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ABSTRACT

Data-centric learning emphasizes curating high-quality training samples to boost
performance rather than designing new architectures. A central problem is to
estimate the influence of training sample efficiently. Prior studies largely focus on
static influence measured on a converged model, overlooking how data valuation
dynamically changes during optimization. This omission neglects the dynamic
nature of sample influence during optimization, especially in deep models. To
address the computational burden of frequent influence estimation, we develop
a layer-aware online estimator that requires only loss-to-output gradients. This
design avoids parameter-level and full-network gradients while preserving ranking
fidelity. Extensive experiments across LLM pretraining, fine-tuning and image
classification demonstrate that our method improves accuracy with substantially
lower time and memory cost in both text and image datasets, making dynamic
data curation both efficient and scalable in practice.

1 INTRODUCTION

Data-centric learning surges as an emerging topic in machine learning community, which focuses
on curating high-quality training samples for performance boosting, rather than designing novel al-
gorithms (Koh and Liang, 2017; Sedova et al., 2023; Ash et al., 2019). Sample influence estimation,
also known as data attribution or data valuation, is the fundamental research question in data-centric
learning, which assesses the sample importance associated with a certain model. Based on that,
detrimental samples can be identified, which will be removed from the training set for another round
training with the expected performance gain.

Sample influence estimation can generally be categorized into two categories (Hammoudeh and
Lowd, 2022). 1) Retraining-based methods include the classical leave-one-out influence approach
(Cook and Weisberg, 1982) that retrains models and observes performance changes after removing
one training sample. While useful as an ideal baseline, this is computationally untenable on deep
models. Other representative methods such as model-agnostic Shapley value approaches (Ghorbani
and Zou, 2019; Jia et al., 2019; Kwon and Zou, 2022) also suffer similar problems. Computationally
efficient approaches, such as KNN-Shap (Jia et al., 2018), are limited to using KNN classifiers
and their recursive calculations. 2) Gradient-based methods can be used to approximately estimate
influence without expensive overheads of retraining. Influence functions (Koh and Liang, 2017;
Schioppa et al., 2022; Yang et al., 2024) are representative tools in this category, which employ the
first-order Taylor expansion to estimate the performance change with sample gradients. Although
model retraining is avoided, the inverse of the Hessian matrix in influence functions brings great
challenges for large deep models. Several pioneering studies focus on approximating the inverse of
the Hessian matrix in an efficient way (Koh and Liang, 2017; Grosse et al., 2023; Kwon et al., 2023).

While the above pioneering studies shed light on model-associated sample influence for identify-
ing beneficial or detrimental samples in terms of data quality, they overlook another crucial fac-
tor—online data valuation dynamically change during optimization, particularly in deep models.
This introduces a critical limitation: samples identified as detrimental based on the initial model
may no longer be detrimental for the newly trained model after their removal. Such oversight not
only necessitates two rounds of training but also results in suboptimal performance and fails to
harness the full potential of online data valuation-aware training.
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Contributions. To address the aforementioned limitations, we introduce a layer-aware online data
valuation framework that estimates per-sample influence during training and integrates naturally
with SGD-style updates. Our estimator aligns scoring with optimization and can be instantiated
as policies such as online curation, reweighting, or priority sampling—without a filter–then–retrain
cycle. Our key contributions are summurized as follows:

• Research Question: We formalize online data valuation that jointly accounts for data quality
during model optimization, addressing the scoring–optimization mismatch and order-dependent
interactions that static methods ignore.

• Technical Innovation: We design a Hessian-free, layer-aware online influence estimator that
backpropagates only to the model outputs, avoiding full-network parameter gradients. Our
lightweight calibration mitigates cross-layer scale bias while preserving valuation fidelity, en-
abling single-run training with minimal overhead and seamless integration with SGD.

• Experimental Validation: Extensive experiments are conducted across diverse scenarios, in-
cluding LLM pre-training, LLM fine-tuning, and both image and text classification. The results
demonstrate that our proposed method is highly effective and also computationally efficient.

2 RELATED WORK

In this section, we introduce the data valuation with a focus on influence function, and other online
data curation topics including curriculum learning and data scheduling.

Influence function. Influence functions, originally developed in robust statistics (Hampel, 1974;
Cook and Weisberg, 1982; Martin and Yohai, 1986), quantify the sensitivity of model parameters
to perturbations in training data. Introduced to the machine learning community by Koh and Liang
(2017), they have since been widely applied to tasks such as identifying detrimental sample, detect-
ing outliers, and spotting mislabeled samples. Using a first-order Taylor expansion, influence func-
tions estimate sample influence based on the model’s performance on a validation set, leveraging the
inverse of the Hessian matrix and sample gradients—eliminating the need for model retraining.

However, computing the inverse of the Hessian matrix is computationally prohibitive, particularly
for large deep models. Several pioneering studies address this challenge by approximating the in-
verse of Hessian matrix more efficiently. LiSSA (Koh and Liang, 2017) employs Hessian-vector
products for approximation, while EKFAC (Grosse et al., 2023) incorporates efficient eigen decom-
position techniques. DataInf (Kwon et al., 2023) further simplifies influence calculations for large
models by substituting the Hessian inverse with a rank-1 closed-form expression.

Beyond the static estimation of sample influence based on a final model (sometimes referred to as
a checkpoint), recent approaches focus on dynamic influence estimation. GEX (Kim et al., 2024)
leverages geometric ensembles of multiple checkpoints to approximate influence functions, mit-
igating bilinear constraints and addressing non-linear losses. Similarly, TDA (Bae et al., 2024)
introduces a checkpoint-based segmentation strategy that combines implicit differentiation and un-
rolling, leveraging EKFAC (Grosse et al., 2023) for efficiency. TRAK (Park et al., 2023) employs
randomly-projected kernel to reduce the dimensional of the Hessian matrix for tractable computing.
Recently, a surge of interest in Hessian-free influence functions has emerged, which replaces the
Hessian inverse with a simple identity matrix (Charpiat et al., 2019; Pruthi et al., 2020; Yang et al.,
2024; Killamsetty et al., 2021). These approaches offer computational simplicity and scalability,
making them particularly attractive for deep learning models with competitive performance.

While the above studies have made significant advancements in data-centric learning, they largely
overlook the dynamic variance of sample influence throughout the model training process. Although
some recent works attempt to address dynamic influence estimation, their approach—simply sum-
ming up sample influences at different checkpoints—fails to capture the evolving nature of sample
influence effectively. This limitation arises because model parameters at early checkpoints often
differ substantially from those at later stages, rendering static aggregation methods inadequate. Fur-
thermore, these studies neglect the role of online data valuation change during the optimization,
which is particularly critical for deep models. By treating data valuation as static, existing methods
miss opportunities to dynamically adapt training strategies based on evolving sample importance,
ultimately compromising both efficiency and effectiveness in influence-aware learning.
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Curriculum learning. Curriculum learning (Bengio et al., 2009; Wang et al., 2021; Soviany et al.,
2022) is a training strategy that incorporates data sequence into model optimization by presenting
data in an easy-to-hard order, mimicking the structured learning process observed in human educa-
tion. As a general training paradigm, curriculum learning has been widely applied across diverse
domains, including supervised learning tasks in computer vision (Guo et al., 2018; Jiang et al., 2014)
and natural language processing (Platanios et al., 2019; Tay et al., 2019), as well as reinforcement
learning (Florensa et al., 2017; Narvekar et al., 2017; Ren et al., 2018). It has also been extended
to specialized applications such as graph learning (Gong et al., 2019; Qu et al., 2018) and neural
architecture search (Guo et al., 2020). Despite its conceptual appeal, curriculum learning does not
always yield performance improvements in machine learning tasks (Kumar et al., 2010; Zaremba
and Sutskever, 2014; Hacohen and Weinshall, 2019). We hypothesize that two primary reasons may
explain this limitation: The predefined easy-to-hard curricula are often human-designed and may
not be optimal for model training. Easy samples may contribute minimally to building robust mod-
els, whereas hard samples may be noisy or even detrimental to performance, raising questions about
their actual utility. To address these limitations, in this paper, we replace the traditional easy-to-hard
paradigm with a beneficial-or-not approach (Mindermann et al., 2022). Instead of relying on pre-
defined difficulty levels, we dynamically curate training samples based on their estimated influence,
ensuring that only beneficial samples contribute to model updates. This strategy not only optimizes
sample selection but also adapts to the dynamic evolution of sample influence.

