
Turning Trash into Treasure: Accelerating Inference of Large
Language Models with Token Recycling

Anonymous ACL submission

Abstract
Massive parameters of LLMs have made infer-001
ence latency a fundamental bottleneck. Specu-002
lative decoding represents a lossless approach003
to accelerate inference through a guess-and-004
verify paradigm. Some methods rely on ad-005
ditional architectures to guess draft tokens ,006
which need extra training before use. Alter-007
natively, retrieval-based train-free techniques008
build libraries from pre-existing corpora or by009
n-gram generation. However, they face chal-010
lenges like large storage requirements, time-011
consuming retrieval, and limited adaptability.012
Observing that candidate tokens generated dur-013
ing the decoding process are likely to reoccur in014
future sequences, we propose Token Recycling.015
It stores candidate tokens in an adjacency ma-016
trix and employs a breadth-first-search (BFS)-017
like algorithm to construct a draft tree, which018
is then validated through tree attention. New019
candidate tokens from the decoding process are020
then used to update the matrix. Token Recy-021
cling requires <2MB of additional storage and022
achieves approximately 2x speedup across all023
sizes of LLMs. It significantly outperforms ex-024
isting train-free methods by 30% and even a025
widely recognized training method by 25%.026

1 Introduction027

Large Language Models (LLMs) (Brown et al.,028

2020; Gemini Team et al., 2023; Touvron et al.,029

2023; Meta, 2024) have becoming the foundation030

of numerous applications such as chatbots, code031

assistants, and agents (OpenAI, 2023; Chen et al.,032

2021; Wang et al., 2024a). However, due to the033

auto-regressive decoding strategy, LLMs can only034

generate a single token at each decoding step, lead-035

ing to high inference latency (Brown et al., 2020).036

The latency mainly comes from transferring bil-037

lions of parameters from high bandwidth mem-038

ory to the accelerator cache at each decoding step,039

rather than arithmetic computations (Kim et al.,040

2024; Shazeer, 2019; Cai et al., 2024).041

Neglected
Information

[range values[k

for i rangein (

i in (zip xs

LLM

Draft Model/Retrieval Library

for

Typical Speculative Decoding

Token Recycling (Ours)

for i rangein (

i in (zip keys

LLM

Discard

Retrieve

Update

draft/candidate token

accepted token

rejected token

Top-k Candidate Tokens

Adjacency Matrix

for i k
...
(keys values

Update

for ...k (keys

for i j
...
(a b

Future Generations

Figure 1: A comparison of typical speculative decoding
and Token Recycling (TR). Typical methods draft some
tokens and verify them in parallel in one decoding step.
Unlike other methods that discard candidate tokens, TR
stores them in an adjacency matrix. In future genera-
tions, draft tokens are retrieved from the matrix which
is updated with new candidate tokens. TR effectively
recycles tokens in the decoding process.

