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Abstract

Model pre-training is essential in human-centric perception. In this paper, we first
introduce masked image modeling (MIM) as a pre-training approach for this task.
Upon revisiting the MIM training strategy, we reveal that human structure priors
offer significant potential. Motivated by this insight, we further incorporate an
intuitive human structure prior - human parts - into pre-training. Specifically, we
employ this prior to guide the mask sampling process. Image patches, correspond-
ing to human part regions, have high priority to be masked out. This encourages
the model to concentrate more on body structure information during pre-training,
yielding substantial benefits across a range of human-centric perception tasks. To
further capture human characteristics, we propose a structure-invariant alignment
loss that enforces different masked views, guided by the human part prior, to be
closely aligned for the same image. We term the entire method as HAP. HAP sim-
ply uses a plain ViT as the encoder yet establishes new state-of-the-art performance
on 11 human-centric benchmarks, and on-par result on one dataset. For example,
HAP achieves 78.1% mAP on MSMT17 for person re-identification, 86.54% mA
on PA-100K for pedestrian attribute recognition, 78.2% AP on MS COCO for 2D
pose estimation, and 56.0 PA-MPJPE on 3DPW for 3D pose and shape estimation.

1 Introduction

Human-centric perception has emerged as a significant area of focus due to its vital role in real-
world applications. It encompasses a broad range of human-related tasks, including person re-
identification (ReID) [23, 32, 62, 90], 2D/3D human pose estimation [15, 78, 82], pedestrian attribute
recognition [34, 36, 63], etc. Considering their training efficiency and limited performance, recent
research efforts [8, 13, 16, 33, 64] have dedicated to developing general human-centric pre-trained
models by using large-scale person datasets, serving as foundations for diverse human-centric tasks.

Among these studies, some works [8, 13, 33] employ contrastive learning for self-supervised pre-
training, which reduces annotation costs of massive data in supervised pre-training [16, 64]. In this
work, we take the first step to introduce masked image modeling (MIM), which is another form of self-
supervised learning, into human-centric perception, since MIM [2, 9, 30, 77] has shown considerable
potential as a pre-training scheme by yielding promising performance on vision tasks [44, 65, 78].
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Zhang were interns at Baidu VIS. ‡Corresponding author.
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(a) Human-centric perception with HAP.
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Figure 1: (a) Overview of our proposed HAP framework. HAP first utilizes human structure priors,
e.g., human body parts, for human-centric pre-training. HAP then applies the pre-trained encoder,
along with a task-specific head, for addressing each of the human-centric perception tasks. (b) Our
HAP demonstrates state-of-the-art performance across a broad range of human-centric benchmarks.

There is no such thing as a free lunch. Upon initiating with a simple trial, i.e., directly applying the
popular MIM method [30] with the default settings for human-centric pre-training, it is unsurprising
to observe poor performance. This motivates us to delve deep into understanding why current MIM
methods are less effective in this task. After revisiting the training strategies, we identify three crucial
factors that are closely related to human structure priors, including high scaling ratio2, block-wise
mask sampling strategy, and intermediate masking ratio, have positive impacts on human-centric
pre-training. Inspired by this, we further tap the potential of human structure-aware prior knowledge.

In this paper, we incorporate human parts [5, 26, 57, 60, 80], a strong and intuitive human structure
prior, into human-centric pre-training. This prior is employed to guide the mask sampling strategy.
Specifically, we randomly select several human parts and mask the corresponding image patches
located within these selected regions. These part-aware masked patches are then reconstructed based
on the clues of the remaining visible patches, which can provide semantically rich body structure
information. This approach encourages the model to learn contextual correlations among body
parts, thereby enhancing the learning of the overall human body structure. Moreover, we propose a
structure-invariant alignment loss to better capture human characteristics. For a given input image,
we generate two random views with different human parts being masked out through the proposed
mask sampling strategy. We then align the latent representations of the two random views within the
same feature space. It preserves the unique structural information of the human body, which plays an
important role in improving the discriminative ability of the pre-trained model for downstream tasks.

We term the overall method as HAP, short for Human structure-Aware Pre-training with MIM for
human-centric perception. HAP is simple in terms of modalities, data, and model structure. We unify
the learning of two modalities (images and human keypoints) within a single dataset (LUPerson [23]).
The model structure is based on the existing popular MIM methods, e.g., MAE [30] and CAE [9],
with a plain ViT [21] as the encoder, making it easy to transfer to a broad range of downstream tasks
(see Figure 1a). Specifically, HAP achieves state-of-the-art results on 11 human-centric benchmarks
(see Figure 1b), e.g., 78.1% mAP on MSMT17 for person ReID, 68.05% Rank-1 on CUHK-PEDES
for text-to-image person ReID, 86.54% mA on PA-100K for pedestrian attribute recognition, and
78.2% AP on MS COCO for 2D human pose estimation. In summary, our main contributions are:

• We are the first to introduce MIM as a human-centric pre-training method, and reveal that
integrating the human structure priors are beneficial for MIM in human-centric perception.

• We present HAP, a novel method that incorporates human part prior into the guidance of the mask
sampling process to better learn human structure information, and design a structure-invariant
alignment loss to further capture the discriminative characteristics of human body structure.

• The proposed HAP is simple yet effective that achieves superior performance on 11 prominent
human benchmarks across 5 representative human-centric perception tasks.

2We simply refer the lower bound for the ratio of random area to crop before resizing as “scaling ratio”.
Please find more discussions in Section 3
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2 Related work

Human-centric perception includes a broad range of human-related tasks. The goal of person
Re-ID [24, 32, 51, 50, 81, 90, 91, 84, 86] and text-to-image person ReID [59, 20, 62, 58] is to identify
persons of interest based on their overall appearance or behavior. Pedestrian attribute recognition [35,
36] aims to classify the fine-grained attributes and characteristics of persons. 2D [78, 79, 82] and
3D [69, 14, 25] pose estimation learn to predict position and orientation of individual body parts.

