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Abstract

In this paper, we introduce a novel analysis of neural networks based on geometric (Clifford)
algebra and convex optimization. We show that optimal weights of deep ReLU neural
networks are given by the wedge product of training samples when trained with standard
regularized loss. Furthermore, the training problem reduces to convex optimization over
wedge product features, which encode the geometric structure of the training dataset. This
structure is given in terms of signed volumes of triangles and parallelotopes generated by
data vectors. The convex problem finds a small subset of samples via ℓ1 regularization to
discover only relevant wedge product features. Our analysis provides a novel perspective on
the inner workings of deep neural networks and sheds light on the role of the hidden layers.

1 Introduction

While there has been a lot of progress in developing deep neural networks (DNNs) to solve practical machine
learning problems (Krizhevsky et al., 2012; LeCun et al., 2015; OpenAI, 2023), the inner workings of neural
networks is not well understood. A foundational theory for understanding how neural networks work is still
lacking despite extensive research over several decades. In this paper, we provide a novel analysis of neural
networks based on geometric algebra and convex optimization. We show that weights of deep ReLU neural
networks learn the wedge product of a subset of training samples when trained by minimizing standard
regularized loss functions. Furthermore, the training problem for two-layer and three-layer networks reduces
to convex optimization over wedge product features, which encode the geometric structure of the training
dataset. This structure is given in terms of signed volumes of triangles and parallelotopes generated by data
vectors. By the addition of an additional ReLU layer, the wedge products are iterated to yield a richer
discrete dictionary of wedge features. Our analysis provides a novel perspective on the inner workings of
deep neural networks and sheds light on the role of the hidden layers.

1.1 Prior work

The quest to understand the internal workings of neural networks (NNs) has led to numerous theoretical and
empirical studies over the years. A striking discovery is the phenomenon of "neural collapse," observed when
the representations of individual classes in the penultimate layer of a deep neural network tend to a point
of near-indistinguishability (Papyan et al., 2020). Despite this insightful finding, the underlying mechanism
that enables this collapse is yet to be fully understood. Linearizations and infinite-width approximations
have been proposed to explain the inner workings of neural networks (Jacot et al., 2018; Chizat et al.,
2019; Radhakrishnan et al., 2023). However, these approaches often simplify the rich non-linear interactions
inherent in deep networks, potentially missing out on the full spectrum of dynamics and behaviors exhibited
during training and inference.

Infinite dimensional convex neural networks were introduced in Bengio et al. (2005), offering insights into
their structure. Following work analyzed optimization and approximation properties of infinite convex neural
networks (Bach, 2017). Although these works advanced the understanding of convexity in infinite dimensional
NNs, they also highlight the computational challenges inherent in training infinite dimensional models,
including solving a finite dimensional non-convex problems to add a single neuron (Bach, 2017). On the
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Figure 1: An illustration of the geometric interpretation of optimal ReLU neurons. The break-
lines/breakpoints pass through a subset of special training samples.

other hand, it has been noted that the activation patterns of deep ReLU networks exhibit a structured yet
poorly understood simplicity. The work Hanin and Rolnick (2019) highlighted that the actual number of
activation regions a ReLU network learns in practice is significantly smaller than the theoretical maximum.

Previous studies (Fisher and Jerome, 1975; Mammen and Van De Geer, 1997) have investigated splines in
relation to ℓ1 extremal problems, demonstrating the adaptability of spline models to local data characteristics.
More recent work (Balestriero et al., 2018) connected deep networks to spline theory, showing that many deep
learning architectures could be interpreted as max-affine spline operators. Approximation properties of ReLU
and squared ReLU networks with regularization were studied in (Klusowski and Barron, 2018). The authors
in Savarese et al. (2019) considered infinitely wide univariate ReLU networks and showed that the minimum
squared ℓ2 norm fit is given by a linear spline interpolation. Another line of work (Parhi and Nowak, 2021;
2022) developed a variational framework to analyze functions learned by deep ReLU networks, revealing
that these functions belong to a space similar to classical bounded variation-type spaces. In a similar spirit,
connections to kernel Banach spaces via representer theorems were developed in Bartolucci et al. (2023).
The work Unser (2019) introduced a general representer theorem that connects deep learning with splines
and sparsity. In contrast, our results provide an independent and novel perspective on the optimal weights
of a deep neural networks through geometric algebra, and may shed light into the spline theory of deep
networks. In particular, the relation between linear splines and one-dimensional ReLU networks discovered
in Savarese et al. (2019) is generalized to arbitrary dimension and depth in our work. The key ingredient in
our analysis is the use of wedge products, which are not present in any work analyzing neural networks to
the best of our knowledge.

The relationship between neural networks and geometric structures has been another area of research focus.
Convex optimization and convex geometry viewpoint of neural networks has been extensively studied in
recent work (Pilanci and Ergen, 2020; Ergen and Pilanci, 2021a; Bartan and Pilanci, 2021; Ergen and
Pilanci, 2021b;c; Wang and Pilanci, 2022; Wang et al., 2021; Ergen et al., 2022a; Lacotte and Pilanci, 2020).
However, previous works have focused mostly on computational aspects of convex reformulations. This work
provides an entirely new set of convex reformulations, which are different from the ones in the literature.
Two main advantages of our approach are that our results hold for arbitrary depth and dimension, and that
they provide a geometric interpretation and novel closed-form formulas, which can be used to polish any
existing deep neural network.

1.2 Summary of results

The work in this paper diverges from other approaches by using Clifford’s geometric algebra and convex
analysis to characterize the structure of optimal neural network weights. We show that the optimal weights
for deep ReLU neural networks can be found via the closed-form formula, xj1∧. . .∧xjk

, known as a k-blade in
geometric algebra, with ∧ signifying the wedge product. For each individual neuron, this expression involves
a special subset of training samples indexed by (j1, . . . , jk), which may vary across neurons. Surprisingly,
the entire network training procedure can be reinterpreted as a purely discrete problem that identifies this
unique subset for every neuron. Moreover, we show that this problem can be cast as a Lasso variable selection
procedure over wedge product features, algebraically encoding the geometric structure of the training dataset.
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The Unexpected Neuron Functionality. The conventional belief suggests that artificial neurons op-
timize their response by aligning with the relevant input samples (Carter et al., 2019), a notion inspired
by the direction-sensitive neurons observed within the visual cortex (Hubel and Wiesel, 1968). However,
this interpretation hits a dead end in large DNNs, with numerous neurons responding to unrelated features,
making it nearly impossible to understand the specific role of individual neurons (O’Mahony et al., 2023).
Contrary to this conventional wisdom, our findings reveal that ReLU neurons are, in fact, orthogonal to a
specific set of data points, due to the properties of the wedge product. As a consequence, these neurons
yield a null output for this distinct subset of training samples, diverging completely from the anticipated
alignment. This outcome underscores a nuanced understanding; rather than merely aligning with input
samples, the neurons assess the oriented distance relative to the affine hull encapsulated by the special sub-
set of training samples. This concept is visually explained in Figure 1 (a-b), where ReLU activation in 1D
and 2D is interpreted as an oriented distance function. The optimal breaklines of the ReLU neurons, i.e.,
{x : wT x+b = 0}, intersect with a select group of special training samples, expressed using a simple equation
involving wedge products, leading to a zero output from the neurons for these instances, as illustrated in
Figure 1(c). This result challenges the traditional interpretations of the role of hidden layers in DNNs, and
provides a fresh perspective on the inner workings of deep neural networks. We show for the first time that
geometric algebra provides the right set of concepts and tools to work with such oriented distances, enabling
the transformation of the problem into a simple convex formulation.

Decoding DNNs with Geometric Algebra. Our results show that within a deep neural network, when
an input sample x is multiplied with a trained neuron, it yields the product xT ⋆ (xj1 ∧ . . .∧xjk

). Leveraging
geometric algebra, this product can be shown to be equal to the signed distance between x and the linear
span of the point set xj1 , . . . , xjk

, scaled by the length of the neuron. This allows the neurons to measure the
oriented distance between the input sample and the affine hull of the special subset of samples (see Figure
1 for an illustration). Rectified Linear Unit (ReLU) activations transform negative distances, representing
inverse orientations, to zero. When this operation is extended across a collection of neurons within a layer, the
layer’s output effectively translates the input sample into a coordinate system defined by the affine hulls of a
special subset of training samples. Consequently, each layer is fundamentally tied solely to a specific subset of
the training data. This subset can be identified by examining the weights of a trained network. Furthermore,
with access to these training samples, the entirety of the network weights can be reconstructed using the
wedge product formula. Moreover, when this operation is repeated through additional ReLU layers, our
analysis reveals a geometric regularity within the space partitioning of the network, highlighting a consistent
pattern of translations and interactions with dual vectors (see Figure 3). This geometric elucidation sheds
fresh light on the mysterious roles played by the hidden layers in DNNs.

1.3 Notation

In our notation, lower-case letters are employed to represent vectors, while upper-case letters denote matrices.
We use lower-case letters for vectors and upper-case letters for matrices. The notation [n] represents integers
from 1 to n. We use a multi-index notation to simplify indexing matrices and tensors. Specifically, j =
(j1, ..., jk) is a multi-index and

∑
j denotes the summation operator over all indices included in the multi-

index j, i.e.,
∑

j1
· · ·
∑

jk
. Given a matrix K ∈ Rn×p, an ordinary index i ∈ [n], and a multi-index j =

(j1, ..., jk) where ji ∈ [di] ∀i ∈ [k], the notation Kij denotes the (i, v(j1, ..., jk))-th entry of this matrix,
where v represents the function that maps indices (j1, ..., jk) to a one-dimensional index according to a
column-major ordering. Formally, we can define v(j1, ..., fd) := (j1 − 1) + (j2 − 1)d1 + (j3 − 1)d1d2 + ... +
(jn − 1)d1d2...dk−1. We allow the use of multi-index and ordinary indices together, e.g.,

∑
j ajvj1 · · · vjd

=∑
j1,···jd

a(j1,··· ,jd)vj1 · · · vjd
. The notation Ki· denotes the i-th row of K. The notation K·j denotes the j-th

column of K. The p-norm of a d-dimensional vector w for some p ∈ (0,∞) is represented by ∥w∥p, and it is
defined as ∥w∥p ≜ (

∑d
i=1 |wi|p)1/p. In addition, we use the notation ∥w∥0 to denote the number of non-zero

entries of w and ∥w∥∞ to denote the maximum absolute value of the entries of w. We use the notation Bd
p for

the unit p-norm ball in Rd given by {w ∈ Rd : ∥w∥p ≤ 1}. The notation dist(x,Y) is used for the minimum
Euclidean distance between a vector x ∈ Rd and a subset Y ⊆ Rd. Vol(C) denotes d-volume of a subset
C ⊆ Rd. The notation (·)+ is used the positive part of a real number. When applied to a scalar multiple of
a pseudoscalar in a geometric algebra Gd such as αI ∈ Gd, where I2 = ±1, the notation (αI)+ = (α)+ ∈ R
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represents the positive part of the scalar component of I. We use the notation Vol+(·) = (Vol(·))+ to
denote the positive part of signed volumes. We extend this notation to other functions, e.g., det+(·) denotes
the positive part of the determinant, and dist+(·, ·) denotes the positive part of the Euclidean distance.
diam(S) denotes the Euclidean diameter of a subset S ⊆ Rd. Span(S) and Aff(S) denote the linear span
and affine hull of a set of vectors S respectively. We overload scalar functions to apply to vectors and matrices
element-wise. For instance (Xw)+ denotes the ReLU activation applied to each entry of Xw. We use ≳ to
denote the inequality up to a constant factor.

2 Setting and Methodology

2.1 Preliminaries

Consider a deep neural network

f(x) = σ(W (L) · · ·σ(W (1)x + b(1)) · · ·+ b(L)), (1)

where σ : R → R is a non-linear activation function, W (1), . . . , W (L) are trainable weight matrices,
b(1), ..., b(L) are trainable bias vectors and x ∈ Rd is the input. The activation function σ(·) operates on
each element individually.

Training two-layer ReLU networks. We will begin by examining the regularized training objective for
a two-layer neural network with ReLU activation function and m hidden neurons.

p∗ ≜ min
W (1), W (2), b(1), b(2)

ℓ
( m∑

j=1
σ(XW

(1)
j + 1nb

(1)
j )W (2)

j + b(1), y
)

+ λ

m∑
j=1
∥W (1)

j ∥
2
p + ∥W (2)

j ∥
2
p, (2)

where X ∈ Rn×d is the training data matrix, W (1) ∈ Rd×m, W (2) ∈ Rm×c and b(1) ∈ Rm, b(2) ∈ R are
trainable weights, ℓ(·, y) is a convex loss function, y ∈ Rn is a vector containing the training labels, and
λ > 0 is the regularization parameter. Here we use the p-norm in the regularization of the weights. Initially,
we will assume an output dimension of c = 1, and we will extend this to arbitrary values of c. Typical
loss functions used in practice include squared loss, logistic loss, cross-entropy loss and hinge loss, which are
convex functions.

When p = 2, the objective (2) reduces to the standard weight decay regularized NN problem

p∗ = min
θ, b

ℓ
(
fθ,b(X), y

)
+ λ∥θ∥2

2. (3)

Here, θ is a vector containing the weights W1 and W2 in vectorized form and

fθ, b(X) ≜
m∑

j=1
σ(XW

(1)
j + 1nb

(1)
j )W (2)

j + 1nb(2), (4)

where 1n is a vector of ones of length n. When b is set to zero, we refer to the neurons in the first layer
as the bias-free neurons. When b is not set to zero, we refer to the neurons in the first layer as the biased
neurons. Note that the bias terms are excluded from the regularization.

Training deep ReLU networks. We will extend our analysis by also considering the objective in (3) using
the deeper network model show in (1). It will be shown by a simple induction that the structural results for
two-layer networks applies to blocks of layers in arbitrarily deep ReLU networks.

