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ABSTRACT

Games have long been used as benchmarks and testing environments for research
in artificial intelligence. A key step in supporting this research was the develop-
ment of game description languages: frameworks that compile domain-specific
code into playable and simulatable game environments, allowing researchers to
generalize their algorithms and approaches across multiple games without hav-
ing to manually implement each one. More recently, progress in reinforcement
learning (RL) has been largely driven by advances in hardware acceleration. Li-
braries like JAX allow practitioners to take full advantage of cutting-edge comput-
ing hardware, often speeding up training and testing by orders of magnitude. Here,
we present a synthesis of these strands of research: a domain-specific language for
board games which automatically compiles into hardware-accelerated code. Our
framework, Ludax, combines the generality of game description languages with
the speed of modern parallel processing hardware and is designed to fit neatly
into existing deep learning pipelines. We envision Ludax as a tool to help accel-
erate games research generally, from RL to cognitive science, by enabling rapid
simulation and providing a flexible representation scheme. We present a detailed
breakdown of Ludax’s description language and technical notes on the compila-
tion process, along with speed benchmarking and a demonstration of training RL
agents.

1 INTRODUCTION

For the past 75 years, games have served as vital tests and benchmarks for artificial intelligence
research. While many specific games have been completely solved (Schaeffer et al., 2007) or opti-
mized beyond the abilities of the strongest human players (Campbell et al., 2002} Silver et al.,|2017)),
the general space of games remains a fertile ground for measuring improvements in reasoning, plan-
ning, and strategic thinking. A critical part of this progress, however, is the ability to test approaches
and algorithms on a set of environments that are both diverse and computationally efficient.

To help drive further games and learning research, we introduce Ludax: a domain-specific language
for board games that compiles into GPU-accelerated code written in the JAX library (Bradbury et al.,
2018). Ludax draws on two main inspirations: (1) Ludii (Piette et al., [2020), a general purpose
description language for board games capable of representing more than 1400 games from through-
out history and around the world, and (2) PGX (Koyamada et al., 2023)), a collection of optimized
JAX-native implementations of classic board games and video games designed to facilitate rapid
training and evaluation of modern reinforcement learning (RL) agents. Ludax presents a flexible
and general-purpose game representation format that can be leveraged for efficient simulation and
learning on modern computing hardware.

Ludax currently supports two-player, perfect-information, turn-based board games played by plac-
ing, capturing, and moving pieces. This set of mechanics is broad enough to capture a wide range
of existing games (e.g. Connect Four, Pente, Hex, ...) as well as many unexplored novel games
and variants that fall within that class. Further, Ludax is designed to be easily expandable — like
with Ludi i, implementing new game mechanics in Ludax only requires implementing new atomic
components in the underlying description language. These components can then be combined com-
positionally with existing elements of the language to produce an entirely new range of possible
games, instead of each game needing to be implemented separately.
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The game takes place on an 8 by 8 board.

To begin, a white piece is placed at positions D4 and
E5 and a black piece is placed at positions D5 and
E4.

Players take turns placing a piece into an empty
square.

However, a legal move must form a “custodial”
arrangement - sandwiching one or more of the
opponent’s pieces between your own pieces.

After making a move, any of the opponent'’s pieces
that are sandwiched in this way are flipped and now
belong to the moving player. Then, each player’s
score is set to the number of pieces they have.

If (and only if) a player cannot make a legal move,
they must pass the turn.

(game "Reversi”
(players 2)
(equipment
(board (square 8))

(rules
(start
(place P1 (27 36))
(place P2 (28 35))
)
(play
(repeat (P2 P1)
(place
(destination empty)
(result
(exists
(custodial any)

)
(effects
(flip (custodial any))
(set_score mover (count (occupied mover)))
(set_score opponent
(count (occupied opponent))

)

(force_pass)

)

)
If both players pass, then the game is over. The
winner is the player with the higher score (in the
event of a tie, the game ends in a draw). ”

(end
(if (passed both) (by_score))

Figure 1: Natural language description of Reversi along with its corresponding translation into
Ludax. Ludax uses “ludemic” syntax that represents high-level game components as separate
program sections and aims to be easily interpretable to non-experts.

Another design goal for Ludax is ease of use, both in terms of game design and experimentation.
The syntax of the description language is “ludemic” (Piette et al., 2020) — splitting game rules
into clear sections governing the game’s setup, play mechanics, and end conditions. Like with
Ludii, game programs in Ludax resemble English descriptions of rules (see [Figure I)). Further,
by leveraging the structure of the existing PGX library, environments instantiated in Ludax can be
easily combined with existing frameworks for GPU-accelerated search, reinforcement learning, or
evolution (DeepMind et al., [2020; |Tang et al.,[2022). Ludax also supports a basic web interface for
interactive debugging and potential user-studies.

Ludax is fundamentally a platform for accelerating board game research. In an era of increasingly
complicated tasks and benchmarks, relatively simple board games may seem to be less interesting
research domains (especially as many games have been more-or-less “solved” by modern methods).
However, Ludax is not just a collection of new tasks. By decoupling rapid execution from the
intensive process of writing new environment code, Ludax can power new research in a variety of
directions. For instance, Ludax can be used to analyze RL generalization (Soemers et al.,2025) by
defining a wide range of modifications for a target game task (akin to a platform like Minihack
(Samvelyan et al., 2021))) or help improve studies of game generation by enabling the rapid eval-
uation of procedurally-generated rulesets (Todd et al., [2024; Collins et al.| [2025). Finally, Ludax
can help advance recent research into world modeling (Ying et al., [2025) by (1) providing a wide
and easily-refreshable set of environments to test on efficiently and (2) allowing automated systems
to propose and refine world models in these “novel games” by writing high-level and semantically-
meaningful DSL code.

To our knowledge, Ludax is the first board game description language which compiles into GPU-
accelerated code. In the following sections, we provide a detailed description of the language syn-
tax, compilation process, and Ludax’s expressive range. We also provide speed benchmarking
compared to both Ludii and PGX, as well as an initial demonstration of training learned agents.
Finally, we conclude with a discussion of potential use cases and future directions.