Recent works make some efforts to pre-train a human-centric model. HCMoCo [33] learns modal-
invariant representations by contrasting features of dense and sparse modalities. LiftedCL [13]
extracts 3D information by adversarial learning. UniHCP [16] and PATH [64] design multi-task
co-training approaches. SOLIDER [8] tries to balance the learning of semantics and appearances.

Compared with these works, this paper focuses on exploring the advantage of utilizing human
structure priors in human-centric pre-training. Besides, instead of training with numerous modalities
and datasets using a specially designed structure, we pursue a simple pre-training framework by
employing two modalities (images and human keypoints) of one dataset (LUPerson [23]) and vanilla
ViT structure with the existing popular MIM methods (e.g., BEiT [2], MAE [30], and CAE [9]).

Self-supervised learning has two main branches: contrastive learning (CL) and masked image
modeling (MIM). CL [4, 7, 10, 11, 12, 28, 31] is a discriminative approach that learns representations
by distinguishing between similar and dissimilar image pairs. Meanwhile, MIM [2, 9, 30, 56, 72, 73,
77, 85, 88] is a generative approach that learns to recover the masked content in the corrupted input
images. It is shown that CL learns more discriminative representations [4, 12], while MIM learns
finer grained semantics [2, 30]. To obtain transferable representations for the diverse tasks, our work
combines both of them to extract discriminative and fine-grained human structure information.

Semantic-guided masking is presented in some recent MIM works [6, 29, 37, 40, 45, 68, 83]. Many
methods [83, 29, 6, 37] utilize the attention map to identify and mask informative image patches,
which are then reconstructed to facilitate representation learning. In comparison, this paper explores
to directly employ the human structure priors to guide mask sampling for human-centric perception.

3 HAP

Inspired by the promising performance of MIM in self-supervised learning, we initially employ
MIM as the pre-training scheme for human-centric perception. Compared with MIM, our proposed
HAP integrates human structure priors into MIM for human-centric pre-training, and introduces a
structure-invariant alignment loss. The overview of our HAP framework is shown in Figure 2.

3.1 Preliminary: great potential of human structure priors

80% scaling + 50% masking+ 75% masking20% scalingoriginal image

(a) (b) (c) (d)

Figure 4: Visualization of training strate-
gies. For a given image (a), the base-
line [30] uses 20% scaling ratio (b) and 75%
masking ratio (c) with random mask sam-
pling strategy, yielding a meaningless im-
age with little human structure information.
We adopt 80% scaling ratio and 50% mask-
ing ratio with block-wise mask sampling
(d), maintaining the overall body structure.

We use MAE [30] with its default settings as an exam-
ple for human-centric pre-training. LUPerson [23] is
used as the pre-training dataset following [8, 23, 51].
We designate this setting as our baseline. The results
are shown in Figure 3. The baseline achieves poor
performance on two representative human-centric per-
ception tasks, i.e., person ReID and 2D human pose
estimation. This phenomenon motivates us to delve
deep into understanding the underlying reasons.

We start by visualizing the input images under different
training strategies in Figure 4. Surprisingly, we observe
that it is hard to learn information of human body struc-
ture from the input images of the previous baseline (see
Figure 4 (b-c)). We conjecture that: i) the scaling ratio
may be too small to preserve the overall human body
structure, as shown in Figure 4 (b), and ii) the mask-
ing ratio may be too large to preserve sufficient human
structure information, which makes the reconstruction
task too difficult to address, as shown in Figure 4 (c).
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Figure 2: Our HAP framework. During pre-training, we randomly select human part regions and
mask the corresponding image patches. We then adjust the masked patches to match the pre-defined
masking ratio. The encoder embeds the visible patches, and the decoder reconstructs the masked
patches based on latent representations. For a given image, HAP generates two views using the mask
sampling with human part prior. We apply the proposed structure-invariant alignment loss to bring the
[CLS] token representations of these two views closer together. After pre-training, only the encoder
with a plain ViT structure is retained for transferring to downstream human-centric perception tasks.

Driven by this conjecture, we further study the impacts of scaling ratio and masking ratio in depth.
Figure 3 illustrates that both i) high scaling ratio (ranging from 60% to 90%) and ii) mediate masking
ratio (ranging from 40% to 60%) contribute positively to the performance improvement of human-
centric tasks. Especially, an 80% scaling ratio can bring an approximately 3.5% improvement on
MSMT17 of the person ReID task. This effectively confirms that information of human body structure
is crucial during human-centric pre-training. Additionally, we also discover that iii) block-wise mask
sampling strategy performs sightly better than the random mask sampling strategy, since the former
one masks semantic human bodies appropriately due to block regions. We refer to these three factors
of the training strategy as human structure priors since they are associated with human structure
information. In the following exploration, we employ scaling ratio of 80%, masking ratio of 50%
with block-wise masking strategy by default. See an example of our optimal strategy in Figure 4 (d).

3.2 Human part prior

Inspired by the above analyses, we consider to incorporate human body parts, which are intuitive
human structure priors, into human-centric pre-training. Here, we use 2D human pose keypoints [78],
which are convenient to obtain, to partition human part regions by following previous works [60].
Section 3.1 reveals that the mask sampling strategy plays an important role in human-centric pre-
training. To this end, we directly use human structure information provided by human body parts as
robust supervision to guide the mask sampling process of our HAP during human-centric pre-training.

Specifically, we divide human body into six parts, including head, upper body, left/right arm, and
left/right leg according to the extracted human keypoints, following [60]. Given a specific input
image x, HAP first embeds x into N patches. With a pre-defined masking ratio β, the aim of mask
sampling is to mask Nm = max{n ∈ Z|n ≤ β×N} patches, where Z represents the set of integers.
Specifically, we randomly select P parts, where 0 ≤ P ≤ 6. Total Np image patches located on
these P part regions are masked out. Then we adjust the number of masked patches to Nm based on
the instructions introduced later. In this way, unmasked (visible) human body part regions provide
semantically rich human structure information for the reconstruction of the masked human body
parts, encouraging the pre-trained model to capture the latent correlations among the body parts.