Data scheduling and curation. A parallel line of work designs policies that reweight or select
data during training to improve accuracy per compute. Representative examples include RHO-
Loss (Mindermann et al., 2022) and its task-conditioned extension CoLoR-Filter (Brandfonbrener
et al., 2024), JEST for multi-modal joint selection (Evans et al., 2024), and ACID/ACED for
distillation-oriented curation (Udandarao et al., 2025). Work such as InfoBatch (Qin et al., 2024),
AutoAssist (Zhang et al., 2019) and Data Diet (Paul et al., 2021) also aim to accelerate training
through dynamic pruning or curriculum-style sampling. While the work along this line is conceptu-
ally related, it does not evaluate the fidelity of influence estimates, and therefore we do not place it
in the same category as our research question.

We also acknowledge a few concurrent works (Wang et al., 2024a;b;c) from the same research group
that jointly consider online data valuation, emphasizing that sample gradients play a pivotal role in
defining both aspects. However, these approaches face practical challenges, as sample gradients
are typically high-dimensional, making them computationally expensive to compute and store (See
Section 3). To address these challenges, this paper proposes a layer-aware approximation technique
that not only accelerates but also enhances the calculation of sample influence. By leveraging layer-
wise structures within deep models, our method reduces computational overhead while maintaining
high estimation accuracy, making it scalable for modern deep learning frameworks.

3 PRELIMINARIES ON INFLUENCE FUNCTIONS

3.1 HESSIAN-FREE INFLUENCE FUNCTIONS

Consider a classifier with parameters θ∈RD mapping instances z={x, y} from input space x∈X to
output space y∈Y , the model parameters θ̂=argminθ∈Θ

1
n

∑n
i=1 ℓ(zi; θ) can be obtained the empir-

ical risk minimization problem. If we downweight a training sample zj by a very small fraction ϵ,
the new parameters can be θ̂(zj ;−ϵ) = argminθ∈Θ

1
n (
∑n

i=1 ℓ(zi; θ)−ϵℓ(zj ; θ)). By evaluating the
limit as ϵ approaches 0, the seminal work of Koh and Liang (2017) provides an estimation for the
influence score associated with the removal of zj from the training set:

I(zj ; θ̂) = −
∑

z∈V
∇θ̂ℓ(z; θ̂)

⊤H−1

θ̂
∇θ̂ℓ(zj ; θ̂), (1)

where V denotes the validation set (self-influence employs the training set instead), ∇θ̂ℓ(zj ; θ̂) is
the gradient of sample zj , and Hθ̂=

∑n
i=1 ∇2

θ̂
ℓ(zi; θ̂) denotes the Hessian matrix.

Although the above influence functions circumvent the need for model retraining, computing the
inverse of the Hessian matrix still poses significant challenges for large deep models. Several ap-
proaches have been proposed to approximate the Hessian inverse efficiently (Grosse et al., 2023;
Kwon et al., 2023; Park et al., 2023). Recently, there has been a surge of interest in Hessian-free in-
fluence functions, which simplify the computation by replacing the Hessian inverse with an identity

3
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matrix (Charpiat et al., 2019; Pruthi et al., 2020; Yang et al., 2024). This simplification reduces the
influence score calculation to an inner product (IP) between the sample gradients of the validation
set and the target sample, formulated as follows:

I IP(zj ; θ̂) = −
∑

z∈V
∇θ̂ℓ(z; θ̂)

⊤ · ∇θ̂ℓ(zj ; θ̂). (2)

Since we consider dynamic sample curation for each training batch, the computational cost of eval-
uating sample impact for each batch remains substantial, especially for large models. Traditional
approaches (Koh and Liang, 2017; Grosse et al., 2023; Kwon et al., 2023; Park et al., 2023) that rely
on estimating the inverse of the Hessian matrix are prohibitive for dynamic sample impact estima-
tion due to their computational complexity. In this paper, we focus on the IP-based influence score
and further propose a layer-aware approximation to enhance the calculation of sample influence.

3.2 GHOST OF HESSIAN-FREE INFLUENCE FUNCTIONS

Building on the above IP-based influence approach, Wang et al. (2024c) extended the static influence
value to an online version by computing sample influence within each batch. However, this intro-
duces the challenge of frequently calculating sample-level gradients for every batch, which can be
computationally expensive. To address this issue, Wang et al. (2024c) proposed the ghost influence
score, inspired by ghost clipping in differential privacy (Lee and Kifer, 2021). Notably, the inner
product of two sample gradients can be decomposed into the product of the inner product between
their embeddings and the gradients of the subsequent layer, as shown below:

IGhost(zj ; θ̂) = −
∑
z∈V

L∑
l=1

( α(l)︷ ︸︸ ︷
((a(l−1)

z )⊤ · a(l−1)
j ) ·

β(l)︷ ︸︸ ︷(
(
∂ℓ(l)

∂s(l)z

)⊤ · ∂ℓ
(l)

∂s(l)j

) )
, (3)

where a and s are the input/output embeddings, and l is the index of layers. Neglecting the activation
function, the above equation can be divided into two parts, α(l) calculates the similarity between a
validation sample and the target training sample in the embedding space, and β(l) measures the
similarity in the gradient space, i.e., the next layer’s feedback.

Limitations of Ghost Influence. Despite its efficiency gains, ghost influence suffers from two key
drawbacks. Computationally, it still requires propagating loss-to-parameter signals through every
layer (or materializing parameter-sized, per-sample gradients), which remains costly per batch and
difficult to cache at scale. Statistically, mini-batch stochasticity, nonlinear activations/normalization,
and residual mixing introduce substantial noise. Because ghost influence sums contributions addi-
tively rather than averaging them, this noise can accumulate with depth, making the rankings of hard
or noisy examples unstable (see analyses in Appendix A). In this paper, we address both limitations
by proposing a layer-aware approximation strategy.

4 METHODS

In this section, we introduce our layer-aware influence estimator, a simplified approximation of ghost
influence. We then analyze its computational and storage costs during training and explain why this
lightweight approximation can actually enhance estimation performance.