Many approaches (Xu et al., 2024; Frantar and 042

Alistarh, 2023; Dao, 2024; DeepSeek-AI, 2024) 043

seek to reduce the latency, with speculative decod- 044

ing as a key lossless technique. This approach em- 045

ploys a guess and verify process to obtain multiple 046

tokens during a single decoding step (Chen et al., 047

2023; Leviathan et al., 2023; Miao et al., 2024; Xia 048

et al., 2023). It first speculates several subsequent 049

draft tokens and then verifies them using the origi- 050

nal LLMs. The time cost of verification on multi- 051

ple tokens is comparable to that of generating one 052

token due to the high parallelism of accelerators. 053

Once some draft tokens are correct, the decoding 054

1

steps is significantly shortened without sacrificing055

quality. To fully utilize the parallelism of accel-056

erators, tree attention slightly adjust the attention057

mask to verify multiple token continuations in one058

model forward (Cai et al., 2024; Miao et al., 2024).059

Speculative decoding aims not only to maintain060

quality but also to minimize the cost of speculation.061

Additional model architectures are constructed to062

guess the draft tokens, including small draft mod-063

els (Leviathan et al., 2023; Chen et al., 2023) and064

parameter-efficient structures (Cai et al., 2024; Lin065

et al., 2024). However, these approaches require066

resources for additional training on each LLM. The067

typical approach to achieve train-free speculative068

decoding is retrieve-based. In this case, a retrieval069

library is pre-defined to obtain tokens following the070

suffix of current content as draft tokens. Several071

methods have been proposed in this category, each072

with its trade-offs: (i) REST (He et al., 2023) trans-073

forms existing corpora into a retrieval library, but074

the storage is large, retrieval is time-consuming,075

and the library lacks flexibility as it’s static to any076

queries. (ii) PLD (Saxena, 2023) only retrieves the077

previous content with minimal cost. However, it078

can not predict new tokens or new token combina-079

tions. (iii) Lookhead (Fu et al., 2024) construct and080

update an n-gram library by decoding n times with081

LLMs. However, LLMs have to generate n-grams082

while in inference, causing low efficiency.083

Furthermore, all speculative decoding ap-084

proaches fail to fully utilize candidate tokens,085

which are multiple possible next tokens generated086

by LLMs at each decoding step. In greedy decod-087

ing, only the top-1 candidate token of accepted to-088

kens is selected as the output, while other candidate089

tokens, including all candidate tokens from rejected090

tokens, are discarded, such as ‘k’ and ‘keys’ in Fig-091

ure 1. However, we observe that when current092

input tokens reappear in future generations, the093

following tokens could be candidate tokens gen-094

erated several steps prior. Based on the observa-095

tion, we propose Token Recycling (TR), which uti-096

lizes candidate tokens as draft tokens. It stores can-097

didate tokens in an adjacency matrix. Before each098

decoding step, a BFS-like approach retrieves a draft099

tree from the matrix, which is then verified using100

tree attention. Once verified, the newly generated101

candidate tokens update the matrix. (i) The matrix102

provides a flexible retrieval library that is tailored103

to each query and offers low retrieval costs due to104

its small size (<2MB). (ii) Compared to using the105

previous content solely, candidate tokens naturally106

include more tokens, providing many possible con- 107

tinuations. (iii) The construction and update of our 108

library (matrix) utilize the ‘trash’ tokens without 109

requiring any additional generation. 110

We conduct comprehensive experiments on gen- 111

eral benchmark SpecBench (Xia et al., 2024), and 112

specialized dataset on code domain, MBPP (Chen 113

et al., 2021) with Vicuna (Zheng et al., 2023) and 114

Code Llama (Roziere et al., 2023) . The results 115

show that TR greatly exceeds previous train-free ap- 116

proaches, and improves more than 31% on all sizes 117

(7b, 13b, 33b/34b). The speed-up ratio even ex- 118

ceeds the widely used training approach–Medusa, 119

demonstrating its high efficiency. 120

Our contributions are summarized below: 121

• Based on the observation that candidate to- 122

kens can be reused as draft tokens in subse- 123

quent sequences, we propose a train-free spec- 124

ulative decoding method, Token Recycling. 125

• TR requires minimal storage space (<2MB) 126

with a low retrieval cost and covers many new 127

tokens. Continuously updating provides a dy- 128

namic retrieval space. 129

• TR achieves approximately 2x speedup on all 130

sizes of LLMs. It achieves a new SOTA with 131

an improvement greater than 31% compared 132

to previous train-free approaches and even 133

exceeding a training approach. 134

2 Background 135

In this section, we overview the speculative decod- 136

ing. We first define auto-regressive (AR) decoding 137

formally, then discuss speculative decoding, focus- 138

ing on two key strategies: guess-and-verify and 139

tree attention. 140

2.1 Auto-Regressive Decoding 141

AR is the default decoding strategy of LLMs. At
each step t, LLMs calculate the probability distri-
bution of the next token given the current content
s = (x0, x1, · · · , xt) which xi ∈ V:

pt+1 = P (x|s; θ).

Here V is the vocabulary and θ denotes LLM pa-
rameters. The next token is selected from pt+1

based on the sampling method. Followed Kou et al.
(2024), we focus on greedy decoding in this paper,
where the next token is:

xt+1 = argmax pt+1.

2

Candidate tokens are the top-k tokens with the high-
est probabilities

(x0t+1, x
1
t+1, . . . , x

k−1
t+1) = argtopk(pt+1)

where k is the number of candidate tokens, and142

argtopk(·) returns the indices of the top-k highest143

values in pt+1.144

2.2 Speculative Decoding145

Guess and Verify Speculative decoding effec-146

tively utilizes the parallel capability of acceler-147

ators. Given s, it first guesses n subsequent148

draft tokens (x̃t+1, · · · , x̃t+n). The combination149

(s, x̃t+1, · · · , x̃t+n) is then sent to LLMs for one150

forward pass, resulting in:151

pt+1 = P (x | s; θ),152

p̃t+i = P (x | s, x̃t+1, . . . , x̃t+i−1; θ), i = 2, . . . , n.153

pt+1 is the same as AR decoding so the ground
truth xt+1 is determinable. If the draft token x̃t+1

matches xt+1, then p̃t+2 is assumed to identical
to pt+2. Thus, the next ground truth is selected:
xt+2 = argmax p̃t+2. This verification process
continues until the draft token does not match the
ground truth, indicated by:

xt+j = argmax p̃t+j ̸= x̃t+j .

Ultimately, j new tokens are confirmed in one for-154

ward pass. The time cost of one forward pass with155

(s, x̃t+1, · · · , x̃t+n) is nearly the same as with s156

due to the high parallel performance of accelera-157

tors. Figure 1 shows an example. The draft tokens158

are [‘i’, ‘in’, ‘range’, ‘(’] and the output tokens159

are [‘i’, ‘in’, ‘zip’, ‘(’, ‘xs’] after the forward pass.160

Though ‘zip’ fails to match ‘range’, three tokens161

[‘i’, ‘in’, ‘zip’] are confirmed in one forward pass.162

Tree Attention Traditional causal attention163

masks are designed for linear sequences, which164

restricts speculative decoding to verifying one se-165

quence at a time. However, as the sequence length-166

ens during draft token generation, the number of167

potential continuations increases. For example, in168

the draft tree in Figure 2, the token following ‘guest’169

could be ‘speaker’ or ‘speak’. Tree attention mod-170

ifies the attention mask to verify multiple draft171

sequences simultaneously. It compresses multiple172

sequences into a single merged sequence, such as173

[‘guest’, ‘speaker’, ‘speak’], while preserving the174

tree structure through tree attention mask. Each175

child node attends only to its parent nodes, prevent- 176

ing sibling tokens from interfering with each other. 177

After the LLM processes the merged sequence, all 178

possible sequences such as ‘guest speaker’ and 179

‘guest speak’, along with their corresponding out- 180

put tokens are extracted based on the tree structure 181

and verified in parallel. The longest correct se- 182

quence is selected as the final output. In rare cases, 183

when tokens have identical probabilities, tree atten- 184

tion and AR decoding may select different tokens, 185

but this affects the response quality minimally. The 186

detailed explanation is in Appendix A.1. 187

In summary, speculative decoding, through 188

guess and verify and tree attention, improves the 189

inference latency robustly and efficiently. 190

3 Methodology 191

Figure 2 provides an overview of Token Recycling 192

(TR). It leverages a hot-start adjacency matrix to 193

store candidate tokens and employs a BFS-like al- 194

gorithm to construct a draft tree. It utilizes tree at- 195

tention to verify draft sequences and continuously 196

updates the matrix with new candidate tokens gen- 197

erated during the decoding process. 198

3.1 Adjacency Matrix Initialization 199

The adjacency matrix M is a key component in 200

TR, used to store top-k candidate tokens for each 201

token in the vocabulary: 202

M∈ V |V|×k 203

where k is a user-defined hyperparameter. Each 204

elementM[i, j] indicates that the token VM [i,j] is 205

the j-th candidate token associated with Vi. The 206

use of matrix format, as opposed to other struc- 207

tures like tries, enables efficient parallel processing 208

of candidate tokens, which is crucial for reducing 209

retrieval and update times. 210

Initially, all elements are set to zero, meaning 211

that a token must appear in draft tokens before 212

it has valid candidate tokens. This initialization 213

leads to the matrix starting with limited predic- 214

tive capability, potentially causing inefficiencies 215

during the early stages of inference. To mitigate 216

this limitation, we implement a hot start strategy. 217

This involves continuing to use the existing ma- 218

trix, thereby leveraging prior knowledge. Even 219

if queries differ in the domain, candidate tokens 220

often include common expressions and patterns 221

that frequently appear across various queries. Con- 222

sequently, hot start ensures that the matrix has a 223

3

4. Update with candidate tokens

event is at an an

Prefix: ... volunteering as a guest

guest

guest

speaker

at

speaker speak Spe
speaker at for is
speak ings in ers

speak
at ~ ~ ~
for ~ ~ ~

for
...