Augmented data matrix. In order to simplify our expressions for the case of p = 1, we augment the set
of n training data vectors of dimension d by including d additional vectors from the standard basis of Rd

and let ñ = n + d. Specifically, we define the augmented data samples as {xi}n+d
i=1 = {xi}n

i=1∪{ei}d
i=1, where

xi ∈ Rd represents the original training data points for 1 ≤ i ≤ n and ei is the i-th standard basis vector in
Rd for i ≥ n. We define X̃ = [x1, · · · , xn+d]T .
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Figure 2: Wedge product of two-dimensional (a) and three-dimensional (b) vectors in G2 and G3, and the
triangular area defined in the convex program from Theorem 2 (c)-(d).

2.2 Geometric Algebra

Clifford’s Geometric Algebra (GA) is a mathematical framework that extends the classical vector and linear
algebra and provides a unified language for expressing geometric constructions and ideas (Artin, 2016). GA
has found applications in classical and relativistic physics, quantum mechanics, electromagnetics, computer
graphics, robotics and numerous other fields (Doran and Lasenby, 2003; Dorst et al., 2012). GA enables
encoding geometric transformations in a form that is highly intuitive and convenient. More importantly, GA
unifies several mathematical concepts, including complex numbers, quaternions, and tensors and provides a
powerful toolset.

We consider GA over a d-dimensional Euclidean space, denoted as Gd. The fundamental object in Gd is the
multivector, M = ⟨M⟩0 + ⟨M⟩1 + . . . + ⟨M⟩d, which is a sum of vectors, bivectors, trivectors, and so forth.
Here, ⟨M⟩k denotes the k-vector part of M . For instance, in the two-dimensional space G2, a multivector
can be written as M = a + v + B, where a is a scalar, v is a vector, and B is a bivector. In this case, the
basis elements are not just the canonical vectors e1, e2 but also the grade-2 element e1e2. A key operation in
GA is the geometric product, denoted by juxtaposition of operands: ab. For vectors a and b, the geometric
product can be expressed as ab = a · b + a∧ b, where · denotes the dot product and ∧ denotes the wedge (or
outer) product.

The dot product a · b is a scalar representing the projection of a onto b. The wedge product a ∧ b is a
bivector representing the oriented area spanned by a and b. In the geometric algebra Gd, higher-grade
entities (trivectors, 4-vectors, etc.) can be constructed by taking the wedge product of a vector with a
bivector, a trivector, and so on. A k-blade is a k-vector that can be expressed as the wedge product of k
vectors. For example, the bivector a ∧ b is a 2-blade.

Figure 2(a) shows two important properties of the wedge product in R2:

1. Wedge product of two vectors represents the signed area of the paralleogram spanned by the two vectors.
In the left figure, a∧ b is represented by the blue parallelogram. When a, b are two-dimensional vectors, the
magnitude of a ∧ b is equal to this area and is given by

∣∣∣det
[
a1 b1
a2 b2

] ∣∣∣ = |a1b2 − b1a2|. The sign of the area
is determined by the orientation of the vectors: the area is positive when a can be rotated counter-clockwise
to b and negative otherwise.
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2. The wedge product is anti-commutative: In the right figure, b∧a is represented by the red parallelogram.
It has the same area as a∧ b = −b∧ a, but an opposite orientation. As a result, we have a∧ a = −a∧ a = 0.

By considering the half of the parallelogram, the area of the triangle in R2 formed by 0, a and b shown by
the dashed line in Figure 2(a) is given by the magnitude of 1

2 a ∧ b. The signed area of a generic triangle in
R2 formed by three arbitrary vectors a, b and c is given by

1
2(a− c) ∧ (b− c) = 1

2
(
a ∧ b− a ∧ c− c ∧ b + c ∧ c

)
= 1

2
(
a ∧ b + b ∧ c + c ∧ a

)
,

which is a consequence of the distributive property of the wedge product. Therefore, the signed area of
the triangle is half the sum of the wedge products for each adjacent pair in the counter-clockwise sequence
a→ b→ c→ a encircling the triangle.

The metric signature in Gd over the Euclidean space is characterized by all positive signs, indicating that
all unit basis vectors are mutually orthogonal and have unit Euclidean norm. Let us call the standard
(Kronecker) basis in d-dimensional Euclidean space e1, . . . , ed, which satisfies e2

i = 1∀i and eiej = −ejei ∀i ̸=
j. The wedge product I ≜ e1 ∧ · · · ∧ ed = e1 . . . ed represents the highest grade element and is defined to be
the unit pseudoscalar. The inverse of I is defined as I−1 = ed . . . e1, and satisfies I−1I = 1. Squaring I, we
obtain I2 = (e1e2)2 = e1e2e1e2 = −1, analogous to the unit imaginary scalar in complex numbers, which is
a subalgebra of G2.

The ℓ2 norm of a multivector is defined as the square root of the sum of the squares of the scalar coefficients
of its basis k-vectors. For a multivector M it holds that ∥M∥2

2 = ⟨M†M⟩0, where M† is the reversion
of M . M† is analogous to complex conjugation and is defined by three properties: (i) (MN)† = N†M†,
(ii) (M + N)† = M† + N†, (iii) M† = M when M is a vector. For instance, (e1e2e3e4)† = e4e3e2e1
and (e1 + e2e3)† = e1 + e3e2. The definition of inner and wedge products can be naturally extended to
multivectors. In particular, the inner-product between two k-vectors M = α1 ∧ · · · ∧αk and N = β1 ∧ · · ·βk

is defined by the Gram determinant M ·N ≜ det(⟨αi, βj⟩ki,j=1).

Hodge dual. A k-blade can be viewed as a k-dimensional oriented parallelogram. For each such par-
alleogram, we may associate a (d− k)-dimensional orthogonal complement. This duality between k-vectors
and (d−k)-vectors is established through the Hodge star operator ⋆. For every pair of k-vectors M, N ∈ Gd,
there exists a unique (d− k)-vector ⋆M ∈ Gd with the property that

⋆M ∧N = (M ·N) e1 ∧ · · · ∧ ed = (M ·N) I.

We may also express the Hodge dual of a k-vector M as ⋆M = MI−1, where I−1 is the inverse of the unit
pseudoscalar. This linear transformation from d-vectors to d− k vectors defined by M → ⋆M is the Hodge
star operator. An example in G3 is ⋆e1 = e1I−1 = e1e3e2e1 = e3e2.

Generalized cross product and wedge products. The usual cross product of two vectors is only defined
in R3. However, the wedge product can be used to define a generalized cross product in any dimension. The
generalized cross product in higher dimensions is an operation that takes in d−1 vectors in an Rd and outputs
a vector that is orthogonal to all of these vectors. The generalized cross product of the vectors v1, v2, . . . , vn−1
can be defined via the Hodge dual of their wedge product as ×(v1, v2, . . . , vn−1) ≜ ⋆(v1 ∧ v2 ∧ . . .∧ vn−1).. It
holds that ×(v1, v2, . . . , vn−1) · vi = 0 for all i = 1, . . . , n− 1. The signed distance of a vector x to the linear
span of a collection of vectors x1, ..., xd−1 can be expressed via the generalized cross product and wedge
products as

dist(x, Span(x1, . . . , xd−1)) = ×(x1, . . . , xd−1)T x

∥ × (x1, . . . , xd−1)∥2
= ⋆(x ∧ x1 ∧ · · · ∧ xd−1)
∥x1 ∧ · · · ∧ xd−1∥2

.

This formulation stems from an intuitive geometric principle: the ratio of the volume of a parallelotope
P(x, x1, . . . , xd−1), which is spanned by the vectors x, x1, . . . , xd−1, to the volume of its base P(x1, . . . , xd−1),
the parallelotope formed by x1, . . . , xd−1 alone. This ratio effectively captures the height of the parallelotope
relative to its base, which corresponds to the distance of x from the subspace spanned by x1, . . . , xd−1. Note
that the Hodge dual ⋆ transforms the d-vector in the numerator into a scalar. We provide a subset of other
important properties of the generalized cross product in Section 7.1 of the Appendix.
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2.3 Convex duality

Convexity and duality plays a key role in the analysis of optimization problems (Boyd and Vandenberghe,
2004). Here, we show how the convex dual of a non-convex neural network training problem can be used to
analyze optimal weights.

Convex duals of neural network problems. The non-convex optimization problem (2) has a convex
dual formulation derived in recent work (Pilanci and Ergen, 2020; Ergen and Pilanci, 2021a) given by

p∗ ≥ d∗ ≜ max
v∈Rn

−ℓ∗(v, y) s.t. |vT σ(Xw)| ≤ λ, ∀w ∈ Bd
p , (5)

where we take the network to be bias-free (see Section 7.3.5 for biased neurons). Here, ℓ∗(·, y) is the convex
conjugate of the loss function ℓ(·, y) defined as ℓ∗(v, y) ≜ supw∈Rd vT w − ℓ(w, y) and Bd

p is the unit p-norm
ball in Rd. Moreover, it was shown in Pilanci and Ergen (2020) that when σ is the ReLU activation, strong
duality holds, i.e., p∗ = d∗, when the number of neurons m exceeds a critical threshold. The value of this
threshold can be determined from an optimal solution of the dual problem in (5). This result was extended
to deeper ReLU networks in Ergen and Pilanci (2021c) and to deep threshold activation networks in Ergen
et al. (2022b).

Our main strategy to analyze the optimal weights is based on analyzing the extreme points of the dual
constraint set in (5). In the following section, we present our main results.

3 Theoretical Results

3.1 One-dimensional data

We start with the simplest case where the training data is one-dimensional, i.e., d = 1 and the number of
training points, n is arbitrary.
Theorem 1. For all values of the regularization norm p ∈ [1,∞), the two-layer neural network problem in
(2) can be recast as the following ℓ1-regularized convex optimization problem

min
z∈R2n

t∈R

ℓ
(
Kz + 1nt, y

)
+ λ∥z∥1 , (6)

where the entries of the matrix K are given by

Kij ≜

{
(xi − xj)+ 1 ≤ j ≤ n

(xj−n − xi)+ n < j ≤ 2n,
(7)

and the number of neurons obey m ≥ ∥z∗∥0. An optimal network can be constructed as

f(x) =
n∑

j=1
z∗

j (x− xj)+ +
n∑

j=1
z∗

j+n(xj − x)+ + t∗. (8)

where z∗ and t∗ are optimizers of (6).
Remark. It will be revealed in the following sections that the term (xi − xj)+, as present in (7), stands for

the wedge product
([

xi

1

]
∧
[
xj

1

])
+

, yielding the positive part of the signed length of the interval [xi, xj ].

Appending 1 to the vectors is due to the presence of bias in the neurons. This quantity can also be seen as a
directional distance we denote as dist+(xi, xj), which will be generalized to higher dimensions in the sequel.
As we delve into higher dimensional NN problems, the above wedge product expression will be substituted by
the positive part of the signed volume of higher dimensional simplices such as triangles and parallelograms.
Remark. This result is a refinement of the linear spline characterization of one-dimensional infinitely wide
ReLU NNs (Savarese et al., 2019; Parhi and Nowak, 2020). The linear spline dictionary is given by the
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collection of ramp functions {(x − xj)+, (xj − x)+}n
j=1, which is well-known in adaptive regression splines

(Friedman, 1991). Our work is the first to recognize this dictionary via wedge products, characterize it as
a finite dimensional Lasso problem, and associate it to volume forms. This enables us to generalize the
result to higher dimensions and arbitrarily deep ReLU networks. It is important to note that unlike the
existing literature on infinite neural networks (Bach, 2017; Bengio et al., 2005), our characterization of the
dictionaries is discrete rather than continuous, enabling standard convex programming.

An important feature of the optimal network in (8) is that the break points are located only at the training
data points. In other words, the prediction f(x) is a piecewise linear function whose slope only may change
at the training points with at most n breakpoints. However, since the optimal z∗ is sparse, the number of
pieces is at most ∥z∗∥0, and can be smaller than n.

We note that convex programs for deep networks trained for one-dimensional data were considered in Ergen
et al. (2022b); Zeger et al. (2024). In Ergen and Pilanci (2021a), it was shown that the optimal solution
to (3) may not be unique and may contain break points at locations other than the training data points.
However, Theorem 1 reveals that at least one optimal solution is in the form of (8). In addition, it is shown
that the solution is unique when the bias terms are regularized (Boursier and Flammarion, 2023). We discuss
uniqueness in Section 5.

3.2 Two-dimensional data

We now consider the case where d = 2 and use the two-dimensional geometric algebra G2. Interestingly, we
will observe that the volume of the interval [xi, xj ] appearing above generalizes to the volume of a triangle.
We will observe that the ℓ1 and ℓ2-regularized problems exhibit certain differences from one another. We
start with the ℓ1-regularized problem p = 1, since the form of the convex program is simpler to state due
to the polyhedral nature of the ℓ1 norm. In the case of p = 2, we require a mild regularity condition on the
dataset to handle the curvature of the ℓ2 norm.

3.2.1 ℓ1 regularization - neurons without biases

Theorem 2. For p = 1 and d = 2, the two-layer neural network problem without biases can be recast as the
following convex ℓ1-regularized optimization problem

min
z∈Rñ

ℓ
(
Kz, y

)
+ λ∥z∥1. (9)

Here, the matrix K ∈ Rñ×ñ is defined as Kij = κ(xi, xj) where

κ(x, x′) := (x ∧ x′)+

∥x′∥1
= 2Vol+(△(0, x, x′))

∥x′∥1
, (10)

provided that the number of neurons satisfy m ≥ ∥z∗∥0. Here, △(0, xi, xj) denotes the triangle formed by
the path 0→ xi → xj, and Vol+(·) denotes the positive part of the signed area of this triangle. An optimal
network can be constructed as follows: f(x) =

∑ñ
j=1 z∗

j κ(x, xj) , where z∗ is an optimal solution to (9). The
optimal first layer neurons are given by a scalar multiple of the generalized cross product, ×xj = ⋆xj, with
breaklines x ∧ xj = 0, corresponding to non-zero z∗

j for j ∈ [ñ].
Remark. Note that the optimal hidden neurons given by the generalized cross products, ×xj , are orthogonal
to the training data points xj for j = 1, ..., ñ. Therefore, the breaklines of each ReLU neuron pass through
the origin and some data point xj .