There are three situations for the masked patches adjustment: i) if Np = Nm, everything is well-
balanced; ii) if Np < Nm, we further use block-wise sampling strategy to randomly select additional
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(a) Scaling ratio analysis on (left) MSMT17 and (right) MPII. A scaling ratio with 60%-90% works well.
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(b) Masking ratio analysis on MSMT17 (left) and MPII (right). A masking ratio with 40%-60% works well.

Figure 3: Study on training strategy. We investigate three factors of training strategy, i.e., (a) scaling
ratio, (b) masking ratio, and (a,b) mask sampling strategy, on MSMT17 [74] (person ReID) and
MPII [1] (2D pose estimation). The baseline is MAE [30] with default settings (20% scaling ratio,
75% masking ratio, random mask sampling strategy). The optimal training strategy for human-centric
pre-training is with 80% scaling ratio, 50% masking ratio, and block-wise mask sampling strategy.

Nm − Np patches; iii) if Np > Nm, we delete patches according to the sequence of human part
selection. We maintain a total of Nm patches, which contain structure information, to be masked.
Discussion. i) We use human parts instead of individual keypoints as guidance for mask sampling.
This is based on the experimental result in Section 3.1, i.e., the block-wise mask sampling strat-
egy outperforms the random one. More experimental comparisons are available in Appendix. ii)
HCMoCo [33] also utilizes keypoints during human-centric pre-training, in which sparse keypoints
serve as one of the multi-modality inputs. Different from HCMoCo, we integrate two modalities,
including images and keypoints, together for mask sampling. It should be noted that the keypoints in
our method are pseudo labels; therefore they may not be accurate enough for supervised learning as
in HCMoCo. However, these generated keypoints can be beneficial for the self-supervised learning.

3.3 Structure-invariant alignment

Learning discriminative human characteristics is essential in human-centric perception tasks. For
example, person ReID requires to distinguish different pedestrians based on subtle details and identify
the same person despite large variances. To address this issue, we further propose a structure-invariant
alignment loss, to enhance the representation ability of human structural semantic information.

For each person image x, we generate two different views through the proposed mask sampling
strategy with guidance of human part prior. These two views, denoted as X and X̃, display different
human part regions for the same person. After model encoding, each view obtains respective latent
feature representations Z and Z̃ on the normalized [CLS] tokens. Our structure-invariant alignment
loss Lalign is applied to Z and Z̃ for aligning them. We achieve it by using the InfoNCE loss [54]:

Lalign = −log
exp(Z · Z̃/τ)∑B

i=1 exp(Z · Zi/τ)
, (1)

where B is the batch size. τ is a temperature hyper-parameter set to 0.2 [12]. In this way, the encoder
is encouraged to learn the invariance of human structure, and its discriminative ability is improved.
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Figure 5: Reconstructions of LUPerson (1st row), COCO (2nd row), and AIC (3rd row) images
using our HAP pre-trained model. The pre-training dataset is LUPerson. For each triplet, we show
(left) the original image, (middle) the masked image, and (right) images reconstructed by HAP. We
highlight some interesting observations using red dotted ellipses. Although the reconstructed parts
are not exactly identical to the original images, they are semantically reasonable as body parts. For
example, in the first triplet of the 1st row, the reconstructed right leg of the player differs from the
original, but still represents a sensible leg. It clearly shows that HAP effectively learns the semantics
of human body structure and generalizes well across various domains. Zoom in for a detailed view.

3.4 Overall: HAP

To sum up, in order to learn the fine-grained semantic structure information, our HAP incorporates the
human part prior into the human-centric pre-training, and introduces a structure-invariant alignment
loss to capture discriminative human characteristics. The whole loss function to be optimized is:

L = Lrecon + γLalign, (2)

where Lrecon is the MSE loss for reconstruction following [30]. γ is the weight to balance the two
loss functions of Lrecon and Lalign. We set γ to 0.05 by default, and leave its discussion in Appendix.

4 Experiments

4.1 Settings

Pre-training. LUPerson [23] is a large-scale person dataset, consisting of about 4.2M images of
over 200K persons across different environments. Following [51], we use the subset of LUPerson
with 2.1M images for pre-training. The resolution of the input image is set to 256 × 128 and the
batch size is set to 4096. The human keypoints of LUPerson, i.e., the human structure prior of HAP,
are extracted by ViTPose [78]. The encoder model structure of HAP is based on the ViT-Base [21].
HAP adopts AdamW [49] as the optimizer in which the weight decay is set to 0.05. We use cosine
decay learning rate schedule [48], and the base learning rate is set to 1.5e-4. The warmup epochs
are set to 40 and the total epochs are set to 400. The model of our HAP is initialized from the
official MAE/CAE model pre-trained on ImageNet by following the previous works [16, 78]. After
pre-training, the encoder is reserved, along with task-specific heads, for addressing the following
human-centric perception tasks, while other modules (e.g., regressor and decoder) are discarded.

Human-centric perception tasks. We evaluate our HAP on 12 benchmarks across 5 human-centric
perception tasks, including person ReID on Market-1501 [87] and MSMT17 [74], 2D pose estimation
on MPII [1], COCO [46] and AIC [75], text-to-image person ReID on CUHK-PEDES [42], ICFG-
PEDES [20] and RSTPReid [89], 3D pose and shape estimation on 3DPW [67], pedestrian attribute

6



Table 1: Main results. We compare HAP with representative task-specific methods, human-centric
pre-training methods, and the baseline MAE [30]. ‡ indicates using stronger model structures such as
sliding windows in [32, 8] and convolutions in [50]. HAP‡ follows the implementation of [50].