2 RELATED WORK

Game Description Languages: Game description languages have been used for many years and
in a variety of domains. The Stanford GDL (Love et al.l 2008; |(Genesereth & Thielscher, 2014;
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Schiffel & Thielscher; [2014; Thielscher, [2017) is among the most influential, helping to popularize
research in general game playing (Pitrat, |1968)) through its use in the International General Game
Playing Competition (Genesereth et al., 2005} Genesereth & Bjornsson, 2013). Other notable ex-
amples include VGDL (Ebner et al.l 2013} [Schaul, 2013 2014)) (primarily known from its use in
the General Video Game Al framework (Perez-Liebana et al.,[2019)), RBG (Kowalski et al., 2019),
Ludi (Browne, 2009), and its successor Ludii (Piette et al., [2020). GDLs have also been used to
describe the rules of card games (Font et al.|[2013) as well as to represent human goals in naturalis-
tic simulated environments (Davidson et al., [2022;2025). Modern game description languages have
tended to move away from a basis in formal logic in favor of greater human usability, though there
are benefits in efficiency gained by the use of regular languages (Kowalksi et al., 2020).

GPU-Accelerated Environments: Recent years have seen a proliferation of learning environ-
ments implemented in the JAX library or other frameworks that enable hardware (typically GPU)
acceleration. Examples include single-agent and multi-agent physics simulators (Freeman et al.,
2021} [Makoviychuk et al.l 2021} Bettini et al., 2022), ports of both classic and recent reinforce-
ment learning tasks (Dalton & Frosiol 2020} |Langel [2022; [Koyamada et al., [2023; Matthews et al.,
2024), combinatorial optimization problems (Bonnet et al., 2023)), multi-agent coordination prob-
lems (Rutherford et al.l[2023)), and driving simulators (Gulino et al.|[2023} | Kazemkhani et al.,[2025)).
While these efforts have spurred significant progress and span a wide range of domains and task for-
mulations, each of them implement a fixed environment or set of environments. As such, they can-
not easily be extended to novel environments without first writing new hardware-accelerated code.
Ludax stands alongside a number of description languages for other domains (e.g. probabilistic
programming, planning, single-player puzzles) that leverage JAX for efficient execution (Chandra
et al., [2025; |Gimelfarb et al., [2024; |[Earle & Togelius, [2025} |[Earle et al.|, |[2025)).

3 DESCRIPTION LANGUAGE DETAILS

Ludax’s game description language draws heavily on the Ludii description language, particu-
larly in its use of “ludemic” syntax that represents game rules in terms of high-level and easily-
understandable components (Piette et al.,[2020). The complete grammar file and syntax details are
available in the Supplemental Material.

3.1 EQUIPMENT AND START RULES

The equipment section contains information about the physical components used by the game.
Currently, this only specifies the size and shape of the board (i.e. whether it is square, rectangu-
lar, hexagonal, or hexagonal-rectangular). The dimensions and shape of the board are used during
compilation to help pre-compute certain game-relevant properties, such as the board indices corre-
sponding to lines of specific lengths. In future versions of Ludax, the equipment section will also
detail the different pieces used by each player if the game specifies more than one.

The start section is an optional section that contains the rules for the game’s setup. For most
games, play begins on an empty board and the start section is omitted. In some games, such as
Reversi (see[Figure 1), pieces are placed in a particular arrangement at the start of play.

3.2 PLAY RULES

Typically, the play rules of each game are the most involved, as they detail the core mechanics and
dynamics of the game. The play section is itself broken into one or more subsections called “play
phases.” Each phase has its own rules for player actions and turn-taking, as well as specific condi-
tions for when to transition to another phase. Most games have only a single phase in which players
alternate turns until the game is over, specified with the repeat keyword. Some games include a
once_through phase that progresses through the turn order a single time before advancing to the
next phase. The sequence of player turns is specified independently for each phase. For instance,
Yavalax (Appendix bottom-left panel) begins with the first player making a single move
(i.e. (once_through (P1) ...) ) before both players alternate taking two turns for the rest
of the game (i.e. (repeat (P2 P2 P1 P1l) ...)).
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The core of each phase is a “play mechanic” that encodes the ways that players take their turns. In
the context of reinforcement learning, a play mechanic specifies both the action space (A) and the
transition function (7 : S X A — S). At a lower level, each play mechanic also defines a “legal
action mask function” that returns whether each action is valid from the current game state. Cur-
rently, Ludax supports only one kind of play mechanic: place. A place mechanic’s primary
argument is a destination constraint which specifies where a piece may be placed on a given
player’s turn. For many games, such as Tic-Tac-Toe, this is simply the set of empty board positions.
For some games, however, the destination constraint is more involved: in Connect Four (Appendix
top-right panel), legal actions are empty spaces that are on the bottom edge of the board
or immediately above an occupied position (see for a discussion of how actions are
represented more generally in Ludax). Even further, some games have what we call result con-
straints which require that a legal action results or doesn’t result in a board with specific properties.
Yavalax and Reversi both use result constraints: the former forbids players from placing a piece
that forms a line of five or that forms only a single line of four, whereas the latter requires players to
place a piece in a way that “sandwiches” one or more of their opponent’s pieces in a line. Finally,
a play mechanic may optionally specify one or more ef fects that modify the game state after
the action is performed. Effects are used to handle mechanics like capturing or flipping pieces, as
well as updating each player’s score (if the game uses score). Both Reversi and Pente (Appendix
bottom-right panel) use play effects to handle flipping and capturing pieces, respectively,
with Pente also using the score as an alternate winning condition.

Throughout this section, we have been referring to various properties of a game state and relation-
ships between pieces / positions (e.g. whether pieces are “sandwiched,” whether a line is formed,
whether a piece is adjacent to another, ...). These are the lowest-level component’s of Ludax’s de-
scription language and are referred to collectively as masks, functions, and predicates. A
mask takes in the current game state and returns a boolean array over each position on the board.
Some masks, like occupied or edge, take additional grammatical arguments which might spec-

ify a particular player or region of the boardﬂ A function similarly takes in the current game
state and returns a single non-negative integer. In Ludax’s current form, 1 ine is probably the most
commonly-used funct ion — it returns the number of contiguous lines of a given player’s pieces on
the board, with a specified length and orientation. Lastly, a predicate maps from a game state to
a single boolean truth value. Many predicates operate over the outputs of masks and functions,
such as exists or equals, though some like mover_is are computed directly from game states.
Crucially, the outputs of masks, functions, and predicates can be combined composition-
ally using first-order logic (excluding quantification) to form more complicated expressions. So, the
condition “if Player 2 makes a line of 4 in a row or a diagonal line of 3...” would be rendered as
follows:

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

Note that, for ease of use, Ludax automatically interprets the presence of a bare function inside
a boolean operator as indicating a non-zero value. So, (1ine 4) is equivalent to (>= (line
4) 1).