We provide an illustration the matrix K in the Figure 2(c). The signed area of the triangle formed by
the path 0 → xi → xj , denoted by the wedge product 1

2 xi ∧ xj is positive when this path is ordered
counterclockwise and negative otherwise. In this figure, the positive part of this signed area given by
Vol+(△(0, xi, xj)) = 1

2 (xi ∧ xj)+ is non-zero only when xi is to the right of the line passing through the
origin and xj . When bias terms are added to the neurons, the matrix K changes as shown in Figure 2(d) (see
Section 7.3.5 in the Appendix). Figure 3 illustrates these breaklines and compares with deeper networks.

8
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3.2.2 ℓ2 regularization (weight decay) - neurons with biases

Now we show that similar results holds for the ℓ2 regularization (weight decay) for a near-optimal solution,
also demonstrate the case with biases. We first quantify near-optimality as follows:
Definition 1 (Near-optimal solutions). We call a set of parameters that achieve the cost p̂ in the two-layer
NN objective (3) ϵ-optimal if

p∗ ≤ p̂ ≤ (1 + ϵ)p∗ , (11)

where p∗ is the global optimal value of (3) and ϵ > 0.
Definition 2 (Range dispersion in R2). We call that a two-dimensional dataset is ϵ-dispersed for some
ϵ ∈ (0, 1

2 ] if

|θi+1 − θi| (mod π) ≤ ϵπ ∀i ∈ [n], (12)

where θi are the angles of the vector xi with respect to the horizontal axis, i.e., xi = ∥xi∥2
[

cos(θi) sin(θi)
]T

sorted in increasing order. We call the dataset locally ϵ-dispersed if the above condition holds for the set of
differences {xi − xj}n

i=1 for all j ∈ [n].

Range dispersion measures the diversity of the normal planes corresponding to the training data. Local
dispersion holds when the data centered at any training sample is dispersed. In the left panel of Figure 32
in the Appendix, we illustrate the range dispersion condition for a two-dimensional dataset.
Theorem 3. Suppose that the training set {x1, ..., xn} is locally ϵ-dispersed. For p = 2 and d = 2, an
ϵ-optimal network can be found via the following convex optimization problem

min
Z∈Rñ×ñ

t∈R

ℓ
(
Kz + 1t, y

)
+ λ∥z∥1, (13)

when the number of neurons obey m ≥ ∥z∗∥0. Here, the matrix K ∈ Rñ×(ñ
2) is defined as Kij := κ(xi, xj1 , xj2)

for j = (j1, j2), where

κ(x, x′, x′′) =
(
x ∧ x′ + x′ ∧ x′′ + x′′ ∧ x

)
+

∥x′ ∧ x′′∥2
= 2Vol+(△(x, x′, x′′))

∥x′ − x′′∥2
= dist+(x, Aff(x′, x′′)) ,

for j = (j1, j2). The ϵ-optimal neural network can be constructed as f(x) =
∑

j=(j1,j2) z∗
j κ(x, xj1 , xj2), where

z∗ is an optimal solution to (13). The optimal hidden neurons and biases are given by a scalar multiple of
⋆(xj1 −xj2), and −⋆ (xj2 ∧ (xj1 −xj2)) respectively, with breaklines (x−xj2)∧ (xj1 −xj2) = 0 for j = (j1, j2)
corresponding to non-zero z∗

j .

3.3 Arbitrary dimensions

Now we consider the generic case where d and n are arbitrary and we use the d-dimensional geometric algebra
Gd. Suppose that X ∈ Rn×d is a training data matrix such that rank(X) = d without loss of generality.
Otherwise, we can reduce the dimension of the problem to rank(X) using Singular Value Decomposition
(see Lemma 23 in the Appendix), hence d can be regarded as the rank of the data. Since many datasets
encountered in machine learning problems are close to low rank, this method can be used to reduce the
number of variables in the convex programs we will introduce in this section.

3.3.1 ℓ1 regularization - neurons without biases

Theorem 4. The 2-layer neural network problem in (2) when p = 1 and biases set to zero is equivalent to
the following convex Lasso problem

min
z

ℓ
(
Kz, y

)
+ λ∥z∥1. (14)

9
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The matrix K is defined as Kij = κ(xi, xj1 , ..., xjd−1) for j = (j1, ..., jd−1), where

κ(x, u1, ..., ud−1) =
(
x ∧ u1 ∧ ... ud−1

)
+

∥u1 ∧ ... ∧ ud−1∥1
= Vol+(P(x, u1, ..., ud−1))

∥u1 ∧ ... ∧ ud−1∥1
, (15)

the multi-index j = (j1, ..., jd−1) indexes over all combinations of d−1 rows xj1 , ..., xjd−1 ∈ Rd of X̃ ∈ Rñ×d.
An optimal neural network can be constructed as follows: f(x) =

∑
j=(j1,...,jd−1) z∗

j κ(x, xj1 , ..., xjd−1), where
z∗ is an optimal solution to (14). The optimal hidden neurons are given by a scalar multiple of the generalized
cross-product ×(xj1 , · · · , xjd−1) = ⋆(xj1 ∧ · · · ∧xjd−1), with breaklines x∧xj1 ∧ · · · ∧xjd−1 = 0, corresponding
to non-zero z∗

j for j = (j1, · · · , jd−1).

We recall that P(x, u1, ..., ud−1) denotes the parallelotope formed by the vectors x, u1, ..., ud−1, and the
positive part of the signed volume of this parallelotope is given by Vol+(P(x, u1, ..., ud−1)).
Remark. The optimal hidden neurons are orthogonal to d − 1 data points, i.e., ×(xj1 , · · · , xjd−1) · xi = 0
for all i ∈ {j1, · · · , jd−1}. Therefore, the hidden ReLU neuron is activated on a halfspace defined by the
hyperplane that passes through data points xj1 , · · · , xjd−1 .

The proof of this theorem can be found in Section 8.2 of the Appendix.
Remark. We note that the combinations can be taken over d − 1 linearly independent rows of X since
otherwise the volume is zero and corresponding weights can be set to zero. Moreover, the permutations
of the indices xj1 , ..., xjd−1 may only change the sign of the volume Vol(P(xi, xj1 , ..., xjd−1)). Therefore,
it is sufficient to consider each subset that contain d − 1 linearly independent data points and compute
Vol+(±P(xi, xj1 , ..., xjd−1)) for each subset.

3.3.2 ℓ2 regularization - neurons with biases

We begin by defining a parameter that sets an upper limit on the diameter of the chambers in the arrangement
generated by the rows of the training data matrix X.
Definition 3. We define the Maximum Chamber Diameter, denoted as D(X), using the following equation:

D(X) := max
w, v∈Rd, ∥w∥2=∥v∥2=1

sign(Xw)=sign(Xv)

∥w − v∥2. (16)

Here w and v are unit-norm vectors in Rd, such that the sign of the inner-product with the data rows are
the same.

We call a dataset ϵ-dispersed if D(X) ≤ ϵ, and locally ϵ-dispersed when the dataset centered at any training
sample is ϵ dispersed, i.e., D(X − 1xT

j ) ≤ ϵ ∀j ∈ [n].
Remark. The quantity D(X) is a generalization of the 2D range dispersion in Definition 2 to arbitrary
dimensions, and captures the diversity of the ranges of the hyperplanes whose normals are training points
{xi}n

i=1. We prove in Section 7.2 of the Appendix that when the data is randomly generated, e.g., i.i.d. from
a Gaussian distribution, the maximum chamber diameter D(X) is bounded by ( d

n )1/4 with probability that
approaches 1 exponentially fast. In Lemma 10 of Section 7.2, we show that this implies Gaussian data is
ϵ-dispersed and locally ϵ-dispersed when as n ≳ ϵ−4d with high probability.
Theorem 5. Consider the following convex optimization problem

p̂λ := min
z

ℓ
(
Kz, y

)
+ λ∥z∥1 . (17)

The matrix K is defined as Kij = κ(xi, xj1 , ..., xjd−1) for bias-free neurons and Kij = κb(xi, xj1 , ..., xjd−1)
for biased neurons where

κ(x, u1, ..., ud−1, ud) =
(
x ∧ u1 ∧ · · · ∧ ud−1

)
+

∥u1 ∧ ... ∧ ud−1∥2
= dist+

(
x, Span(u1, ..., ud−1)

)
κb(x, u1, ..., ud−1, ud) =

(
(x− ud) ∧ (u1 − ud) ∧ · · · ∧ (ud−1 − ud)

)
+

∥(u1 − ud) ∧ ... ∧ (ud−1 − ud)∥2
= dist+

(
x, Aff(u1, ..., ud−1)

)
.

10
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the multi-index j = (j1, ..., jd−1) is indexing over all combinations of d − 1 rows xj1 , ..., xjd−1 ∈ Rd of
X ∈ Rn×d. When the maximum chamber diameter satisfies D(X) ≤ ϵ for bias-free neurons or D(X−1xT

j ) ≤
ϵ∀j ∈ [n] for biased neurons, for some ϵ ∈ (0, 1), we have the following approximation bounds

p∗ ≤ p̂λ ≤
1

1− ϵ
p∗, (18)

p̂(1−ϵ)λ ≤ p∗ ≤ p̂λ ≤ p∗ + ϵ

1− ϵ
λR∗, (19)

Here, p∗ is the value of the optimal NN objective in (2) (with or without bias terms) and R∗ is the corre-
sponding weight decay regularization term of an optimal NN. Bias-free and biased networks that achieves the
cost p̂λ in (2) are

f(x) =
∑

j=(j1,...,jd−1)

z∗
j κ(xj1 , ..., xjd−1) and f(x) =

∑
j=(j1,...,jd−1)

z∗
j κb(xj1 , ..., xjd−1) ,

respectively, where z∗ is an optimal solution to (17).
Remark. The above result shows that the convex optimization produces a near-optimal solution when the
chamber diameter is small, which is expected when the number of data points is large.

3.4 Deep neural networks

Consider the deep neural network of L layers composed of sequential two-layer blocks considered in Section
(2.1) as follows

fθ(x) = W (L)σ(W (L−1) · · ·W (3)σ(W (2)σ(W (1)x) · · · )), θ ≜ (W (1), · · · , W (L)) .

Theorems 12 and 13 in the Appendix extend Theorem 4 to three-layer ReLU networks and derive their
corresponding convex Lasso formulation over a larger discrete wedge product dictionary. Here, we illustrate
that our results apply to neural networks of arbitrary depth.

3.4.1 ℓp regularization

Suppose that the number of layers, L, is even and consider the non-convex training problem

p∗ ≜ min
θ

ℓ(fθ(X), y) + λ

L/2∑
ℓ=1

m∑
j=1
∥W (2ℓ−1)

j· ∥2
p + ∥W (2ℓ)

·j ∥2
p , (20)

where X ∈ Rn×d is the training data matrix, y ∈ Rn is a vector containing the training labels, and λ > 0
is the regularization parameter. Here, f(X) represents the output of the deep NN over the training data
matrix X given by fθ(X) = [fθ(x1) · · · fθ(xn)]T . Note that the ℓp norms in the regularization terms are
taken over the columns of odd layer weight matrices and rows of even weight matrices, which is consistent
with the two-layer network objective in (2). When p = 2, the regularization term is the squared Frobenius
norm of the weight matrices which reduces to the standard weight decay regularization term.
Theorem 6 (Structure of the optimal weights for ℓ1 regularization). The weights of an optimal solution of
(22) for p = 1 are given by

W
(1)
j = α

(1)
j ⋆ (x

j
(1)
1
∧ · · · ∧ x

j
(1)
d−1

) , and

W
(ℓ)
j = α

(ℓ)
j ⋆ (x̃(ℓ)

j
(ℓ)
1
∧ · · · ∧ x̃

(ℓ)
j

(ℓ)
d−1

) , for ℓ = 3, 5, ..., L− 1 , (21)

where α
(ℓ)
j are scalar weights and x̃

(ℓ)
i ≜ σ(W (ℓ−1) · · ·σ(W (1)xi) · · · )∀i. Here, W (ℓ) are optimal weights of

the ℓ-th layer for the problem (20), and j
(ℓ)
k ∈ [n] are certain indices.

11
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3.4.2 ℓ2 regularization

Consider the training problem (20) with p = 2, which simplifies to

p∗ ≜ min
θ

ℓ(fθ(X), y) + λ

L∑
ℓ=1
∥W (ℓ)∥2

F . (22)

Theorem 7 (Structure of the optimal weights for ℓ2 regularization). Consider an approximation of the
optimal solution of (22) given by

W
(1)
j = α

(1)
j ⋆ (x

j
(1)
1
∧ · · · ∧ x

j
(1)
d−1

) , and

W
(ℓ)
j = α

(ℓ)
j ⋆ (x̃(ℓ)

j
(ℓ)
1
∧ · · · ∧ x̃

(ℓ)
j

(ℓ)
d−1

) , for ℓ = 2, 3, ..., L , (23)

where α
(ℓ)
j are scalar weights, x̃

(ℓ)
i ≜ σ(W (ℓ−1) · · ·σ(W (1)xi) · · · ) and j

(ℓ)
k ∈ [n] are certain indices. The

above weights provide the same loss as the optimal solution of (22). Moreover, the regularization term is
only a factor 2/(1−ϵ) larger than the optimal regularization term, where ϵ is an uppper-bound on the chamber
diameters D(Xℓ) for ℓ = 0, ..., L − 2. Here, Xℓ = σ(· · ·σ(XW (1)) · · ·W (ℓ−1)) are the ℓ-th layer activations
of the network given by the weights (23).

3.4.3 Interpretation of the optimal weights

A fully transparent interpretation of how deep networks build representations can be given using our results.
We have shown that each optimal neuron followed by a ReLU activation measures the positive distance of an
input sample to the linear span (or affine hull, in the presence of bias terms) generated by a unique subset
of training points using the formula

(xT ⋆ (xj1 ∧ . . . ∧ xjk
))+ = dist+

(
x, Span(xj1 , ..., xjd−1)

)
.

The ReLU activation serves as a crucial orientation determinant in this context. By nullifying negative
signed distances, it effectively establishes a directionality in the space. Geometrically speaking, it delineates
the specific side of the affine hull relevant for a particular input sample. In intermediate layers, the formula
is applied to the activations of the previous layer, which are themselves signed distances to affine hulls of
subsets of training data.