(a) Statistics on the number of training datasets and
training data samples used during the pre-training pro-
cess of the human-centric pre-training methods.

method datasets samples
LiftedCL [13] 1 ∼150K
SOLIDER [8] 1 ∼4.2M
HCMoCo [33] 2 ∼82K
UniHCP [16] 33 ∼2.3M
PATH [64] 37 ∼11.0M
HAP 1 ∼2.1M

(b) Attribute recognition. mA (%) is reported.

method PA-100K RAP PETA
ALM [63] 80.68 81.87 86.30
DAFL [35] 83.54 81.04 87.07
RethinkPAR [36] 81.61 80.82 85.17
Label2Label [43] 82.24 - -
PATH [64] 85.0 81.2 88.0
UniHCP [16] 86.18 82.34 -
SOLIDER‡ [8] 86.37 - -
MAE [30] 79.56 75.73 80.82
HAP 86.54 82.91 88.36

(c) Person ReID. mAP(%) is reported. For fair compar-
isons, we present all the results according to the input
image resolution of 256 × 128 (256) and 384 × 128
(384) respectively for each compared method.

method MSMT17 Market-1501
resolution 256 384 256 384
TransReID [32] 64.9 66.6 88.2 88.8
TransReID‡ [32] 67.4 69.4 88.9 89.5
UP-ReID [81] 63.3 - 91.1 -
LUP [23] 65.7 - 91.0 -
PASS [90] 71.8 74.3 93.0 93.3
MALE‡ [50] 73.0 74.2 92.2 92.1
TransReID-SSL‡ [51] - 75.0 - 93.2
PATH [64] 69.1 - 89.5 -
UniHCP [16] 67.3 - 90.3 -
SOLIDER‡ [8] - 77.1 - 93.9
MAE [30] 62.0 62.9 82.9 82.5
HAP 76.4 76.8 91.7 91.9
HAP‡ 78.0 78.1 93.8 93.9

(d) 2D pose estimation. PCKh (%) is reported for MPII
and AP (%) is reported for COCO and AIC. † represents
using multi-dataset training of COCO+AIC+MPII [78].
+ represents using a larger image size of 384× 288.

method MPII COCO AIC
HRNet-w48 [61] 90.1 75.1 33.5
HRFormer‡ [82] - 75.6 34.4
HRFormer‡+ [82] - 77.2 -
ViTPose [78] - 75.8 -
ViTPose† [78] 93.3 77.1 32.0
LiftedCL [13] 89.3 71.1 -
PATH [64] 93.3 76.3 35.0
UniHCP [16] - 76.5 33.6
SOLIDER‡+ [8] - 76.6 -
MAE [30] 89.6 75.7 31.3
HAP 91.8 75.9 31.5
HAP† 93.4 77.0 32.2
HAP+ 92.6 77.2 37.7
HAP†+ 93.6 78.2 38.1

(e) Text-to-image ReID. Rank-1(%) is reported.

method CUHK-PEDES ICFG-PEDES RSTPReid
SAFA [41] 64.13 - -
LBUL [71] 61.95 - 43.35
CAIBC [70] 64.43 - 47.35
SSAN [20] 61.37 54.23 -
SRCF [62] 64.04 57.18 -
LGUR [59] 65.25 59.02 -
MAE [30] 60.19 53.68 44.15
HAP 68.05 61.80 49.35

(f) 3D pose and shape estimation. MPJPE, PA-
MPJPE, and MPVPE are reported on 3DPW.

method MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
MiHu [22] 85.1 54.8 -
SPIN [38] 96.9 59.2 116.4
Pose2Mesh [14] 89.5 56.3 105.3
I2L-MeshNet [52] 93.2 57.7 110.1
3DCrowNet [15] 81.7 51.5 98.3
MAE [30] 95.6 58.0 112.7
HAP 90.1 56.0 106.3

recognition on PA-100K [47], RAP [39] and PETA [18]. For person ReID, we use the implementation
of [50] and report mAP. For 2D pose estimation, the evaluation metrics are PCKh for MPII and AP
for COCO and AIC. The codebase is based on [78]. Rank-1 is reported for text-to-image person
ReID with the implementation of [59]. mA is reported in the pedestrian attribute recognition task
with the codebase of [36]. The evaluation metrics are MPJPE/PA-MPJPE/MPVPE for 3D pose and
shape estimation. Since there is no implementation with a plain ViT structure available for this task,
we modify the implementation based on [15]. More training details can be found in Appendix.
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Table 2: HAP with MAE [30] and CAE [9]. The evaluation metrics are the same as those in Table 1.

MSMT17 Market-1501 PA-100K MPII COCO RSTPReid256 384 256 384
MAE [30] 76.4 76.8 91.7 91.9 86.54 91.8 75.9 49.35
CAE [9] 76.5 77.0 93.3 93.1 86.33 91.8 75.3 51.70

4.2 Main results

We compare HAP with both previous task-specific methods and human-centric pre-training methods.
Our HAP is simple by using only one dataset of ∼2.1M samples, compared with existing pre-training
methods (Table1a), yet achieves superior performance on various human-centric perception tasks.

