
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAYER-AWARE INFLUENCE FOR ONLINE DATA VALU-
ATION ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-centric learning emphasizes curating high-quality training samples to boost
performance rather than designing new architectures. A central problem is to
estimate the influence of training sample efficiently. Prior studies largely focus on
static influence measured on a converged model, overlooking how data valuation
dynamically changes during optimization. This omission neglects the dynamic
nature of sample influence during optimization, especially in deep models. To
address the computational burden of frequent influence estimation, we develop
a layer-aware online estimator that requires only loss-to-output gradients. This
design avoids parameter-level and full-network gradients while preserving ranking
fidelity. Extensive experiments across LLM pretraining, fine-tuning and image
classification demonstrate that our method improves accuracy with substantially
lower time and memory cost in both text and image datasets, making dynamic
data curation both efficient and scalable in practice.

1 INTRODUCTION

Data-centric learning surges as an emerging topic in machine learning community, which focuses
on curating high-quality training samples for performance boosting, rather than designing novel al-
gorithms (Koh and Liang, 2017; Sedova et al., 2023; Ash et al., 2019). Sample influence estimation,
also known as data attribution or data valuation, is the fundamental research question in data-centric
learning, which assesses the sample importance associated with a certain model. Based on that,
detrimental samples can be identified, which will be removed from the training set for another round
training with the expected performance gain.

Sample influence estimation can generally be categorized into two categories (Hammoudeh and
Lowd, 2022). 1) Retraining-based methods include the classical leave-one-out influence approach
(Cook and Weisberg, 1982) that retrains models and observes performance changes after removing
one training sample. While useful as an ideal baseline, this is computationally untenable on deep
models. Other representative methods such as model-agnostic Shapley value approaches (Ghorbani
and Zou, 2019; Jia et al., 2019; Kwon and Zou, 2022) also suffer similar problems. Computationally
efficient approaches, such as KNN-Shap (Jia et al., 2018), are limited to using KNN classifiers
and their recursive calculations. 2) Gradient-based methods can be used to approximately estimate
influence without expensive overheads of retraining. Influence functions (Koh and Liang, 2017;
Schioppa et al., 2022; Yang et al., 2024) are representative tools in this category, which employ the
first-order Taylor expansion to estimate the performance change with sample gradients. Although
model retraining is avoided, the inverse of the Hessian matrix in influence functions brings great
challenges for large deep models. Several pioneering studies focus on approximating the inverse of
the Hessian matrix in an efficient way (Koh and Liang, 2017; Grosse et al., 2023; Kwon et al., 2023).

While the above pioneering studies shed light on model-associated sample influence for identify-
ing beneficial or detrimental samples in terms of data quality, they overlook another crucial fac-
tor—online data valuation dynamically change during optimization, particularly in deep models.
This introduces a critical limitation: samples identified as detrimental based on the initial model
may no longer be detrimental for the newly trained model after their removal. Such oversight not
only necessitates two rounds of training but also results in suboptimal performance and fails to
harness the full potential of online data valuation-aware training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Contributions. To address the aforementioned limitations, we introduce a layer-aware online data
valuation framework that estimates per-sample influence during training and integrates naturally
with SGD-style updates. Our estimator aligns scoring with optimization and can be instantiated
as policies such as online curation, reweighting, or priority sampling—without a filter–then–retrain
cycle. Our key contributions are summurized as follows:

• Research Question: We formalize online data valuation that jointly accounts for data quality
during model optimization, addressing the scoring–optimization mismatch and order-dependent
interactions that static methods ignore.

• Technical Innovation: We design a Hessian-free, layer-aware online influence estimator that
backpropagates only to the model outputs, avoiding full-network parameter gradients. Our
lightweight calibration mitigates cross-layer scale bias while preserving valuation fidelity, en-
abling single-run training with minimal overhead and seamless integration with SGD.

• Experimental Validation: Extensive experiments are conducted across diverse scenarios, in-
cluding LLM pre-training, LLM fine-tuning, and both image and text classification. The results
demonstrate that our proposed method is highly effective and also computationally efficient.

2 RELATED WORK

In this section, we introduce the data valuation with a focus on influence function, and other online
data curation topics including curriculum learning and data scheduling.

Influence function. Influence functions, originally developed in robust statistics (Hampel, 1974;
Cook and Weisberg, 1982; Martin and Yohai, 1986), quantify the sensitivity of model parameters
to perturbations in training data. Introduced to the machine learning community by Koh and Liang
(2017), they have since been widely applied to tasks such as identifying detrimental sample, detect-
ing outliers, and spotting mislabeled samples. Using a first-order Taylor expansion, influence func-
tions estimate sample influence based on the model’s performance on a validation set, leveraging the
inverse of the Hessian matrix and sample gradients—eliminating the need for model retraining.

However, computing the inverse of the Hessian matrix is computationally prohibitive, particularly
for large deep models. Several pioneering studies address this challenge by approximating the in-
verse of Hessian matrix more efficiently. LiSSA (Koh and Liang, 2017) employs Hessian-vector
products for approximation, while EKFAC (Grosse et al., 2023) incorporates efficient eigen decom-
position techniques. DataInf (Kwon et al., 2023) further simplifies influence calculations for large
models by substituting the Hessian inverse with a rank-1 closed-form expression.

Beyond the static estimation of sample influence based on a final model (sometimes referred to as
a checkpoint), recent approaches focus on dynamic influence estimation. GEX (Kim et al., 2024)
leverages geometric ensembles of multiple checkpoints to approximate influence functions, mit-
igating bilinear constraints and addressing non-linear losses. Similarly, TDA (Bae et al., 2024)
introduces a checkpoint-based segmentation strategy that combines implicit differentiation and un-
rolling, leveraging EKFAC (Grosse et al., 2023) for efficiency. TRAK (Park et al., 2023) employs
randomly-projected kernel to reduce the dimensional of the Hessian matrix for tractable computing.
Recently, a surge of interest in Hessian-free influence functions has emerged, which replaces the
Hessian inverse with a simple identity matrix (Charpiat et al., 2019; Pruthi et al., 2020; Yang et al.,
2024; Killamsetty et al., 2021). These approaches offer computational simplicity and scalability,
making them particularly attractive for deep learning models with competitive performance.

While the above studies have made significant advancements in data-centric learning, they largely
overlook the dynamic variance of sample influence throughout the model training process. Although
some recent works attempt to address dynamic influence estimation, their approach—simply sum-
ming up sample influences at different checkpoints—fails to capture the evolving nature of sample
influence effectively. This limitation arises because model parameters at early checkpoints often
differ substantially from those at later stages, rendering static aggregation methods inadequate. Fur-
thermore, these studies neglect the role of online data valuation change during the optimization,
which is particularly critical for deep models. By treating data valuation as static, existing methods
miss opportunities to dynamically adapt training strategies based on evolving sample importance,
ultimately compromising both efficiency and effectiveness in influence-aware learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Curriculum learning. Curriculum learning (Bengio et al., 2009; Wang et al., 2021; Soviany et al.,
2022) is a training strategy that incorporates data sequence into model optimization by presenting
data in an easy-to-hard order, mimicking the structured learning process observed in human educa-
tion. As a general training paradigm, curriculum learning has been widely applied across diverse
domains, including supervised learning tasks in computer vision (Guo et al., 2018; Jiang et al., 2014)
and natural language processing (Platanios et al., 2019; Tay et al., 2019), as well as reinforcement
learning (Florensa et al., 2017; Narvekar et al., 2017; Ren et al., 2018). It has also been extended
to specialized applications such as graph learning (Gong et al., 2019; Qu et al., 2018) and neural
architecture search (Guo et al., 2020). Despite its conceptual appeal, curriculum learning does not
always yield performance improvements in machine learning tasks (Kumar et al., 2010; Zaremba
and Sutskever, 2014; Hacohen and Weinshall, 2019). We hypothesize that two primary reasons may
explain this limitation: The predefined easy-to-hard curricula are often human-designed and may
not be optimal for model training. Easy samples may contribute minimally to building robust mod-
els, whereas hard samples may be noisy or even detrimental to performance, raising questions about
their actual utility. To address these limitations, in this paper, we replace the traditional easy-to-hard
paradigm with a beneficial-or-not approach (Mindermann et al., 2022). Instead of relying on pre-
defined difficulty levels, we dynamically curate training samples based on their estimated influence,
ensuring that only beneficial samples contribute to model updates. This strategy not only optimizes
sample selection but also adapts to the dynamic evolution of sample influence.