3.3 END RULES

The last section of a game description in Ludax details the criteria that terminate a game. The end
section contains one or more “end conditions” — these are applied in order, with the first condition
to activate determining the ending behavior (i.e. which player wins or if the game ends in a draw). If
none of the conditions activate, then the game continues. For instance, Tic-Tac-Toe includes both the
end conditions (if (line 3) (mover win)) and (if (full_board) (draw)), with
the draw condition only triggering if the “three in a row condition” is not met. End conditions also
frequently refer to a player’s score, which is updated or set as a result of an action’s effects (see
above).

"The adjacent mask is a special case — it takes another mask as an additional argument and returns the
board positions adjacent to any of the active positions in the original mask.
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3.4 DESIGN CONSIDERATIONS

While Ludax draws heavily from the Ludii description language, there are some important dif-
ferences which go beyond just changes in syntax. The first of these relates to how both systems
represent a game’s action space. One of the design goals of Ludi i is that game descriptions should
resemble as much as possible the rules in natural language. In Connect Four, for instance, players
take a move by dropping a piece into one of seven columns of the board, at which point the piece
falls until it reaches the bottom or rests on another piece. Accordingly, the canonical representa-
tion of Connect Four in Ludii features pieces that “Drop” into the “LastColumn” chosen by
the player (PGX implicitly represents the game in a similar way). As mentioned above, however,
Ludax represents the action space differently: players simply place a piece onto an empty board
cell, with actions that are not directly above an existing piece or the bottom of the board marked as
illegal. Mechanically, the two implementations of Connect Four are identical — the difference lies
in how they are encoded (especially to simulated players or reinforcement learning agents). The
“column-based” representation has many advantages (it matches the physical properties of the game
in real life and lowers the branching factor), but it is also game-specific. While Ludax also strives
to represent game descriptions intuitively, we primarily aim to provide a unified representation for-
mat across games, such that general game-playing agents can more easily transfer knowledge and
expertise from one game to another. As such, the size and form of the action space for any place-
based game is determined only by the size and shape of the board. This choice is also partially
motivated by the specifics of working with the JAX library (see and has implications for
benchmarking and downstream use-cases (see[Section 6).

4 COMPILING GAME DESCRIPTIONS INTO GAME ENVIRONMENTS

In this section, we describe the high-level approach used to map from programs in the Ludax game
description language to hardware-accelerated simulation environments. While Ludax specifically
instantiates board game environments using the Lark Python library, the general approach is flexi-
ble enough to be used with different domains and parsing toolkits. Broadly speaking, Ludax oper-
ates by defining the leaves of the grammatical parse tree (i.e. individual masks, functions, and
predicates) as atomic functions written in JAX, which are then dynamically composed from
the bottom-up to form higher-level operators used by the environment class. Consider again the
following game expression:

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

During compilation, the leaf-level nodes (i.e. (mover_is P2) and (line 4)) are converted
into JAX functions which map from the current game state to (in this case) a boolean truth value,
and those functions are then passed up the parse tree. Higher-level nodes, such as (and ...),
receive the JAX functions corresponding to each of their children and return a new JAX function that
also takes the game state as input and implements the appropriate operation (in this case, boolean
conjunction). In pseudocode, using the Lark library’s Transformer paradigm, this looks like
the following:

def predicate_and(self, children):
def predicate_fn(state):
children_values = [child_fn(state) for child_fn in children]
return all (children_values)

return predicate_fn

In actuality, both the “children functions” and the combined “predicate function” must be written to
be compatible with JAX’s vectorization scheme and just-in-time (JIT) compilation. This imposes a
number of implementational constraints, most notably that the size and shape of all arrays must be
fixed at compile time. This means, for instance, that the dimensions of the “legal action mask” (and,
hence, the size of the action space in general) cannot change as the game progresses. In addition,
values like the number of iterations in a loop or the positions of a lookup mask must essentially be
“pre-specified.” Crucially, however, values that are determined during parsing (such as the number



Under review as a conference paper at ICLR 2026

of children for a given node, or the value of any arguments) can be safely passed into compiled JAX
functions as static constants. This fact is what allows Ludax to create JAX functions dynamically
that nonetheless obey the constraints of vectorization and JIT compilation. At the top of the parse
tree, these composed JAX functions are ultimately used to define the behaviors that appear in the
environment’s step function, such as applying the player’s action to the board and handling move
effects.

We next discuss some of the specific optimizations used by Ludax. In general, these are not global
optimizations: they apply only to certain compositions of game rules and mechanics. Our approach
is to deploy these optimizations when they are available and to “fall back” on slower but more
general solutions when they are not.

Precomputation: Animportant optimization used by the PGX library (and JAX environments more
generally) is to express functions as batched matrix operations rather than iterative procedures. For
instance, rather than checking for a line of pieces in Tic-Tac-Toe by starting at the position of the
last move and scanning out in each direction (as Ludii’s implementation does), PGX hard-codes
the set of board indices that correspond to each possible line of three in the game (i.e. [[0, 1,
21, [0, 3, 6], [0, 4, 71, ...1) and performs a single multi-dimensional index into
the board array — if any of the of the board index triples all correspond to positions occupied by a
single player, then the game is over. Ludax adopts and generalizes this approach: during parsing
of 1ine, for example, the line indices are computed with respect to the size and shape of the game
board (i.e. rectangular, hexagonal, ...) as well as the length and orientation of the desired line (i.e.
diagonal, vertical, ...). Again, because these values depend only on attributes that are determined
during parsing, they can be passed into JAX functions as constants. Precomputation naturally causes
a trade-off between compile-time and run-time efficiency. In our case, we opt to use precomputation
whenever possible, though some masks and functions cannot be expressed this way.