Current Token Candidate Tokens

Current Content

1. Retrieve based on 'guest'

Tree Attention Mask

Prefix guest speaker speak at for

Merged Sequence
Prefix _guest _speaker _at _a

a local nearby guest

2. Model Forward

guest speaker event speaking
speaker at is event
speak ers at ER

at a an the
for a an multicol

...

Current Token Candidate Tokens

a local nearby guest
Top-k Candidate Tokens

speaker at ers a a

LLM

5. Select the longest correct sequence

guest

speaker

speak

at

for

guest
speak

er
atspeak for

ings in

Spe

is ers

Stage3: Verification and Update

Stage1: Adjacency Matrix Initialization Stage2: Draft Tree Retrieval

speaker
speaker at
speaker for
speak

guest

guest
guest
guest

3. Verify all sequence

ings

ings

0. Inherit from previous query

ings

rare
,

ings , rare fair
speakguest ings

Figure 2: An overview of Token Recycling (TR). The adjacency matrix, initialized by inheriting from the previous
query, stores candidate tokens. TR first retrieves a draft tree from the matrix which is then verified through tree
attention. After add the longest correct sequence to the content, the new top-k candidate tokens update the matrix.

broader starting point, covering a wide range of224

potential continuations.225

3.2 Draft Tree Retrieval226

The adjacency matrixM stores candidate tokens,227

which can be used as draft tokens when their cor-228

responding tokens appear later. Directly using the229

matrix could only determine the immediate next230

token, such as finding ‘speaker’ following ‘guest’231

(see Figure 2). Even if ‘speaker’ is correct, it only232

slightly improves upon AR decoding, adding just233

one additional token. In fact, the matrix also holds234

possible continuations for these candidate tokens,235

suggesting subsequent tokens like ‘at’ following236

‘speaker’. Extending the sequence step by step al-237

lows for longer draft sequences. Furthermore, by238

storing top-k candidate tokens, multiple potential239

continuations can be explored in parallel for each240

token, such as ‘at’ and ‘for’ following ‘speaker’.241

This BFS process enables the construction of a242

draft tree with only the adjacency matrix, which243

can be directly applied to tree attention.244

Unlike a complete BFS, we use heuristic rules245

to define a static and imbalanced tree structure.246

This tree structure and its construction process are247

detailed in the Appendix A.2. Static: The num-248

ber of children for each node remains constant249

across all decoding steps, which facilitates pre- 250

processing and enables efficient parallel operations 251

during layer traversal. Avoiding the need to tra- 252

verse each node individually significantly reduces 253

retrieval time. Imbalance: Nodes positioned ear- 254

lier in each layer have more children and extend 255

deeper. This allocates computational resources to 256

the most probable continuations since candidate 257

tokens are ordered by probabilities in the matrix. 258

The BFS-like approach for retrieving the draft 259

tree begins with the matrixM and the tree structure 260

Tree. The root is the last token of current content, 261

like ‘guest’ in Figure 2. As the root forms the first 262

layer, all candidate tokens for ‘guest’ are extracted 263

from M, resulting in [‘speaker’, ‘speak’, ‘Spe’]. 264

According to Tree, the first layer allows each to- 265

ken to have two children, Therefore, ‘speaker’ and 266

‘speak’, which have the top-2 probabilities, are 267

added to the second layer. The process then pro- 268

ceeds to expand a new layer. All candidate tokens 269

of the second layer are retrieved in parallel, result- 270

ing in [‘at’, ‘for’, ‘is’] and [‘ings’, ‘in’, ‘ers’]. Tree 271

specifies that the first node (‘speaker’) can have two 272

children, while the subsequent node (‘speak’) can 273

only have one child. Consequently, the new layer 274

tokens are [‘at’, ‘for’], and [‘ings’]. This process 275

repeats until the specified depth is reached. The 276

4

detailed Algorithm 1 is provided in Appendix A.2.277

This retrieval method constructs a draft tree ef-278

fectively and efficiently with the desired length and279

variety, which can later be verified by tree attention.280

3.3 Verification and Update281

The verification of the draft tree aligns with Sec-282

tion 2.2. Merged sequence S is constructed through283

traversing the draft tree by layers. All potential284

draft sequences are then verified and the longest285

correct sequence is selected.286

Following verification, the adjacency matrixM287

is updated in parallel based on the output distribu-288

tions p̃i+1 of each draft token xi ∈ S:289

M[x̃i] = argtopk(p̃i+1).290

Since multiple preceding tokens may have the291

same candidate token, duplicates may appear in292

S, and their output distributions are likely to dif-293

fer. When performing updates in parallel, CUDA294

operations may merge these updates, leading to295

variations in the final result. For example, if xi296

appears twice and has two different top-2 out-297

put tokens, [y0, y1], [z0, z1], thenM[xi] could be298

updated to exactly one of the following results:299

[y0, z1], [y0, y1], [z0, z1] or [z0, y1]. We do not re-300

solve this merging, as adding controls reduces over-301

all performance, as discussed later in Section 5.2.302

The update process directly overwrites the pre-303

vious candidate tokens and leverages the new ones304

as draft tokens for subsequent decoding steps. This305

allows the retrieval space to dynamically adapt to306

the current content, focusing on the most relevant307

and probable continuations. It also eliminates the308

necessity for extra operations beyond the standard309

decoding to update the retrieval space.310

In summary, TR capitalizes on the ‘trash’ present311

in speculative decoding by implementing a cycling312

process between candidate and draft tokens. It ac-313

celerates inference without the need for additional314

model structures or training, making it highly adapt-315

able and seamlessly integrated with any architec-316

ture or model size.317

4 Experiment318

4.1 Experimental Setup319

Align with previous work (Kou et al., 2024), we fo-320

cus on common computational redundancy scenar-321

ios, specifically greedy decoding with a batch size322

of one. The following evaluation metrics are used:323

Mean Accepted Token (MAT) (Xia et al., 2024)324

represents the average number of tokens confirmed 325

in a single decoding step; Tokens per Second 326

(Ts/s) measures the number of tokens processed per 327

second; Speedup ratio compares the performance 328

relative to HuggingFace’s implementation of AR 329

decoding. We set k = 8 forM (<2MB storage in 330

sum) and the draft tree structure is shown in Ap- 331

pendix A.2. All experiments are conducted using 332