Since each layer of the network consists of a number of neurons, the activations of the network transforms
the input data into a series of distances to these unique affine hulls as[

dist+
(
x, Span(x

j
(1)
1

, ..., x
j

(1)
k

)
)
, . . . , dist+

(
x, Span(x

j
(m)
1

, ..., x
j

(m)
k

)
)]

.

Moreover, the information encapsulated within the weights of the network can be succinctly represented
by the indices j

(1)
1 , . . . , j

(1)
k , . . . , j

(m)
1 , . . . , j

(m)
k . These indices highlight the pivotal training samples that

effectively determine the geometric orientation of each neuron. The formula essentially implies that the deep
neural network’s behavior and decisions are intrinsically tied to specific subsets of the training data, denoted
by these critical indices.

This interpretation not only offers a geometric perspective on neural networks but also explains the pivotal
role hidden layers play. Each hidden layer is a series of coordinate transformations, represented by the affine
hulls of various data point subsets. As the data progresses through the network, it gets transformed and
re-encoded, with every neuron contributing to this transformation based on its unique geometric connection
to the training dataset.

3.5 Space partitioning of optimal deep networks

We now illustrate the optimal two-layer neurons predicted by Theorems 4 and compare them with optimal
three-layer neurons (see Theorems 13-12 in the Appendix) as regularization tends to zero for p = 1 unless

12
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e1

e2

(a) Two-layer network with-
out biases

e1

e2

(b) Three-layer network
without biases

e1

e2

(c) Two-layer network with
biases

e1

e2

(d) Three-layer network
with biases

Figure 3: Optimal space partitioning of two-layer and three-layer ReLU networks predicted by Theorems 4
and 13 for p = 1. The blue lines represent the breaklines of optimal neurons. The red dots represent the
training data points. Theorem 13 is provided in the Appendix.

stated otherwise. Consider the two-dimensional training data {x1 = (1, 0), x2 = (0, 1), x3 = (−1, 0), x4 =
(0,−1)} shown in Figure 3.

In panel (a), we consider a two-layer ReLU network without biases. Two optimal neurons are (wT
1 x)+,

(wT
2 x)+, given by Theorem 2. Their breaklines, wT

1 x = 0 and wT
2 x = 0, are plotted as blue lines, and pass

through the origin and data points, since the optimal neurons are scalar multiples of the Hodge duals of
1-blades formed by data points.

In panel (b), we consider a three-layer ReLU network without biases, and we display all four optimal neurons
given by Theorem 12. In addition to the neurons with breaklines wT

1 x = 0 and wT
2 x = 0, we also have

wT
3 x = 0 and wT

4 x = 0 which are translations of the affine hulls, Aff(x1, x2) and Aff(x2, x3), to the origin.

In panel (c), we consider a two-layer ReLU network with biases regularized with p = 2, and we display all six
optimal neurons given by Theorem 3. Their breaklines pass between each pair of samples, since the optimal
neurons are scalar multiples of the Hodge duals of 1-blades formed by the differences of data points.

In panel (d), we consider a three-layer ReLU network with biases, and we display all 12 optimal neurons
given by Theorem 13. In addition to the breaklines that pass between each pair of samples, we also have
translations of all possible affine combinations of size two, e.g., Aff(x1, x2), Aff(x1, x3),..., to every data
point.

4 Numerical Results

In this section, we introduce and examine a numerical procedure to take advantage of the closed-form
formulas in refining neural network parameters and producing a geometrically interpretable network.

4.1 Refining neural network weights via geometric algebra

We apply the characterization of Theorem 4, which states that the hidden neurons are scalar multiples
of ⋆(xj1 ∧ · · · ∧ xjd−1), Additionally, they are orthogonal to the r − 1 training data points specified by
xj1 , · · · , xjd−1 , where r represents the rank of the training data matrix.

The inherent challenge lies in identifying the specific subset of the r − 1 training points needed to form
each neuron. Fortunately, this subset can be estimated when we have access to approximate neuron weights,
typically acquired using standard non-convex heuristics such as stochastic gradient descent (SGD) or variants
such as Adam and AdamW Kingma and Ba (2014); Loshchilov and Hutter (2018). After obtaining an
approximate weight vector for each neuron, we can gauge which subsets of training data are nearly orthogonal
to the neuron. This is achieved by evaluating the inner-products between the neuron weight and all training
vectors, subsequently selecting the r − 1 entries of the smallest magnitude. This refinement, which we term

13
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the polishing process, is delineated as follows for each neuron w1, ..., wm:
For each j ∈ [m] (optional: Append 1 to the training samples to account for the neuron bias term)

1. Calculate the inner-product magnitudes: |xT
i wj | for each i ∈ [n].

2. Identify the r − 1 training vectors with the minimal inner-product magnitude, denoted as
xj1 , · · · , xjd−1 .

3. Update the neuron using: wj ← ⋆(xj1 ∧ · · · ∧ xjd−1) = ×(xj1 , . . . , xjd−1). As a result, we have
wj ⊥ xj1 , . . . , xjd−1 . This can be done by solving the linear system wT

j xji
= 0 for i = 1, ..., r − 1, or

finding a minimal left singular vector of the matrix [xj1 , . . . , xjd−1 ], and normalizing wj such that
∥wj∥p = 1.

4. Optimize the weights of the following layer(s).

5. Optimize the scaling factors between consecutive layers (see Appendix 8.12.1).

As a result, each neuron is assigned a closed-form symbolic expression, which only depends on a small subset
of training samples.

To illustrate this method, we present two examples in Figure 4.

In Figure 4 (a), we investigate binary image classification on the CIFAR dataset (Krizhevsky and Hinton,
2009). A four-layer convolutional network composed of two convolutional layers with 3 × 3 × 32 filters and
two fully connected layers with 512 hidden neurons is trained to distinguish class 0 (airplane) from class 2
(bird). We train it via AdamW optimizer using default hyperparameters using 20 epochs and a batch size
of 2048. After training, we implement the proposed polishing process on the first layer, and re-train the
second-layer weights via convex optimization. The resulting average train/validation accuracies are plotted
over 5 independent trials to account for the randomness in optimization. We observe that the polishing
process improves both the training and test accuracy. In Section 6.1.1, we provide additional results with
different hyperparameters.

In Figure 4 (b), repeat the same polishing strategy for a small character-based autoregressive language
model. We train a two-layer ReLU network to predict the next character in a sequence of characters from
a small subset of Wikipedia consisting of first 650000 characters from the article titled ’Neural network
(machine learning)’ and other articles linked from the same page. We use the AdamW optimizer with a
learning rate of 10−4 and a batch size of 8192. The block size is set to 16 characters. We apply polishing
to the first layer and re-optimize the final layer weights via convex optimization. The resulting average
train/validation accuracies, along with 1-standard deviation error bars, are plotted over 8 independent trials
to account for the randomness in optimization. We observe a significant improvement in perplexity after
polishing when the number of neurons is large enough. In Section 6.1.5, we provide additional results with
different hyperparameters.

In the Appendix (Section 6.1), we provide a detailed analysis of the effect of changing the hyperparameters
and optimizers, including the learning rate, momentum parameters (β1 and β2 in Adam and AdamW),
batch sizes, number of epochs, and also present additional results with fully connected networks and other
binary classification tasks. We observe that the polishing process consistently improves the quality of the
weights, leading to a significant improvement in the accuracy of the network while making the neurons fully
interpretable as oriented distance functions via geometric algebra.

5 Discussion

In this work, we have presented an analysis that uncovers a deep connection between Clifford’s geometric
algebra and optimal ReLU neural networks. By demonstrating that optimal weights of such networks are
intrinsically tied to the wedge product of training samples, our results enable an understanding of how neural
networks build representations as explicit functions of the training data points. Moreover, these closed-form
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Figure 4: Comparison of AdamW and polishing CIFAR image classification (a) character-level MLP trained
on a small subset of Wikipedia (b). Section 6.1 in the Appendix contains additional numerical results,
including a comprehensive hyperparameter search.

functions not only provide a theoretical lens to understand neural networks, but also has the potential to
guide new architectures and training algorithms that directly harness these geometric insights.

Computational complexity. The computational complexity of the polishing process is dominated by step
3, which involves solving a linear system or finding a minimal left singular vector. This can be done in
O(n2r) time using the QR decomposition or the SVD. This process is repeated for each neuron, resulting in
a total complexity of O(n2rm), where m is the number of neurons. In contrast, the complexity of training
the neural network to global optimal using the convex programs derived in Theorems 4 is O(

(
n
r

)
n2), which

is tractable for small r. Note that for convolutional neural networks, the rank is bounded by the spatial size
of the filter, which is a small constant (Ergen and Pilanci, 2024). Another application where the data is
inherently low rank is Neural Radiance Fields (Mildenhall et al., 2021). The exponential complexity in r can
not be improved unless P = NP (Pilanci and Ergen, 2020; Wang and Pilanci, 2023). However, the convex
programs can be well-approximated by sampling the wedge products, in a similar manner to the randomized
sampling employed in convex formulations of NNs (Ergen and Pilanci, 2024; 2023). Recent work showed that
random sampling of polynomially many variables in the convex program (5) provides a strong approximation
with only logarithmic gap to the global optimum (Kim and Pilanci, 2024). Studying randomized algorithms
for geometric algebra is a promising and unexplored direction to make progress in this area.

Interpretability. Our findings also contribute to the broader challenge of neural network interpretabil-
ity. The polishing process is expected to improve the quality of the weights, leading to a significant im-
provement in the accuracy of the network while making the neurons fully interpretable as oriented dis-
tance functions via geometric algebra. More precisely, after polishing each ReLU neuron precisely outputs
(xT

i w)+ = dist+
(
xi, Span(xj1 , ..., xjd−1)

)
. By elucidating the roles hidden layers play in encoding geometric

information of training data points through signed volumes, we have taken a step towards a more transparent
and foundational theory of deep learning.

Uniqueness. We note that the optimal weights of a ReLU neural network are not unique, and permutation,
merging and splitting operations on the neurons can lead to equivalent networks. However, all globally opti-
mal solutions can be recovered via the set of optimal solutions of the convex program (5) by considering these
three operations (Mishkin and Pilanci, 2023; Wang et al., 2021). Moreover, under certain mild assumptions,
the convex program admits a unique solution (Boursier and Flammarion, 2023). In addition, all stationary
points of the non-convex training objective can be recovered via the convex program when certain variables
are constrained to be zero (Wang et al., 2021), up to permutation, merging and splitting. An important
open question is characterizig the entire optimal set of the convex programs via geometric algebra, which we
leave as future work.
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There are many other open questions for further research. Exploring how these insights apply to state-of-the-
art network architectures, or in the context of different regularization techniques and variations of activation
functions, such as the ones in attention layers, could be of significant interest. While our techniques allow for
the interpretation of layer weights in popular pretrained network models, we leave this for further research.
Additionally, practical implications of our results, including potential improvements to the polishing process
remain to be fully explored. Our results also underlines the potential and utility of integrating geometric
algebra into the theory of deep learning.
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Figure 5: Comparison of SGD and polishing via geometric algebra in the spiral dataset.

6 Appendix I - Additional Numerical Results

6.1 Additional Numerical Results

In this section, we provide additional experiments showcasing the effectiveness of the proposed polishing
process in enhancing the performance of neural networks. We consider a variety of datasets and architectures,
including a three-layer fully connected ReLU network, a four-layer convolutional neural network, and a two-
layer ReLU network for an autoregressive character-level text prediction task. We compare the performance
of the polishing process with the standard methods such as SGD, Adam and AdamW, and experiment with
all hyperparameters, including the learning rate, momentum parameters, number of epochs, and batch size.
We also provide a comparison of the decision regions pre and post-polishing, highlighting the enhanced data
distribution fit due to the polishing. It can be observed that the polishing process significantly improves
the performance of the neural networks, leading to a marked improvement in the objective value and the
decision regions, for a variety of datasets and architectures under different optimization hyperparameters.

6.1.1 Spiral dataset

Figure 5 for the 2D spiral dataset and a two-layer neural network optimized with squared loss. In the initial
panel of this figure, the training curve of a two-layer ReLU neural network from (2) is depicted, considering
p = 2 and weight decay regularization set at β = 10−5. The dataset, divided into two classes represented
by blue and red crosses, is showcased in the second panel. By resorting to the dual formulation in (5), the
global optimum value is computed. Notably, while SGD is far from the global optimum, the polishing process
enhances the neurons, leading to a marked improvement in the objective value—evidenced by the solid line
in the left panel. A comparative visualization of the decision region pre and post-polishing is presented in
the subsequent panels, highlighting the enhanced data distribution fit due to the polishing.
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6.1.2 Image classification and text prediction

We now consider the settings in Figure 4 and vary the optimization hyperparameters, including the momentum
parameter β1 of AdamW, the number of epochs, batch sizes for the four-layer convolutional neural network trained
on the CIFAR dataset. We consider three different binary classification tasks on the CIFAR benchmark, and a
character level text prediction task on the same subset of Wikipedia.