Dynamic State Attributes: Different games require tracking different kinds of information about
the current game state. Most obviously, some games track a score for each player while others do
not. When Ludax compiles a game, it automatically extracts the attributes required to instantiate
a game state and omits the others, thereby reducing the memory footprint of the entire state object.
More importantly, Ludax also automatically adds intermediary computations to each call of the
environment’s step function that help speed up later mask, function, or predicate evalua-
tions. For example, in Hex, the game ends when one player manages to connect two opposite sides
of the board with a continuous path of their pieces. Naively, checking whether the edges of the
board are linked requires the expensive step of computing the board’s connected components after
each move. However, updating the board’s connected components as a result of placing a single
piece can be done very efficiently (a technique used well in the PGX implementation). At compile
time, Ludax determines whether a game makes use of a “connection” rule and modifies the step
function to iteratively update and track the board’s connected components if so, greatly speeding
up later checks. In future extensions, this functionality will be used to accommodate games with
atypical or computationally expensive rules without affecting the runtime of existing games.

5 EXPRESSIVE RANGE

As mentioned above, Ludax currently supports a relatively narrow class of games: two-player,
perfect-information board games played by placing, capturing, and sliding a single kind of game
piece. Despite this, Ludax’s description language remains quite expressive. In addition to simple
m — n — k line completion games, Ludax supports complex win conditions (e.g. misére variants,
score-based victory), asymmetric player goals, piece capturing and flipping, directional adjacency
checks and restrictions, “custodial” mechanics, and games based on connecting arbitrary board re-
gions. Ludax also supports regular rectangular and hexagonal boards of arbitrary sizes, as well as
“hexagonal-rectangular” boards (e.g. as used in Hex). These components can then be combined
compositionally to form a wide array of unique mechanics and dynamics. In addition, because
Ludax is a general description language, implementing a single new game component expands the
entire space of games in the framework. While the class of games representable in Ludax may at
present be smaller than that of Ludii or other game description languages, it remains expansive.
For example, Ludax is able to encode both Yavalath and HopThrough (see — games pro-
duced by the Ludi (Brownel|2009) and GAVEL (Todd et al.}|2024) systems respectively, which were
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Figure 2: Average throughput (moves per second) on various exemplar games for Ludax,
Ludii, and PGX. The first four games are implemented in all three frameworks, while the remain-
ing games are implemented only in Ludax and Ludii. Speeds for Ludax and PGX are reported
for 500 episodes of various batch sizes on a workstation with a single NVIDIA 4090 GPU and 32
CPU cores, while speeds for Ludii are reported for parallel execution on the same workstation
across 1, 16, and 32 threads. Error bars are standard deviations calculated over the 500 episodes.

designed to automatically search through the space of games for novel exemplars. In
we detail a preliminary experiment on automatic game generation in Ludax via language models,
where we find that two state-of-the-art open-weight LLMs were able to generate novel and poten-
tially interesting games in Ludax without any finetuning or evolutionary search. This provides
exciting initial evidence that Ludax is well-suited for game generation, and in future work it could
serve as a meta environment for training general game-playing RL agents across the entire domain
of expressible games.

6 BENCHMARKING

We benchmark the speed of Ludax on a set of 10 games, 4 of which are also implemented in
both Ludii and PGX (allowing for a full comparison) and 6 of which are implemented only in
Ludax and Ludii. Again, we emphasize that these 10 games are just exemplars of the class of
games which Ludax supports, not an exhaustive list. A full description of each benchmark game
is available in the Supplementary Material. We perform each of our benchmarking experiments
on a workstation with a single NVIDIA 4090 GPU, 32 CPU cores, and 128GB of memory. In
we plot the throughput (in steps per second) under a uniformly random action policy for
each game environment against the batch size (log scale on both axes), with the standard deviation of
throughputs across episodes as error bars. Ludii supports parallelization via multi-threading: we
report throughput on the same workstation when parallelized on 1, 16, and 32 threads. Evaluations
for Ludax and PGX were obtained by performing 100 warmup full-game episodes at the specified
batch size, followed by measuring the speed over 500 episodes, with each evaluation taking at most a
few minutes to complete. Evaluations for Ludii were obtained by running warmup episodes for 10

seconds, followed by measuring the speed over 30 seconds of episodes For games with potentially
unbounded length (e.g. Dai Hasami Shogi), we terminate games for both Ludax and Ludii after
200 total turns.

Overall, Ludax achieves speeds that are competitive with state-of-the-art JAX environments. At
small batch sizes, its throughput is similar to that of the PGX implementations. At larger batch sizes
in more complicated games (i.e. Hex and Reversi), PGX takes a clear edge — though Ludax remains
within an order of magnitude of PGX. The comparative “plateauing” of Ludax’s speed at high batch
sizes may be due to memory pressure — for instance, Ludax’s implementation of Hex maintains
both a board and the connected components for each game state, whereas the PGX implementation

*We opted to measure speed for Ludax and PGX using a fixed number of episodes because JAX’s compi-
lation procedure makes it difficult to halt execution after a specific elapsed wall time.
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Figure 3: Performance of reinforcement learning agents trained in the Ludax and PGX imple-
mentations of Reversi against the PGX baseline agent. On the left, we plot the average winrate
of the learned agents against the baseline over time and across three separate runs. On the right,
we plot the average and variance of the winrates. Each run took roughly 3 hours to complete on a
workstation with a single A100 GPU.

cleverly combines both into a single array. This kind of optimization is of course theoretically
implementable in Ludax as well, though again we emphasize the desiderata of avoiding game-
specific solutions.

Ludax also outspeeds Ludii on 16 and 32 threads across all 10 games, achieving a maximum
speedup of between ~3x (Hex) and ~55x (Pente). We note that there are factors that both advantage
and disadvantage Ludax in this specific comparison against Ludii. One potential advantage for
Ludax is its smaller representation space — implementations of basic mechanics in Ludi i support a
wider range of optional arguments and board types, with a corresponding increase in computational
overhead (though see for how this may be avoided). Conversely, Ludii’s ability to use
dynamically-sized data structures brings advantages that are particularly beneficial in uniformly ran-
dom playouts, but would (partially) disappear in playouts using deep reinforcement learning. Ludi i
also has optimized playout implementations tailored towards many of the categories of games cov-
ered by Ludax (Soemers et al., [2022)), though these optimizations are also more difficult to apply
in the context of deep learning.