4.1 LAYER-AWARE INFLUENCE ESTIMATOR

To address both challenges of ghost influence jointly, we propose a layer-aware influence (LAI)
estimator that uses a single, stable feedback channel, while still leveraging multi-layer embeddings.
Concretely, we replace all β(l) by the last-layer similarity β(L) and aggregate embedding similarities
across layers:

ILAI(zj ; θ̂) = −
∑
z∈V

( L∑
l=1

((a(l−1)
z )⊤ · a(l−1)

j )
)
·
(
(
∂ℓ(L)

∂s(L)
z

)⊤ · ∂ℓ
(L)

∂s(L)
j

)
. (4)

This design retains the expressive, multi-layer embedding view, yet computes influence using
only output-layer gradients ∂ℓ(L)/∂s(L). It eliminates layer-by-layer backpropagation and avoids
parameter-sized sample gradients, yielding substantial savings in time and memory. Formally,
Eq. (4) is a principled approximation of Eq. (3); the complete derivation is deferred to Appendix B.
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4.2 ADVANTAGES OF LAI

Computational and storage costs. Compared to the ghost influence in Eq. (3), which requires
per-sample feedback at every layer to form {β(l)}Ll=1 and thus either materializes intermediate per-
sample gradients or runs micro-backward passes, our LAI in Eq. (4) backpropagates only once to
the output layer. As a result, scoring a mini-batch against the validation cache scales linearly in
both the batch size and |V| with small constants and does not create parameter-sized per-sample
gradients. On the memory side, ghost influence must cache, for each validation point, per-layer
gradient signals (or repeatedly recompute them), whose footprint grows with depth and is harder to
keep synchronized; in contrast, our method only cache the output-layer gradient signals, which are
compact and stable across iterations. In practice, this reduces the backpropagate depth from L to 1
and shrinks the validation cache from L gradient tensors to two short vectors per validation sample,
enabling both runtime and storage-efficient online valuation during training.

Why our simplified approximation improves performance? At first glance, replacing {β(l)}Ll=1

with the single output-layer channel β(L) may seem crude. However, as formalized in Ap-
pendix A, starts from the output-layer gradients, each per-layer feedback suffers from stochastic
perturbations introduced along the backpropagation chain (mini-batch statistics, nonlinear activa-
tions/normalization, residual mixing), which aggregates multi-layer noises. By contrast, our LAI
employs the single output-layer channel β(L) to replace all previous layers, which not only avoids
the noise aggregation, but also exhibits lower variance in most common scenarios. A mathematical
bias-variance comparison between ghost influence and LAI can be found in Appendix C. More-
over, the superior performance of LAI over ghost influence is empirically validated across diverse
experiments in Sections 5 and 6. Taken together, these results show that LAI, as a simplified vari-
ant of ghost influence, not only offers substantial computational benefits but also delivers improved
performance, which plays a significant advantage of LAI over ghost influence.

5 EXPERIMENTS ON LLMS

In this section, we first conduct fidelity validation of our proposed LAI against a Monte Carlo Shap-
ley reference, and its utility for dynamic batch curation in the scenarios of pre-training and fine-
tuning of LLMs, where at each step samples with negative estimated influence are discarded.1

5.1 FIDELITY VALIDATION

Here we pre-train GPT-Neo (Gao et al., 2020), a 125M-parameter LLM model, for 10,000 iterations,
saving checkpoints every 100 steps for a total of 100 checkpoints. At each checkpoint, we compute
influence scores over a batch of 16 samples using our LAI, ghost influence, and a Shapley-value
reference constructed via 1,000 Monte Carlo permutations (Wang et al., 2024c). We then assess
fidelity by measuring Pearson’s correlation between each proxy score and the Shapley reference.

In Figure 1, we report four representative snapshots at steps 2,500, 5,000, 7,500, and 10,000 for sub-
figures A-D, and aggregate all 100 checkpoints in subfigures E and F. Across all the runs, LAI main-
tains a high and stable fidelity to the Shapley reference (mean = 0.9617, std = 0.0217), whereas
Ghost remains positively correlated but fluctuates more (mean = 0.9038, std = 0.1463). Moreover,
ghost influence often occurs low correlations at certain steps; for example, ghost influence delivers
almost -0.2 correlations with Shapley reference around step 4800. These results demonstrate that
our LAI consistently delivers a reliable, high-fidelity estimate of sample influence across the entire
pre-training process. This finding confirms that LAI not only serves as an approximation of Ghost
influence but also enhances its accuracy and robustness.

5.2 LAI FOR PRE-TRAINING LLM

We continue our investigation to assess the feasibility of our LAI for pre-training LLMs. Specif-
ically, we utilize GPT-Neo and further pre-train it using the Pile-uncopyrighted dataset. Here we
limit the training process to 10,000 batches for both the baseline method and our LAI. The pre-

1Details on datasets, model training, and experimental setup can be found in AppendixD.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.2 0.1 0.0 0.1 0.2 0.3
Shapley Value

0.5

1.0

1.5

2.0

2.5

Sc
or

e

A

Step = 2500
LAI
Ghost

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Shapley Value

0.5

1.0

1.5

2.0

2.5

Sc
or

e

B

Step = 5000
LAI
Ghost

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Shapley Value

0.5

1.0

1.5

2.0

2.5

3.0

Sc
or

e

C

Step = 7500
LAI
Ghost

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Shapley Value

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Sc
or

e

D

Step = 10000
LAI
Ghost

0 2000 4000 6000 8000 10000
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

E
Shapley vs LAI Score
Shapley vs Ghost Score

LAI Ghost

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

F
LAI Mean Correlation
Ghost Mean Correlation

Figure 1: Fidelity Validation of LAI and ghost influence. A-D show representative checkpoints at
steps 2,500, 5,000, 7,500, and 10,000: each point plots a sample’s proxy score (LAI is blue, Ghost
is orange) versus its Shapley value at that step, with dashed least-squares fits. E reports the per-step
Pearson correlation across all 100 checkpoints. F summarizes the distribution of these 100 per-step
correlations via violin plots with dashed mean lines.

training performance is subsequently evaluated by perplexity on an unseen corpus from the Pile-
uncopyrighted dataset, following the evaluation procedure outlined by Gao et al. (2020).

Table 1: Results of LLM pre-training tasks on
Pile-uncopyrighted.

Perplexity #Removed Sample

Batch 5000 10000 Sample Importance

Baseline 8.104929 8.086690 0 1.0000
LAI 8.104924 8.086686 135 1.0004

Since the pre-training process lacks a dedi-
cated validation set, we adopt a self-influence
approach for batch curation, wherein the cur-
rent batch samples serve as the validation set
to identify and filter out detrimental samples.
Specifically, samples with gradient directions
opposing the majority within a batch are ex-
cluded, which is expected to account for only
a small proportion of the data. Table 1 reports the performance comparison between the standard
training baseline and our LAI. Using self-influence, only 135 samples are removed across 10,000
batches. Despite this minimal removal rate relative to the vast training dataset and large model pa-
rameters, slight improvements are observed. By excluding these identified samples, the importance
of each remaining sample in reducing perplexity is enhanced, yielding an average improvement of
0.04% per sample. These results highlight the potential of our LAI method in LLM pre-training,
especially with adequate resources.

5.3 LAI FOR FINE-TUNING LLM

We further utilize GPT-Neo for fine-tuning evaluation. An additional prediction layer is appended
for task-specific fine-tuning. For evaluation, we select four widely used text benchmarks—SST-2,
MRPC, QNLI, and RTE—from the GLUE repository (Wang et al., 2018), adhering to their official
pre-split training, validation, and test sets. During fine-tuning, we optimize both the parameters of
the prediction layer and the backbone model using the training set. The standard training baseline
is used to warm up the model for 3 epochs, after which we switch to our proposed method. Both
methods are fine-tuned for a total of 5 epochs.