7.1. Four-layer convolutional neural network for CIFAR class 0 vs class 1
(a) Varying AdamW momentum parameter β1 and number of epochs
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Figure 6: AdamW, β1 = 0.9, bs=2048, epochs=10
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Figure 7: AdamW β1 = 0.8, bs=2048, epochs=10
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Figure 8: AdamW β1 = 0.6, bs=2048, epochs=10
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Figure 9: AdamW β1 = 0.9, bs=1024, epochs=10
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Figure 10: AdamW β1 = 0.6, bs=2048, epochs=5
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Figure 11: AdamW β1 = 0.9, bs=2048, epochs=20
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7.2. Four-layer convolutional network for CIFAR class 0 vs class 2

(a) Varying AdamW momentum parameter β1 and batch size (bs)
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Figure 12: AdamW, β1 = 0.9, bs=2048, epochs=10
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Figure 13: AdamW β1 = 0.8, bs=2048, epochs=10
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Figure 14: AdamW β1 = 0.6, bs=2048, epochs=10
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Figure 15: AdamW β1 = 0.9, bs=1024, epochs=10
(b) Varying number of epochs
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Figure 16: AdamW β1 = 0.6, bs=2048, epochs=5
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Figure 17: AdamW β1 = 0.9, bs=2048, epochs=20
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7.3. Four-layer convolutional neural network for CIFAR class 0 vs class 3

(a) Varying AdamW momentum parameter β1 and batch size (bs)
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Figure 18: AdamW, β1 = 0.9, bs=2048, epochs=10
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Figure 19: AdamW β1 = 0.8, bs=2048, epochs=10
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Figure 20: AdamW β1 = 0.6, bs=2048, epochs=10
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Figure 21: AdamW β1 = 0.9, bs=1024, epochs=10
(b) Varying number of epochs
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Figure 22: AdamW β1 = 0.6, bs=2048, epochs=5
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Figure 23: AdamW β1 = 0.9, bs=2048, epochs=20
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In this section, we vary the optimization hyperparameters, including the momentum parameters β1, β2 of AdamW,
the number of epochs, batch sizes for a three-layer fully-connected ReLU network with 512 in each hidden layer,
trained for binary classification CIFAR dataset. We consider the task of distinguishing class 1 (automobile) from 8
(ship). We display the average accuracies over 5 independent trials for each learning rate.

7.4. Three-layer fully connected ReLU network for CIFAR class 1 vs class 8
(a) Varying AdamW momentum parameter β1 when β2 = 0.999 (default), batch size=2048, epochs=5
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Figure 24: AdamW, β1 = 0.3
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Figure 25: AdamW β1 = 0.4
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Figure 26: AdamW β1 = 0.5
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Figure 27: AdamW β1 = 0.6
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Figure 28: AdamW β1 = 0.7

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Learning rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Accuracy vs. learning rate

Validation Accuracy - Original
Validation Accuracy - Polished
Train Accuracy - Original
Train Accuracy Polished

Figure 29: AdamW β1 = 0.9

24



Under review as submission to TMLR

7.5. Character based language model
In this section, we present additional numerical results for the character-based autoregressive language model. We
compare AdamW with polishing in a small subset of text from Wikipedia, consisting 52000 characters from the article
titled ’Neural network (machine learning)’. The block size is set to 16 characters and the batch size and learning rate
is varied.
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Figure 30: Character-level MLP (left) Adam with learning rate 10−4, batch size 2048 and (right) AdamW with
learning rate 10−3, batch size 2048.
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Figure 31: Character-level MLP (left) Adam with learning rate 10−4, batch size 512 and (right) AdamW with learning
rate 10−2, batch size 2048.
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7 Appendix II - Additional Theoretical Results

7.1 Generalized cross products

Definition 4. Let x1, . . . , xd−1 ∈ Rd be a collection of d− 1 vectors and let A =
[
x1, . . . , xd−1

]
∈ Rd×(d−1)

be the matrix whose columns are the vectors {xi}d−1
i=1 . The generalized cross product Berger (2009) of

x1, . . . , xd−1 is defined as

x1 × . . .× xd−1 = ×(x1, . . . , xd−1) ≜
d∑

i=1
(−1)i−1|Ai|ei, (24)

where Ai is the square matrix obtained from A by deleting the i-th row and {ei}d
i is the standard basis of

Rd.

We next list some properties of the generalized cross product.

• The cross product ×(x1, . . . , xd−1) is orthogonal to all vectors x1, . . . , xd−1.

• The cross product ×(x1, . . . , xd−1) equals zero if and only if x1, . . . , xd−1 are linearly dependent.

• The norm of the cross product is given by the (d − 1)-volume of the parallelotope spanned by
x1, . . . , xd−1, which is defined as

P (x1, . . . , xd−1) ≜
{ d−1∑

i=1
tixi | 0 ≤ ti ≤ 1 ∀i ∈ [d− 1]

}
,

where x1, . . . , xd−1 are linearly independent.

• The cross product changes its sign when the order of two vectors is interchanged, i.e., x1×x2× ...×
xd = −x2 × x1 × ...× xd due to the determinant expansion of the cross product in (24).

• Inner-product with a vector gives the d-volume of the parallelotope spanned by x1, . . . , xd−1 and the
vector, i.e.,

×(x1, . . . , xd−1)T x = det
[
x x1 . . . xd−1

]
= Vol

(
P (x, x1, . . . , xd−1)

)
.

• Distance of a vector x to the linear span of a collection of vectors x1, ..., xd−1 is given by

dist(x, Span(x1, . . . , xd−1)) =
Vol

(
P (x, x1, . . . , xd−1)

)
Vol

(
P (x1, . . . , xd−1)

) = ×(x1, . . . , xd−1)T x

∥ × (x1, . . . , xd−1)∥2
.

• Distance of a vector x to the affine hull of a collection of vectors x1, ..., xd is given by

dist(x, Aff(x1, . . . , xd−1)) =
Vol

(
P (x− xd, x1 − xd, . . . , xd−1)

)
Vol

(
P (x1 − xd, . . . , xd−1 − xd)

)
= ×(x1 − xd, . . . , xd−1 − xd)T (x− xd)

∥ × (x1 − xd, . . . , xd−1 − xd)∥2

=
⋆
(
(x1 − xd) ∧ . . . ∧ (xd−1 − xd) ∧ (x− xd)

)
∥(x1 − xd) ∧ . . . ∧ (xd−1 − xd)∥2

.

• The rejection of a vector x from the affine hull of a collection of vectors x1, ..., xd can be written
using Geometric Algebra Gd as

x−ProjAff(x1,...,xd)(x) = (x1 − xd) ∧ . . . ∧ (xd−1 − xd) ∧ (x− xd)
(x1 − xd) ∧ . . . ∧ (xd−1 − xd) .
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θi

θi + π

θi+1

xi

xi+1

ϵπ A

B

A′

B′

Figure 32: (left) An illustration of the angular dispersion condition. The angle between the span of two
consecutive vectors xi and xi+1 is bounded by ϵπ. (right) The maximum chamber diameter of this line
arrangement is the Euclidean distance between A and B, i.e., D(X) = ∥A−B∥.

When d = 3, the cross product reduces to the usual cross product of three vectors in R3. For example,a
b
c

×
a′

b′

c′

 =

bc′ − b′c
ca′ − c′a
ab′ − a′b

 .

When d = 2, the cross product of a vector ×x is rotation by a right angle in the clockwise direction in the
plane. For example,

×
([

a
b

])
=
[

b
−a

]
.

Detailed derivations of these results as well as further properties of generalized cross products can be found
in Section 8.11 of Berger (2009), and their connections to the volumes of parallelotopes and zonotopes can
be found in Gover and Krikorian (2010).

7.2 Data isometry and chamber diameter

7.2.1 Bounding the chamber diameter

Results from high dimensional probability can be used to establish bounds on the chamber diameter of
a hyperplane arrangement generated by a random collection of training points. A similar analysis was
considered in Plan and Vershynin (2014) for the purpose of dimension reduction.

We first show that the chamber diameter is small when the training dataset satisfies an isometry condition.
Lemma 8 (Isometry implies small chamber diameter). Suppose that the following condition holds

(1− ϵ)∥w∥2 ≤
1

αn
∥Xw∥1 ≤ (1 + ϵ)∥w∥2, ∀w ∈ Rd, (25)

where α ∈ R is fixed. Then, the chamber diameter D(X) defined in (16) is bounded by 4
√

ϵ.

Next, we show that the isometry condition is satisfied when the training dataset is generated from a random
distribution. Consequently, we obtain a bound on the chamber diameter of the hyperplane arrangement
generated by the random dataset.
Lemma 9 (Random datasets have small chamber diameter). Suppose that x1, · · · , xn ∼ N (0, Id) are n
random vectors sampled from the standard d-dimensional multivariate normal distribution and let X =
[x1, · · · , xn]T . Then, the ℓ2 diameter D(X) satisfies

D(X) ≤ 9
( d

n

)1/4
, (26)
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with probability at least 1− 2e−d/2.
Remark. We note that the constant 9 in the above lemma can be improved to 1 by using the more re-
fined analysis due to Gordon Gordon (1985). Moreover, the result can be extended to sub-Gaussian data
distributions. However, we use Lemma 8 since it is simpler and suffices for our purposes.
Lemma 10 (Random datasets are dispersed and locally dispersed). Suppose that x1, · · · , xn ∼ N (0, Id)
are n random vectors sampled from the standard d-dimensional multivariate normal distribution and let
X = [x1, · · · , xn]T . Suppose that n ≳ ϵ−4d. Then, the dataset X is ϵ-dispersed, i.e., D(X) ≤ ϵ and locally
ϵ-dispersed, i.e., D(X − 1xT

j ) ≤ ϵ ∀j ∈ [n] with high probability.

Proof. Lemma 9 immediately implies that the random dataset is ϵ-dispersed with high probability. We aim
to prove that for any j ∈ {1, . . . , n}, the modified dataset X ′ = X − 1xT

j satisfies D(X ′) ≤ ϵ, ∀j ∈ [n] with
high probability. Note that X − 1xT

j is also a set of i.i.d. Gaussian, except the j-th row, which is all-zeros.
Using the same derivation in the proof of Lemma 8 and 9, we have

(1− ϵ′)∥w∥2 ≤
1

α(n− 1)∥(X − 1xT
j )w∥1 ≤ (1 + ϵ′)∥w∥2, ∀w ∈ Rd, (27)

for ϵ′ = 5
√

d/(n− 1) and some α with probability at least 1−2e−d/2. Taking a union bound over j ∈ [n], we
observe that the above inequality holds simultaneously ∀j ∈ [n] with high probability at least 1− 2ne−d/2.
We set ϵ′ = ϵ/2 and obtain that the dataset X is locally ϵ-dispersed with high probability as long as
n ≳ ϵ−4d.

7.2.2 Dvoretzky’s Theorem

In this section, we present a connection to Dvoretzky’s theorem Dvoretzky (1959), which is a fundamental
result in functional analysis and high-dimensional convex geometry Vershynin (2011).
Theorem 11 (Dvoretzky’s Theorem). (Geometric version) Let C be a symmetric convex body in Rn. For
any ϵ > 0, there exists an intersection CS ≜ C ∩ S of C by a subspace S ⊆ Rn of dimension k(n, ϵ)→∞ as
n→∞ such that

(1− ϵ)B2 ⊆ CS ⊆ (1 + ϵ)B2

where B2 is the n-dimensional Euclidean unit ball.

The above shows that there exists a k-dimensional linear subspace such that the intersection of the convex
body C with this subspace is approximately spherical; that is, it is contained in a ball of radius 1 + ϵ and
contains a ball of radius 1− ϵ.

If we represent the linear subspace in Theorem 11 via the range of the matrix X and let C be the ℓ1 ball,
it is straightforward to show that Dvoretzky’s theorem reduces to the isometry condition (8) up to a scalar
normalization. Therefore, the isometry condition (8) can be interpreted as a condition to guarantee that the
ℓ1 ball is near-spherical when restricted to the range of the training data matrix.

7.3 Variations of the network architecture

7.3.1 Three-layer networks with bias-free first layer

We first consider the case when the first layer neurons W
(1)
j are size d× 1 ∀j ∈ [m] for some arbitrary d, and

the first layer neurons are bias-free, i.e., b
(1)
j = 0∀j ∈ [m]. We have the following theorem.

Theorem 12. The three-layer neural network problem when p = 1, W
(1)
j ∈ Rd×1, b

(1)
j = 0∀j ∈ [m], set to

zero is equivalent to the following convex Lasso problem

min
z,b

ℓ
(
K(1)z1 + K(2)z2 + 1nb, y

)
+ λ∥z∥1. (28)
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The matrices K(1) and K(2) are given by

K
(1)
ij :=

((
xi ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+ −

(
xj0 ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+

)
+

∥x̃j1 ∧ ... ∧ x̃jd−1∥1
(29)

=

(
Vol+

(
P(xi, x̃j1 , ..., x̃jd−1))−Vol+(P(xj0 , x̃j1 , ..., x̃jd−1)

))
+

∥x̃j1 ∧ ... ∧ x̃jd−1∥1
(30)

and

K
(2)
ij :=

(
Vol+

(
P(xj0 , x̃j1 , ..., x̃jd−1))−Vol+(P(xi, x̃j1 , ..., x̃jd−1)

))
+

∥x̃j1 ∧ ... ∧ x̃jd−1∥1
(31)

where j = (j0, j1, ..., jd−1). The multi-index (j1, ..., jd−1) indexes all combinations of d− 1 vectors from the
set
{
{xi}n

i=1, {xi − xj}n
i=1,j=1, {ek}d

k=1
}

and j0 ∈ [n]. Each optimal first layer neuron weight w ∈ Rd satisfy
equalities of the form

xT
i w = 0 (32)

(xi − xj)T w = 0 (33)
eT

k w = 0 , (34)

for a certain set of i, j ∈ [n], k ∈ [d]. An optimal network can be constructed as follows:

f(x) =
∑

j

z∗
1j

((
x ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+ −

(
xj0 ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+

)
+

∥x̃j1 ∧ ... ∧ x̃jd−1∥1
(35)

+
∑

j

z∗
2j

((
xj0 ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+ −

(
x ∧ x̃j1 ∧ ... ∧ x̃jd−1

)
+

)
+

∥x̃j1 ∧ ... ∧ x̃jd−1∥1
, (36)

where z∗ is an optimal solution to (28).
Remark. In addition to the optimal neurons for the two-layer case (Theorem 4), here we obtain additional
neurons orthogonal to a subset of the data points and their pairwise differences. See Figure 3(b) for an
illustration.

7.3.2 Three-layer networks with biased neurons

We now consider the case when the first layer neurons W
(1)
j are size d × 1 ∀j ∈ [m] for some arbitrary

dimension d, and the all the three layers contain trainable bias terms. We have the following theorem.
Theorem 13. Consider the three-layer neural network problem when p = 1 and W

(1)
j ∈ Rd×1 ∀j ∈ [m].