Pytorch 2.3 with a single A100-80GB GPU and 333

128 CPUs under CUDA 12.2. 334

Datasets and LLMs We conduct experiments on 335

SpecBench (Xia et al., 2024) and MBPP (Austin 336

et al., 2021). SpecBench is a comprehensive bench- 337

mark encompassing diverse scenarios including 338

Multi-turn Conversation (MT), Translation (Trans), 339

Summarization (Sum), Question Answering (QA), 340

Mathematical Reasoning (Math), and Retrieval- 341

Augmented Generation (RAG). MBPP is a widely 342

used dataset in code generation, which has a 343

growing demand for efficient generation. These 344

datasets enable a comparative analysis with prior 345

work across both general and specialized domains. 346

We follow the standard practice of utilizing Vi- 347

cuna (Chiang et al., 2023) for SpecBench and Code 348

Llama (Roziere et al., 2023) for MBPP across three 349

different scales: 7B, 13B, and 33B1. 350

Baseline We compare TR with three train-free 351

retrieval-based methods. Lookahead (Lade) con- 352

structs an n-gram retrieval library through addi- 353

tional n-gram generation during decoding, con- 354

suming significant computational resources. PLD 355

treats previous content as the retrieval library, 356

which is constrained and cannot introduce new to- 357

kens or new token combinations. REST builds 358

the retrieval library from existing training datasets, 359

requiring large storage and considerable retrieval 360

time. The static nature of the library also prevents it 361

from adapting to individual queries. Furthermore, 362

we also include a train-need baseline for border 363

comparison. Medusa adds multiple additional LM 364

heads in the final layer to predict draft tokens. We 365

focus on losses Medusa-1 since Medusa-2 is lossy. 366

All baselines use their default hyperparameters. 367

4.2 Main Results 368

Table 1 shows the performance of TR compared to 369

other methods. On SpecBench, it achieves more 370

than a 2x speedup on the 7B model, nearly 30% 371

higher than the previous train-free methods. Even 372

1The largest model of Code Llama is 34B, for consistency
and convenience in our comparisons, we refer to it as 33B.

5

#Para Method SpecBench MBPP

MT Trans Sum QA Math RAG MAT Ts/s Speed MAT Ts/s Speed

7B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 54.30 1.00 1.00 56.15 1.00
Lade 1.42 1.12 1.21 1.21 1.52 1.13 1.64 69.03 1.27 1.66 79.16 1.41
PLD 1.53 0.98 2.36 1.10 1.50 1.74 1.75 83.30 1.53 1.39 66.65 1.19

REST 1.37 1.05 1.12 1.42 1.06 1.30 1.84 66.29 1.22 2.08 87.08 1.55
Medusa 1.90 1.57 1.48 1.58 1.87 1.45 2.31 89.41 1.65 - - -

TR 2.17 1.90 1.94 1.95 2.40 1.78 2.70 110.06 2.03 2.93 131.20 2.34

13B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 39.41 1.00 1.00 41.31 1.00
Lade 1.29 1.06 1.16 1.12 1.48 1.09 1.63 47.50 1.21 1.73 56.87 1.38
PLD 1.45 1.01 2.10 1.02 1.55 1.65 1.67 57.01 1.45 1.48 52.20 1.26

REST 1.51 1.14 1.31 1.50 1.17 1.50 1.82 53.34 1.35 2.05 70.13 1.70
Medusa 1.94 1.66 1.57 1.62 1.98 1.53 2.39 67.92 1.72 - - -

TR 1.98 1.77 1.89 1.75 2.21 1.73 2.72 74.57 1.89 3.08 93.42 2.26

33B

AR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 18.44 1.00 1.00 19.44 1.00
Lade 1.32 1.09 1.20 1.17 1.55 1.14 1.61 23.03 1.25 1.70 29.22 1.50
PLD 1.43 1.06 1.94 1.08 1.55 1.41 1.55 25.89 1.40 1.41 25.89 1.33

REST 1.63 1.27 1.42 1.61 1.29 1.57 1.81 26.99 1.46 2.10 36.85 1.90
Medusa 1.98 1.75 1.63 1.68 2.09 1.61 2.32 33.11 1.80 - - -

TR 1.95 1.75 1.92 1.77 2.24 1.78 2.63 35.16 1.91 3.05 45.43 2.34

Table 1: Performance of different methods on SpecBench (Vicuna) and on MBPP (Code Llama) across all parameter
sizes. Speed is the displayed metric for Categories of SpecBench. MBPP results exclude Medusa as it lacks a Code
Llama variant. Medusa involves training while others are training-free. Bold represents the highest performance.

Method Memory (MB) Speed

Lade 105 1.27
PLD 0 1.53

REST 465 1.22
Medusa >800 1.65

TR 1.95 2.03

Table 2: The additional memory costs for all methods.
Medusa adds extra LM heads to the model, so the mem-
ory usage depends on the model size and the precision.
800MB is based on a 7B LLM and fp16 precision.

compared to tuning Medusa, it shows an improve-373

ment of almost 25%. For the 13B and 33B models,374

it consistently provides nearly 2x speedup, main-375

taining the 30% acceleration advantage. These376

results demonstrate that TR is the most effective377

train-free method on SpecBench, offering substan-378

tial and consistent speedup across all model sizes.379

Notably, TR achieves the best speedup across380

most sub-tasks as well, except it slightly trails PLD381

on Sum. This may be due to this task often in-382

volves many repetitions of previous content. How-383

ever, the performance gap between TR and PLD384

narrows as the model size increases, reaching only385

a 1% difference with the 33B model. This is due386

to larger models tending to generate new tokens387

rather than repeat previous content. In other tasks388

such as MT, Trans, QA, and Math, TR shows a389

significant improvement of about 40%~70% for390

the 7B model. This demonstrates the strong gen-391

eralization of our method across various scenarios. 392

Although the improvement on RAG is less than 3% 393

for the 7B model, it increases with model size, ex- 394

ceeding 10% for the 33B one. This improvement is 395

consistent with the preference of larger models for 396

new tokens. Compared to the general domain, all 397

methods achieve greater acceleration on the code 398

domain due to its higher content redundancy. TR 399

provides approximately 2.3x speedup across all 400

model scales, achieving the SOTA performance. 401

Furthermore, performances on Trans show the 402

advantages of our method compared to PLD and 403

REST. While PLD shows negligible speedup (close 404

to 1x) and REST achieves its lowest speedup across 405

tasks, TR consistently delivers over 1.75x speedup 406

across all model sizes. Notably, on the 7B model, 407

PLD results in a slowdown, and REST achieves 408

just 1.05x, whereas TR reaches 1.9x. Trans re- 409

quires generating new tokens continuously, involv- 410

ing minimal repetition of previous content. Addi- 411

tionally, it is highly context-sensitive, making it 412

challenging to find exact matches from any pre- 413

existing database. These pose challenges for PLD 414

and REST. In contrast, the adaptive and diverse re- 415

trieval space of TR leads to superior performance. 416

In addition to Speed, TR achieves the highest MAT 417

across both benchmarks. This is attributed to its 418

shorter retrieval times and the avoidance of addi- 419

tional generations like Lade. This allows for deeper 420

and wider draft trees, enabling more tokens to be 421

6

30 40 50 60 70 80 90
Breadth

2.20

2.40

2.60

2.80
M

AT
(a)