7 TRAINED AGENTS

Finally, we demonstrate the feasibility of training reinforcement learning agents using the Ludax
framework. We train our agent on the game Reversi (also known as Othello) using the AlphaZero-

style (Silver et al., [2017) training script from the PGX libraryﬂ (making only slight modifications to
accommodate minor differences between the Ludax and PGX APIs). We use the same ResNetV2
(He et al.| |2016)) network architecture and training hyperparameters as PGX (full details available in
the Supplementary Material) and train three separate runs on a single A100 GPU. Each run lasted
roughly 57 million frames and took roughly three hours to complete.

We compare the performance of agents trained in the Ludax and PGX environments against the
baseline Reversi agent provided by the PGX library in Evaluations were performed by
playing two batches of 1024 games (one with the learned agent as the first player and one as the
second player), with actions sampled from the normalized output of the policy head at each step.
We see that both learned agents achieve remarkably similar performances against the baseline, with
little to no differences in learning speed or stability. While a more thorough, tournament-based
evaluation would be necessary to properly rank the agents against each other, our objective is to
demonstrate the general success of the training procedure and not to definitively defeat the baseline
agent. Although the PGX implementation of the Reversi environment is slightly more efficient, this
translated into only marginal improvements in overall runtime (about 1.5%) owing to the shared
overhead of network forward passes and weight updates. Like PGX, Ludax offers a familiar API
and an efficient set of implementations with which to train learned player agents.

3https://github.com/sotetsuk/pgx/blob/main/examples/alphazero/train.py (used under Apache 2.0 license)
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8 LIMITATIONS

Generality: As mentioned in Ludax currently supports a smaller class of games than
other comparable game description languages. While we aim to increase the range of games ex-
pressible in Ludax (see below), it will likely never match the full generality of Ludii. As such,
other frameworks may be more appropriate for use-cases in which a broad range of games is more
important than rapid simulation. Further, Ludax does not support genres other than board games
(e.g. video games, card games, ...) — we leave the development of hardware accelerated description
languages for such domains as an exciting area of future work.

Efficiency: Compared to bespoke JAX implementations of board games (such as in the PGX li-
brary), environments in Ludax have slightly worse throughput — though the gap is marginal in
a standard RL training setup. We deploy a number of optimizations to help close the efficiency
gap when possible (see [Section 4)), but there are ultimately unavoidable trade-offs between speed
and generality. For the purpose of training or benchmarking single-task agents on existing games,
hard-coded simulators may remain the superior choice.

9 FUTURE WORK

The most obvious avenue of extension for Ludax is the implementation of additional game me-
chanics. In particular, we aim to support irregular board shapes, games with multiple piece types
(e.g. Checkers) and games with multiple distinct gameplay phases (e.g. Nine-Men’s Morris). In
addition, it’s also very likely that the implementation of specific gameplay elements could be further
optimized for throughput and / or memory footprint. However, a balance must be struck between
efficiency and generality: a less efficient solution which accommodates all valid games under the
grammar is ultimately preferable to one which only applies to a subset of games. Lastly, we aim to
provide a more robust visual interface for Ludax, both for the purpose of facilitating human-subject
research (e.g. with packages like NiceWebRL(Carvalho et al.,|2025)) and the potential development
of more “human-like” artificial agents which process the game board at the pixel level and select
actions spatially.

We are particularly excited about the potential application of Ludax to the study of automated game
design (or reward-guided program synthesis more generally (Cui et al., 2021} [Surina et al., 2025
Romera-Paredes et al.,[2024)). Such systems depend on both a broad representation space and rapid
evaluation of novel games — see for a preliminary investigation of Ludax’s suitability
for such research. The efficiency of Ludax may also make it possible to train a reinforcement
learning agent from scratch as part of the inner loop of game evaluation, potentially unlocking a
new range of computational features (e.g. learning curves) that correlate with human notions of
fun and engagement. Relatedly, Ludax may prove useful to research on human behavior and
play. Recent work has explored heuristic-based computational models of human play on simple
line completion games (Zhang et al., [2024), and Ludax offers the possibility to both accelerate
computation and broaden the domain to a wider class of games. Finally, Ludax offers an avenue
to extend recent research in general game playing (e.g. with large language models (Schultz et al.,
2024)) by providing a wide base of efficient game implementations that can in turn be leveraged for
tree search algorithms or training world models.

10 CONCLUSIONS

We introduce a novel framework for games research that combines the generality of game descrip-
tion languages with the efficiency of modern hardware-accelerated learning environments. Our
framework, Ludax, represents a broad class of two-player board games and compiles directly into
code in the JAX Python library. Games in Ludax achieve speeds that are competitive with hand-
crafted JAX implementations and faster than the widely-used Ludii game description language,
and Ludax environments can easily be deployed in existing pipelines for deep reinforcement learn-
ing. Our framework helps widen and accelerate games research, with the potential to unlock new
approaches in RL generalization, automatic game generation, and cognitive modeling.
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ETHICS STATEMENT

This paper presents a general framework with the goal of advancing reinforcement learning and
games research. While there are many potential societal consequences of such work in general, we
do not feel that any must be specifically highlighted here. We emphasize that Ludax does not use
or reproduce any copyrightable game material (i.e. art, specific expressions of rules, or game code).
Low level game mechanics (such as those implemented in LLudax) are not copyrightable.

REPRODUCIBILITY STATEMENT

We provide the full source code for Ludax in the Supplemental Material in addition to the general
dataset procedure in We provide the hyperparameters necessary to replicate our experi-
ments in[Appendix D|and|Appendix E|
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A EXAMPLE GAMES AND SYNTAX

Below we present the Ludax syntax for a small set of exemplar games (Reversi, Connect Four,
Yavalax, and Pente) to help illustrate aspects of Ludax’s syntax and structure.