Each optimal first layer neuron weight-bias pair (w, b) ∈ Rd × R satisfy equalities of the form

(xi − xℓ)T w = 0 (37)
(xi − xj)T w = 0 (38)

eT
k w = 0 (39)

xT
ℓ w + b = 0 , (40)

for a certain set of i, j, ℓ ∈ [n], k ∈ [d].
Remark. In addition to the optimal neurons for the two-layer case (Theorem 16), here we obtain additional
neurons whose breaklines are translations of the affine hull of a subset of the data points to certain other
data points. See Figure 3(d) for an illustration.
Remark. We note that the optimization problem and optimal networks take a similar form as in Theorem
12, except that the xi are replaced by xi − xℓ and the bias term b = −xT

ℓ w is added.
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7.3.3 Two-layer Vector-output Neural Networks

Consider the vector-output neural network problem in (2) given by

p∗
v ≜ min

W (1),W (2),b
ℓ
( m∑

j=1
σ(XW

(1)
j + 1bj)W (2)

j , Y
)

+ λ

m∑
j=1
∥W (1)

j ∥
2
p + ∥W (2)

j ∥
2
p. (41)

Here, the matrix Y ∈ Rn×c contains the c-dimensional training labels, and W (1) ∈ Rd×m, W (2) ∈ Rm×c, and
b ∈ Rm are trainable weights. We have the following extension of the convex progam (14) for vector-output
neural networks.

p̂v ≜ min
Z∈Rp×c

ℓ
(
KZ, Y

)
+ λ

∑
j=1
∥Z·j∥2, (42)

where Zj is the j-th column of the matrix Z.
Theorem 14. Define the matrix K as follows

Kij =
(
xi ∧ xj1 ∧ · · · ∧ xjd−1

)
+

∥xj1 ∧ ... ∧ xjd−1∥p
,

where the multi-index j = (j1, ..., jd−1) is over all combinations of r rows and r = rank(X). It holds that

• when p = 1, the convex problem (42) is equivalent to the non-convex problem (41), i.e., p∗
v = p̂v.

• when p = 2, the convex problem (42) is a 1
1−ϵ approximation of the non-convex problem (41), i.e.,

p∗
v ≤ p̂v ≤ 1

1−ϵ p∗
v, where ϵ ∈ (0, 1) is an upper-bound on the maximum chamber diameter D(X).

An neural network achieving the above approximation bound can be constructed as follows:

f(x) =
∑

j

Z∗
·j

(
xi ∧ xj1 ∧ · · · ∧ xjd−1

)
+

∥xj1 ∧ ... ∧ xjd−1∥p
, (43)

where Z∗ is an optimal solution to (42).

7.3.4 Two-dimensional two-layer networks with no bias

Theorem 15. Suppose that the training set {x1, ..., xn} is ϵ-dispersed. For p = 2 and d = 2, an ϵ-optimal
network can be found via the following convex optimization problem

min
z∈Rn

ℓ
(
Kz, y

)
+ λ∥z∥1. (44)

Here, the matrix K ∈ Rn×n is defined as Kij = κ(xi, xj), where

κ(x, x′) =
(x ∧ x′)

+
∥x′∥2

= 2Vol+(△(0, x, x′))
∥x′∥2

= dist+(x, Span(x′)) ,

and the number of neurons obey m ≥ ∥z∗∥0. Here, Span(xj) denotes the linear span of the vector xj. The
ϵ-optimal neural network can be constructed as follows:

f(x) =
ñ∑

j=1
z∗

j κ(x, xj) , (45)

where z∗ is an optimal solution to (9). The optimal hidden neurons are given by scalar multiples of the
Hodge duals of 1-blades formed by data points, ⋆xj = ×xj, corresponding to non-zero z∗

j .
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7.3.5 Two-dimensional two-layer networks with bias

We now augment the dataset by adding ordinary basis vectors with training points. Let us define x
(j)
i = xi

for i ∈ [n] ∀j and x
(j)
n+k = xj + ek for j ∈ [n] ∀k ∈ [d] where e1, ..., ed are the canonical basis vectors. We

note that this augmentation is only needed in the case of p = 1.
Theorem 16. For p = 1 and d = 2, the two-layer neural network problem with biases equivalent to the
following convex ℓ1-regularized optimization problem

min
z∈R(n

2)+nd

t∈R

ℓ
(
Kz + 1t, y

)
+ λ∥z∥1, (46)

provded that the number of neurons obey m ≥ ∥z∗∥0. Here, the matrix K ∈ Rn×((n
2)+d) is defined as

Kij := κ(xi, xj1 , x
(j1)
j2

) for j = (j1, j2) where

κ(x, x′, x′′) =
2Vol+

(
△(x, x′, x′′)

)
∥x− x′∥1

, (47)

j = (j1, j2) is a multi-index1, △(x, x′, x′′) denotes the triangle formed by the points x, x′, x′′,

Vol+(△(x, x′, x′′)) = 1
2
(
(x− x′) ∧ (x′′ − x′)

)
+

= 1
2
(
x ∧ x′ + x′ ∧ x′′ + x′′ ∧ x′)

+ ,

denotes the positive part of the signed volume of this triangle. An optimal neural network can be constructed
as follows:

f(x) =
∑

j=(j1,j2)

z∗
j κ(xi, xj1 , x

(j1)
j2

) , (48)

where z∗ is an optimal solution to (46). The optimal hidden neurons are given by scalar multiples of the
generalized cross product ×(xj1 − x

(j1)
j2

) = ⋆(xj1 − x
(j1)
j2

), which are Hodge duals of 1-blades formed by
differences of data points, corresponding to non-zero z∗

j for j = (j1, j2).
Remark. We note that each ReLU neuron in the optimal network has a breakline passing through a pair of
training samples xj1 and xj2 .

7.4 Two-layer networks with inputs of arbitrary dimension without biases

Theorem 17. Consider the following convex optimization problem

p̂λ := min
z

ℓ
(
Kz, y

)
+ λ∥z∥1 . (49)

The matrix K is defined as Kij = κ(xi, xj1 , ..., xjd−1) for j = (j1, ..., jd−1), where

κ(x, u1, ..., ud−1) =
(
x ∧ u1 ∧ · · · ∧ ud−1

)
+

∥u1 ∧ ... ∧ ud−1∥2
= dist+

(
x, Span(u1, ..., ud−1)

)
,

the multi-index j = (j1, ..., jd−1) is over all combinations of d−1 rows xj1 , ..., xjd−1 ∈ Rd of X ∈ Rn×d. When
the maximum chamber diameter satisfies D(X) ≤ ϵ for some ϵ ∈ (0, 1), we have the following approximation
bounds

p∗ ≤ p̂λ ≤
1

1− ϵ
p∗, (50)

p̂(1−ϵ)λ ≤ p∗ ≤ p̂λ ≤ p∗ + ϵ

1− ϵ
λR∗, (51)

1For a multi-index j = (j1, j2) where j1 ∈ [n], j2 ∈ [n + d], the entry Ki,j of the matrix K is given by Ki,j1+(n+d)(j2−1).
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Here, p∗ is the value of the optimal NN objective in (2) and R∗ is the corresponding weight decay regularization
term of an optimal NN. A network that achieves the cost p̂λ in (2) is

f(x) =
∑

j=(j1,...,jd−1)

z∗
j κ(xj1 , ..., xjd−1) ,

where z∗ is an optimal solution to (49).
Corollary 18. By taking the limit λ → 0, we obtain the following interpolation variant of the convex NN
problem (49)

p̂0 := min
z : ℓ(Kz,y)=0

∥z∥1 , (52)

provided that the constraint ℓ(Kz, y) = 0 is feasible. In this case, we have

p∗
0 ≤ p̂0 ≤

1
1− ϵ

p∗
0, (53)

given that D(X) ≤ ϵ, where p∗
0 ≜ minθ ℓ(fθ(X),y)=0 ∥θ∥2

2.

8 Appendix III - Mathematical Proofs

8.1 Proof of Theorem 1

Consider the dual constraint in (5), which can be rewritten as

sup
w, b∈R : ∥w∥p≤1

|
∑

i

vi(xiw + b)+| ≤ λ. (54)

Since w is a scalar, the constraint ∥w∥p ≤ 1 is equivalent to |w| ≤ 1 for all p ∈ (0,∞). An optimal w satisfies
w ∈ {−1, +1} since either this constraint is tight or the objective is constant with respect to w. Next,
observe that an optimal b is achieved when b ∈ ±{xi}n

i=1 or the objective goes to infinity when β →∞. This
is because the objective is a piecewise linear function of b. In the latter case, the objective value is infinite
as long as

∑
i vi ̸= 0. Therefore, we can rewrite (54) as

max
{
|
∑

i

vi(xi − xj)+|, |
∑

i

vi(xj − xi)+|
}
≤ λ and

∑
i

vi = 0 (55)

We use strong Lagrangian duality to obtain the claimed convex program using Lemma 26. It can be
seen that the network given in (8) achieves the optimal objective on the training dataset since f(X) =
[f(x1), · · · , f(xn))]T = Kz∗ + 1t∗.

8.2 Proof of Theorem 2 and Theorem 4

We now present the proof of Theorem 4, and the special case Theorem 2, which shows the equivalence of the
ℓ1-regularized neural network and the Lasso problem in (14). Suppose that the training matrix is of rank k.
Denote the compact Singular Value Decomposition (SVD) of X as follows X = UΣV T where U ∈ Rn×d and
V ∈ Rd×d are orthonormal matrices and Σ ∈ Rd×d is a diagonal matrix with non-negative diagonal entries.
Only k diagonal entries of Σ are non-zero and the rest are zero. We denote the non-zero diagonal entries of
Σ as σ1, · · · , σk and the corresponding columns of U and V as u1, · · · , uk and v1, · · · , vk, respectively.

Consider the NN objective (2). It can be seen that the projection vT
i W1j of the hidden neuron weights

j ∈ [m] does not affect the objective value for i = k + 1, ..., d. Therefore, the optimal hidden weights are zero
in the subspace vk+1, ..., vd due to the norm regularization. In the remaining, we assume that the training
matrix X is full column rank and of size n by d = r. Otherwise, we can remove the zero singular value
subspaces of X via the above argument.
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We consider the convex dual of the ℓ1-regularized NN problem (14), and focus on the dual problem given in
(5) when σ is the ReLU activation function.

max
v∈Rn

−ℓ∗(v, y) s.t. max
w : ∥w∥p≤1

|vT (Xw)+| ≤ λ. (56)

The above optimization problem is a convex semi-infinite program which has a finite number of variables
but infinitely many constraints. Our main strategy is to show that the constraint set can be described by a
finite number of fixed points by analyzing the extreme points of certain convex subsets.

As shown in Pilanci and Ergen (2020), the constraint |vT (Xw)+| ≤ λ can be analyzed by enumerating the
hyperplane arrangement patterns

{Dk}P
k=1 =

{
diag(1[Xw ≥ 0]) : w ∈ Rd

}
,

where P is the number of distinct hyperplane arrangement patterns and Dk ∈ {0, 1}n×n is the indicator
matrix of the k-th pattern. The number P is finite and satisfies the upper-bound by P ≤ 2

∑d−1
j=0

(
n−1

j

)
where r = rank(X). Note that we have the identity

(Xw)+ = DkXw ∀w : DkXw ≥ 0, (I−Dk)Xw ≤ 0 ,

which shows that the ReLU activation applied to the vector Xw can be expressed as a linear function
whenever w is in the cone (2Dk − I)Xw ≥ 0. Using the above parameterization, we write the subproblem in
the constraint of (56) when p = 1 as follows

dsub ≜max
w
|vT DkXw| (57)

s.t. ∥w∥1 ≤ 1, (2Dk − I)Xw ≥ 0.

We next claim that the constraint ∥w∥1 ≤ 1 is active at the optimum, assuming the objective value is
positive. Note that w = 0 is a feasible point, which achieves the objective value of zero. Otherwise, we can
scale w to satisfy the constraint and increase the objective value. Defining the set

C ≜ {(2Di − I)Xw ≥ 0, ∥w∥1 = 1} ,

we can express the dual subproblem dsub using the set C as follows

dsub = max
{

0, max
w∈C

vT DkXw, max
w∈C
−vT DkXw

}
.

Note that the maxima in the last two problems are achieved at extreme points of C since C is a bounded
polytope and the objectives are linear functions.

The following lemma provides a characterization of the extreme points of the constraint set of the dual
subproblem.
Lemma 19. A vector w is an extreme point of the set C if and only if w ∈ C and[

X
I

]
S

w = 0 and ∥w∥1 = 1 (58)

where S is a subset of d− 1 linearly independent rows of
[
X
I

]
.

The proof of this lemma is given at the end of this subsection. We identify the extreme points via the cross
product as follows. After defining the augmented data rows xn+i = ei where ei is the i-th standard basis
vector, a vector w ∈ C is an extreme point of C if w ∈ Span(×j∈Sxj) for some subset S of size d − 1 such
that {xj}j∈S are linearly independent and ∥w∥1 = 1. Since this span is a d−1 dimensional subspace, we can
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write w as ×j∈Sxj∥∥×j∈Sxj

∥∥
1

. Note that the denominator is non-zero since {xj}j∈S are linearly independent and

∥×j∈S xj∥1 ≥ ∥×j∈S xj∥2, which is the non-zero absolute volume of the parallelotope spanned by {xj}j∈S .
Consecutively, we apply this characterization of extreme points to the expression for dsub to obtain

dsub = max
{

0, max
w∈V

vT DkXw

}
,

where V ≜
{
± ×j∈Sxj

∥×j∈Sxj∥1
: {xj}j∈S linearly independent, |S| = d− 1

}
.

Next we note that DkXw = (Xw)+ for w ∈ V ⊆ C, which shows that the dual problem d∗ in (56) is
equivalent to the following problem

max
v∈Rn

−ℓ∗(v, y) s.t. |vT (Xw)+| ≤ λ ∀w ∈ V. (59)

By applying the characterization of the extreme points, we reduce the semi-infinite problem in (56) which
has an infinite number of constraints to a problem with finite constraints.

Taking the Lagrangian dual of the above convex problem by introducing dual variables for each of the
constraints, we arrive at the ℓ1 penalized convex problem

min
z

ℓ(Kz, y) + λ
∑

j

|zj |.