4 5 6 7 8
Depth

2.67

2.69

2.71

2.73
(b)

First Cur Last
Strategy

2.68

2.71

2.74

2.77
(c)

102

108

114

120

115

117

119

121

111

114

117

120

To
ke

ns
/s

MAT
Tokens/s

Figure 3: Effects of tree breadth, depth and updating strategies on MAT and Tokens/s are in (a), (b), and (c).

accepted in a single decoding step.422

Tokens/s Speed

AR 54.98 1.00
Random 95.07 1.73

Zero 102.68 1.87
Fixed 117.43 2.12

Shuffle 118.78 2.16
TR 119.56 2.17

Table 3: The impact of different initialization strategies
of the adjacency matrix. Random means randomly se-
lected from the vocabulary, Zero means all set to zero,
Fixed means inherited from a fixed matrix and Shuffle
means shuffle the test set.

Table 2 summarizes the GPU memory require-423

ment for all methods. Compared to REST and424

Lade, TR achieves higher speedup with far less425

memory. While PLD requires no additional mem-426

ory, its speedup is limited. Unlike Medusa, our427

approach is training-free, requires minimal mem-428

ory, and still achieves superior performance.429

TR demonstrates significant improvements430

across all scenarios, highlighting its efficiency and431

broad applicability. Importantly, TR is train-free432

and self-drafting, allowing for an approximate433

2x speedup that can be seamlessly applied as a434

‘free lunch’ to any existing LLM.435

5 Analysis436

5.1 Tree Structure437

As previously outlined in Section 3.2, our tree struc-438

ture is static and imbalanced. The tree size is a439

crucial factor to accelerate. A larger tree allows440

more tokens confirmed in one decoding step but441

also introduces more computational overhead, in-442

creasing the time required for each decoding step.443

To investigate the impact of tree size, specifically444

its depth and breadth, experiments are conducted445

on MT-Bench using Vicuna-7B.446

Breadth Increasing the breadth of the tree allows 447

for covering more possibilities. In Figure 3(a), the 448

breadth is expanded by adding nodes while keeping 449

the depth fixed at six layers. This leads to a con- 450

sistent improvement in MAT. However, when the 451

breadth exceeds 80, Tokens/s begins to decrease. 452

The additional computational overhead eventually 453

outweighs the benefits of a higher MAT. 454

Depth Increasing the depth of the tree allows 455

for accepting longer sequences during decoding. 456

In Figure 3(b), with the number of nodes fixed 457

at 80, the depth is gradually increased. MAT ini- 458

tially rises rapidly but eventually shows minimal 459

improvement, while Tokens/s noticeably fluctuates. 460

Because the matrix stores candidate tokens for only 461

adjacent steps, longer sequences weaken the con- 462

nections between distant tokens. This limitation 463

reduces the effectiveness of increased depth, caus- 464

ing Tokens/s to fluctuate. 465

5.2 Ablation Study 466

Hot Start In TR, the adjacency matrix inherits 467

from the previous one. In Table 3, we explore the 468

impact of different initialization strategies. Ran- 469

dom means randomly selecting tokens from the 470

vocabulary, while Zero sets all matrix elements 471

to zero. Fixed selects 100 queries from AlpacaE- 472

val (Li et al., 2023) (unrelated to the test set), ex- 473

ecutes them, and stores the resulting matrix. This 474

matrix is then used to initialize each query in the 475

test set. Shuffle refers to shuffling the test set. Com- 476

pared to the Zero, the irrelevant noise introduced by 477

Random leads to a sharp decrease in performance. 478

Fixed, Shuffle and TR show significant improve- 479

ments over Zero, suggesting that the prior matrix 480

may capture common patterns that effectively assist 481

subsequent queries. The relatively small difference 482

among them indicates that these patterns are gener- 483

alizable and not tied to specific tasks or content. 484

7

SpecBench MBPP

Only Accepted 1.63 1.99
All Draft 2.69 2.93

Table 4: Mean Accepted Token (MAT) for updating
candidate tokens from only accepted or all draft tokens.