In Table 1, we report the results of HAP with MAE [30] on 12 datasets across 5 representative
human-centric tasks. Compared with previous task-specific methods and human-centric pre-training
methods, HAP achieves state-of-the-art results on 11 datasets of 4 tasks. We discuss each task next.
Pedestrian attribute recognition. The goal of pedestrian attribute recognition is to assign fine-
grained attributes to pedestrians, such as young or old, long or short hair, etc. Table 1b shows that
HAP surpasses previous state-of-the-art on all of the three commonly used datasets, i.e., +0.17%
on PA-100K [47], +0.57% on RAP [39], and +0.36% on PETA [18]. It can be observed that our
proposed HAP effectively accomplishes this fine-grained human characteristic understanding tasks.
Person ReID. The aim of person ReID is to retrieve a queried person across different cameras.
Table 1c shows that HAP outperforms current state-of-the-art results of MSMT17 [74] by +5.0%
(HAP 78.0% vs. MALE [50] 73.0%) and +1.0% (HAP 78.1% vs. SOLIDER [8] 77.1%) under the
input resolution of 256× 128 and 384× 128, respectively. HAP also achieves competitive results
on Market-1501 [87], i.e., 93.9% mAP with 384 × 128 input size. For a fair comparison, we also
report the results of HAP with extra convolution modules following [50], denoted as HAP‡. It brings
further improvement by +1.3% and +2.0% on MSMT17 and Market-1501 with resolution of 384.
Review that previous ReID pre-training methods [81, 23, 90, 51] usually adopt contrastive learning
approach. These results show that our HAP with MIM is more effective on the person ReID task.
Text-to-image person ReID. This task uses textual descriptions to search person images of interest.
We use the pre-trained model of HAP as the initialization of the vision encoder in this task. Table1e
shows that HAP performs the best on the three popular text-to-image benchmarks. That is, HAP
achieves 68.05%, 61.80% and 49.35% Rank-1 on CUHK-PEDES [42], ICFG-PEDES [20] and
RSTPReid [89], respectively. Moreover, HAP is largely superior than MAE [30], e.g., 68.05% vs.
60.19% (+7.86%) on CUHK-PEDES. It clearly reveals that human structure priors especially human
keypoints and structure-invariant alignment indeed provide semantically rich human information,
performing well for human identification and generalizing across different domains and modalities.
2D pose estimation. This task requires to localize anatomical keypoints of persons by understanding
their structure and movement. For fair comparisons, we also use multiple datasets as in [78] and
larger image size as in [82, 8] during model training. Table 1d shows that HAP outperforms previous
state-of-the-art results by +0.3%, +1.0%, +3.1% on MPII [1], COCO [46], AIC [75], respectively.
Meanwhile, we find both multi-dataset training and large resolution are beneficial for our HAP.
3D pose and shape estimation. We then lift HAP to perform 3D pose and shape estimation by
recovering human mesh. Considering that there is no existing method that performs this task on
a plain ViT backbone, we thus follow the implementation of [15] and just replace the backbone
to a plain ViT. The results are listed in Table 1f. It is interesting to find that despite this simple
implementation, our HAP achieves competitive results for the 3D pose task even HAP does not see
any 3D information. These observation may suggest that HAP improves representation learning
ability on human structure from the 2D keypoints information, and transfers its ability from 2D to 3D.
CAE [9] vs MAE [30]. HAP is model-agnostic that can be integrated into different kinds of MIM
methods. We also apply HAP to the CAE framework [9] for human-centric pre-training. Table 2
shows that HAP with CAE [9] achieves competitive performance on various human-centric perception
tasks, especially on discriminative tasks such as person ReID that HAP with CAE is superior than
HAP with MAE [30] by 1.6% on Market-1501 (with the input resolution of 256× 128), and text-to-
image person ReID that HAP with CAE performs better than HAP with MAE by 2.35% on RSTPReid.
These observations demonstrate the versatility and scalability of our proposed HAP framework.
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Table 3: Main properties of HAP. “HSP”, “HPM”, and “SIA” stand for human structure priors,
human part prior for mask sampling, and structure-invariant alignment, respectively. We compare
HAP with the baseline of MAE ImageNet pretrained model on the representative benchmarks.

method HSP HPM SIA MSMT17 MPII CUHK-PEDES 3DPW ↓ PA-100K
baseline 68.9 90.3 66.49 57.4 83.41
HAP-0 ✓ 74.1 90.9 67.69 56.2 85.50
HAP-1 ✓ ✓ 75.1 91.1 67.95 56.2 85.83
HAP-2 ✓ ✓ 75.6 91.6 68.00 56.1 86.38
HAP ✓ ✓ ✓ 76.4 91.8 68.05 56.0 86.54

MAE [30] 62.0 89.6 60.19 58.0 79.56

Table 4: Ablation on (left) number of samples and (right) training epochs for pre-training of HAP.

samples MSMT17 MPII
∼0.5M 66.9 90.4
∼1.0M 71.9 91.2
∼2.1M 76.4 91.8

epochs MSMT17 MPII
100 72.2 91.3
200 73.9 91.6
400 76.4 91.8

4.3 Main properties

We ablate our HAP in Table 3. The analyses of main properties are then discussed in the following.
Pre-training on human-centric data. Our baseline, using default settings of [30] and LUPerson [23]
as pre-training data, has achieved great improvement than original MAE [30], e.g., +6.9% mAP
on MSMT17 and +6.30% Rank-1 on CUHK-PEDES. It shows that pre-training on human-centric
data benefits a lot for human-centric perception by effectively bridging the domain gap between the
pre-training dataset and downstream datasets. This observation is in line with previous works [23, 51].

Human structure priors. We denote HAP-0 to represent human structure priors, i.e., large scaling
ratio and block-wise masking with intermediate masking ratio, introduced in Section 3.1. HAP-0
performs better than the baseline method, especially on MSMT17 with +5.2% improvement. It
clearly reveals that human structure priors can help the model learn more human body information.

Human part prior. We further use human part prior to guide the mask sampling process. Compared
with HAP-1 and HAP-0, part-guided mask sampling strategy brings large improvement, e.g., +1.0%
on MSMT17 and +0.33% on PA-100K. It clearly shows that the proposed mask sampling strategy
with the guidance of human part prior has positive impact on the human-centric perception tasks.

Structure-invariant alignment. The structure-invariant alignment loss is applied on different masked
views to align them together. Compared with HAP-2 vs. HAP-0 and HAP vs. HAP-1, this alignment
loss results in +1.5% and +1.3% improvement on MSMT17, and +0.7% and +0.7% improvement on
MPII, respectively. It reflects that the model successfully captures human characteristics with this
loss. We provide more discussions about the alignment choices as well as the weight in Appendix.