Here, Kij =
(

j0xT
i

×(xj1 ,...,xjd−1 )
∥×(xj1 ,...,xjd−1 )∥1

)
+

=
(

j0Vol(P(xj : j∈S))
)

+

∥×(xj1 ,...,xjd−1 )∥1
using the multi-index notation j =

(j0, j1, ..., jd−1) where j0 ranges over {−1, +1} to represent the choice of sign in the expression
±xT

i

×(xj1 ,...,xjd−1 )
∥×(xj1 ,...,xjd−1 )∥1

. Rescaling the dual variables zj by ∥ × (xj1 , ..., xjd−1)∥1, we obtain the problem

min
z

ℓ(Kz, y) + λ
∑

j

wj |zj |.

where Kij =
(
j0Vol(P(xj1 , ..., xjd−1))

)
+ and wj = ∥ × (xj1 , ..., xjd−1)∥1.

Finally, in order to simplify the notation, we take the index set (j1, ..., jd−1) over all subsets of {1, ..., n} of size
d− 1 and redefine the matrix as Kij = Vol+(P(xj1 , ..., xjd−1)) and wj = ∥× (xj1 , ..., xjd−1)∥1. This follows
from the fact that the Euclidean norm of the cross product, and hence the volume of the parallelotope is zero
the whenever the subset of vectors are linearly dependent. Moreover, the index j0 ∈ {−1, +1} is absorbed
into the ordering of the vectors xj1 , ..., xjd−1 in the parallelotope, by noting that the sign of the cross product
is flipped whenever the ordering of two vectors is flipped. This completes the proof of Theorem 4.

Next, we provide the proofs of the lemmas used in the above proof.

Proof of Lemma 19. We express w = w+−w− where w+ ≥ 0 and w− ≥ 0 represent the positive and negative
part of w respectively. Then, we express the extreme points of the set C using this lifted representation as
follows

C′ ≜

{[
w+

w−

]
: (2Di − I)(Xw+ −Xw−) ≥ 0, w+, w− ≥ 0, 1T w+ + 1T w− = 1

}
.

We next argue that the extreme points of C can be analyzed via the extreme points of C′. In particular, it
holds that

max
w∈C

xT w = max
w∈C′

xT (w+ − w−)

for all x ∈ Rd and a maximizer w to the former maximization problem can be obtained from a maximizer
(w+, w−) to the latter problem by setting w∗ = w+ − w−. On the other hand, a maximizer (w+, w−) to

34



Under review as submission to TMLR

the latter problem can be obtained from a maximizer w to the former problem by setting w+ = max{w, 0}
and w− = max{−w, 0}. Therefore, characterizing the extreme points of C is equivalent to characterizing the
extreme points of C′.

This can be written in matrix notation as follows(2Di − I)X −(2Di − I)X
I 0
0 I


︸ ︷︷ ︸

M

[
w+

w−

]
≥ 0 and 1T

[
w+

w−

]
= 1.

Using Lemma 22, the extreme points of the above set are given by the unique solutions of the linear system[
MS

1T

] [
w+

w−

]
=
[
0
1

]

where MS is a submatrix of M such that
[
MS

1T

]
∈ R is full rank. For any extreme point (w+, w−) of C′,

the vector w = w+ − w− is an extreme point C. It can be seen that at least d coordinates of
[
w+

w−

]
are zero

since w = w+ − w− is the decomposition of w into positive and negative parts. In order to characterize
non-zero extreme points, we may assume that not all of the constraints

[
w+

w−

]
≥ 0 are active, since otherwise

w+ = w− = 0 implying w = 0. We next show that the rows of MS are linearly independent from the
row vector 1T due to the structure of M . Specifically, the top block

[
(2Di − I)X −(2Di − I)X

]
has row

span orthogonal to 1T , and the bottom block
[
I 0
0 I

]
consists of canonical basis vectors, for which not

all constraints are active (otherwise this implies w = 0), which makes the subset of active rows linearly
independent from 1T .

We conclude that the non-zero extreme points of C are given by w = w+ − w− ∈ C such that[
MS

1T

] [
w+

w−

]
=
[
0
1

]
,

where S is a subset of 2d − 1 linearly independent rows of M and the above linear system has a unique
solution. Recall that at least d coordinates of

[
w+

w−

]
are zero at any extreme point due to the decomposition

w = w+ − w− where w+ = (w)+ and w− = (w)− are the positive and negative parts of w respectively.

Suppose that the vector
[
w+

w−

]
is a non-zero extreme point and has d + k zero entries for some k ∈ Z+,

then 2d − 1 − (d + k) = d − 1 − k entries of
[
(2Di − I)X −(2Di − I)X

] [w+

w−

]
are zero. Mapping this

decomposition back to the usual representation, this implies that an extreme point w ∈ C has k zero entries
and the vector (2Di−I)Xw has d−1−k zero entries. Therefore, d−1 of the constraints

[
(2Di − I)X

I

]
w ≥ 0

are active at a non-zero extreme point w ∈ C. We conclude that w ∈ C is a non-zero extreme point of C if
and only if [

(2Di − I)X
I

]
R

w = 0 and ∥w∥1 = 1,

where R is a subset of d− 1 linearly independent rows of the matrix
[
(2Di − I)X

I

]
. Finally, we observe that

the constraint
[
(2Di − I)X

I

]
R

w = 0 can be substituted by
[
X
I

]
R

w = 0 since (2Di− I) is a diagonal matrix

containing ±1 values on the diagonal, and note that linear independence is invariant to this diagonal sign
multiplication.
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8.3 Proof of Theorem 17

We now present the proof of Theorem 17 which shows the approximate equivalence of the ℓ2-regularized neural
network and the Lasso problem in (49). We consider the dual problem in (5) and analyze its constraints,
which are as follows:

max
i∈[P ]

max
w
|vT DiXw| ≤ λ (60)

s.t. ∥w∥2 ≤ 1, (2Di − I)Xw ≥ 0.

Here

{Di}P
i=1 =

{
diag(1[Xw ≥ 0]) : w ∈ Rd

}
,

are the diagonal hyperplane arrangement patterns.

As in Section 8.2, we assume that the training matrix X is full column rank and of size n by d = r, without
loss of generality.

Consider the sub-problem arising in the above constraint given by

d+
sub(i) ≜max

w
vT DiXw

s.t. ∥w∥2 ≤ 1, (2Di − I)Xw ≥ 0.

We define the set

C2(i) ≜
{

w : ∥w∥2 ≤ 1, (2Di − I)Xw ≥ 0
}

,

and let d−
sub(i) ≜ maxw∈C2(i)−vT DiXw. Note that the constraint in (5) is precisely d+

sub(i) ≤ λ, d−
sub(i) ≤

λ ∀i. Our strategy is to show that d+
sub(i) and d−

sub(i) can be tightly approximated by a polyhedral approxi-
mation constructed using the extreme rays of the cone {w : (2Di − I)Xw ≥ 0}. Consequently, we will be
able to obtain an approximation of the dual problem since the dual constraint is

d∗
const = max

i∈{1,...,P }
max
w∈C2

|vT DiXw| = max
(

max
i∈{1,...,P }

d+
sub(i), max

i∈{1,...,P }
d−

sub(i)
)

. (61)

We first focus on a generic instance of the problem d+
sub = d+

sub(i) and C2 = C2(i) for a certain value of i.
Suppose that the extreme rays of the convex polyhedral cone

{w : (2Di − I)Xw ≥ 0} ⊆ Rd

are R1, ..., Rk ⊆ Rd for some k ∈ Z+. Note that by our assumption that X is full column rank, this cone is
pointed since it does not contain any nontrivial linear subspace. Let p1, . . . , pk ∈ Sd−1 denote the unit norm
generators of the extreme rays R1, ..., Rk normalized to unit Euclidean norm. We define the convex sets

P ≜ Conv(p1, ..., pk) and P0 ≜ Conv(0, p1, ..., pk).

We will use the convex set P0 as an inner polyhedral approximation of C2. We define the distance of the
convex set P from the origin as

dmin ≜ dist(0,P) = min
w∈P
∥w∥2.

We have dmin ≤ 1 since ∥
∑

i αipi∥2 ≤
∑

i |αi|∥pi∥2 =
∑

i |αi| = 1 for any αi ≥ 0 and
∑

i αi = 1, noting that
∥pi∥2 = 1.

We apply Lemma 20 to obtain the following lower and upper bounds on d+
sub:

max
w∈P0

vT DkXw ≤ max
w∈C2

vT DkXw ≤ max
w∈d−1

minP0

vT DkXw (62)

= d−1
min max

w∈P0
vT DkXw.
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Next, we simplify the polyhedral approximation maxw∈P0 vT DkXw. Applying Weyl’s Facet Lemma (see
Lemma 24) to the cone K = {w : (2Di − I)Xw ≥ 0}, we see that a vector v ∈ K belongs to an extreme
ray of K if and only if there are d − 1 linearly independent rows of the matrix (2Di − I)X orthogonal to
v. Then, each of the generators of the extreme rays p1, ..., pk satisfy pT

i xj = 0, j ∈ Si where Si is a subset
of d − 1 linearly independent rows of the matrix X. Using the properties of the generalized cross product
(see 7.1), we identify each generator as a scalar multiple of the cross product ×j∈Si

xj of the d− 1 linearly
independent rows xj of X. Note that the cross product of d − 1 linearly independent vectors is orthogonal
to each vector and lies on a one-dimensional linear subspace. Therefore the unit-norm vectors pi can be
identified as pi = ± ×j∈Si

xj

∥×j∈Si
xj∥2

, where the sign is chosen so that pi ∈ K, i.e., pT
i Dk,jjxj ≥ 0 for all j ∈ Si.

Next, note that Weyl’s Facet Lemma also guarantees that any vector p ∈ K of the form p = ×j∈Sxj

∥×j∈Sxj∥2

is on an extreme ray of K when S is a subset of d − 1 linearly independent rows of X. When d ≥ 2,
the collection of vectors 0 ∪ {± ×j∈S xj : S ⊆ [n], dim Span{xj : j ∈ S} = d − 1} is equivalent to
0 ∪ {×j∈Sxj : S ⊆ Pd−1([n])}, where Pd−1([n]) denotes all permutations of subsets of [n] with d − 1
elements. In order to see this equivalence, observe that the ±1 multiplier can be removed when we consider
permutations since exchanging the order of the two vectors in the cross product changes the sign of the
resulting vector. Moreover, we can only consider subsets S of size d − 1, otherwise the vectors are linearly
dependent and the cross product is zero. In addition, when the vectors are linearly dependent, the cross
product is zero, which is already included in the collection of vectors.

Using this characterization, we can simplify the first optimization problem in (62) by enumerating all unit-
norm generators of the extreme rays of the cone K, which can be done by considering all subsets S of d− 1
linearly independent rows of X and taking the cross product of the rows in each subset. Define the set DS

as follows

DS =
{
×j∈S xj

}
∪ 0.

Then, we have

max
w∈P0

vT DkXw = max
w∈{0,p1,...,pk}

vT DkXw = max
S⊆Pd−1([n])

max
w∈K∩DS

vT
( Xw

∥w∥2

)
+

, (63)

where the last maximization is over d − 1 permutations Pd−1([n]) of subsets of [n], and w ∈ K ∩ DS . The
justification of (63) is as follows: In the first equality in (63), we can drop the convex hull of {0, p1, ..., pk}
since the objective is linear. In the second equality, we replace the unit norm generators by their expressions
given by the cross product and use the fact that DiXw = (Xw)+ for w ∈ K. Note that the cross product
is zero when the vectors are linearly dependent to simplify the expression of DS in the last equality above.

Next, we plug-in the expression for d+
sub given in the last equality of (63) for d+

sub(i) in (61), repeat the same
argument for d−

sub(i) which is identical, and use the approximation bound in (62)

d∗
const = max

i∈{1,...,P }, s∈{+1,−1}
max

w∈C2(i)
svT DiXw (64)

≤ d−1
min max

i∈{1,...,P }, s∈{+1,−1}
max

S⊆Pd−1([n])
max

w∈K(i)∩DS

svT
(

X
w

∥w∥2

)
+

(65)

where K(i) := {w : (2Di − I)Xw ≥ 0}. Noting that

∪P
i=1K(i) = ∪P

i=1{w : (2Di − I)Xw ≥ 0} = Rd,

since the union of the chambers of the arrangement is the entire d-dimensional space, maximizing over the
index i ∈ {1, ..., P} and w ∈ K(i)∩DS is equivalent to maximizing w over ∪P

i=1K(i)∩DS = DS . Therefore,
we obtain

d̂ ≤ d∗
const ≤ d−1

min d̂, (66)
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where

d̂ ≜ max
S⊆Pd−1([n])

max
w∈DS

∣∣∣vT
(

X
w

∥w∥2

)
+

∣∣∣. (67)

Using the expression of the dual in (5), we have

p∗ = max
d∗

const(v)≤λ
−ℓ∗(v) (68)

where d∗
const = d∗

const(v) is as defined in (64). We then use the inequalities in (66) to get the lower and
upper-bounds on the optimal objective as follows

max
d−1

mind̂(v)≤λ
−ℓ∗(v) ≤ p∗ ≤ max

d̂(v)≤λ
−ℓ∗(v) , (69)

where d̂(v) = d̂ is as defined in (67). Replacing the duals of the maximization problems in the above equation
using Lemma 25, we obtain

min
z

ℓ(K̃z, y) + dminλ∥z∥1 ≤ p∗ ≤ p̂λ := min
z

ℓ(K̃z, y) + λ∥z∥1 . (70)

Here, we defined p̂λ as the optimal value of the Lasso objective and K̃ is the matrix defined as follows

Ki,j = xT ×(x1, ..., xd−1)
∥ × (x1, ..., xd−1)∥2

, (71)

where j = (j1, ..., jd) is a multi-index. The above shows that the optimal value p∗ corresponding to the NN
objective in (1) when p = 2 is bounded between the convex Lasso program in the right-hand side of (70)
and the same convex program with a slightly smaller regularization coefficient as follows

p̂dminλ ≤ p∗ ≤ p̂λ.