Data scheduling and curation. A parallel line of work designs policies that reweight or select
data during training to improve accuracy per compute. Representative examples include RHO-
Loss (Mindermann et al., 2022) and its task-conditioned extension CoLoR-Filter (Brandfonbrener
et al., 2024), JEST for multi-modal joint selection (Evans et al., 2024), and ACID/ACED for
distillation-oriented curation (Udandarao et al., 2025). Work such as InfoBatch (Qin et al., 2024),
AutoAssist (Zhang et al., 2019) and Data Diet (Paul et al., 2021) also aim to accelerate training
through dynamic pruning or curriculum-style sampling. While the work along this line is conceptu-
ally related, it does not evaluate the fidelity of influence estimates, and therefore we do not place it
in the same category as our research question.

We also acknowledge a few concurrent works (Wang et al., 2024a;b;c) from the same research group
that jointly consider online data valuation, emphasizing that sample gradients play a pivotal role in
defining both aspects. However, these approaches face practical challenges, as sample gradients
are typically high-dimensional, making them computationally expensive to compute and store (See
Section 3). To address these challenges, this paper proposes a layer-aware approximation technique
that not only accelerates but also enhances the calculation of sample influence. By leveraging layer-
wise structures within deep models, our method reduces computational overhead while maintaining
high estimation accuracy, making it scalable for modern deep learning frameworks.

3 PRELIMINARIES ON INFLUENCE FUNCTIONS

3.1 HESSIAN-FREE INFLUENCE FUNCTIONS

Consider a classifier with parameters θ∈RD mapping instances z={x, y} from input space x∈X to
output space y∈Y , the model parameters θ̂=argminθ∈Θ

1
n

∑n
i=1 ℓ(zi; θ) can be obtained the empir-

ical risk minimization problem. If we downweight a training sample zj by a very small fraction ϵ,
the new parameters can be θ̂(zj ;−ϵ) = argminθ∈Θ

1
n (
∑n

i=1 ℓ(zi; θ)−ϵℓ(zj ; θ)). By evaluating the
limit as ϵ approaches 0, the seminal work of Koh and Liang (2017) provides an estimation for the
influence score associated with the removal of zj from the training set:

I(zj ; θ̂) = −
∑

z∈V
∇θ̂ℓ(z; θ̂)

⊤H−1

θ̂
∇θ̂ℓ(zj ; θ̂), (1)

where V denotes the validation set (self-influence employs the training set instead), ∇θ̂ℓ(zj ; θ̂) is
the gradient of sample zj , and Hθ̂=

∑n
i=1 ∇2

θ̂
ℓ(zi; θ̂) denotes the Hessian matrix.

Although the above influence functions circumvent the need for model retraining, computing the
inverse of the Hessian matrix still poses significant challenges for large deep models. Several ap-
proaches have been proposed to approximate the Hessian inverse efficiently (Grosse et al., 2023;
Kwon et al., 2023; Park et al., 2023). Recently, there has been a surge of interest in Hessian-free in-
fluence functions, which simplify the computation by replacing the Hessian inverse with an identity

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

matrix (Charpiat et al., 2019; Pruthi et al., 2020; Yang et al., 2024). This simplification reduces the
influence score calculation to an inner product (IP) between the sample gradients of the validation
set and the target sample, formulated as follows:

I IP(zj ; θ̂) = −
∑

z∈V
∇θ̂ℓ(z; θ̂)

⊤ · ∇θ̂ℓ(zj ; θ̂). (2)

Since we consider dynamic sample curation for each training batch, the computational cost of eval-
uating sample impact for each batch remains substantial, especially for large models. Traditional
approaches (Koh and Liang, 2017; Grosse et al., 2023; Kwon et al., 2023; Park et al., 2023) that rely
on estimating the inverse of the Hessian matrix are prohibitive for dynamic sample impact estima-
tion due to their computational complexity. In this paper, we focus on the IP-based influence score
and further propose a layer-aware approximation to enhance the calculation of sample influence.

3.2 GHOST OF HESSIAN-FREE INFLUENCE FUNCTIONS

Building on the above IP-based influence approach, Wang et al. (2024c) extended the static influence
value to an online version by computing sample influence within each batch. However, this intro-
duces the challenge of frequently calculating sample-level gradients for every batch, which can be
computationally expensive. To address this issue, Wang et al. (2024c) proposed the ghost influence
score, inspired by ghost clipping in differential privacy (Lee and Kifer, 2021). Notably, the inner
product of two sample gradients can be decomposed into the product of the inner product between
their embeddings and the gradients of the subsequent layer, as shown below:

IGhost(zj ; θ̂) = −
∑
z∈V

L∑
l=1

(α(l)︷ ︸︸ ︷
((a(l−1)

z)⊤ · a(l−1)
j) ·

β(l)︷ ︸︸ ︷(
(
∂ℓ(l)

∂s(l)z

)⊤ · ∂ℓ
(l)

∂s(l)j

))
, (3)

where a and s are the input/output embeddings, and l is the index of layers. Neglecting the activation
function, the above equation can be divided into two parts, α(l) calculates the similarity between a
validation sample and the target training sample in the embedding space, and β(l) measures the
similarity in the gradient space, i.e., the next layer’s feedback.

Limitations of Ghost Influence. Despite its efficiency gains, ghost influence suffers from two key
drawbacks. Computationally, it still requires propagating loss-to-parameter signals through every
layer (or materializing parameter-sized, per-sample gradients), which remains costly per batch and
difficult to cache at scale. Statistically, mini-batch stochasticity, nonlinear activations/normalization,
and residual mixing introduce substantial noise. Because ghost influence sums contributions addi-
tively rather than averaging them, this noise can accumulate with depth, making the rankings of hard
or noisy examples unstable (see analyses in Appendix A). In this paper, we address both limitations
by proposing a layer-aware approximation strategy.

4 METHODS

In this section, we introduce our layer-aware influence estimator, a simplified approximation of ghost
influence. We then analyze its computational and storage costs during training and explain why this
lightweight approximation can actually enhance estimation performance.

4.1 LAYER-AWARE INFLUENCE ESTIMATOR

To address both challenges of ghost influence jointly, we propose a layer-aware influence (LAI)
estimator that uses a single, stable feedback channel, while still leveraging multi-layer embeddings.
Concretely, we replace all β(l) by the last-layer similarity β(L) and aggregate embedding similarities
across layers:

ILAI(zj ; θ̂) = −
∑
z∈V

(L∑
l=1

((a(l−1)
z)⊤ · a(l−1)

j)
)
·
(
(
∂ℓ(L)

∂s(L)
z

)⊤ · ∂ℓ
(L)

∂s(L)
j

)
. (4)

This design retains the expressive, multi-layer embedding view, yet computes influence using
only output-layer gradients ∂ℓ(L)/∂s(L). It eliminates layer-by-layer backpropagation and avoids
parameter-sized sample gradients, yielding substantial savings in time and memory. Formally,
Eq. (4) is a principled approximation of Eq. (3); the complete derivation is deferred to Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 ADVANTAGES OF LAI

Computational and storage costs. Compared to the ghost influence in Eq. (3), which requires
per-sample feedback at every layer to form {β(l)}Ll=1 and thus either materializes intermediate per-
sample gradients or runs micro-backward passes, our LAI in Eq. (4) backpropagates only once to
the output layer. As a result, scoring a mini-batch against the validation cache scales linearly in
both the batch size and |V| with small constants and does not create parameter-sized per-sample
gradients. On the memory side, ghost influence must cache, for each validation point, per-layer
gradient signals (or repeatedly recompute them), whose footprint grows with depth and is harder to
keep synchronized; in contrast, our method only cache the output-layer gradient signals, which are
compact and stable across iterations. In practice, this reduces the backpropagate depth from L to 1
and shrinks the validation cache from L gradient tensors to two short vectors per validation sample,
enabling both runtime and storage-efficient online valuation during training.