Update Strategies Section 3.1 discuss duplicate485

tokens in the merged sequence during matrix up-486

dates. We compare three updating strategies: using487

candidate tokens from the first occurrence, from488

the last occurrence, and the current method (merg-489

ing via parallel CUDA operations). Figure 3(c)490

indicates that using the last occurrence yields the491

highest MAT, which may benefit from more contex-492

tual information. However, the differences among493

different strategies in MAT are minimal. In terms of494

Tokens/s, the current approach significantly outper-495

forms the other two, as it avoids the additional pro-496

cessing required to manage token positions, thereby497

reducing delays. Speculative decoding is highly498

sensitive to latency, any extra operation must pro-499

vide substantial benefits to outweigh its time cost.500

Effect of Rejected Tokens During the update,501

we refresh the candidate tokens for all draft tokens,502

including both accepted and rejected tokens. To fur-503

ther illustrate the significant effect of trash tokens,504

we compare two settings: updating only the candi-505

dates of accepted tokens versus of all draft tokens.506

As shown in Table 4, including candidates of re-507

jected tokens significantly improve the MAT. This508

indicates that rejected tokens also carry valuable509

information necessary for subsequent decoding.510

6 Related Work511

Efficient inference is crucial for real-time appli-512

cations and low-resource scenarios. Many strate-513

gies have been developed to reduce latency (Zhou514

et al., 2024b). Among these, speculative decod-515

ing (Chen et al., 2023; Leviathan et al., 2023; Miao516

et al., 2024; Xia et al., 2023) is a losses tech-517

nique that predicts multiple possible continuations518

simultaneously. It reduces the number of decod-519

ing steps needed without compromising accuracy.520

Some speculative decoding methods rely on addi-521

tional draft models to guess draft tokens. These522

typically involve using smaller models from the523

same series (Zhao et al., 2024; Spector and Re;524

Sun et al., 2023; Liu et al., 2024b; Yuan et al.,525

2024; Gong et al., 2024) or training new models526

with a shared vocabulary (Leviathan et al., 2023;527

Chen et al., 2023; Zhou et al., 2024a; Li et al., 528

2024). It is worth noting that Zhao et al. (2024) 529

also uses rejected tokens but does not include can- 530

didate tokens. Additionally, Kou et al. (2024); 531

Wang et al. (2024b) propose training the original 532

LLMs to enable non-aggressive decoding. While 533

effective, these approaches require managing or 534

training multiple models, which can be non-trivial 535

and resource-intensive. Other methods focus on 536

parameter-efficient structures. These approaches 537

minimize the need for complete retraining but still 538

require model-specific training and adaptation, lim- 539

iting their scalability and general applicability (Lin 540

et al., 2024; Liu et al., 2024a). 541

Train-free methods construct retrieval libraries 542

to obtain draft tokens (Yang et al., 2023). Looka- 543

head (Fu et al., 2024) generates n-grams through 544

multiple decodings, building a retrieval library that 545

can hit multiple tokens in one step. However, 546

it requires the LLM to generate n-grams while 547

responding to queries, which reduces efficiency. 548

PLD (Saxena, 2023) retrieves only from previous 549

content, resulting in minimal overhead and signif- 550

icant speedup in high-redundancy tasks like sum- 551

marization. However, it provides little acceleration 552

for tasks requiring the generation of new content, 553

like translation. REST (He et al., 2023) constructs 554

retrieval libraries using existing corpora and per- 555

forms well in common scenarios. However, this 556

approach requires large storage, time-consuming 557

retrieval, and cannot adapt to each query. 558

Token Recycling is a train-free, retrieval-based 559

method. It requires no additional generation, cov- 560

ers a broader range of possible continuations, and 561

demands minimal storage with low retrieval costs. 562

The update process ensures the retrieval space re- 563

mains adaptable. 564

7 Conclusion 565

In this work, we introduce Token Recycling, a 566

speculative decoding method for accelerating the 567

inference of LLMs. It utilizes an adjacency ma- 568

trix to store candidate tokens and retrieve a draft 569

tree, which is then verified with tree attention. The 570

matrix is updated with new candidate tokens gen- 571

erated during decoding. Token Recycling could 572

be integrated seamlessly with existing LLMs and 573

various tasks. As a train-free approach, it achieves 574

a speedup of approximately 2x with <2MB of ad- 575

ditional storage, improving over 31% compared to 576

previous train-free approaches. 577

8

Limitations578

Our study is comprehensive, but has certain limita-579

tions that we plan to address in future research. In580

constructing the draft tree, we use a static tree struc-581

ture. However, a dynamic tree could be employed582

instead. While dynamic trees introduce additional583

complexity, they allow for better adaptation to each584

decoding step, potentially improving performance585

by tailoring the tree structure to the specific require-586

ments of each query.587

Ethical Considerations588

The data for the proposed methods is drawn solely589

from publicly accessible project resources on rep-590

utable websites, ensuring that no sensitive informa-591

tion is included. Moreover, all datasets and baseline592

models used in our experiments are also available593

to the public. We have taken care to acknowledge594

the original authors by properly citing their work.595

References596

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten597
Bosma, Henryk Michalewski, David Dohan, Ellen598
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.599
Program synthesis with large language models. arXiv600
preprint arXiv:2108.07732.601

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie602
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind603
Neelakantan, Pranav Shyam, Girish Sastry, Amanda604
Askell, Sandhini Agarwal, Ariel Herbert-Voss,605
Gretchen Krueger, Tom Henighan, Rewon Child,606
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,607
Clemens Winter, Christopher Hesse, Mark Chen, Eric608
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,609
Jack Clark, Christopher Berner, Sam McCandlish,610
Alec Radford, Ilya Sutskever, and Dario Amodei.611
2020. Language models are few-shot learners. In Ad-612
vances in Neural Information Processing Systems 33:613
Annual Conference on Neural Information Process-614
ing Systems 2020, NeurIPS 2020, December 6-12,615
2020, virtual.616

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu617
Peng, Jason D. Lee, Deming Chen, and Tri Dao.618
2024. Medusa: Simple LLM Inference Acceleration619
Framework with Multiple Decoding Heads. Preprint,620
arXiv:2401.10774.621

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,622
Jean-Baptiste Lespiau, Laurent Sifre, and John623
Jumper. 2023. Accelerating Large Language Model624
Decoding with Speculative Sampling. Preprint,625
arXiv:2302.01318.626

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming627
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-628
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,629

Greg Brockman, Alex Ray, Raul Puri, Gretchen 630
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 631
try, Pamela Mishkin, Brooke Chan, Scott Gray, 632
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 633
Kaiser, Mohammad Bavarian, Clemens Winter, 634
Philippe Tillet, Felipe Petroski Such, Dave Cum- 635
mings, Matthias Plappert, Fotios Chantzis, Eliza- 636
beth Barnes, Ariel Herbert-Voss, William Hebgen 637
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 638
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 639
William Saunders, Christopher Hesse, Andrew N. 640
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 641
Morikawa, Alec Radford, Matthew Knight, Miles 642
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 643
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 644
Sutskever, and Wojciech Zaremba. 2021. Evaluating 645
Large Language Models Trained on Code. Preprint, 646
arXiv:2107.03374. 647

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 648
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 649
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 650
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 651
source chatbot impressing gpt-4 with 90%* chatgpt 652
quality. 653

Tri Dao. 2024. FlashAttention-2: Faster attention with 654
better parallelism and work partitioning. In Inter- 655
national Conference on Learning Representations 656
(ICLR). 657

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi- 658
cal, and efficient mixture-of-experts language model. 659
Preprint, arXiv:2405.04434. 660

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas- 661
sive language models can be accurately pruned in 662
one-shot. In Proceedings of the 40th International 663
Conference on Machine Learning, volume 202 of 664
Proceedings of Machine Learning Research, pages 665
10323–10337. PMLR. 666

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 667
2024. Break the Sequential Dependency of LLM 668
Inference Using Lookahead Decoding. Preprint, 669
arXiv:2402.02057. 670

