . 22 22

95 % CI [ 0 . 50 -
Random Activations
{ 8 }{ 45 }\ pi \\ \n
instead of that silly website . <|endoftext|> How

is free software ; you can redist ribute

F.3 GPT-3L-SAE-16X, LAYER 2, NEURON 57

OpenAI Evaluation Score: 0.1427145260798203
Explanation: months or the word ”Bank” followed by a year.
Top Activations

No . 18 - 20 609 February 21 , 2020 \n

with the compact - open top ology , is a locally compact group .’ \n author :
\n - ’ Nic olas Rad u [ ˆ 1 ]’ \n date : ’ July 15 , 2016 ’ \n title : | \n A
top ological characterization of the M ouf ang \ \n property for compact
polyg ons

Random Activations
of DN * db / db * mice . \ \n ( ** A ** ) Ur inary album in to creat in ine ratio
. ( ** B ** ) Ser um u rea nitrogen . ( ** C ** ) Left kidney weight to body
weight ratio . ( ** D ** ) HE st aining . Bar =

this email : ot isd ark o 60 @ yahoo . com \n \n HE FIX THE FO LLOW ING PR OB LE MS
TO ALL \n \n AC R OSS THE GL OB E ON : \n \n 1 . Getting your lover or husband
back \n \n 2 . Spiritual bullet proof \n \n 3 . Training \n \n 4 . Money

Anthropic Evaluation Score: 0.2540425061001668
Explanation: dates and specifically, the month and day for a given year. The neuron is not activated
by the year alone, and it requires both the month and day for a complete activation.
Top Activations

February 21 , 2020

\n date : ’ July 15 , 2016

field , Missouri ( December 15 , 2014

February 5 , 1998
Random Activations
\n Can ola oil

} \n \n . c ke

uana when a draw would have clin ched

. </ p > \n \t
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