Why our simplified approximation improves performance? At first glance, replacing {β(l)}Ll=1

with the single output-layer channel β(L) may seem crude. However, as formalized in Ap-
pendix A, starts from the output-layer gradients, each per-layer feedback suffers from stochastic
perturbations introduced along the backpropagation chain (mini-batch statistics, nonlinear activa-
tions/normalization, residual mixing), which aggregates multi-layer noises. By contrast, our LAI
employs the single output-layer channel β(L) to replace all previous layers, which not only avoids
the noise aggregation, but also exhibits lower variance in most common scenarios. A mathematical
bias-variance comparison between ghost influence and LAI can be found in Appendix C. More-
over, the superior performance of LAI over ghost influence is empirically validated across diverse
experiments in Sections 5 and 6. Taken together, these results show that LAI, as a simplified vari-
ant of ghost influence, not only offers substantial computational benefits but also delivers improved
performance, which plays a significant advantage of LAI over ghost influence.

5 EXPERIMENTS ON LLMS

In this section, we first conduct fidelity validation of our proposed LAI against a Monte Carlo Shap-
ley reference, and its utility for dynamic batch curation in the scenarios of pre-training and fine-
tuning of LLMs, where at each step samples with negative estimated influence are discarded.1

5.1 FIDELITY VALIDATION

Here we pre-train GPT-Neo (Gao et al., 2020), a 125M-parameter LLM model, for 10,000 iterations,
saving checkpoints every 100 steps for a total of 100 checkpoints. At each checkpoint, we compute
influence scores over a batch of 16 samples using our LAI, ghost influence, and a Shapley-value
reference constructed via 1,000 Monte Carlo permutations (Wang et al., 2024c). We then assess
fidelity by measuring Pearson’s correlation between each proxy score and the Shapley reference.

In Figure 1, we report four representative snapshots at steps 2,500, 5,000, 7,500, and 10,000 for sub-
figures A-D, and aggregate all 100 checkpoints in subfigures E and F. Across all the runs, LAI main-
tains a high and stable fidelity to the Shapley reference (mean = 0.9617, std = 0.0217), whereas
Ghost remains positively correlated but fluctuates more (mean = 0.9038, std = 0.1463). Moreover,
ghost influence often occurs low correlations at certain steps; for example, ghost influence delivers
almost -0.2 correlations with Shapley reference around step 4800. These results demonstrate that
our LAI consistently delivers a reliable, high-fidelity estimate of sample influence across the entire
pre-training process. This finding confirms that LAI not only serves as an approximation of Ghost
influence but also enhances its accuracy and robustness.

5.2 LAI FOR PRE-TRAINING LLM

We continue our investigation to assess the feasibility of our LAI for pre-training LLMs. Specif-
ically, we utilize GPT-Neo and further pre-train it using the Pile-uncopyrighted dataset. Here we
limit the training process to 10,000 batches for both the baseline method and our LAI. The pre-

1Details on datasets, model training, and experimental setup can be found in AppendixD.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.2 0.1 0.0 0.1 0.2 0.3
Shapley Value

0.5

1.0

1.5

2.0

2.5

Sc
or

e

A

Step = 2500
LAI
Ghost

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Shapley Value

0.5

1.0

1.5

2.0

2.5

Sc
or

e

B

Step = 5000
LAI
Ghost

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Shapley Value

0.5

1.0

1.5

2.0

2.5

3.0

Sc
or

e

C

Step = 7500
LAI
Ghost

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Shapley Value

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Sc
or

e

D

Step = 10000
LAI
Ghost

0 2000 4000 6000 8000 10000
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

E
Shapley vs LAI Score
Shapley vs Ghost Score

LAI Ghost

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

F
LAI Mean Correlation
Ghost Mean Correlation

Figure 1: Fidelity Validation of LAI and ghost influence. A-D show representative checkpoints at
steps 2,500, 5,000, 7,500, and 10,000: each point plots a sample’s proxy score (LAI is blue, Ghost
is orange) versus its Shapley value at that step, with dashed least-squares fits. E reports the per-step
Pearson correlation across all 100 checkpoints. F summarizes the distribution of these 100 per-step
correlations via violin plots with dashed mean lines.

training performance is subsequently evaluated by perplexity on an unseen corpus from the Pile-
uncopyrighted dataset, following the evaluation procedure outlined by Gao et al. (2020).

Table 1: Results of LLM pre-training tasks on
Pile-uncopyrighted.

Perplexity #Removed Sample

Batch 5000 10000 Sample Importance

Baseline 8.104929 8.086690 0 1.0000
LAI 8.104924 8.086686 135 1.0004

Since the pre-training process lacks a dedi-
cated validation set, we adopt a self-influence
approach for batch curation, wherein the cur-
rent batch samples serve as the validation set
to identify and filter out detrimental samples.
Specifically, samples with gradient directions
opposing the majority within a batch are ex-
cluded, which is expected to account for only
a small proportion of the data. Table 1 reports the performance comparison between the standard
training baseline and our LAI. Using self-influence, only 135 samples are removed across 10,000
batches. Despite this minimal removal rate relative to the vast training dataset and large model pa-
rameters, slight improvements are observed. By excluding these identified samples, the importance
of each remaining sample in reducing perplexity is enhanced, yielding an average improvement of
0.04% per sample. These results highlight the potential of our LAI method in LLM pre-training,
especially with adequate resources.

5.3 LAI FOR FINE-TUNING LLM

We further utilize GPT-Neo for fine-tuning evaluation. An additional prediction layer is appended
for task-specific fine-tuning. For evaluation, we select four widely used text benchmarks—SST-2,
MRPC, QNLI, and RTE—from the GLUE repository (Wang et al., 2018), adhering to their official
pre-split training, validation, and test sets. During fine-tuning, we optimize both the parameters of
the prediction layer and the backbone model using the training set. The standard training baseline
is used to warm up the model for 3 epochs, after which we switch to our proposed method. Both
methods are fine-tuned for a total of 5 epochs.

Table 2 presents the results of fine-tuning tasks on four benchmark datasets, evaluating sample us-
age per epoch, validation loss, and test set accuracy. Notably, our method involves processing only

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Results of fine-tune tasks on SST2, MRPC, QNLI, and RTE.

Dataset Training Sample Per Epoch Validation Loss Test Accuracy (%)

SST2 MRPC QNLI RTE SST2 MRPC QNLI RTE SST2 MRPC QNLI RTE

Vanilla 67,349 3,668 104,743 2,490 0.7121 1.5022 0.9460 1.0101 89.9 72.0 83.6 59.8
LAI 34,301 1,877 52,386 833 0.5716 0.7669 0.4978 0.6406 90.5 73.4 84.8 61.0

half or fewer training samples compared to the standard baseline method. This not only signifi-
cantly reduces training costs—particularly advantageous for large-scale data and models—but also
enhances performance. This observation highlights a crucial insight: not all data contribute posi-
tively to learning performance. In fact, undesirable samples can waste computational resources and
even degrade learning outcomes. Unfortunately, conventional model training paradigms include all
samples in optimization and lack mechanisms to resist the influence of harmful samples. While
prior efforts in data curation have aimed to prepare high-quality datasets or remove harmful samples
before training, the dynamic nature of sample influence during optimization remains overlooked.

In essence, the data valuation is to selectively include beneficial training samples and exclude detri-
mental ones in each batch, guided by the validation set—specifically, by evaluating whether the
samples contribute to reducing validation loss. Consequently, we report the validation loss achieved
in these fine-tuning tasks. Across all datasets, our LAI achieves a significant reduction in validation
loss. On SST-2, validation loss decreases by nearly 20%, while reductions of 30–50% are observed
on the other three datasets within just two epochs of fine-tuning. This reduction in validation loss
directly translates into measurable performance gains in the test sets, where accuracy improvements
of 0.6–1.2% are achieved across the four datasets.

6 EXPERIMENTS ON IMAGE AND TEXT CLASSIFICATION

We continue evaluating our LAI in the scenario of image and text classification. First, we compare
our LAI with several static/online data valuation methods and a curriculum learning baseline, then
explore the dynamics of sample-level data valuation during the model optimization.