(game "Reversi" (game "Connect-Four"
(players 2) (players 2)
(equipment (equipment
(board (square 8)) (board (rectangle 6 7))
) )
(rules (rules
(start (play
(place P1 (28 35)) (repeat (P1 P2)
(place P2 (27 36)) (place (destination (and
) empty
(play (or
(repeat (P1 P2) (edge bottom)
(place (adjacent occupied direction:up)
(destination empty) )
(result )))
(exists )
(custodial any) )
)
(end
(effects (if (line 4) (mover win))
(flip (custodial any)) (if (full_board) (draw))
(set_score mover (count (occupied mover))) )
(set_score opponent )
(count (occupied opponent)) )

)
)

)
(force_pass)

)
)
(end
(if (passed both) (by_score))
)
(game "Yavalax" (game "Pente"
(players 2) (players 2)
(equipment (equipment
(board (square 13)) (board (square 19))
) )
(rules (rules
(play (play
(once_through (P1) (once_through (P1)
(place (destination empty)) (place (destination center))
) )
(repeat (P2 P2 P1 P1) (repeat (P2 P1)
(place (place
(destination empty) (destination empty)
(result (effects
(and (capture (custodial 2) increment_score:true)
(not (line 5))
(not (= (line 4) 1)) )
) )
) )
) (end
) (if (line 5) (mover win))
) (if (>= (score mover) 10) (mover win))
(end (if (full_board) (draw))
(if (>= (line 4) 2) (mover win)) )
(if (full_board) (draw)) )
) )

Figure 4: Ludax syntax for Reversi and Connect Four (classic board games), as well as Yavalax
and Pente (modern board games).

B Lupax GRAMMAR

Below we present the complete grammar specification for Ludax, using the syntax of the Lark
Python library (raw string constants omitted for brevity).

// ———Root——-
game: " (game" name players equipment rules rendering? ")"

14
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// ———Players——-—
players: " (players" positive_int ")"

// ———Equipment—--—-—

equipment: " (equipment" board")"

board: " (board" (board_square | board_rectangle | board_hexagon |
board_hex_rectangle) ")"

board_square: " (square" number ")"

board_rectangle: " (rectangle" number number ")"

board_hexagon: " (hexagon" number ")"

board_hex_rectangle: " (hex_rectangle" number number ")"

// ———Rules——-—
rules: " (rules" start_rules? play_rules end_rules ")"

// ———-Start rules——-

start_rules: " (start" start_rule+ ")"

start_rule: start_place

start_place: " (place" player_reference (pattern_arg |
multi_mask_arg) ")"

// ———Play rules——-—

play_rules: " (play" play_phaset+ ")"

play_phase: phase_once_through | phase_repeat

phase_once_through: " (once-through" play_mover_order
play_super_mechanic ")"

phase_repeat: " (repeat" play_mover_order play_super_mechanic ")"

play_mover_order: " (" player_reference+ ")"

play_super_mechanic: play_mechanic force_pass?

play_mechanic: play_place | play_move

force_pass: " (force_pass" ")"

// ———Place rules——-—

play_place: " (place" mover_reference? place_destination_constraint
place_result_constraint? play_effects? ")"

place_destination_constraint: " (destination" super_mask ")"

place_result_constraint: " (result" super_predicate ")"

// ———Move rules——-—

play_move: " (move" move_types move_source_constraint

move_destination_constraint move_result_constraint?
play_effects? ")"
move_types: move_type | " (" move_type+ ")"
move_type: move_hop
| move_slide

move_hop: "hop" | " (hop" direction_arg ")"

move_slide: "slide" | " (slide" direction_arg ")"
move_source_constraint: " (source" super_mask ")"
move_destination_constraint: " (destination" super_mask ")"
move_result_constraint: " (result" super_predicate ")"

// ———Effects——-

play_effects: " (effects" play_effect+ ")"

play_effect: effect_capture
| effect_flip
| effect_increment_score
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| effect_set_score

effect_capture: " (capture"
score_arg? ")"
effect_flip: " (flip" super_mask mover_reference?

effect_increment_score:
function ") "
effect_set_score: " (set_score"
// ———-Functions——-—
function: function_add
| function_connected
| function_constant
| function_count
| function_line
| function_multiply
| function_score
| function_subtract
function_add: " (add"
function_connected:
direction_arg? ")"
function_constant: positive_int
function_count: " (count" super_mask
function_line:
exclude_arg?
function_multiply: " (multiply" function+
function_score: " (score" mover_reference
function_subtract: " (subtract" function function

function+ ")"

") n

") n

") "

") "

// ———End rules——-
end_rules: " (end" end_rule+ ")"
end_rule: " (if" super_predicate end_rule_result

?end_rule_result: result_win |
result_by_score

result_lose |

// —-— Result definitions --

result_win: " (" mover_reference "win" ")"
result_lose: " (" mover_reference "lose" ")"
result_draw: " (" "draw" ")"
result_by_score: " (" "by_score" ")"

// —— Mask definitions —-—
super_mask: mask | super_mask_and |
super_mask_and: " (and" super_mask+
super_mask_or: " (or" super_mask+ ")"
super_mask_not: " (not" super_mask

super_mask_or
") n

") n

mask_adjacent
mask_center
mask_column
mask_corners
mask_corner_custodial
mask_custodial
mask_edge
mask_empty
mask_occupied
mask_pattern
mask_prev_move

16

") n

mover_reference function

") n

") n

super_mask mover_reference? increment_

" (increment_score" mover_reference

") n

" (connected" multi_mask_arg mover_reference?

"(line" positive_int orientation_arg? exact_arg?

result_draw |

super_mask_not
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| mask_row

mask_adjacent: " (adjacent" super_mask direction_arg? ")"

mask_center: "center"

mask_column: " (column" positive_int ")"

mask_corners: "corners"

mask_corner_custodial: "corner_custodial" | " (corner_custodial"
mover_reference ")"

mask_custodial: " (custodial" custodial_ length_arg mover_reference?

orientation_arg? ")"

mask_edge: " (edge" edge ")"

mask_empty: "empty"

mask_occupied: "occupied" | " (occupied" mover_reference ")"

mask_pattern: " (pattern" dimensions_arg pattern_arg rotate_arg? ")
"w

mask_prev_move: " (prev_move" mover_reference ")"

mask_row: " (row" positive_int ")"

multi_mask: multi_mask_corners
| multi_mask_edges
| multi_mask_edges_no_corners

multi_mask_corners: "corners"

multi_mask_edges: "edges"

multi_mask_edges_no_corners: "edgesNoCorners"