Gemini Team, Rohan Anil, Sebastian Borgeaud, 671
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 672
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 673
Anja Hauth, et al. 2023. Gemini: a family of 674
highly capable multimodal models. arXiv preprint 675
arXiv:2312.11805. 676

Zhuocheng Gong, Jiahao Liu, Ziyue Wang, Pengfei 677
Wu, Jingang Wang, Xunliang Cai, Dongyan Zhao, 678
and Rui Yan. 2024. Graph-structured speculative 679
decoding. In Findings of the Association for Compu- 680
tational Linguistics ACL 2024, pages 11404–11415. 681

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 682
and Di He. 2023. Rest: Retrieval-based speculative 683
decoding. arXiv preprint arXiv:2311.08252. 684

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen 685
Dong, Xiuyu Li, Sheng Shen, Michael W. Mahoney, 686

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2402.02057

and Kurt Keutzer. 2024. SqueezeLLM: Dense-and-687
Sparse Quantization. Preprint, arXiv:2306.07629.688

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and689
Hao Zhang. 2024. CLLMs: Consistency Large Lan-690
guage Models. Preprint, arXiv:2403.00835.691

Yaniv Leviathan, Matan Kalman, and Yossi Matias.692
2023. Fast Inference from Transformers via Spec-693
ulative Decoding. In Proceedings of the 40th Inter-694
national Conference on Machine Learning, pages695
19274–19286. PMLR.696

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,697
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and698
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-699
tomatic evaluator of instruction-following models.700
https://github.com/tatsu-lab/alpaca_eval.701

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang702
Zhang. 2024. Eagle: Speculative sampling requires703
rethinking feature uncertainty. In Forty-first Interna-704
tional Conference on Machine Learning.705

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xi-706
aotian Yu, Guangming Lu, and Rong Xiao. 2024.707
BiTA: Bi-Directional Tuning for Lossless Accel-708
eration in Large Language Models. Preprint,709
arXiv:2401.12522.710

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng711
Ni, Kai Han, and Yunhe Wang. 2024a. Kangaroo:712
Lossless Self-Speculative Decoding via Double Early713
Exiting. Preprint, arXiv:2404.18911.714

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Che-715
ung, Zhijie Deng, Ion Stoica, and Hao Zhang. 2024b.716
Online speculative decoding. In Proceedings of the717
41st International Conference on Machine Learning,718
volume 235 of Proceedings of Machine Learning719
Research, pages 31131–31146. PMLR.720

Meta. 2024. Introducing meta llama 3: The most capa-721
ble openly available llm to date.722

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao723
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee724
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan725
Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna Ab-726
hyankar, and Zhihao Jia. 2024. SpecInfer: Accelerat-727
ing Large Language Model Serving with Tree-based728
Speculative Inference and Verification. In Proceed-729
ings of the 29th ACM International Conference on730
Architectural Support for Programming Languages731
and Operating Systems, Volume 3, volume 3 of ASP-732
LOS ’24, pages 932–949. Association for Computing733
Machinery.734

OpenAI. 2023. GPT-4 technical report. CoRR,735
abs/2303.08774.736

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten737
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,738
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.739
Code llama: Open foundation models for code. arXiv740
preprint arXiv:2308.12950.741

Apoorv Saxena. 2023. Prompt lookup decoding. 742

Noam Shazeer. 2019. Fast Transformer Decoding: 743
One Write-Head is All You Need. Preprint, 744
arXiv:1911.02150. 745

Benjamin Frederick Spector and Christopher Re. Accel- 746
erating llm inference with staged speculative decod- 747
ing. In Workshop on Efficient Systems for Foundation 748
Models@ ICML2023. 749

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah- 750
mad Beirami, Himanshu Jain, and Felix Yu. 2023. 751
Spectr: Fast speculative decoding via optimal trans- 752
port. In Thirty-seventh Conference on Neural Infor- 753
mation Processing Systems. 754

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 755
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 756
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 757
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 758
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 759
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 760
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 761
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 762
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 763
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 764
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 765
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 766
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 767
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 768
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 769
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 770
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 771
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 772
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 773
Melanie Kambadur, Sharan Narang, Aurélien Ro- 774
driguez, Robert Stojnic, Sergey Edunov, and Thomas 775
Scialom. 2023. Llama 2: Open foundation and fine- 776
tuned chat models. CoRR, abs/2307.09288. 777

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 778
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 779
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, 780
and Jirong Wen. 2024a. A survey on large language 781
model based autonomous agents. Frontiers of Com- 782
puter Science, 18:186345. 783

Yixuan Wang, Xianzhen Luo, Fuxuan Wei, Yijun Liu, 784
Qingfu Zhu, Xuanyu Zhang, Qing Yang, Dongliang 785
Xu, and Wanxiang Che. 2024b. Make some noise: 786
Unlocking language model parallel inference ca- 787
pability through noisy training. arXiv preprint 788
arXiv:2406.17404. 789

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu 790
Wei, and Zhifang Sui. 2023. Speculative decod- 791
ing: Exploiting speculative execution for accelerat- 792
ing seq2seq generation. In Findings of the Associa- 793
tion for Computational Linguistics: EMNLP 2023, 794
pages 3909–3925, Singapore. Association for Com- 795
putational Linguistics. 796

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, 797
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi- 798

10

https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.48550/ARXIV.2303.08774
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257

fang Sui. 2024. Unlocking Efficiency in Large Lan-799
guage Model Inference: A Comprehensive Survey of800
Speculative Decoding. Preprint, arXiv:2401.07851.801

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang,802
Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and803
Wanxiang Che. 2024. OneBit: Towards Ex-804
tremely Low-bit Large Language Models. Preprint,805
arXiv:2402.11295.806

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin807
Jiang, Linjun Yang, Rangan Majumder, and Furu808
Wei. 2023. Inference with reference: Lossless809
acceleration of large language models. Preprint,810
arXiv:2304.04487.811

Hongyi Yuan, Keming Lu, Fei Huang, Zheng Yuan, and812
Chang Zhou. 2024. Speculative contrastive decoding.813
In Proceedings of the 62nd Annual Meeting of the814
Association for Computational Linguistics (Volume815
2: Short Papers), Bangkok, Thailand. Association816
for Computational Linguistics.817

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao,818
Zhiyuan Liu, and Maosong Sun. 2024. Ouroboros:819
Speculative decoding with large model enhanced820
drafting. arXiv preprint arXiv:2402.13720.821