6.1 ALGORITHMIC PERFORMANCE

We evaluate three categories of competitive methods: (1) static influence-based two-round training
approaches, (2) online one-round training approaches, and (3) the curriculum learning baseline.
For the static influence-based methods, we include the well-known LiSSA (Koh and Liang, 2017),
DataInf (Kwon et al., 2023), TRAK (Park et al., 2023), and IP (Yang et al., 2024). For the online
methods, we include Ghost Influence (Wang et al., 2024c), our proposed Layer-Aware Influence
(LAI), and Layer-aware Last-layer Influence (LLI)—a variant of LAI that relies solely on the last-
layer embedding and gradient for influence computation. As the curriculum learning baseline, we
consider Self-Paced Learning (SPL) (Kumar et al., 2010) as our baseline for comparison.

Table 3 presents the average classification accuracy and standard deviation of all competitive meth-
ods over five runs. In image datasets, static influence-based two-round training methods often result
in extended training time and inferior performance compared to the vanilla approach. This inefficacy
arises from the inherent limitations of static influence estimation: samples deemed detrimental in a
converged model may no longer have the same impact during subsequent training iterations. This
issue becomes especially severe in non-convex optimization settings, particularly when a large num-
ber of samples are removed. These methods primarily focus on model-associated sample influence
derived from a fixed model, while they overlook the full dynamic evolution of influence that occurs
throughout optimization process, ultimately limiting their overall effectiveness in practice.

In contrast, on text datasets, static influence-based methods tend to perform effectively by suc-
cessfully removing identified detrimental samples. This disparity likely stems from differences
in training procedures: image datasets typically involve training the backbone architecture from
scratch, while text datasets leverage pre-trained backbones for fine-tuning, thereby retaining a sig-
nificant portion of the original model’s knowledge and mitigating the impact of removed samples.
An intriguing observation is that IP, a remarkably simple and naive method that avoids using the
Hessian matrix, outperforms other static influence-based methods employing more sophisticated
Hessian approximations. This result reinforces the rationale behind our choice to build online data

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results of classification accuracy on benchmark datasets with noise labels.

Methods CIFAR-10N-a CIFAR-10N-r CIFAR-10N-w CIFAR-100N 20News-N Emotion-N Avg.

Vanilla 85.36±0.18 83.19±0.41 75.37±1.05 40.87±0.38 58.99±0.92 84.79±1.55 71.43

LiSSA (2017) 78.67±0.27 74.15±0.44 60.44±0.52 10.16±0.41 63.41±0.90 89.24±1.16 62.68
DataInf (2023) 79.80±0.41 75.34±0.58 61.90±1.53 30.69±0.71 63.36±0.37 89.08±0.51 66.70
TRAK (2023) 83.68±0.25 80.94±0.42 71.77±0.62 32.93±0.83 OOM OOM 67.33
IP (2024) 80.64±0.48 78.84±0.73 68.28±0.98 30.82±0.86 63.45±0.75 89.30±0.54 68.56

SPL (2010) 74.60±2.06 74.42±2.46 65.39±1.41 41.96±0.74 55.71±1.33 79.66±2.08 65.29
Ghost (2024c) 85.52±0.31 83.46±0.59 75.98±0.40 41.90±0.63 63.22±1.16 88.36±0.44 73.07

LLI (Ours) 84.13±0.59 82.49±0.16 75.87±1.50 44.22±0.56 63.38±0.86 88.64±0.52 73.12
LAI (Ours) 84.78±0.52 83.69±0.11 76.43±0.39 44.06±0.73 63.23±0.97 88.45±0.54 73.44

Table 4: Time and memory comparison of online data valuation approaches.

Dataset GFLOP per Batch Maximum Memory

CIFAR-10N CIFAR-100N 20News-N Emotion-N CIFAR-10N CIFAR-100N 20News-N Emotion-N

Vanilla 57.24 57.32 1073.91 1073.90 3304.67 3305.49 5292.08 5291.83
Ghost 209.13 209.32 2156.07 2872.02 4223.74 4227.10 12013.19 12013.38
LLI 113.15 113.34 835.26 1551.20 3328.60 3330.28 7552.19 7552.37
LAI 113.42 113.61 839.49 1555.27 3716.95 3718.64 8053.50 9053.64

valuation framework on such a straightforward method, highlighting its simplicity, efficiency, and
effectiveness. Conversely, TRAK, despite its innovative approach, demands significantly more com-
putational resources and often encounters out-of-memory (OOM) issues in our experimental envi-
ronment. This highlights the critical and urgent need for developing more computationally efficient
solutions in real-world practical applications, particularly when considering a potential dynamic
version of the method, which would further exacerbate these resource constraints.

While curriculum learning approaches like SPL incorporate online data considerations, they show
inconsistent results across datasets, confirming prior findings (Kumar et al., 2010; Zaremba and
Sutskever, 2014; Hacohen and Weinshall, 2019) that loss-based curricula do not consistently yield
performance gains. In contrast, LLI and LAI dynamically integrate data valuation, delivering su-
perior performance to the vanilla method. It is worth noting that ghost influence can be viewed
as the dynamic version of IP, achieving over 5% improvement on average, which underscores the
effectiveness of the online data valuation framework. Notably, our LAI further outperforms ghost
influence in most cases, particularly on the challenging CIFAR-100N dataset. This superior perfor-
mance is achieved while requiring fewer computational resources—a critical advantage that will be
further discussed in the next paragraph. Intuitively, a simplified method often trades performance
for lower computational cost. However, the superior results of LAI show that, while it is designed
as a simplified version of ghost influence for efficiency, it not only avoids sacrificing accuracy but
also delivers an additional performance gain.

We further investigate the computational cost of online methods in terms of running time and mem-
ory usage, as presented in Table 4. We report the runtime of the vanilla method as a reference point,
but our main objective is to compare methods within the category of online data valuation, rather
than contrasting online valuation with the vanilla baseline. Note that static data valuation methods
require two rounds of training—roughly doubling the runtime of the vanilla method—plus additional
time for data valuation computation; therefore, we do not report them here. A significant limitation
of ghost influence lies in its reliance on the complete sample gradient to calculate sample influence.
For instance, ghost influence takes over 2.5 times running time and nearly 1.5 times memory over
LLI or LAI on 20News-N in terms of GFLOP, which might be further amplified on large networks.
While the pairwise strategy helps avoid setting the batch size to one for sample-level gradient com-
putation, the requirement for complete sample gradients leads to considerable computational and
storage demands. The sample gradient’s dimensionality matches that of the model parameters, re-
sulting in high costs for gradient computation for each sample in every batch. Additionally, the large
storage requirements restrict ghost influence to be conducted on small batch size. These challenges
highlight the need for more efficient gradient estimation methods, which are well addressed by our
LAI. Our LAI utilizes only the output gradient, combined with embeddings from each layer, offering
a more memory-efficient and computationally manageable approach. Notably, LAI requires almost
the same computational resources as LLI, while maintaining improved performance in general. Be-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10 5 0 5 10
Influence Score 1e 5

0

500

1000

1500

2000

2500

3000

3500

#S
am

pl
e

A Epoch 1
Epoch 100

1 50 100 150 200 250 300
Epoch

Sa
m

pl
e

In
de

x

B

1 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

In
flu

en
ce

 S
co

re

1e 5

C Sample 1
Sample 2
Sample 3

Figure 2: Sample influence dynamics of LAI on CIFAR10-N-w. A illustrates the collective distri-
bution of influence scores across different epochs; B visualizes sample involvement across epochs,
with blue indicating inclusion in a batch and white indicating exclusion; C presents dynamic nature
by tracing the influence scores of three specific samples across epoch.

sides, while all the embeddings are used in LAI and only the last layer embedding is used in LLI,
the last layer embedding also requires the calculation of previous embeddings as inputs. Therefore,
they takes similar computational resources.

6.2 EXPLORATION ON LAI AT SAMPLE LEVEL

Beyond evaluating overall algorithmic performance, we delve deeper into the sample influence dy-
namics of our LAI framework, as depicted in Figure 2. Subfigure A illustrates the collective distribu-
tion of influence scores for training samples across epochs. Over time, these scores converge sharply
around zero, signifying reduced variability in sample influence. Samples with substantial negative
influence, which degrade validation loss, are excluded from subsequent epochs, while those with
negligible influence exert minimal impact on model parameters. By setting the influence threshold
to zero, approximately half of the samples are retained for optimization at each epoch.