Table 2 presents the results of fine-tuning tasks on four benchmark datasets, evaluating sample us-
age per epoch, validation loss, and test set accuracy. Notably, our method involves processing only
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Table 2: Results of fine-tune tasks on SST2, MRPC, QNLI, and RTE.

Dataset Training Sample Per Epoch Validation Loss Test Accuracy (%)

SST2 MRPC QNLI RTE SST2 MRPC QNLI RTE SST2 MRPC QNLI RTE

Vanilla 67,349 3,668 104,743 2,490 0.7121 1.5022 0.9460 1.0101 89.9 72.0 83.6 59.8
LAI 34,301 1,877 52,386 833 0.5716 0.7669 0.4978 0.6406 90.5 73.4 84.8 61.0

half or fewer training samples compared to the standard baseline method. This not only signifi-
cantly reduces training costs—particularly advantageous for large-scale data and models—but also
enhances performance. This observation highlights a crucial insight: not all data contribute posi-
tively to learning performance. In fact, undesirable samples can waste computational resources and
even degrade learning outcomes. Unfortunately, conventional model training paradigms include all
samples in optimization and lack mechanisms to resist the influence of harmful samples. While
prior efforts in data curation have aimed to prepare high-quality datasets or remove harmful samples
before training, the dynamic nature of sample influence during optimization remains overlooked.

In essence, the data valuation is to selectively include beneficial training samples and exclude detri-
mental ones in each batch, guided by the validation set—specifically, by evaluating whether the
samples contribute to reducing validation loss. Consequently, we report the validation loss achieved
in these fine-tuning tasks. Across all datasets, our LAI achieves a significant reduction in validation
loss. On SST-2, validation loss decreases by nearly 20%, while reductions of 30–50% are observed
on the other three datasets within just two epochs of fine-tuning. This reduction in validation loss
directly translates into measurable performance gains in the test sets, where accuracy improvements
of 0.6–1.2% are achieved across the four datasets.

6 EXPERIMENTS ON IMAGE AND TEXT CLASSIFICATION

We continue evaluating our LAI in the scenario of image and text classification. First, we compare
our LAI with several static/online data valuation methods and a curriculum learning baseline, then
explore the dynamics of sample-level data valuation during the model optimization.

6.1 ALGORITHMIC PERFORMANCE

We evaluate three categories of competitive methods: (1) static influence-based two-round training
approaches, (2) online one-round training approaches, and (3) the curriculum learning baseline.
For the static influence-based methods, we include the well-known LiSSA (Koh and Liang, 2017),
DataInf (Kwon et al., 2023), TRAK (Park et al., 2023), and IP (Yang et al., 2024). For the online
methods, we include Ghost Influence (Wang et al., 2024c), our proposed Layer-Aware Influence
(LAI), and Layer-aware Last-layer Influence (LLI)—a variant of LAI that relies solely on the last-
layer embedding and gradient for influence computation. As the curriculum learning baseline, we
consider Self-Paced Learning (SPL) (Kumar et al., 2010) as our baseline for comparison.

Table 3 presents the average classification accuracy and standard deviation of all competitive meth-
ods over five runs. In image datasets, static influence-based two-round training methods often result
in extended training time and inferior performance compared to the vanilla approach. This inefficacy
arises from the inherent limitations of static influence estimation: samples deemed detrimental in a
converged model may no longer have the same impact during subsequent training iterations. This
issue becomes especially severe in non-convex optimization settings, particularly when a large num-
ber of samples are removed. These methods primarily focus on model-associated sample influence
derived from a fixed model, while they overlook the full dynamic evolution of influence that occurs
throughout optimization process, ultimately limiting their overall effectiveness in practice.

In contrast, on text datasets, static influence-based methods tend to perform effectively by suc-
cessfully removing identified detrimental samples. This disparity likely stems from differences
in training procedures: image datasets typically involve training the backbone architecture from
scratch, while text datasets leverage pre-trained backbones for fine-tuning, thereby retaining a sig-
nificant portion of the original model’s knowledge and mitigating the impact of removed samples.
An intriguing observation is that IP, a remarkably simple and naive method that avoids using the
Hessian matrix, outperforms other static influence-based methods employing more sophisticated
Hessian approximations. This result reinforces the rationale behind our choice to build online data
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Table 3: Results of classification accuracy on benchmark datasets with noise labels.

Methods CIFAR-10N-a CIFAR-10N-r CIFAR-10N-w CIFAR-100N 20News-N Emotion-N Avg.

Vanilla 85.36±0.18 83.19±0.41 75.37±1.05 40.87±0.38 58.99±0.92 84.79±1.55 71.43

LiSSA (2017) 78.67±0.27 74.15±0.44 60.44±0.52 10.16±0.41 63.41±0.90 89.24±1.16 62.68
DataInf (2023) 79.80±0.41 75.34±0.58 61.90±1.53 30.69±0.71 63.36±0.37 89.08±0.51 66.70
TRAK (2023) 83.68±0.25 80.94±0.42 71.77±0.62 32.93±0.83 OOM OOM 67.33
IP (2024) 80.64±0.48 78.84±0.73 68.28±0.98 30.82±0.86 63.45±0.75 89.30±0.54 68.56

SPL (2010) 74.60±2.06 74.42±2.46 65.39±1.41 41.96±0.74 55.71±1.33 79.66±2.08 65.29
Ghost (2024c) 85.52±0.31 83.46±0.59 75.98±0.40 41.90±0.63 63.22±1.16 88.36±0.44 73.07

LLI (Ours) 84.13±0.59 82.49±0.16 75.87±1.50 44.22±0.56 63.38±0.86 88.64±0.52 73.12
LAI (Ours) 84.78±0.52 83.69±0.11 76.43±0.39 44.06±0.73 63.23±0.97 88.45±0.54 73.44

Table 4: Time and memory comparison of online data valuation approaches.

Dataset GFLOP per Batch Maximum Memory

CIFAR-10N CIFAR-100N 20News-N Emotion-N CIFAR-10N CIFAR-100N 20News-N Emotion-N

Vanilla 57.24 57.32 1073.91 1073.90 3304.67 3305.49 5292.08 5291.83
Ghost 209.13 209.32 2156.07 2872.02 4223.74 4227.10 12013.19 12013.38
LLI 113.15 113.34 835.26 1551.20 3328.60 3330.28 7552.19 7552.37
LAI 113.42 113.61 839.49 1555.27 3716.95 3718.64 8053.50 9053.64

valuation framework on such a straightforward method, highlighting its simplicity, efficiency, and
effectiveness. Conversely, TRAK, despite its innovative approach, demands significantly more com-
putational resources and often encounters out-of-memory (OOM) issues in our experimental envi-
ronment. This highlights the critical and urgent need for developing more computationally efficient
solutions in real-world practical applications, particularly when considering a potential dynamic
version of the method, which would further exacerbate these resource constraints.