// —-——-Predicate definitions---

super_predicate: predicate | super_predicate_and |
super_predicate_or | super_predicate_not

super_predicate_and: " (and" super_predicate+ ")"

super_predicate_or: " (or" super_predicate+ ")"

super_predicate_not: " (not" super_predicate ")"

predicate: predicate_equals

| predicate_exists

| predicate_full_board

| predicate_function

| predicate_greater_equals
| predicate_less_equals
| predicate_mover_is
| predicate_passed

predicate_equals: " (=" function+ ")"

predicate_exists: " (exists" super_mask ")" // technically
equivalent to (>= (count mask) 1)

predicate_full_board: " (" "full_board" ")"

predicate_function: function // special syntax which is equivalent

to " (>= function 1)"

predicate_greater_equals: " (>=" function function ")"
predicate_less_equals: " (<=" function function ")"
predicate_mover_is: " (mover_is" player_reference ")"
predicate_passed: " (passed" (mover_reference | BOTH) ")"

// Additional (potentially optional) arguments for predicates
custodial_length_arg: ANY | positive_int

dimensions_arg: " (" positive_int positive_int ")"
direction_arg: "direction:" direction

exact_arg: "exact:" boolean

exclude_arg: "exclude:" multi_mask_arg
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increment_score_arg: "increment_score:" boolean
multi_mask_arg: multi_mask | super_mask | " (" super_mask+ ")"
orientation_arg: "orientation:" orientation

pattern_arg: " (" positive_int+ ")"

rotate_arg: "rotate:" boolean

// Optional rendering details
rendering: " (rendering" rendering_detail+ ")"
rendering detail: color_assignment

color_assignment: " (color" player_reference color ")"

// General-purpose definitions

?number: SIGNED_NUMBER

?positive_int: /[0-9]+/

?boolean: TRUE | FALSE

?edge: TOP | BOTTOM | LEFT | RIGHT | TOP_LEFT | TOP_RIGHT |
BOTTOM_LEFT | BOTTOM_RIGHT

?direction: UP | DOWN | LEFT | RIGHT | UP_LEFT | UP_RIGHT |
DOWN_LEFT | DOWN_RIGHT | VERTICAL | HORIZONTAL | ORTHOGONAL |
DIAGONAL | BACK_DIAGONAL | FORWARD_DIAGONAL | ANY

?orientation: VERTICAL | HORIZONTAL | ORTHOGONAL | DIAGONAL |
BACK_DIAGONAL | FORWARD_DIAGONAL | ANY

?color: WHITE | BLACK

?player_reference: P1l| P2
?mover_reference: MOVER | OPPONENT
name: STRING

variable_name: /\?[a-z][a-z0-9]*/
id: /[a-zA-7Z0-9_1+/

C BENCHMARK GAME DESCRIPTIONS

Below, we present natural language descriptions of the rules for each of the exemplar games ana-
Iyzed in[Section 6

Tic-Tac-Toe: Players take turns placing a piece into an empty space on a square 3-by-3 board. If a
player forms a line of three of their pieces in a row (either vertically, horizontally, or diagonally),
they win. If the board is completely full but no lines have been formed, then the game ends in a
draw.

Connect Four: Players take turns placing a piece into the top of one of the seven columns on a 6-
by-7 board. The piece then “falls” until it rests on either the bottom of the board or another piece. A
player can’t place a piece into a column that is already “full.” If a player forms a line of four of their
pieces in a row (either vertically, horizontally, or diagonally), they win. If the board is completely
full but no lines have been formed, then the game ends in a draw.

Hex: Players take turns placing a piece into an empty space on an 11-by-11 board composed of
hexagonal tiles (forming a parallelogram, see visual depiction fhere). The objective for the first
player is to form a continuous path of their pieces that connects the top edge of the board with the
bottom edge, while the objective for the second player is to do the same but connect the left and
right edges of the board. The first player to achieve their objective wins the game. Because of the
geometric properties of the board, it’s not possible for the game to end in a draw.

Reversi: The game takes place on a square 8-by-8 board. To begin, a white piece is placed at po-
sitions D4 and ES and a black piece is placed at positions D5 and E4 (see visual depiction here).
Players take turns placing a piece into an empty space such that a line of one or more of the oppo-
nent’s pieces are “sandwiched” on either end by the player’s pieces. This configuration is called a
“custodial” arrangement of pieces. After placing a piece, any of the opponent’s pieces which are in
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such a custodial arrangement are flipped and now belong to the player who just moved. It’s possible
for a single move to form multiple custodial arrangements in different directions, in which case all
of the relevant pieces are flipped. If a player cannot make a legal move, they must pass (and they
cannot pass without making a move otherwise). If both players pass, then the game is over. The
winner is determined by the player who has the largest number of pieces on the board at the end of
the game (in the event of a tie, the game ends in a draw).

Gomoku: Players take turns placing a piece into an empty space on a square 15-by-15 board. If a
player forms a line of exactly five of their pieces in a row (either vertically, horizontally, or diago-
nally), they win. However, forming a line of six or more does not count — the player must have at
least one line of exactly five. If the board is completely full but no lines of exactly five have been
formed, then the game ends in a draw.

Pente: Players take turns placing a piece into an empty space on a square 19-by-19 board. If a player
forms a line of five of their pieces in a row (either vertically, horizontally, or diagonally), they win.
In addition, if placing a piece causes a line of exactly two of the opponent’s pieces to be put into
a custodial arrangement, the two pieces are captured and removed from a board. Note that placing
a piece into a custodial arrangement formed by the opponent does not result in any pieces being
captured. A player who captures at least 10 of the opponent’s pieces over the course of the game
wins. In the variant of Pente implemented in Ludii and Ludax, the first player must make their
first move into the exact center of the board.

Yavalath: Players take turns placing a piece into an empty space on a regular hexagonal board
with a diameter of 9 spaces. If a player forms a line of four of their pieces in any direction (either

diagonally or horizontall)ﬂ), they win. However, if a player forms a line of three of their pieces in a
row without also forming a line of four, they lose. If the board is completely full but no lines of four
or three have been formed, then the game ends in a draw.