At the individual level, Subfigure B visualizes sample involvement across epochs, with blue indi-
cating inclusion in a batch and white indicating exclusion. Generally, very few “easy” or “hard”
samples consistently drop out early or join late in training, which may explain the limitations of
traditional curriculum learning. Instead, the composition of batches evolves dynamically, highlight-
ing the importance of online data valuation. Subfigure C examines this dynamic nature by tracing
the influence scores of three specific samples across epochs. Influence scores shift significantly, as
samples used in one epoch often exhibit reduced loss in subsequent epochs. However, these samples
may no longer contribute maximally to reducing loss in future epochs, justifying their exclusion.
This also well justifies the limitation of static data valuation.

This dynamic adjustment reveals the shortcomings of methods like TRAK (Park et al., 2023), which
aggregate influence scores across multiple optimization checkpoints. Summing these scores fails to
account for the evolving nature of influence, potentially neutralizing conflicting values and reducing
overall effectiveness. In contrast, our LAI dynamically adapts to these shifting contributions, en-
abling efficient optimization that simultaneously enhances model performance throughout training.

7 CONCLUSION

In this paper, we tackled a fundamental challenge from a data-centric perspective by introducing the
online data valuation framework. This framework integrates online data valuation to enhance model
optimization while providing an efficient and generic implementation compatible with SGD and
Adam optimization. Specifically, we utilized a Hessian-free influence function to evaluate the qual-
ity of samples within each batch, dynamically removing detrimental samples from the optimization
process. To address the computational overhead of frequent sample influence estimation, we de-
veloped an efficient layer-aware approximation to streamline the calculation. Extensive experiments
validated the effectiveness and efficiency of our approach by comparing with other baseline methods
across diverse scenarios, including LLM pre-training/fine-tuning and image/text classification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide our code, instructions, and implementation in an open-source repository:
https://anonymous.4open.science/r/Dynamic-Batch-Curation-8782. The
experiments in Section 5 were conducted on Google Cloud TPU v4-4 nodes (Ubuntu 22.04.2 LTS)
with PyTorch. The experiments in Section 6 were conducted on a Linux (Ubuntu 20.04.6 LTS)
server using NVIDIA GeForce RTX 4090 GPUs with 24GB VRAM running CUDA version 12.3
and driver version 545.23.08.

ETHICS STATEMENT

Our method introduces online data valuation with a layer-aware influence estimator (LAI) that filters
harmful samples on the fly, reducing compute and energy while improving generalization without
extra training epochs. Nevertheless, potential risks exist: 1) amplification of validation-set bias,
2) possible exclusion of long-tail groups, and 3) privacy concerns from caching embeddings and
last-layer gradients. To mitigate these, we recommend careful design of the validation set, subgroup-
aware evaluation, and secure handling of cached information. Finally, while LAI aligns most closely
with SGD by leveraging last-layer gradients, when using adaptive optimizers such as Adam there
may be mild direction mismatches. We provide a lightweight remedy and guidance in Appendix E.

REFERENCES

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Anastasiia Sedova, Lena Zellinger, and Benjamin Roth. Learning with noisy labels by adaptive
gradient-based outlier removal. In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, 2023.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
arXiv preprint arXiv:2212.04612, 2022.

R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York: Chapman
and Hall, 1982.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
Shapley value. In International Conference on Artificial Intelligence and Statistics, 2019.

Yongchan Kwon and James Zou. Beta Shapley: a Unified and Noise-reduced Data Valuation Frame-
work for Machine Learning. In International Conference on Artificial Intelligence and Statistics,
2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. Efficient task specific data valuation for nearest neighbor algo-
rithms. In International Conference on Very Large Data Bases Endowment, 2018.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In AAAI Conference on Artificial Intelligence, 2022.

Ziao Yang, Han Yue, Jian Chen, and Hongfu Liu. Revisit, extend, and enhance hessian-free influence
functions. arXiv preprint arXiv:2405.17490, 2024.

10

https://anonymous.4open.science/r/Dynamic-Batch-Curation-8782

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 1974.

R Douglas Martin and Victor J Yohai. Influence functionals for time series. The Annals of Statistics,
1986.

SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating influence
via geometric ensemble. Advances in Neural Information Processing Systems, 2024.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv preprint arXiv:2405.12186, 2024.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similarity from the
neural network perspective. Advances in Neural Information Processing Systems, 2019.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 2020.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training.
In International Conference on Machine Learning, 2021.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
International Conference on Machine Learning, 2009.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(9):4555–4576, 2021.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and
Dinglong Huang. Curriculumnet: Weakly supervised learning from large-scale web images. In
European Conference on Computer Vision, 2018.

Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. Easy samples first: Self-
paced reranking for zero-example multimedia search. In ACM International Conference on Mul-
timedia, 2014.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M
Mitchell. Competence-based curriculum learning for neural machine translation. arXiv preprint
arXiv:1903.09848, 2019.

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C Phan, Xingdi Yuan, Jinfeng Rao, Siu Che-
ung Hui, and Aston Zhang. Simple and effective curriculum pointer-generator networks for read-
ing comprehension over long narratives. arXiv preprint arXiv:1905.10847, 2019.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on Robot Learning, 2017.

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task sequencing for customized
curriculum design in reinforcement learning. In International Joint Conference on Artificial In-
telligence, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems, 29(6):2216–2226, 2018.

Chen Gong, Jian Yang, and Dacheng Tao. Multi-modal curriculum learning over graphs. ACM
Transactions on Intelligent Systems and Technology, 10(4):1–25, 2019.

Meng Qu, Jian Tang, and Jiawei Han. Curriculum learning for heterogeneous star network embed-
ding via deep reinforcement learning. In ACM International Conference on Web Search and Data
Mining, 2018.

Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen, Junzhou Huang, and Mingkui Tan.
Breaking the curse of space explosion: Towards efficient nas with curriculum search. In Interna-
tional Conference on Machine Learning, 2020.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in Neural Information Processing Systems, 2010.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International Conference on Machine Learning, 2019.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Win-
nie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Confer-
ence on Machine Learning, 2022.

David Brandfonbrener, Hanlin Zhang, Andreas Kirsch, Jonathan Richard Schwarz, and Sham
Kakade. Color-filter: Conditional loss reduction filtering for targeted language model pre-
training. Advances in Neural Information Processing Systems, 2024.

Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, and Olivier Henaff. Data curation via joint
example selection further accelerates multimodal learning. Advances in Neural Information Pro-
cessing Systems, 2024.

Vishaal Udandarao, Nikhil Parthasarathy, Muhammad Ferjad Naeem, Talfan Evans, Samuel Al-
banie, Federico Tombari, Yongqin Xian, Alessio Tonioni, and Olivier J Hénaff. Active data cura-
tion effectively distills large-scale multimodal models. In Computer Vision and Pattern Recogni-
tion Conference, 2025.

Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Zhaopan Xu, Zhou Daquan,
Lei Shang, Baigui Sun, Xuansong Xie, and Yang You. Infobatch: Lossless training speed up by
unbiased dynamic data pruning. In International Conference on Representation Learning, 2024.

Jiong Zhang, Hsiang-Fu Yu, and Inderjit S Dhillon. Autoassist: A framework to accelerate training
of deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In Advances in Neural Information Processing
Systems, 2021.

Jiachen Tianhao Wang, Tong Wu, Dawn Song, Prateek Mittal, and Ruoxi Jia. Greats: Online se-
lection of high-quality data for llm training in every iteration. Advances in Neural Information
Processing Systems, 2024a.

Jiachen T Wang, Dawn Song, James Zou, Prateek Mittal, and Ruoxi Jia. Capturing the temporal
dependence of training data influence. arXiv preprint arXiv:2412.09538, 2024b.

Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. arXiv
preprint arXiv:2406.11011, 2024c.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Fartash Faghri, David Duvenaud, David J Fleet, and Jimmy Ba. A study of gradient variance in deep
learning. arXiv preprint arXiv:2007.04532, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in Neural Information Processing Systems, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
noisy labels revisited: A study using real-world human annotations. In International Conference
on Learning Representations, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Toronto, 2009.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning. 1995.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER: Con-
textualized affect representations for emotion recognition. In Conference on Empirical Methods
in Natural Language Processing, 2018.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A NOISE PROPAGATION ANALYSIS OF GHOST

This section formalizes the statistical picture behind Eq. (3). We proceed progressively: (i) identify
a low-noise anchor at the output layer; (ii) explain how depth injects and transforms noise through
random linear backpropagation operators; (iii) project vector-level perturbations to the per-layer
scalar similarity β(l); and (iv) quantify depth-wise accumulation under the ghost influence. All
symbols follow the main text.

For a sample x ∈ {z, j}, where z is a validation sample and j is the target training sample, and layer
l, we define

g(l)
x :=

∂ℓ(l)

∂s
(l)
x

∈ Rdl , β
(l)
z,j :=

(
g(l)
z

)⊤
g
(l)
j , β⋆

z,j :=
(
g(L)
z

)⊤
g
(L)
j .

A.1 A LOW-NOISE ANCHOR: THE OUTPUT-LAYER FEEDBACK β(L) = β⋆

We first define β⋆
v,j , the shared signal between validation and training gradients, which is the com-

mon layer-invariant component reflecting the alignment. Since the last-layer backpropagation oper-
ator is the identity, the output-layer similarity equals the shared signal:

β
(L)
z,j = β⋆

z,j .

This motivates using the output-layer channel as a stable anchor in our estimator. Corresponding
analyses for other layers can be found in the following Section A.3.

A.2 HOW DEPTH INJECTS NOISE: RANDOM LINEAR BACKPROPAGATION OPERATORS

Backpropagation from layer l to l − 1 is linear in the upstream gradient and can be written as a
vector–Jacobian product:

g(l−1)
x = J (l)

x g(l)
x , l = 1, . . . , L.

We decompose the sample-dependent backpropagation operator as J (l)
x = J

(l)
+∆J

(l)
x , where J

(l)

is the systematic Jacobian (e.g., population/EMA statistics for normalization) and ∆J
(l)
x captures

stochasticity induced by mini-batch statistics, activation gating, and dropout masks (Faghri et al.,
2020; Srivastava et al., 2014; Santurkar et al., 2018). No additive constant independent of the up-
stream gradient is introduced. At the output layer, we allow fluctuations caused by the forward pass
as follows:

g(L)
x = g⋆(L)

x + ξ(L)
x , E[ξ(L)

x] = 0.

A.3 FROM VECTORS TO SCALARS: PER-LAYER SIMILARITY AND ITS DECOMPOSITION

Composing the layerwise maps yields the depth-l backpropagation operator

g(l)
x = A(l)

x g(L)
x , A(l)

x := J (l+1)
x J (l+2)

x · · · J (L)
x . (5)

Let A
(l)

:= J
(l+1) · · · J (L)

and write A
(l)
x = A

(l)
+∆A

(l)
x . A first-order expansion of the product

gives

∆A(l)
x ≈

L∑
t=l+1

(
J
(l+1) · · · J (t−1)

)
∆J (t)

x

(
J
(t+1) · · · J (L)

)
, (6)

with higher-order products of {∆J
(t)
x } absorbed into the residual. Using g

(L)
x = g

⋆(L)
x + ξ

(L)
x ,

g(l)
x = A

(l)
g⋆(L)
x +A

(l)
ξ(L)
x +∆A(l)

x g⋆(L)
x +∆A(l)

x ξ(L)
x . (7)

The per-layer scalar similarity in Eq. (3) can be written as

β
(l)
z,j =

(
g(l)
z

)⊤
g
(l)
j =

(
g(L)
z

)⊤
M

(l)
z,j g

(L)
j , M

(l)
z,j :=

(
A(l)

z

)⊤
A

(l)
j . (8)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Define M
(l)

:= (A
(l)
)⊤A

(l)
and decompose it into an isotropic gain and an anisotropic remainder:

cl :=
1

dl
trM

(l)
, E

(l)
:= M

(l) − clI.

Substituting A
(l)
x = A

(l)
+∆A

(l)
x into Eq. (8) and grouping terms yields

β
(l)
z,j = cl β

⋆
z,j + ε

(l)
z,j , (9)

where the scalar noise

ε
(l)
z,j =

(
g(L)
z

)⊤
E

(l)
g
(L)
j +

(
g(L)
z

)⊤(
A

(l))⊤
∆A

(l)
j g

(L)
j +

(
g(L)
z

)⊤(
∆A(l)

z

)⊤
A

(l)
g
(L)
j

+
(
g(L)
z

)⊤(
∆A(l)

z

)⊤
∆A

(l)
j g

(L)
j

+ terms involving ξ(L)
z and ξ

(L)
j from Eq. (7). (10)

For l = L we have A
(L)
x = I , hence M

(L)
z,j = I , cL = 1, and E

(L)
= 0. Therefore

β
(L)
z,j = β⋆

z,j exactly. (11)

A.4 DEPTH-WISE ACCUMULATION UNDER GHOST INFLUENCE

Let ρu→v :=
∏v

t=u ρt with ρu→v = 1 if u > v. From Eq. (6), we have

∥∆A(l)
x ∥ ≲

L∑
t=l+1

ρl+1→t−1 ∥∆J (t)
x ∥ ρt+1→L, (12)

ignoring higher-order perturbation products. Combining Eqs. (9)–(10) with Eq. (12) yields the
schematic bound

Var
[
β
(l)
z,j

]
≲ c2l Var

[
β⋆
z,j

]
+ κl ∥g(L)

z ∥2 ∥g(L)
j ∥2

(
∥E(l)∥2F +

L∑
t=l+1

ρ2l+1→t−1 ρ
2
t+1→L E∥∆J (t)∥2F

)
+ cross terms, (13)

where κl depends on norms of A
(l)

, and the cross terms collect covariances across layers and
between ∆A(l) and the output-layer fluctuations ξ(L). For the ghost influence, IGhost(zj ; θ̂) :=

−
∑

z∈V
∑L

l=1 α
(l)
z,jβ

(l)
z,j , the corresponding variance can be written as follows:

Var

[
L∑

l=1

α
(l)
z,jβ

(l)
z,j

]
=
(L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
. (14)

When many cross-layer covariances are nonnegative, the variance grows faster than linearly with
depth, and cross-layer sign/scale inconsistencies can induce cancellations in the aggregated score.

A.5 REMARKS AND CONNECTION TO THE LIMITATIONS PARAGRAPH

The decomposition β(l) = cl β
⋆ + ε(l) arises from vector-level perturbations through the bilinear

form Eq. (9), and the additive aggregation
∑

l α
(l)ε(l) explains why Ghost accumulates depth-wise

noise and suffers from cross-layer cancellations. Using the single output-layer channel β(L) = β⋆

avoids these issues while keeping the multi-layer embedding similarities
∑

l α
(l), which underpins

the limitations highlighted in the main text.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B LAI IS AN APPROXIMATION OF GHOST INFLUENCE

To make it formal, we define embedding and gradient similarities between a validation sample z and
a target training sample j at the l-level as follows:

α
(l)
z,j := ⟨a(l−1)

z , a
(l−1)
j ⟩, β

(l)
z,j := ⟨g(l)

z , g
(l)
j ⟩.

The ghost influence and layer-aware (LAI) influence scores are

IGhost(zj ; θ̂) := −
∑
z∈V

L∑
l=1

α
(l)
z,j β

(l)
z,j , ILAI(zj ; θ̂) := −

∑
z∈V

(L∑
l=1

α
(l)
z,j

)
β
(L)
z,j . (15)

To formally establish that LAI serves as an approximation of ghost influence, we first introduce
a set of mild assumptions commonly adopted in theoretical deep learning analysis. Under these
assumptions, we derive a closed-form expression for the difference between ghost influence and LAI
and prove that this difference is upper-bounded by a constant, thereby demonstrating the theoretical
soundness of LAI as a proxy.

Here are the assumptions we use.