While curriculum learning approaches like SPL incorporate online data considerations, they show
inconsistent results across datasets, confirming prior findings (Kumar et al., 2010; Zaremba and
Sutskever, 2014; Hacohen and Weinshall, 2019) that loss-based curricula do not consistently yield
performance gains. In contrast, LLI and LAI dynamically integrate data valuation, delivering su-
perior performance to the vanilla method. It is worth noting that ghost influence can be viewed
as the dynamic version of IP, achieving over 5% improvement on average, which underscores the
effectiveness of the online data valuation framework. Notably, our LAI further outperforms ghost
influence in most cases, particularly on the challenging CIFAR-100N dataset. This superior perfor-
mance is achieved while requiring fewer computational resources—a critical advantage that will be
further discussed in the next paragraph. Intuitively, a simplified method often trades performance
for lower computational cost. However, the superior results of LAI show that, while it is designed
as a simplified version of ghost influence for efficiency, it not only avoids sacrificing accuracy but
also delivers an additional performance gain.

We further investigate the computational cost of online methods in terms of running time and mem-
ory usage, as presented in Table 4. We report the runtime of the vanilla method as a reference point,
but our main objective is to compare methods within the category of online data valuation, rather
than contrasting online valuation with the vanilla baseline. Note that static data valuation methods
require two rounds of training—roughly doubling the runtime of the vanilla method—plus additional
time for data valuation computation; therefore, we do not report them here. A significant limitation
of ghost influence lies in its reliance on the complete sample gradient to calculate sample influence.
For instance, ghost influence takes over 2.5 times running time and nearly 1.5 times memory over
LLI or LAI on 20News-N in terms of GFLOP, which might be further amplified on large networks.
While the pairwise strategy helps avoid setting the batch size to one for sample-level gradient com-
putation, the requirement for complete sample gradients leads to considerable computational and
storage demands. The sample gradient’s dimensionality matches that of the model parameters, re-
sulting in high costs for gradient computation for each sample in every batch. Additionally, the large
storage requirements restrict ghost influence to be conducted on small batch size. These challenges
highlight the need for more efficient gradient estimation methods, which are well addressed by our
LAI. Our LAI utilizes only the output gradient, combined with embeddings from each layer, offering
a more memory-efficient and computationally manageable approach. Notably, LAI requires almost
the same computational resources as LLI, while maintaining improved performance in general. Be-
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Figure 2: Sample influence dynamics of LAI on CIFAR10-N-w. A illustrates the collective distri-
bution of influence scores across different epochs; B visualizes sample involvement across epochs,
with blue indicating inclusion in a batch and white indicating exclusion; C presents dynamic nature
by tracing the influence scores of three specific samples across epoch.

sides, while all the embeddings are used in LAI and only the last layer embedding is used in LLI,
the last layer embedding also requires the calculation of previous embeddings as inputs. Therefore,
they takes similar computational resources.

6.2 EXPLORATION ON LAI AT SAMPLE LEVEL

Beyond evaluating overall algorithmic performance, we delve deeper into the sample influence dy-
namics of our LAI framework, as depicted in Figure 2. Subfigure A illustrates the collective distribu-
tion of influence scores for training samples across epochs. Over time, these scores converge sharply
around zero, signifying reduced variability in sample influence. Samples with substantial negative
influence, which degrade validation loss, are excluded from subsequent epochs, while those with
negligible influence exert minimal impact on model parameters. By setting the influence threshold
to zero, approximately half of the samples are retained for optimization at each epoch.

At the individual level, Subfigure B visualizes sample involvement across epochs, with blue indi-
cating inclusion in a batch and white indicating exclusion. Generally, very few “easy” or “hard”
samples consistently drop out early or join late in training, which may explain the limitations of
traditional curriculum learning. Instead, the composition of batches evolves dynamically, highlight-
ing the importance of online data valuation. Subfigure C examines this dynamic nature by tracing
the influence scores of three specific samples across epochs. Influence scores shift significantly, as
samples used in one epoch often exhibit reduced loss in subsequent epochs. However, these samples
may no longer contribute maximally to reducing loss in future epochs, justifying their exclusion.
This also well justifies the limitation of static data valuation.

This dynamic adjustment reveals the shortcomings of methods like TRAK (Park et al., 2023), which
aggregate influence scores across multiple optimization checkpoints. Summing these scores fails to
account for the evolving nature of influence, potentially neutralizing conflicting values and reducing
overall effectiveness. In contrast, our LAI dynamically adapts to these shifting contributions, en-
abling efficient optimization that simultaneously enhances model performance throughout training.

7 CONCLUSION

In this paper, we tackled a fundamental challenge from a data-centric perspective by introducing the
online data valuation framework. This framework integrates online data valuation to enhance model
optimization while providing an efficient and generic implementation compatible with SGD and
Adam optimization. Specifically, we utilized a Hessian-free influence function to evaluate the qual-
ity of samples within each batch, dynamically removing detrimental samples from the optimization
process. To address the computational overhead of frequent sample influence estimation, we de-
veloped an efficient layer-aware approximation to streamline the calculation. Extensive experiments
validated the effectiveness and efficiency of our approach by comparing with other baseline methods
across diverse scenarios, including LLM pre-training/fine-tuning and image/text classification.
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REPRODUCIBILITY STATEMENT

We provide our code, instructions, and implementation in an open-source repository:
https://anonymous.4open.science/r/Dynamic-Batch-Curation-8782. The
experiments in Section 5 were conducted on Google Cloud TPU v4-4 nodes (Ubuntu 22.04.2 LTS)
with PyTorch. The experiments in Section 6 were conducted on a Linux (Ubuntu 20.04.6 LTS)
server using NVIDIA GeForce RTX 4090 GPUs with 24GB VRAM running CUDA version 12.3
and driver version 545.23.08.

ETHICS STATEMENT

Our method introduces online data valuation with a layer-aware influence estimator (LAI) that filters
harmful samples on the fly, reducing compute and energy while improving generalization without
extra training epochs. Nevertheless, potential risks exist: 1) amplification of validation-set bias,
2) possible exclusion of long-tail groups, and 3) privacy concerns from caching embeddings and
last-layer gradients. To mitigate these, we recommend careful design of the validation set, subgroup-
aware evaluation, and secure handling of cached information. Finally, while LAI aligns most closely
with SGD by leveraging last-layer gradients, when using adaptive optimizers such as Adam there
may be mild direction mismatches. We provide a lightweight remedy and guidance in Appendix E.

REFERENCES

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Anastasiia Sedova, Lena Zellinger, and Benjamin Roth. Learning with noisy labels by adaptive
gradient-based outlier removal. In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, 2023.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
arXiv preprint arXiv:2212.04612, 2022.

R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York: Chapman
and Hall, 1982.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
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APPENDIX

A NOISE PROPAGATION ANALYSIS OF GHOST

This section formalizes the statistical picture behind Eq. (3). We proceed progressively: (i) identify
a low-noise anchor at the output layer; (ii) explain how depth injects and transforms noise through
random linear backpropagation operators; (iii) project vector-level perturbations to the per-layer
scalar similarity β(l); and (iv) quantify depth-wise accumulation under the ghost influence. All
symbols follow the main text.

For a sample x ∈ {z, j}, where z is a validation sample and j is the target training sample, and layer
l, we define

g(l)
x :=

∂ℓ(l)

∂s
(l)
x

∈ Rdl , β
(l)
z,j :=

(
g(l)
z

)⊤
g
(l)
j , β⋆

z,j :=
(
g(L)
z

)⊤
g
(L)
j .

A.1 A LOW-NOISE ANCHOR: THE OUTPUT-LAYER FEEDBACK β(L) = β⋆

We first define β⋆
v,j , the shared signal between validation and training gradients, which is the com-

mon layer-invariant component reflecting the alignment. Since the last-layer backpropagation oper-
ator is the identity, the output-layer similarity equals the shared signal:

β
(L)
z,j = β⋆

z,j .