Overall, our HAP greatly outperforms the original MAE [30] and the baseline by large margins across
various human-centric perception tasks, showing significant benefits of the designs of our HAP.

4.4 Ablation study

Number of samples. We compare using different number of data samples during pre-training in
Table 4 (left). Only using ∼0.5M LUPerson data already outperforms original MAE [30] pre-trained
on ImageNet [17]. Meanwhile, more pre-training data brings larger improvement for our HAP.
Training epochs. Table 4 (right) shows that pre-training only 100 epochs already yields satisfactory
performance. It suggests that HAP can effectively reduces training cost. These observations indicate
that HAP, as a human-centric pre-training method, effectively reduces annotation, data, and training
cost. Therefore, we believe HAP can be useful for real-world human-centric perception applications.
Visualization. To explore the structure information learned in the plain ViT encoder of HAP, we
probe its attention map by querying the patch of a random body keypoint. See visualizations in
Figure 6. Interestingly, we observe that HAP captures the relation among body parts. For example,
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Figure 6: Visualization on attention maps of body structure from the ViT encoder in HAP. For
each pair, we show (left) a randomly selected keypoint within a patch marked in red and (right) its
corresponding attention weight to other patches learned by HAP. Patches in deeper color indicate
more relevant to the selected keypoint region. The left two pairs are from LUPerson [23], the middle
two are from COCO [46], and the right two are from AIC [75]. It reveals that HAP is able to learn
human body structure information and successfully identifies the correlations among the body parts.

when querying the right hip of the player in the first image pair (from LUPerson), we see that there
are strong relations to the left leg, left elbow, and head. And when querying the left knee of the
skateboarder in the second image pair (from COCO), it is associated with almost all other keypoints.
These observations intuitively illustrate that HAP learns human body structure and generalizes well.

5 Conclusion

This paper makes the first attempt to use Masked Image Modeling (MIM) approach for human-centric
pre-training, and presents a novel method named HAP. Upon revisiting several training strategies,
HAP reveals that human structure priors have great benefits. We then introduces human part prior
as the guidance of mask sampling and a structure-invariant alignment loss to align two random
masked views together. Experiments show that our HAP achieves competitive performance on
various human-centric perception tasks. Our HAP framework is simple by unifying the learning
of two modalities within a single dataset. HAP is also versatility and scalability by being applied
to different MIM structures, modalities, domains, and tasks. We hope our work can be a strong
baseline with generative pre-training method for the future researches on this topic. We also hope our
experience in this paper can be useful for the general human-centric perception and push this frontier.

Broader impacts. The proposed method is pre-trained and evaluated on several person datasets, thus
could reflect biases in these datasets, including those with negative impacts. When using the proposed
method and the generated images in this paper, one should pay careful attention to dataset selection
and pre-processing to ensure a diverse and representative sample. To avoid unfair or discriminatory
outcomes, please analyze the model’s behavior with respect to different demographics and consider
fairness-aware loss functions or post-hoc bias mitigation techniques. We strongly advocate for
responsible use, and encourage the development of useful tools to detect and mitigate the potential
misuse of our proposed method and other masked image modeling techniques for unethical purposes.

Limitations. We use human part prior to guide pre-training, which is extracted by existing pose
estimation methods. Therefore, the accuracy of these methods could affect the pre-training quality.
Besides, due to the limitations in patch size, the masking of body parts may not be precise enough. If
there are better ways to improve this, it should further enhance the results. Nonetheless, the proposed
HAP method still shows promising performance for a wide range of human-centric perception tasks.
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A Details of pre-training

Model structure. We adopt MAE-base [30] as the basic structure of HAP. It consists of an encoder
and a lightweight decoder. The encoder follows the standard ViT-base [21] architecture, comprising
12 common Transformer blocks [66] with 12 attention heads and a hidden size of 768. The decoder
is relatively small, which consists of 8 Transformer blocks with 16 attention heads and a hidden size
of 512. Sine-cosine position embeddings are added to representations of both encoder and decoder3.
We also use CAE-base [9] as the basic structure. Please refer to [9] for more details of the structure.

Training data. LUPerson [23] is a large-scale person dataset with ∼4.2M images (see Figure 8a).
Following [51], we use a subset of LUPerson with ∼2.1M images for pre-training. The resolution of
the input images is set to 256×128 following previous works [23, 90, 51, 50]. The data augmentation
follows [50], which involves random resizing and cropping, and horizontal flipping. We utilize
ViTPose [78], a popular 2D pose estimation method, to extract the keypoints of LUPerson as the
human structure prior in our HAP. Given that our HAP does not rely on ground-truth labels, it can be
pre-trained on a combination of several large-scale person datasets after extracting their keypoints.
We speculate that employing multi-dataset co-training can further improve the performance of HAP,
as observed in [78]. We also recognize that our HAP would derive great benefits from more accurate
keypoints (e.g., human-annotated keypoints) if available. We will discuss this point in details later.

Table 5: Hyper-parameters of pre-training. HAP follows most of the settings of MAE and CAE.
dataset method batch size epochs warmup epochs base learning rate optimizer weight decay

LUPerson MAE [30] 4096 400 40 1.5e-4 AdamW 0.05
LUPerson CAE [30] 2048 400 10 1.5e-4 AdamW 0.05

Implementations details. We follow most of the training settings of MAE/CAE except using training
epochs of 400 (Table 5). Different from MAE/CAE, HAP has a large scaling ratio of 80%, and an
intermediate masking ratio of 50% with block-wise masking strategy, as introduced in the main paper.

B Details of human-centric perception tasks

We list the training details of human-centric perception tasks in Table 1 of the main paper as follows.