(A1) Gradient-norm decay. There exists ρ ∈ (0, 1) such that ∥g(l)
p ∥2 ≤ ρL−l ∥g(L)

p ∥2 for all
p ∈ {z, j} and l = 1, . . . , L (cf. vanishing/residual-gradient behavior (Glorot and Bengio,
2010; He et al., 2016)).

(A2) Bounded activations. There exists Ca > 0 with ∥a(l)p ∥2 ≤ Ca for all p and l (encouraged
by normalization and Lipschitz activations (Ioffe and Szegedy, 2015)), hence |α(l)

z,j | ≤ C2
a .

(A3) Non-negative gradient alignment. cos
(
g
(l)
z ,g

(l)
j

)
≥ 0 for all l.

The difference between ghost influence and LAI can be written as follows:

ζz,j :=

L−1∑
l=1

α
(l)
z,j

(
β
(l)
z,j − β

(L)
z,j

)
, IGhost(zj ; θ̂)− ILAI(zj ; θ̂) = −

∑
z∈V

ζz,j . (16)

Conservative bound under (A1)–(A3). Using |α(l)
z,j | ≤ C2

a and β
(l)
z,j ≥ 0,

∣∣ζz, j∣∣ ≤ C2
a

L−1∑
l=1

(
β
(L)
z,j + β

(l)
z,j

)
.

By (A1) and Cauchy–Schwarz, β(l)
z,j ≤ ∥g(l)

z ∥2∥g(l)
j ∥2 ≤ ρ 2(L−l)∥g(L)

z ∥2∥g(L)
j ∥2. Therefore

∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣ ≤ C2

a

∑
z∈V

[
(L−1)β

(L)
z,j + ∥g(L)

z ∥2∥g(L)
j ∥2

L−1∑
l=1

ρ 2l
]
. (17)

Moreover, since
∑L

l=1 α
(l)
z,j ≥ α

(L)
z,j ≥ ᾱ and β

(L)
z,j ≥ 0,∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)

∣∣∣∣ILAI(zj ; θ̂)
∣∣ ≤ C2

a

ᾱ

[
(L−1) +

∑
z ∥g

(L)
z ∥2∥g(L)

j ∥2∑
z β

(L)
z,j

·
ρ2
(
1− ρ2(L−1)

)
1− ρ2

]
.

(18)

Geometric relative error under a non-expansive alignment condition. Empirically one often
observes that alignment does not increase when backpropagating to lower layers, which leads the
variant of A3 that

cos
(
g(l)
z ,g

(l)
j

)
≤ cos

(
g(L)
z ,g

(L)
j

)
∀ l ≤ L.

Then β
(l)
z,j ≤ ρ 2(L−l) β

(L)
z,j , and hence

∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣ ≤ C2

a

(∑
z∈V

β
(L)
z,j

)
L−1∑
l=1

ρ 2l = C2
a

(∑
z∈V

β
(L)
z,j

)
ρ2
(
1− ρ2(L−1)

)
1− ρ2

.

(19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dividing by |ILAI(zj ; θ̂| ≥ ᾱ
∑

z β
(L)
z,j yields∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣∣∣ILAI(zj ; θ̂)

∣∣ ≤ C2
a

ᾱ
·
ρ2
(
1− ρ2(L−1)

)
1− ρ2

= O(ρ2) (ρ → 0). (20)

Thus the relative error decays geometrically with depth or smaller ρ, while LAI discards L−1 layers
of per-sample feedback, reducing memory/FLOPs by roughly an order of magnitude.

C BIAS–VARIANCE COMPARISON BETWEEN GHOST INFLUENCE AND LAI

Here we analyze the difference between Ghost Influence and LAI from the bias-variance perspective,
and demonstrate why LAI, a simplified approximation, is even better than ghost influence.

Following the previous notations,

IGhost(zj ; θ̂) = −
L∑

l=1

α
(l)
z,j

(
cl β

⋆
z,j + ε

(l)
z,j

)
= −

(L∑
l=1

α
(l)
z,jcl

)
β⋆
z,j −

L∑
l=1

α
(l)
z,jε

(l)
z,j .

ILAI(zj ; θ̂) = −
(L∑

l=1

α
(l)
z,j

)
β
(L)
z,j = −

(L∑
l=1

α
(l)
z,j

)
β⋆
z,j ,

Here we further define two extra variables below to better decomposite the ghost influence

X :=
(L∑

l=1

α
(l)
z,jcl

)
β⋆
z,j , Y :=

L∑
l=1

α
(l)
z,j ε

(l)
z,j .

Then we have the variance of ghost influence

Var
[
IGhost(zj ; θ̂)

]
= Var[X + Y] (21)

=
(L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+Var[Y] + 2

(L∑
l=1

α
(l)
z,jcl

)
Cov
(
β⋆
z,j , Y

)
. (22)

Moreover, expanding the noise term yields

Var[Y] =

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
. (23)

According to Cauchy–Schwarz lower bound, for any random variables X,Y ,

Var[X+Y] ≥
(√

Var[X]−
√
Var[Y]

)2
.

Applying this with the above X and Y gives the unconditional bound

Var
[
IGhost(zj ; θ̂)

]
≥
(∣∣∑L

l=1 α
(l)
z,jcl

∣∣ √Var
[
β⋆
z,j

]
−
√
Var[Y]

)2
. (24)

Given Cov
(
β⋆
z,j , Y

)
≥ 0 and Cov

(
ε
(l)
z,j , ε

(k)
z,j

)
≥ 0 for l ̸= k, combining Eq. (21) and (23) yields the

stronger lower bound

Var
[
IGhost(zj ; θ̂

]
≥
(L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
.

(25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In particular, dropping the signal term yields the noise-only bound Var[IGhost(zj ; θ̂] ≥ Var[Y] =∑
l(α

(l)
z,j)

2Var[ε
(l)
z,j] + 2

∑
l<k α

(l)
z,jα

(k)
z,jCov[ε

(l)
z,j , ε

(k)
z,j].

By contrast, using β(L) = β⋆,

Var
[
ILAI(zj ; θ̂)

]
=
(L∑

l=1

α
(l)
z,j

)2
Var
[
β⋆
z,j

]
. (26)

With cl ≈ 1 (otherwise the average backpropagation gain deviates too much from isometry,
making gradients explode/vanish and training impractical), Ghost and LAI share the same sig-
nal scaling. The key difference is variance: LAI keeps only the output-layer channel, yielding
Var[ILAI] = (

∑
l α

(l)
z,j)

2Var[β⋆
z,j], whereas Ghost additionally aggregates the noise Y and cross-

layer covariances. These extra terms inflate variance when correlations are nonnegative; even with-
out such assumptions, Ghost is still bounded from below by the accumulated noise energy, while
LAI removes Y by design and is empirically more stable.

D DETAILED INFORMATION ON DATASETS AND MODEL TRAINING

We describe dataset details, model training, and other information used in the main paper, below.

D.1 DATASETS

We discuss datasets in Section 5 and 6 below.

D.1.1 NLP DATASETS FOR LLM

For the four GLUE datasets—SST2, MRPC, QNLI, and RTE (Wang et al., 2018), we provide the fol-
lowing descriptions. The Stanford Sentiment Treebank (SST2) dataset consists of sentences labeled
as positive or negative sentiment. It includes 67,349 training examples and 872 validation examples,
making it a standard benchmark for sentiment classification tasks. The Microsoft Research Para-
phrase Corpus (MRPC) dataset contains sentence pairs labeled as semantically equivalent or not. It
includes 3,668 training examples and 408 validation examples. This dataset is widely used to eval-
uate paraphrase detection methods. The Question Natural Language Inference (QNLI) dataset is a
large-scale corpus for question answering, derived from the Stanford Question Answering dataset. It
consists of 104,743 training examples and 5,463 validation examples. The task involves determining
whether the context sentence contains the answer to the question. The Recognizing Textual Entail-
ment (RTE) dataset consists of sentence pairs labeled as entailment or not entailment. It includes
2,490 training examples and 277 validation examples. This dataset is derived from a series of annual
textual entailment challenges and serves as a benchmark for textual entailment tasks.