This motivates using the output-layer channel as a stable anchor in our estimator. Corresponding
analyses for other layers can be found in the following Section A.3.

A.2 HOW DEPTH INJECTS NOISE: RANDOM LINEAR BACKPROPAGATION OPERATORS

Backpropagation from layer l to l − 1 is linear in the upstream gradient and can be written as a
vector–Jacobian product:

g(l−1)
x = J (l)

x g(l)
x , l = 1, . . . , L.

We decompose the sample-dependent backpropagation operator as J (l)
x = J

(l)
+∆J

(l)
x , where J

(l)

is the systematic Jacobian (e.g., population/EMA statistics for normalization) and ∆J
(l)
x captures

stochasticity induced by mini-batch statistics, activation gating, and dropout masks (Faghri et al.,
2020; Srivastava et al., 2014; Santurkar et al., 2018). No additive constant independent of the up-
stream gradient is introduced. At the output layer, we allow fluctuations caused by the forward pass
as follows:

g(L)
x = g⋆(L)

x + ξ(L)
x , E[ξ(L)

x ] = 0.

A.3 FROM VECTORS TO SCALARS: PER-LAYER SIMILARITY AND ITS DECOMPOSITION

Composing the layerwise maps yields the depth-l backpropagation operator

g(l)
x = A(l)

x g(L)
x , A(l)

x := J (l+1)
x J (l+2)

x · · · J (L)
x . (5)

Let A
(l)

:= J
(l+1) · · · J (L)

and write A
(l)
x = A

(l)
+∆A

(l)
x . A first-order expansion of the product

gives

∆A(l)
x ≈

L∑
t=l+1

(
J
(l+1) · · · J (t−1)

)
∆J (t)

x

(
J
(t+1) · · · J (L)

)
, (6)

with higher-order products of {∆J
(t)
x } absorbed into the residual. Using g

(L)
x = g

⋆(L)
x + ξ

(L)
x ,

g(l)
x = A

(l)
g⋆(L)
x +A

(l)
ξ(L)
x +∆A(l)

x g⋆(L)
x +∆A(l)

x ξ(L)
x . (7)

The per-layer scalar similarity in Eq. (3) can be written as

β
(l)
z,j =

(
g(l)
z

)⊤
g
(l)
j =

(
g(L)
z

)⊤
M

(l)
z,j g

(L)
j , M

(l)
z,j :=

(
A(l)

z

)⊤
A

(l)
j . (8)
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Define M
(l)

:= (A
(l)
)⊤A

(l)
and decompose it into an isotropic gain and an anisotropic remainder:

cl :=
1

dl
trM

(l)
, E

(l)
:= M

(l) − clI.

Substituting A
(l)
x = A

(l)
+∆A

(l)
x into Eq. (8) and grouping terms yields

β
(l)
z,j = cl β

⋆
z,j + ε

(l)
z,j , (9)

where the scalar noise

ε
(l)
z,j =

(
g(L)
z

)⊤
E

(l)
g
(L)
j +

(
g(L)
z

)⊤(
A

(l))⊤
∆A

(l)
j g

(L)
j +

(
g(L)
z

)⊤(
∆A(l)

z

)⊤
A

(l)
g
(L)
j

+
(
g(L)
z

)⊤(
∆A(l)

z

)⊤
∆A

(l)
j g

(L)
j

+ terms involving ξ(L)
z and ξ

(L)
j from Eq. (7). (10)

For l = L we have A
(L)
x = I , hence M

(L)
z,j = I , cL = 1, and E

(L)
= 0. Therefore

β
(L)
z,j = β⋆

z,j exactly. (11)

A.4 DEPTH-WISE ACCUMULATION UNDER GHOST INFLUENCE

Let ρu→v :=
∏v

t=u ρt with ρu→v = 1 if u > v. From Eq. (6), we have

∥∆A(l)
x ∥ ≲

L∑
t=l+1

ρl+1→t−1 ∥∆J (t)
x ∥ ρt+1→L, (12)

ignoring higher-order perturbation products. Combining Eqs. (9)–(10) with Eq. (12) yields the
schematic bound

Var
[
β
(l)
z,j

]
≲ c2l Var

[
β⋆
z,j

]
+ κl ∥g(L)

z ∥2 ∥g(L)
j ∥2

(
∥E(l)∥2F +

L∑
t=l+1

ρ2l+1→t−1 ρ
2
t+1→L E∥∆J (t)∥2F

)
+ cross terms, (13)

where κl depends on norms of A
(l)

, and the cross terms collect covariances across layers and
between ∆A(l) and the output-layer fluctuations ξ(L). For the ghost influence, IGhost(zj ; θ̂) :=

−
∑

z∈V
∑L

l=1 α
(l)
z,jβ

(l)
z,j , the corresponding variance can be written as follows:

Var

[
L∑

l=1

α
(l)
z,jβ

(l)
z,j

]
=
( L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
. (14)

When many cross-layer covariances are nonnegative, the variance grows faster than linearly with
depth, and cross-layer sign/scale inconsistencies can induce cancellations in the aggregated score.

A.5 REMARKS AND CONNECTION TO THE LIMITATIONS PARAGRAPH

The decomposition β(l) = cl β
⋆ + ε(l) arises from vector-level perturbations through the bilinear

form Eq. (9), and the additive aggregation
∑

l α
(l)ε(l) explains why Ghost accumulates depth-wise

noise and suffers from cross-layer cancellations. Using the single output-layer channel β(L) = β⋆

avoids these issues while keeping the multi-layer embedding similarities
∑

l α
(l), which underpins

the limitations highlighted in the main text.
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B LAI IS AN APPROXIMATION OF GHOST INFLUENCE

To make it formal, we define embedding and gradient similarities between a validation sample z and
a target training sample j at the l-level as follows:

α
(l)
z,j := ⟨a(l−1)

z , a
(l−1)
j ⟩, β

(l)
z,j := ⟨g(l)

z , g
(l)
j ⟩.

The ghost influence and layer-aware (LAI) influence scores are

IGhost(zj ; θ̂) := −
∑
z∈V

L∑
l=1

α
(l)
z,j β

(l)
z,j , ILAI(zj ; θ̂) := −

∑
z∈V

( L∑
l=1

α
(l)
z,j

)
β
(L)
z,j . (15)

To formally establish that LAI serves as an approximation of ghost influence, we first introduce
a set of mild assumptions commonly adopted in theoretical deep learning analysis. Under these
assumptions, we derive a closed-form expression for the difference between ghost influence and LAI
and prove that this difference is upper-bounded by a constant, thereby demonstrating the theoretical
soundness of LAI as a proxy.

Here are the assumptions we use.

(A1) Gradient-norm decay. There exists ρ ∈ (0, 1) such that ∥g(l)
p ∥2 ≤ ρL−l ∥g(L)

p ∥2 for all
p ∈ {z, j} and l = 1, . . . , L (cf. vanishing/residual-gradient behavior (Glorot and Bengio,
2010; He et al., 2016)).

(A2) Bounded activations. There exists Ca > 0 with ∥a(l)p ∥2 ≤ Ca for all p and l (encouraged
by normalization and Lipschitz activations (Ioffe and Szegedy, 2015)), hence |α(l)

z,j | ≤ C2
a .

(A3) Non-negative gradient alignment. cos
(
g
(l)
z ,g

(l)
j

)
≥ 0 for all l.