B.1 Person ReID

Table 6: Hyper-parameters of person ReID.
dataset batch size epochs learning rate optimizer weight decay layer decay drop path

MSMT17 64 100 8e-3 AdamW 0.05 0.4 0.1
Market-1501 64 100 8e-3 AdamW 0.05 0.4 0.1

We consider two ReID datasets: MSMT17 [74] (Figure 8b) and Market-1501 [87] (Figure 8c) with
the codebase 4 of [50]. The input image resolutions are set to 256 × 128 and 384 × 128. Data
augmentations are the same as [50], including resizing, random flipping, padding, and random
cropping. Following [32, 64, 8, 16], the model is fine-tuned using a cross-entropy loss and a triplet
loss with equal weights of 0.5. We also consider using a convolution-based module [50] to further
improve results. The evaluation metric of mAP (%) is reported. See hyper-parameters in Table 6.

B.2 2D human pose estimation.

HAP is evaluated on MPII [1] (Figure 8d), MS COCO [46] (Figure 8e), and AI Challenger (AIC) [75]
(Figure 8f). We use the codebase 5 of [78]. Resolutions of 256× 192 and 384× 288 are employed.

3In this paper, we conduct all experiments on base-sized model to verify the effectiveness of our method. In
fact, all scales of models are compatible with HAP.

4https://github.com/YanzuoLu/MALE
5https://github.com/ViTAE-Transformer/ViTPose
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Table 7: Hyper-parameters of 2D pose estimation. †/+: multi-dataset training/384×288 resolution.
dataset batch size epochs learning rate optimizer weight decay layer decay drop path

MPII/MPII+ 512 210 1.0e-4 Adam - - 0.30
COCO/COCO+ 512 210 2.0e-4 AdamW 0.1 0.80 0.29
AIC/AIC+ 512 210 5.0e-4 Adam - - 0.30
MPII†/COCO†/AIC† 1024 210 1.1e-3 AdamW 0.1 0.77 0.30
MPII†+/COCO†+/AIC†+ 512 210 5.0e-4 AdamW 0.1 0.75 0.30

Data augmentations are random horizontal flipping, half body transformation, and random scaling
and rotation. We follow the common top-down setting, i.e., estimating keypoints of the instances
detected [76]. We use mean square error (MSE) [78] as the loss function to minimize the difference
between predicted and ground-truth heatmaps. Following [78], we also perform multi-dataset training
setting by co-training on MPII, MSCOCO, and AIC. Evaluation metric of PCKH (%) is reported for
MPII, and AP (%) is reported for MS COCO and AIC. See the details of hyper-parameters in Table 7.

B.3 Text-to-image person ReID

Table 8: Hyper-parameters of text-to-image person ReID.
dataset batch size epochs learning rate optimizer

CUHK-PEDES 64 60 1e-3 Adam
ICFG-PEDES 64 60 1e-3 Adam
RSTPReid 64 60 1e-3 Adam

We employ three commonly used datasets, i.e., CUHK-PEDES [42] (Figure 8g), ICFG-PEDES [20]
(Figure 8h), RSTPReid [89] (Figure 8i). The codebase 6 of [59] is used. The resolution is 384× 128.
We adopt resizing and random horizontal flipping as data augmentations. BERT [19] is used to extract
embeddings of texts, which are then fed to Bi-LSTM [27]. Feature dimensions of images and texts
are both set to 384. The BERT is frozen while Bi-LSTM and ViT are fine-tuned. We report Rank-1
(%) metric for the results on all datasets. The details of the hyper-parameters can be found in Table 8.

B.4 3D pose and shape estimation

Table 9: Hyper-parameters of 3D pose and shape estimation.
dataset batch size epochs learning rate optimizer

3DPW 192 11 1e-4 SGD

We perform 3D pose and shape estimation on 3DPW [67] (Figure 8j) using the codebase 7 of [15].
The resolution is 256 × 256. Data augmentations follow [15]. We minimize a pose loss, i.e., l1
distance between the predicted 3D joint coordinates and the pseudo ground-truth, and a mesh loss,
i.e., loss for predicted SMPL parameters [53, 55]. We report MPJPE, PA-MPJPE, MPVPE. The
former two are for 3D pose, while the latter one is for 3D shape. Hyper-parameters are in Table 9.

B.5 Pedestrian attribute recognition

We evaluate HAP on three popular datasets, i.e., PA-100K [47] (Figure 8k), RAP [39] (Figure 8l), and
PETA [18] (Figure 8m). We implement it using the codebase 8 of [36]. The resolution is 256× 192.
Data augmentations consist of resizing and random horizontal flipping. The binary cross-entropy loss
is employed, and the evaluation metric of mA (%) is reported. Find the hyper-parameters in Table 10.

6https://github.com/Galaxfy/ReID-test1
7https://github.com/hongsukchoi/3DCrowdNet_RELEASE
8https://github.com/valencebond/Rethinking_of_PAR
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Table 10: Hyper-parameters of pedestrian attribute recognition.
dataset batch size epochs learning rate schedule optimizer weight decay

PA-100K 64 55 1.7e-4 cosine AdamW 5e-4
RAP 64 8 2.4e-4 cosine AdamW 5e-4
PETA 64 50 1.9e-4 cosine AdamW 5e-4

C Study of human part prior

head upper body left arm right arm left leg right leg

Figure 7: Part masking with keypoints. We divide human body structure into 6 parts following [60].
For each input image, we randomly select 0 to 6 parts (following a uniform distribution) and mask
patches located on them (according to the sequence of human part selection). For each selected
part, we mask the patches within the bounding boxes of the corresponding keypoint pairs, i.e., head:
{(nose, left eye), (nose, right eye), (left eye, right eye), (left eye, left ear), (right eye, right ear)}; upper
body: {(left shoulder, right hip), (right shoulder, left hip)}; left arm: {(left shoulder, left elbow), (left
elbow, left wrist)}; right arm: {(right shoulder, right elbow), (right elbow, right wrist)}; left leg: {(left
hip, left knee), (left knee, left ankle)}; right leg: {(right hip, right knee), (right knee, right ankle)}.