D.1.2 VISION DATASETS FOR CLASSIFICATIONS

Both the CIFAR-10N and CIFAR-100N datasets (Wei et al., 2022) consist of the same input images
that make up the CIFAR-10 (10 classes) and CIFAR-100 (100 classes) datasets (Krizhevsky et al.,
2009), respectively. Each input is a 32×32 RGB image with a dimension of (3×32×32). However,
for CIFAR-10N and CIFAR-100N, the labels are noisy, as they contain real-world human annotation
errors collected using 3 annotators on Amazon Mechanical Turk. As these datasets are based on
human-annotated noise, they model noisy real-world datasets more realistically, compared to syn-
thetic data alternatives. The training set for both datasets contains 50,000 image-label pairs, and the
test set contains 10,000 image-label pairs that are free from noise. For CIFAR-10N we utilize three
noise settings for experiments in the paper– (1) Worst is the dataset version with the highest noise
rate (40.21%) as the worst possible annotation label for the image is chosen, (2) Aggregate is the
least noisy dataset (9.03%) as labels are chosen via majority voting amongst the annotations, and (3)
Random has intermediate noise (17.23%) and consists of picking one of the annotators’ labels. We
use the first annotator for the random labels. For CIFAR-100N there is only a single noisy setting
due to the large number of labeling classes, and the overall noise rate is 40.20%.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.1.3 TEXT DATASETS FOR CLASSIFICATIONS

Both 20New-N and Emotion-N datasets are derived from the original 20 Newsgroups (20 classes)
(Lang, 1995) and Emotion (6 classes) (Saravia et al., 2018) datasets, respectively. The inputs for
these datasets consist of textual data, where each example corresponds to either a news article (20
Newsgroups) or an emotional text snippet (Emotion). However, for 20new-N and Emotion-N, the
labels are intentionally noisy, as 40% of the training set labels have been randomly replaced with
incorrect labels. This noise was artificially introduced to simulate realistic label noise scenarios.

D.2 MODELS AND METHODS

We now describe the models and the methods used in our experiments throughout the main paper.
First, we describe the ResNet-18 (He et al., 2016) architecture used as the base model for the noisy
vision datasets, then the BERT (Devlin, 2018) model for text datases. We also describe implemen-
tation details and parameter values and the influence-based baselines used throughout the paper.

D.2.1 RESNET-18

The ResNet-18 model used in this study is implemented following the setup described in Section
4. The model is a convolutional neural network designed with 18 layers, based on the architecture
proposed in He et al. (2016). It was trained on the CIFAR-100N dataset without pretraining on
external datasets such as ImageNet. The training process adopts default parameters: a batch size
of 512, an initial learning rate of 10−2, and the SGD optimizer with momentum (0.9) and weight
decay (5 × 10−4). The model is trained over 150 epochs, with validation and test batch sizes set
to 4000 and 1280, respectively. Experiments are conducted with different noise types specified for
the dataset, including clean and noisy variants, as well as additional hyperparameters tailored to
methods like SPL and IP, which are evaluated in this work.

D.2.2 BERT

For both 20New-N and Emotion-N dataset in Section 6, we use the BERT (Devlin, 2018) model for
classification tasks. Key hyperparameters for training include a learning rate of 3×10−5, a batch
size of 32, and 3 training epochs. These parameters are consistent across experiments to ensure
comparability of results under noisy label conditions.

D.2.3 GPT-NEO

For the GLUE benchmark tasks, we fine-tuned the GPT-Neo-125M model (Gao et al., 2020) for
sequence classification across tasks such as SST-2, MRPC, QNLI, and RTE with the number of
classes varying based on the task. The training setup used a learning rate of 2×10−5, a batch size of
16 for both training and evaluation, a weight decay of 0.01, and a maximum sequence length of 128
tokens. The number of epochs was set to 5 for all tasks, ensuring efficient fine-tuning.

D.2.4 RETRAIN-BASED BASELINES

In our experiments, we utilize the following retrain-based methods as baselines: IP (Yang et al.,
2024) replaces the Hessian matrix with the identity matrix; LiSSA (Koh and Liang, 2017) uses
Hessian-vector products to approximate H−1. DataInf (Kwon et al., 2023) applies an efficient
closed-form surrogate for H−1. All these methods share a common procedure: a model is first
trained, then the influence of each sample is computed. Afterward, samples with influence scores
less than zero are removed, and the model is retrained on the remaining data.

D.2.5 CURRICULUM-BASED BASELINE

We employ the method described in Section 4 for our experiments. In Sections 6 and Section 5, we
randomly select 10% of validation set for each batch curation in vision datasets, and we randomly
select 2000 samples for each batch curation in text datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 EXPERIMENTAL SETUP

D.3.1 EXPERIMENTAL SETUP FOR LLMS

Fidelity validation and pre-training use the same setup: Adam (β1=0.9, β2=0.95, ϵ=10−8), learning
rate 1×10−4 with 500-step warmup and cosine decay, weight decay 0.01, gradient clip 1.0, context
length 1,024.

D.3.2 EXPERIMENTAL SETUP FOR IMAGE AND TEXT DATASETS

To evaluate the effectiveness of our proposed method, we consider the classification with noisy
labels. Specifically, we choose two widely used visual and two text datasets with label noise, CIFAR-
10N (Wei et al., 2022), CIFAR-100N (Wei et al., 2022), 20News-N Lang (1995), and Emotion-
N Saravia et al. (2018). CIFAR-10N encompasses three distinct noise settings: aggregate, random,
and worst, denoted as “-a,” “-r,” and “-w,” respectively. “a” means that labels are derived via
majority voting among three annotators, with ties being resolved randomly, “r” adopts the label
provided by the first annotator, while “w” selects the label from the least reliable annotator. For
20News-N and Emotion-N, we introduce noise by randomly flipping 40% of training labels, aligning
the noise level with that of CIFAR-10N-w. We use ResNet-18 (He et al., 2016) as the backbone model
for visual datasets and train the model from scratch; for text datasets, we employ BERT (Devlin,
2018) as the backbone and add additional layer to fine-tune the whole network.

E OPTIMIZER COMPATIBILITY AND PRACTICAL GUIDANCE

LAI scores samples using raw last-layer gradients and multi-layer embedding similarities, which
matches the one-step descent direction of SGD. For Adam and related adaptive methods, the update
is a preconditioned gradient with first/second-moment statistics, so raw-gradient alignment may di-
verge slightly from the true update direction. A practical and low-overhead fix is to score in a diago-
nally preconditioned space: replace g(L) by g̃(L) = D−1/2g(L), where D uses layer- or block-level
EMAs of squared gradients (an aggregated proxy of v̂t), and use β̃(L) = (g̃

(L)
v)⊤g̃

(L)
i in Eq. (4).

This reduces coordinate-scale mismatch without materializing per-sample moments. Achieving ex-
act Adam-consistent scoring would require per-sample moment statistics and is typically too costly
in complexity and memory.

20

	Introduction
	Related Work
	Preliminaries on Influence Functions
	Hessian-free Influence Functions
	Ghost of Hessian-free Influence Functions

	Methods
	Layer-aware influence estimator
	Advantages of LAI

	Experiments on LLMs
	Fidelity Validation
	LAI for Pre-training LLM
	LAI for Fine-tuning LLM

	Experiments on Image and Text Classification
	Algorithmic Performance
	Exploration on LAI at sample level

	Conclusion
	Noise Propagation Analysis of Ghost
	A low-noise anchor: the output-layer feedback (L)=
	How depth injects noise: random linear backpropagation operators
	From vectors to scalars: per-layer similarity and its decomposition
	Depth-wise accumulation under ghost influence
	Remarks and connection to the limitations paragraph

	LAI is An Approximation of Ghost Influence
	Bias–variance comparison between Ghost Influence and LAI
	Detailed Information on Datasets and Model Training
	Datasets
	NLP Datasets for LLM
	Vision Datasets for Classifications
	Text Datasets for Classifications

	Models and Methods
	ResNet-18
	BERT
	GPT-Neo
	Retrain-Based Baselines
	Curriculum-Based Baseline

	Experimental Setup
	Experimental Setup for LLMs
	Experimental Setup for Image and text datasets

	Optimizer compatibility and practical guidance