Yavalax: To begin, the first player places a piece into an empty space on a square 13-by-13 board.
Starting with Player 2, players then take turns placing two pieces into empty spaces on the board.
If a player forms at least two distinct lines of four of their pieces in any direction (either vertically,
horizontally, or diagonally), they win. However, a player may not place a piece into a space if doing
so would form a line of five pieces in any direction or if it would form exactly one line of four pieces
in any direction. Note that this restriction applies to a player’s first move of their turn even if they
could form a second line of four pieces with their second move of the turn (and thus win). If the
board is completely full and neither player has formed at least two distinct lines of four pieces, then
the game ends in a draw.

Dai Hasami Shogi: The game takes place on a square 9-by-9 board. To begin, white pieces are
placed on the bottom two rows of the board and black pieces are placed on the top two rows. Play-
ers take turns moving one of their pieces, either by sliding it any number of squares vertically or
horizontally (i.e. as a rook) or by hopping over one piece (belonging to either player) vertically or
horizontally into an empty square. Hopping over a piece does not capture it, but opposing pieces
can be captured “custodially” (i.e. by moving to surround an enemy piece on both sides vertically
or horizontally). An opponent’s piece in a corner can also be captured by moving a piece to occupy
both orthogonally-adjacent squares. A player wins if they manage to form a horizontal or vertical
line of 5 pieces in a row if none of those pieces are in their starting rows.

HopThrough: The game takes place on a square 8-by-8 board. To begin, white pieces are placed on
the bottom two rows and black pieces are placed on the top two rows. Players take turns moving one
of their pieces by hopping over an adjacent piece (belong to either player) in any direction. Hopping
over a piece does not capture it. A player wins if they manage to get one of their pieces to the
opposite edge of the board (i.e. the top edge for the first player and the bottom edge for the second

player).

*Ludax assumes a canonical orientation for hexagonal boards in which the diameter stretches from left to
right, though it is functionally equivalent to the orientation in which the diameter runs vertically)
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Invent simple rules for a novel two player abstract strategy game
called {name}. Implement it in the ludax language. You will find
attached the ludax’s grammar as well as a few examples of games
implemented in ludax. Start by implementing a simplified version
of your rules, and then incrementally add rules that are harder to
express in ludax. At each step, make sure you write a compilable
game according to ludax’s grammar.

Listing 1: System instruction for LLM-based generation.

D TRAINING HYPERPARAMETERS

Below we provide the exact training hyperparameters used in the reinforcement learning experi-
ments in These are largely copied from the PGX implementation.

* Model architecture: ResnetVv?2
* Number of channels: 128

* Number of layers: 6

¢ Self-play batch size: 1024

* Self-play simulations: 32

¢ Self-play max steps: 256

* Training batch size: 4096

* Learning rate: 0.001

* Evaluation frequency: 5

* Training iterations: 219

Note that each “iteration” consists of generating play data for 256 steps using the self-play batch
size of 1024 (see Koyamada et al.[(2023)). We train the model for 219 iterations, which corresponds
to 256 X 1024 X 219 = 57409536 (or roughly 57 million) steps in the environment.

E GAME GENERATION

We attempt to synthesize new games in the Ludax DSL using two approaches: random sampling
and LLM-based generation. In Table |l} we present the GAVEL game evaluation metrics for each
method.

Random Sampling: Games are generated by naive uniform random sampling. Starting from the
root game “ludeme” (i.e. production rule), we sample the next ludeme among those which are valid
continuations according to the grammar. Additionally, we impose a maximum syntax tree depth of
5, beyond which a closing bracket is always given priority.

LLM-based Generation: Games are generated as a few-shot task. The model is prompted with
a system instruction (Listing [T), the full grammar (Appendix [B), and the game implementations
from Appendix |C| as examples. The model is instructed to describe the rules of a new game and
produce multiple Ludax implementations of increasing complexity; we evaluate only the final game
produced. To encourage diversity, each attempt is seeded with a randomly generated and nonsensical
game name such “Outstanding Rainbow Spaniel.”

GAVEL-like Evaluation: Inspired by Todd et al|(2024)), we assess each generated game as follows:

1. A game is playable if its description compiles and runs without error.

2. For each playable game, we run agent-vs-agent playthroughs using a custom JAX imple-
mentation of MCTS with UCB1 (Kocsis & Szepesvaril, 2006)

3. We compute the following heuristics from these playthroughs:

20



Under review as a conference paper at ICLR 2026

* Balance: max winrate gap between players

* Decisiveness: fraction of non-draw outcomes

* Completion: fraction of games reaching a terminal state

* Agency: fraction of turns with > 1 legal move

* Coverage: fraction of board sites occupied at least once

 Strategic Depth: difference in winrate between a stronger MCTS agent and a weaker
one (fewer simulations).

The overall “GAVEL score” is the harmonic mean of the individual heuristic scores. Games with a
GAVEL score > 0.4 are deemed potentially interesting. We note that this experiment is preliminary:
it omits diversity measures, and the limited search budget for MCTS means they will frequently miss
good moves a stronger agent might find. Nevertheless, the fact that an LLM can implement novel
games in Ludax without finetuning suggests that Ludax ’s grammar is intuitive and highlights its
potential for both game generation.

Hyperparameters: For each method, we sample 100 games. For the LLM-based methods, we
use a sampling temperature of 0.2. To compute the evaluation score, we run 100 agent-vs-agent
simulations for each game. The MCTS agents perform 100 iterations (i.e. traversal, expansion, and
random rollout) for each action. For the “strategic depth” evaluation we compare against an MCTS
agent that performs 50 iterations per action.

Table 1: GAVEL-based evaluation metrics for 100 generated games, obtained either by uniform
random sampling or an LLM. As a baseline, we report results for all default games in Appendix
[C Playable and Interesting denote percentages over all generated games (Playable > Interesting).
GAVEL score and Strategic Depth report the median and standard deviation, computed only on
playable games.

Method Playable Interesting GAVEL Score Strategic Depth
Default Games 100% 100% 0.69 +0.15 0.66 £0.15
Random Sampling 4% 0% 0.00 £0.00 0.00 £0.00
GPT-OSS-120B 95% 83% 0.59 £0.22 0.58 £0.17
LLaMa-4-17B 82% 42% 0.49 +0.21 0.68 +0.23
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