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan822
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,823
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,824
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging825
LLM-as-a-Judge with MT-Bench and Chatbot Arena.826
Preprint, arXiv:2306.05685.827

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,828
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv829
Kumar, Jean-François Kagy, and Rishabh Agarwal.830
2024a. Distillspec: Improving speculative decoding831
via knowledge distillation. In The Twelfth Interna-832
tional Conference on Learning Representations.833

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-834
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,835
Zhihang Yuan, Xiuhong Li, et al. 2024b. A survey on836
efficient inference for large language models. arXiv837
preprint arXiv:2404.14294.838

11

https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2402.11295
https://arxiv.org/abs/2402.11295
https://arxiv.org/abs/2402.11295
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

A Appendix839

A.1 Identical Probability Tokens840

Method MT-Bench GSM8K

AR Decoding 6.17 35.2
Tree Attention 6.23 35.2

Table 5: Quality/Accuracy comparison of AR-Decoding
and Tree Attention on MT-Bench and GSM8K. MT-
Bench results are taken from Cai et al. (2024). It shows
that Tree Attention has minimal impact on both answer
accuracy and quality.

Floating-point representation in the computer841

has precision errors, commonly known as ‘floating-842

point rounding errors’. Specifically, the precision843

of floating-point numbers is determined by the844

number of bits in the mantissa. In the IEEE 754845

standard, the float32 type has a 23-bit mantissa,846

meaning the smallest representable difference is847

2−23, approximately 1.19×10−7. The float16 type,848

with a 10-bit mantissa, can represent differences849

as small as 2−10, or about 9.77× 10−4. If the dif-850

ference between two token probabilities is smaller851

than the precision limit of floating-point represen-852

tation, these two probabilities will be rounded to853

the same value, and these tokens will be treated as854

having identical probabilities during sampling.855

AR Decoding uses ‘torch.argmax’ to return the856

token with the highest probability. When the prob-857

abilities are the same, ‘torch.argmax’ defaults to858

returning the one with the smallest index. In Tree859

Attention, the number of mask tokens is increased860

compared to AR Decoding, and the attention score861

of the mask tokens after the softmax operation is862

not strictly zero, but rather a very small value close863

to zero. These tiny non-zero values perturb the hid-864

den representations, causing tokens that originally865

had identical probabilities to now differ slightly,866

resulting in a different argmax outcome compared867

to AR Decoding.868

Nevertheless, as shown in Table 5, due to the869

extremely rare occurrence of this issue and the870

affected probabilities being so close to each other,871

the impact on experimental accuracy and model872

performance is negligible.873

A.2 Draft Tree Algorithm and Structure874

Utilizing tree attention (Miao et al., 2024) to875

extend the path in the verification phase has become876

a widely adopted strategy for speculative decoding877

Algorithm 1 Static Tree Based BFS
Require: Adjacency matrixM, Static tree struc-

ture Tree, the last prompt token xt
Ensure: Merged Sequence S

1: Initialize S ← ∅
2: Initialize root← xt
3: Initialize the current layer L← (root)
4: Initialize the current depth d← 0
5: while d < Tree.depth do
6: Initialize next layer Lnext ← ∅
7: Get all candidate tokens of L from M in

parallel
8: xs = M [L]
9: Extract next layer tokens from xs with Tree

10: Lnext = xs[Tree[d].index]
11: Concatenate S and L
12: S ← (S;L)
13: L← Lnext
14: end while
15: return S

methods. 878

In Token Recycling, we also use a heuristically 879

constructed token tree to perform the verification. 880

As shown in Figure 5, we construct a static and 881

unbalanced tree inspired by Cai et al. (2024). The 882

number k on a node indicates that it is the k-th can- 883

didate token for its parent node. The construction 884

process is below. We begin with a fully balanced 885

10-branch tree and use an independent validation 886

set to identify the top k nodes that most frequently 887

yield correct tokens. These top k nodes and their 888

children are retained to form a new tree, and the 889

process is repeated to identify the next set of top k 890

nodes. This iterative process continues until perfor- 891

mance no longer shows significant improvement. 892

The final tree is determined, and the k is set to 893

consider the maximum number of children across 894

all nodes and the memory requirement. While em- 895

pirical, this iterative approach has proven to be 896

effective. Further details on tuning the n are pro- 897

vided in Section 5.1. Overall, the tree we construct 898

contains 80 nodes (including the root node) in 6 899

layers. This means that each forward requires an 900

additional draft input of 79 tokens with a maximum 901

acceptance length of 6. 902

Building on the tree structure described above, 903

we construct a draft tree for the current content by 904

a BFS-like algorithm in the inference phase. As 905

described in Algorithm 1, we infill the child nodes 906

12

of each layer in turn according to the matrix. At907

last, the merged sequence S is returned and sent to908

tree attention with Tree.909

A.3 Time Allocation910

Preprocess (1.6%)
Retrieval (1.6%)

Update (1.5%)

Verify (5.2%)

Model Forward (90.1%)

Figure 4: Time allocation for each operation when
LLMs respond to a query.

For speculative decoding to be effective, it is es-911

sential to maintain a high hit rate while minimizing912

the time spent on additional operations. We divide913

each decoding step into several components: pre-914

processing , retrieving draft tokens, model forward915

pass, verifying draft sequences, and updating the916

matrix, input tokens, and key-value cache. The917

average time spent on each component is shown in918

Figure 4. The results indicate that the majority of919

the time is consumed by the model forward pass.920

The verification process also takes a significant921

amount of time due to the need to extract and ver-922

ify all feasible paths. Retrieving draft tokens and923

updating operations take roughly the same amount924

of time.925

13

Root

0

0

0

0

0

0 1

1 2

1

0

0

2

0

3 4

1

0

0

1

2

0

3

0

4

0

5 6 7

1

0

0

0

1 2

2

0

0

1

3

0

4

0

5

0

6

0

7

0

1

0

0

0

0

1

1

0

2 3

2

0

0

0

1 2

3

0

0

0

1

4

0

0

5

0

0

6

0

7

0

Figure 5: The static tree used in Token Recycling.

14

	Introduction
	Background
	Auto-Regressive Decoding
	Speculative Decoding

	Methodology
	Adjacency Matrix Initialization
	Draft Tree Retrieval
	Verification and Update

	Experiment
	Experimental Setup
	Main Results

	Analysis
	Tree Structure
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Identical Probability Tokens
	Draft Tree Algorithm and Structure
	Time Allocation