The difference between ghost influence and LAI can be written as follows:

ζz,j :=

L−1∑
l=1

α
(l)
z,j

(
β
(l)
z,j − β

(L)
z,j

)
, IGhost(zj ; θ̂)− ILAI(zj ; θ̂) = −

∑
z∈V

ζz,j . (16)

Conservative bound under (A1)–(A3). Using |α(l)
z,j | ≤ C2

a and β
(l)
z,j ≥ 0,

∣∣ζz, j∣∣ ≤ C2
a

L−1∑
l=1

(
β
(L)
z,j + β

(l)
z,j

)
.

By (A1) and Cauchy–Schwarz, β(l)
z,j ≤ ∥g(l)

z ∥2∥g(l)
j ∥2 ≤ ρ 2(L−l)∥g(L)

z ∥2∥g(L)
j ∥2. Therefore

∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣ ≤ C2

a

∑
z∈V

[
(L−1)β

(L)
z,j + ∥g(L)

z ∥2∥g(L)
j ∥2

L−1∑
l=1

ρ 2l
]
. (17)

Moreover, since
∑L

l=1 α
(l)
z,j ≥ α

(L)
z,j ≥ ᾱ and β

(L)
z,j ≥ 0,∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)

∣∣∣∣ILAI(zj ; θ̂)
∣∣ ≤ C2

a

ᾱ

[
(L−1) +

∑
z ∥g

(L)
z ∥2∥g(L)

j ∥2∑
z β

(L)
z,j

·
ρ2
(
1− ρ2(L−1)

)
1− ρ2

]
.

(18)

Geometric relative error under a non-expansive alignment condition. Empirically one often
observes that alignment does not increase when backpropagating to lower layers, which leads the
variant of A3 that

cos
(
g(l)
z ,g

(l)
j

)
≤ cos

(
g(L)
z ,g

(L)
j

)
∀ l ≤ L.

Then β
(l)
z,j ≤ ρ 2(L−l) β

(L)
z,j , and hence

∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣ ≤ C2

a

(∑
z∈V

β
(L)
z,j

)
L−1∑
l=1

ρ 2l = C2
a

(∑
z∈V

β
(L)
z,j

)
ρ2
(
1− ρ2(L−1)

)
1− ρ2

.

(19)
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Dividing by |ILAI(zj ; θ̂| ≥ ᾱ
∑

z β
(L)
z,j yields∣∣IGhost(zj ; θ̂)− ILAI(zj ; θ̂)
∣∣∣∣ILAI(zj ; θ̂)

∣∣ ≤ C2
a

ᾱ
·
ρ2
(
1− ρ2(L−1)

)
1− ρ2

= O(ρ2) (ρ → 0). (20)

Thus the relative error decays geometrically with depth or smaller ρ, while LAI discards L−1 layers
of per-sample feedback, reducing memory/FLOPs by roughly an order of magnitude.

C BIAS–VARIANCE COMPARISON BETWEEN GHOST INFLUENCE AND LAI

Here we analyze the difference between Ghost Influence and LAI from the bias-variance perspective,
and demonstrate why LAI, a simplified approximation, is even better than ghost influence.

Following the previous notations,

IGhost(zj ; θ̂) = −
L∑

l=1

α
(l)
z,j

(
cl β

⋆
z,j + ε

(l)
z,j

)
= −

( L∑
l=1

α
(l)
z,jcl

)
β⋆
z,j −

L∑
l=1

α
(l)
z,jε

(l)
z,j .

ILAI(zj ; θ̂) = −
( L∑

l=1

α
(l)
z,j

)
β
(L)
z,j = −

( L∑
l=1

α
(l)
z,j

)
β⋆
z,j ,

Here we further define two extra variables below to better decomposite the ghost influence

X :=
( L∑

l=1

α
(l)
z,jcl

)
β⋆
z,j , Y :=

L∑
l=1

α
(l)
z,j ε

(l)
z,j .

Then we have the variance of ghost influence

Var
[
IGhost(zj ; θ̂)

]
= Var[X + Y ] (21)

=
( L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+Var[Y ] + 2

( L∑
l=1

α
(l)
z,jcl

)
Cov
(
β⋆
z,j , Y

)
. (22)

Moreover, expanding the noise term yields

Var[Y ] =

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
. (23)

According to Cauchy–Schwarz lower bound, for any random variables X,Y ,

Var[X+Y ] ≥
(√

Var[X]−
√
Var[Y ]

)2
.

Applying this with the above X and Y gives the unconditional bound

Var
[
IGhost(zj ; θ̂)

]
≥
(∣∣∑L

l=1 α
(l)
z,jcl

∣∣ √Var
[
β⋆
z,j

]
−
√
Var[Y ]

)2
. (24)

Given Cov
(
β⋆
z,j , Y

)
≥ 0 and Cov

(
ε
(l)
z,j , ε

(k)
z,j

)
≥ 0 for l ̸= k, combining Eq. (21) and (23) yields the

stronger lower bound

Var
[
IGhost(zj ; θ̂

]
≥
( L∑

l=1

α
(l)
z,jcl

)2
Var
[
β⋆
z,j

]
+

L∑
l=1

(
α
(l)
z,j

)2
Var
[
ε
(l)
z,j

]
+ 2

∑
1≤l<k≤L

α
(l)
z,jα

(k)
z,j Cov

[
ε
(l)
z,j , ε

(k)
z,j

]
.

(25)
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In particular, dropping the signal term yields the noise-only bound Var[IGhost(zj ; θ̂] ≥ Var[Y ] =∑
l(α

(l)
z,j)

2Var[ε
(l)
z,j ] + 2

∑
l<k α

(l)
z,jα

(k)
z,jCov[ε

(l)
z,j , ε

(k)
z,j ].

By contrast, using β(L) = β⋆,

Var
[
ILAI(zj ; θ̂)

]
=
( L∑

l=1

α
(l)
z,j

)2
Var
[
β⋆
z,j

]
. (26)

With cl ≈ 1 (otherwise the average backpropagation gain deviates too much from isometry,
making gradients explode/vanish and training impractical), Ghost and LAI share the same sig-
nal scaling. The key difference is variance: LAI keeps only the output-layer channel, yielding
Var[ILAI] = (

∑
l α

(l)
z,j)

2Var[β⋆
z,j ], whereas Ghost additionally aggregates the noise Y and cross-

layer covariances. These extra terms inflate variance when correlations are nonnegative; even with-
out such assumptions, Ghost is still bounded from below by the accumulated noise energy, while
LAI removes Y by design and is empirically more stable.

D DETAILED INFORMATION ON DATASETS AND MODEL TRAINING

We describe dataset details, model training, and other information used in the main paper, below.

D.1 DATASETS

We discuss datasets in Section 5 and 6 below.

D.1.1 NLP DATASETS FOR LLM

For the four GLUE datasets—SST2, MRPC, QNLI, and RTE (Wang et al., 2018), we provide the fol-
lowing descriptions. The Stanford Sentiment Treebank (SST2) dataset consists of sentences labeled
as positive or negative sentiment. It includes 67,349 training examples and 872 validation examples,
making it a standard benchmark for sentiment classification tasks. The Microsoft Research Para-
phrase Corpus (MRPC) dataset contains sentence pairs labeled as semantically equivalent or not. It
includes 3,668 training examples and 408 validation examples. This dataset is widely used to eval-
uate paraphrase detection methods. The Question Natural Language Inference (QNLI) dataset is a
large-scale corpus for question answering, derived from the Stanford Question Answering dataset. It
consists of 104,743 training examples and 5,463 validation examples. The task involves determining
whether the context sentence contains the answer to the question. The Recognizing Textual Entail-
ment (RTE) dataset consists of sentence pairs labeled as entailment or not entailment. It includes
2,490 training examples and 277 validation examples. This dataset is derived from a series of annual
textual entailment challenges and serves as a benchmark for textual entailment tasks.