Details of part masking with keypoints. We incorporate human parts, a human structure prior, into
pre-training. Figure 7 illustrates the details of how to mask each of the six body parts with keypoints.

Table 11: Guidance in mask sampling. Baseline uses no guidance, i.e., random block-wise masking.
guidance MSMT17 MPII

attention map 71.7 90.4
keypoint 75.9 91.6

part 76.4 91.8
baseline 75.6 91.6

Masking guidance in mask sampling strategy. We study different guidance, reported in Table 11.
Some MIM works [83, 29, 6, 37] use attention map to identify and mask the informative image
patches. However, this design performs poorly in human-centric pre-training, achieving even lower
performance than baseline (71.7 vs. 75.6 on MSMT17). We conjecture that the underlying reason is
the challenge for the model to obtain precise and meaningful attention maps, especially in the initial
stage of the pre-training process. That may be why recent works [40, 37, 6] start to employ strong pre-
trained models to assist mask sampling. In contrast, we directly employ intuitive and explicit human
part prior, i.e., human keypoints, to guide mask sampling, which shows great potential. Besides,
we observe that only masking patches located on keypoints, instead of human parts, improves little.
It indicates that masking a whole human body works better, similar to the finding that block-wise
masking performs better than random masking in human-centric pre-training (see the main paper).

Part selection. Here, we ablate different part selection strategies in Table 12. We observe that
selecting a fixed number of parts is not beneficial. Compared to a whole range, selecting within a
small range has a little improvement. It shows that more part variations brings more randomness,
which is good for pre-training. Similar to the findings in recent studies [83, 29, 6, 37] that a deliberate
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Table 12: Part selection for masking. Baseline uses no guidance, i.e., random block-wise masking.
part selection MSMT17 MPII

3 75.4 91.5
6 74.4 91.0

unif{0, 3} 76.1 91.7
unif{0, 6} 76.4 91.8
baseline 75.6 91.6

design of mask sampling strategy would have a positive impact, our part selection strategy is beneficial
for human-centric pre-training, resulting in great performance on a range of downstream tasks.

Using keypoints as target. Since keypoints can also be used as supervision, we perform this baseline
by making the decoder predict keypoints instead of pixels. The obtained results are 50.3% on
MSMT17 and 89.8% on MPII with 100-epoch pre-training, while our HAP is 72.2% and 91.3%. The
possible reason is that regressing keypoints may lose informative details provided by pixels, which
has negative impact on the tasks. In contrast, HAP incorporates prior knowledge of structure into
pre-training, which is beneficial to maintain both semantic details and information of body structure.

Using another keypoint detector. To study the robustness of HAP to the extracted keypoints, we
make a simple exploration by employing another off-the-shelf keypoint detector named OpenPose [3].
It achieves 72.0% on MSMT17 and 91.2% on MPII with 100-epoch pre-training. The results are
comparable to our HAP with ViTPose [78] as the pose detector (72.2% and 91.3% on MSMT17 and
MPII respectively), demonstrating that our HAP is generally robust to the keypoint detector method.

D Study of structure-invariant alignment

Table 13: Analysis of loss weight γ. γ = 0 represents our baseline that does not use alignment loss.
γ MSMT17 MPII

0.5 75.6 91.2
0.1 76.3 91.8

0.05 76.4 91.8
0.01 76.0 91.6

0 (baseline) 75.1 91.1

Loss weight γ. Table 13 demonstrates that the weight γ of Eq.2 is beneficial across a wide range.

Table 14: Type of two views in alignment. The “feature 1” and “feature 2” are aligned via Lalign.
feature 1 feature 2 MSMT17 MPII

masked view global view 74.5 91.0
masked view visible view 76.1 91.7
masked view masked view 76.4 91.8
baseline 75.1 91.1

Type of two views in alignment. By default, we use two random masked views for alignment. We
further explore other two types of alignment, see Table 14. Aligning the masked view with the global
view (i.e., without masking) shows poor performance. We attribute it to the high degree of overlap
between the two views, which makes the task too easy. Aligning the masked view and the visible
view with no overlap yields improvement, but still inferior than the default. It shows that learning
subtle humans characteristics by aligning random views of corrupted body structure is important.

Removing negative samples in the alignment loss. We use the loss of SimSiam [11] instead. The
results are 76.1% (SimSiam) vs. 76.4% (ours) on MSMT17, 91.6% (SimSiam) vs. 91.8% (ours) on
MPII. It demonstrates that our HAP still works well if removing the negatives in the alignment loss.
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(a) LUPerson [23] (for pre-training). (b) MSMT17 [74] (for person ReID).

(c) Market-1501 [87] (for person ReID). (d) MPII [1] (for 2D pose estimation).

(e) MS COCO [46] (for 2D pose estimation). (f) AI Challenger (AIC) [75] (for 2D pose estimation).

(g) CUHK-PEDES [42] (for text-to-image ReID). (h) ICFG-PEDES [20] (for text-to-image ReID).

(i) RSTPReid [89] (for text-to-image ReID). (j) 3DPW [67] (for 3D pose and shape estimation).

(k) PA-100K [47] (for attribute recognition). (l) RAP [39] (for attribute recognition).

(m) PETA [18] (for attribute recognition).

Figure 8: Example images of the used datasets. Our proposed HAP is pre-trained on (a) LUPerson,
and evaluated on a broad range of tasks and datasets, including (b-c) person ReID, (d-f) 2D pose
estimation, (g-i) text-to-image person ReID, (j) 3D pose and shape estimation, (k-m) pedestrian
attribute recognition. These datasets encompass diverse environments with varying image quality,
where persons are varied by scales, occlusions, orientations, truncation, clothing, appearances, and
postures, demonstrating the the great generalization ability of HAP in human-centric perception.
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