D.1.2 VISION DATASETS FOR CLASSIFICATIONS

Both the CIFAR-10N and CIFAR-100N datasets (Wei et al., 2022) consist of the same input images
that make up the CIFAR-10 (10 classes) and CIFAR-100 (100 classes) datasets (Krizhevsky et al.,
2009), respectively. Each input is a 32×32 RGB image with a dimension of (3×32×32). However,
for CIFAR-10N and CIFAR-100N, the labels are noisy, as they contain real-world human annotation
errors collected using 3 annotators on Amazon Mechanical Turk. As these datasets are based on
human-annotated noise, they model noisy real-world datasets more realistically, compared to syn-
thetic data alternatives. The training set for both datasets contains 50,000 image-label pairs, and the
test set contains 10,000 image-label pairs that are free from noise. For CIFAR-10N we utilize three
noise settings for experiments in the paper– (1) Worst is the dataset version with the highest noise
rate (40.21%) as the worst possible annotation label for the image is chosen, (2) Aggregate is the
least noisy dataset (9.03%) as labels are chosen via majority voting amongst the annotations, and (3)
Random has intermediate noise (17.23%) and consists of picking one of the annotators’ labels. We
use the first annotator for the random labels. For CIFAR-100N there is only a single noisy setting
due to the large number of labeling classes, and the overall noise rate is 40.20%.
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D.1.3 TEXT DATASETS FOR CLASSIFICATIONS

Both 20New-N and Emotion-N datasets are derived from the original 20 Newsgroups (20 classes)
(Lang, 1995) and Emotion (6 classes) (Saravia et al., 2018) datasets, respectively. The inputs for
these datasets consist of textual data, where each example corresponds to either a news article (20
Newsgroups) or an emotional text snippet (Emotion). However, for 20new-N and Emotion-N, the
labels are intentionally noisy, as 40% of the training set labels have been randomly replaced with
incorrect labels. This noise was artificially introduced to simulate realistic label noise scenarios.

D.2 MODELS AND METHODS

We now describe the models and the methods used in our experiments throughout the main paper.
First, we describe the ResNet-18 (He et al., 2016) architecture used as the base model for the noisy
vision datasets, then the BERT (Devlin, 2018) model for text datases. We also describe implemen-
tation details and parameter values and the influence-based baselines used throughout the paper.

D.2.1 RESNET-18

The ResNet-18 model used in this study is implemented following the setup described in Section
4. The model is a convolutional neural network designed with 18 layers, based on the architecture
proposed in He et al. (2016). It was trained on the CIFAR-100N dataset without pretraining on
external datasets such as ImageNet. The training process adopts default parameters: a batch size
of 512, an initial learning rate of 10−2, and the SGD optimizer with momentum (0.9) and weight
decay (5 × 10−4). The model is trained over 150 epochs, with validation and test batch sizes set
to 4000 and 1280, respectively. Experiments are conducted with different noise types specified for
the dataset, including clean and noisy variants, as well as additional hyperparameters tailored to
methods like SPL and IP, which are evaluated in this work.

D.2.2 BERT

For both 20New-N and Emotion-N dataset in Section 6, we use the BERT (Devlin, 2018) model for
classification tasks. Key hyperparameters for training include a learning rate of 3×10−5, a batch
size of 32, and 3 training epochs. These parameters are consistent across experiments to ensure
comparability of results under noisy label conditions.

D.2.3 GPT-NEO

For the GLUE benchmark tasks, we fine-tuned the GPT-Neo-125M model (Gao et al., 2020) for
sequence classification across tasks such as SST-2, MRPC, QNLI, and RTE with the number of
classes varying based on the task. The training setup used a learning rate of 2×10−5, a batch size of
16 for both training and evaluation, a weight decay of 0.01, and a maximum sequence length of 128
tokens. The number of epochs was set to 5 for all tasks, ensuring efficient fine-tuning.

D.2.4 RETRAIN-BASED BASELINES

In our experiments, we utilize the following retrain-based methods as baselines: IP (Yang et al.,
2024) replaces the Hessian matrix with the identity matrix; LiSSA (Koh and Liang, 2017) uses
Hessian-vector products to approximate H−1. DataInf (Kwon et al., 2023) applies an efficient
closed-form surrogate for H−1. All these methods share a common procedure: a model is first
trained, then the influence of each sample is computed. Afterward, samples with influence scores
less than zero are removed, and the model is retrained on the remaining data.

D.2.5 CURRICULUM-BASED BASELINE

We employ the method described in Section 4 for our experiments. In Sections 6 and Section 5, we
randomly select 10% of validation set for each batch curation in vision datasets, and we randomly
select 2000 samples for each batch curation in text datasets.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 EXPERIMENTAL SETUP

D.3.1 EXPERIMENTAL SETUP FOR LLMS

Fidelity validation and pre-training use the same setup: Adam (β1=0.9, β2=0.95, ϵ=10−8), learning
rate 1×10−4 with 500-step warmup and cosine decay, weight decay 0.01, gradient clip 1.0, context
length 1,024.

D.3.2 EXPERIMENTAL SETUP FOR IMAGE AND TEXT DATASETS

To evaluate the effectiveness of our proposed method, we consider the classification with noisy
labels. Specifically, we choose two widely used visual and two text datasets with label noise, CIFAR-
10N (Wei et al., 2022), CIFAR-100N (Wei et al., 2022), 20News-N Lang (1995), and Emotion-
N Saravia et al. (2018). CIFAR-10N encompasses three distinct noise settings: aggregate, random,
and worst, denoted as “-a,” “-r,” and “-w,” respectively. “a” means that labels are derived via
majority voting among three annotators, with ties being resolved randomly, “r” adopts the label
provided by the first annotator, while “w” selects the label from the least reliable annotator. For
20News-N and Emotion-N, we introduce noise by randomly flipping 40% of training labels, aligning
the noise level with that of CIFAR-10N-w. We use ResNet-18 (He et al., 2016) as the backbone model
for visual datasets and train the model from scratch; for text datasets, we employ BERT (Devlin,
2018) as the backbone and add additional layer to fine-tune the whole network.

E OPTIMIZER COMPATIBILITY AND PRACTICAL GUIDANCE

LAI scores samples using raw last-layer gradients and multi-layer embedding similarities, which
matches the one-step descent direction of SGD. For Adam and related adaptive methods, the update
is a preconditioned gradient with first/second-moment statistics, so raw-gradient alignment may di-
verge slightly from the true update direction. A practical and low-overhead fix is to score in a diago-
nally preconditioned space: replace g(L) by g̃(L) = D−1/2g(L), where D uses layer- or block-level
EMAs of squared gradients (an aggregated proxy of v̂t), and use β̃(L) = (g̃

(L)
v )⊤g̃

(L)
i in Eq. (4).

This reduces coordinate-scale mismatch without materializing per-sample moments. Achieving ex-
act Adam-consistent scoring would require per-sample moment statistics and is typically too costly
in complexity and memory.
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