Noting that

ℓ(K̃ẑdminλ, y) + dminλ∥ẑdminλ∥1 ≥ min
z

ℓ(K̃z, y) + λ∥z∥1 + (dmin − 1)λ∥ẑdminλ∥1

= p̂λ − (1− dmin)λ∥ẑdminλ∥1 ,

where ẑdminλ is a minimizer of the Lasso problem corresponding to p̂dminλ. we get the inequalities

p̂λ − (1− dmin)∥ẑdminλ∥1 ≤ p̂dminλ ≤ p∗ ≤ p̂λ . (72)

This shows that the optimality gap is at most (1 − dmin)λ∥ẑdminλ∥1, where ẑdminλ is an optimal solution of
the Lasso problem in the left-hand side of (70) with regularization coefficient dminλ.

We now obtain upper and lower-bounds on p̂λ in terms of p∗ by noting that (66) implies

d∗
const ≤ d−1

mind̂ ≤ d−1
mind∗

const.

Multiplying both sides by dmin we obtain

dmind∗
const ≤ d̂ ≤ d∗

const.

Using the above inequalities in the dual programs, we get

max
d∗(v)≤λ

−ℓ∗(v) ≤ max
d̂(v)≤λ

−ℓ∗(v) ≤ max
dmind∗

const(v)≤λ
−ℓ∗(v). (73)

Using the dual of the Lasso program again from Lemma (5), we obtain

p∗ ≤ min
z

ℓ(K̃z, y) + λ∥z∥1 ≤ p∗
d−1

minλ
, (74)
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where p∗
λ′ in the right-hand side is defined as

p∗
λ′ ≜ min

W1,W2
ℓ
( m∑

j=1
σ(XW1j + 1b1j)W2j , y

)
+ λ′

m∑
j=1
∥W1j∥2

2 + ∥W2j∥2
2, (75)

for m ≥ m∗ where m∗ is the number of neurons in an optimal solution of the bidual of (56) when p = 2.
Here, p∗

d−1
minλ

is the value of the optimal NN objective when the regularization coefficient is set to to the larger
value d−1

minλ. This value can be upper-bounded as follows

p∗
d−1

minλ
≤ F (W ∗

1 , W ∗
2 ) + d−1

minλR(W ∗
1 , W ∗

2 ) (76)

= F (W ∗
1 , W ∗

2 ) + λR(W ∗
1 , W ∗

2 ) + (d−1
min − 1)λR(W ∗

1 , W ∗
2 ) (77)

= p∗
λ + (d−1

min − 1)λR(W ∗
1 , W ∗

2 ) , (78)

where F (·, ·) and R(·, ·) are the functions in the first (loss) and second (regularization) terms in the objective
(75) respectively, and (W ∗

1 , W ∗
2 ) is an optimal solution of (75), i.e., we have p∗

λ = F (W ∗
1 , W ∗

2 )+λR(W ∗
1 , W ∗

2 ).
Therefore, (74) implies that

p∗ ≤ min
z

ℓ(K̃z, y) + λ∥z∥1 ≤ p∗ + (d−1
min − 1)λR(W ∗

1 , W ∗
2 ) ≤ d−1

minp∗ , (79)

where R(W ∗
1 , W ∗

2 ) :=
∑m

j=1 ∥W ∗
1j∥2

2+∥W ∗
2j∥2

2 is the regularization term corresponding to any optimal solution
of (75). The final inequality follows from λR(W ∗

1 , W ∗
2 ) ≤ p∗. This shows that the optimality gap of the

Lasso solution is at most 1−dmin
dmin

λR(W ∗
1 , W ∗

2 ).

Finally, to simplify the expression of the matrix K̃ given in (71), we use the following cross product repre-
sentation of the distance to an affine hull (see Appendix)

xT ×(x1, ..., xd−1)
∥ × (x1, ..., xd−1)∥2

= dist(x, Aff(0, x1, ..., xd−1))

= dist(x, Span(x1, ..., xd−1)) ,

for any x, x1, ..., xd−1 ∈ Rd where ×(x1, ..., xd−1) is the cross product of the vectors x1, ..., xd−1. Combining
the bounds (72) and (79) with the lower bound on the minimum distance dmin in terms of the maximum
chamber diameter r from Lemma 21 completes the proof.

8.4 Proof of Theorem 14

The proof parallels the proof of Theorems 4 and 17. Here, we only highlight the main differences.

The convex dual of the problem (42) is given by

p∗
v ≥ d∗

v ≜ max
V ∈Rn

−ℓ∗(V, Y ) s.t. ∥V T σ(Xw)∥2 ≤ λ, ∀w ∈ Bd
p . (80)

This dual convex program was derived in Sahiner et al. (2020), where it was also shown that strong duality
holds if the number of neurons, m, exceed the critical threshold m∗, which is the number of neurons in the
convex bidual program.

We focus on the dual constraint subproblem in (80) given by

dv−sub ≜max
w
∥V T DkXw∥2

s.t. ∥w∥p ≤ 1, (2Dk − I)Xw ≥ 0.

= max
w

max
u: ∥u∥2≤1

|uT V T DkXw|

s.t. ∥w∥p ≤ 1, (2Dk − I)Xw ≥ 0.

We note that the above problem has the same form of equation (57) and (60) for p = 1 and p = 2 respectively,
where the vector v plays the role of V u. The rest of the proof is identical for both cases.
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Figure 33: Illustration of the Archimedean approximation in Lemma 20.

Lemma 20 (Archimedean approximation of spherical sections via polytopes). Suppose that Cone(P ) ∩
−Cone(P ) = {0}, i.e., Cone(P ) does not contain a non-trivial (non-zero dimensional) linear subspace.
Then, it holds that

P0 ⊆ C2 ⊆ d−1
minP0.

Proof. The first inclusion follows by noting that P0 is a polytope and it is contained in C2 since all of its
extreme points 0, p1, ..., pk are contained in the convex set C2.

In order to prove the second inclusion, we first show that C2 = Cone(P ) ∩ {∥w∥2 ≤ 1}. Since Cone(P )
is pointed, i.e., Cone(P ) ∩ −Cone(P ) = {0}, it is equal to the convex hull of its extreme rays (Theorem
13 of Fenchel and Blackett (1953)). Since the extreme rays of Cone(P ) and the extreme rays of the cone
{w : (2Di − I)Xw ≥ 0}, are identical and the latter cone is also pointed, these two cones are identical.
Therefore, we have C2 = Cone(P ) ∩ {∥w∥2 ≤ 1}.

Next, suppose that there exists some w∗ ∈ C2. Then, ∃t ∈ R+, αi ≥ 0,
∑

i αi = 1 such that w∗ = t
∑

i αipi

since w∗ ∈ Cone(P ). Since ∥w∗∥2 ≤ 1, we have 1 ≥ ∥w∗∥2 = ∥t
∑

i αipi∥2 ≥ t minαi ∥
∑

i αipi∥2 ≥
t minw∈P ∥w∥2 = t dmin. From this chain of inequalities, we obtain the upper-bound t ≤ d−1

min. We have
w∗ ∈ d−1

minP0 since

w∗ = t
∑

i

αipi ∈ tConv(p1, ..., pk) ∈ Conv(0, p1, ..., pk) ∈ d−1
minP0.

Lemma 21 (Diameter of a chamber bounds its distance to the origin). Consider the set C̃2 : {w : (2Di −
I)Xw ≥ 0, ∥w∥2 = 1}. Suppose that r ∈ R is the ℓ2-diameter of C̃2, which is defined as the smallest r ≥ 0
such that ∥w1 − w2∥2 ≤ r for all w1, w2 ∈ C̃2. Then,

dmin := min
v∈Conv(v1,...,vk)

∥v∥2 ≥ 1− r,

for any set of k vectors {v1, ..., vk} ∈ C̃2.

Proof. Since the ℓ2-diameter of the set C̃2 is upper bounded by r, we first argue that there exists a Euclidean
ball of radius r that contains C̃2 as follows. Suppose that w1, w2 are two vectors in C̃2 that achieve the
ℓ2-diameter r, i.e., ∥w1−w2∥2 = r. Then, the Euclidean ball of radius r centered at w1+w2

2 contains C̃2 since
for all w ∈ C̃2 it holds that

∥w − w1 + w2

2 ∥2 = 1
2∥(w − w1) + (w − w2)∥2 ≤

1
2∥w − w1∥2 + 1

2∥w − w2∥ ≤ r.

Next, note that Conv(v1, ..., vk) is contained in this ball due to the convexity of the Euclidean ball and since
v1, ..., vk ∈ C̃2 are contained in this set. Therefore, the minimum norm point

v∗ := arg min
v∈Conv(v1,...,vk)

∥v∥2,

satisfies ∥v∗∥ ≥ ∥v1∥2 − ∥v∗ − v1∥2 = 1− ∥v∗ − v1∥2 ≥ 1− r.
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Proof of Lemma 9. We use Lemma 2.1 of Plan and Vershynin (2014) by taking K equal to the unit Euclidean
sphere in Rd. Since the Gaussian width of this set is bounded by

√
d, Lemma 2.1 implies that∣∣∣ 1

m
∥Xz∥1 − α

∣∣∣ ≤ ε ∀z : ∥z∥2 = 1,

with probability at least 1− 2e−nu2/2, where α =
√

2/π and ε = 4
√

d
n + u. Rewriting the above inequality

as −ε ≤ 1
m∥X

w
∥w∥2
∥1 − α ≤ ε ∀w, multiplying each side by ∥w∥2 and letting u =

√
d
n , we observe that the

ℓ1 isometry condition (25) where ϵ = 5
√

d
n holds with probability at least 1 − 2e−d/2. Invoking Lemma 8,

we obtain that the maximum chamber radius is bounded by 4
√

ϵ = 4
√

5
√

d
n ≤ 9( d

n )1/4, which concludes the
proof.

Proof of Lemma 8. Suppose that w1, w2 ∈ C̃2. Then, wa := 1
2 (w1 + w2) satisfies (2Di − I)Xwa ≥ 0 since

w1, w2 belongs to the set (2Di − I)Xw ≥ 0, which is convex. Therefore, we have

|xT
i wa| =

1
2 |x

T
i w1 + xT

i w2|

= 1
2sign(xT

i w1 + xT
i w2)(xT

i w1 + xT
i w2)

= 1
2

(
sign(xT

i w1)(xT
i w1) + sign(xT

i w2)(xT
i w2)

)
= 1

2 |x
T
i w1|+

1
2 |x

T
i w2|.

where the third equality follows since sign(xT
i w1) = sign(xT

i w2)∀i due to the constraints (2Di − I)Xw1 ≥ 0
and (2Di − I)Xw2 ≥ 0. Note that since ∥Xw∥1 =

∑n
i=1 |xT

i w|, this implies the identity

∥Xwa∥1 = 1
2∥Xw1∥1 + 1

2∥Xw2∥1.

Applying the isometry condition given in (25) to wa and using the above identity, we get

α(1 + ϵ)∥wa∥2 ≥
1
n
∥Xwa∥1

= 1
2n
∥Xw1∥1 + 1

2n
∥Xw2∥1

≥ 1
2α(1− ϵ)∥w1∥2 + 1

2α(1− ϵ)∥w2∥2 (81)

= α(1− ϵ) ,

where the inequality (81) follows from the concentration inequality (25) applied to w1 and w2. Therefore,
we have ∥wa∥2 ≥ (1 + ϵ)−1(1− ϵ) and

∥wa∥2
2 =

∥∥1
2(w1 + w2)

∥∥2
2 = 1

2 + wT
1 w2

2 ≥
(1− ϵ

1 + ϵ

)2
≥ 1− 4ϵ .

The last inequality holds since

(1− ϵ2) = 1− 2ϵ + ϵ2 ≥ 1− 3ϵ− 4ϵ2 = (1 + ϵ)(1− 4ϵ) ,

for ϵ ≥ 0. This implies wT
1 w2 ≥ 1 − 8ϵ. Since w1 and w2 are unit Euclidean norm, we get ∥w1 − w2∥2

2 =
2− 2wT

1 w2 ≤ 16ϵ. Therefore ∥w1 − w2∥2 ≤ 4
√

ϵ.
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8.5 Proofs for two-dimensional networks

Proof of Theorem 15. The proof follows by specializing the proof of Theorem 17 to d = 2 and noting that the
chamber diameter is controlled by the angle ϵπ. Consider the triangle corresponding the the chamber where
the angular dispersion bound is achieved. Consider the bisector of this angle and observe that the chamber
diameter is equal to 2 sin(ϵπ/2), which is upper-bounded by ϵπ. Although this provides the approximation
factor 1/(1 − ϵπ) as long as ϵ < π−1, we can improve this bound by considering a direct Archimedean
approximation of the circular section as shown in Figure 33 to replace Lemma (20). Specifically, using the
bisector of the angle we also have

P0 ⊆ C2 ⊆ (cos(ϵπ/2))−1P0,

which improves Lemma (20). Finally, note that

(cos(ϵπ/2))−1 ≤ 1 + ϵ ,

for ϵ ∈ [0, 1/2], which completes the proof.

Proof sketch of Theorem 3. The proof follows the same steps as in Theorem 17 and 5.

8.6 Proofs for deep neural networks

Proof of Theorem 6. Suppose that an optimal solution of (22) is given by

θ∗ =
(
W ∗(1), · · · , W ∗(L)).

Define optimal activations of the first two-layer block based on the optimal W ∗(1), W ∗(2) above as the matrix
Y

∗(1) by defining
Y

∗(1) := σ(XW ∗(1))W ∗(2).

Now, we focus on the first two-layer NN block and consider the following auxiliary problem

(Ŵ (1), Ŵ (2)) = arg min
W

(1)
1 ,W

(2)
2

m∑
j=1
∥W (1)

·j ∥
2
p + ∥W (2)

j· ∥
2
p (82)

s.t. σ(XW (1))W (2) = Y
∗(1).

The above problem is in the form of a two-layer neural network optimization problem. We now show that
Ŵ (1), Ŵ (2) combined with the rest of the optimal weights W ∗(3), W ∗(4) · · · , W ∗(L) are also optimal in the
optimization problem (22). First, note that the outputs of the network, fθ∗(X) and fθ̂1

(X), are identical
where θ∗ is an optimal solution and

θ̂1 :=
(
Ŵ (1), Ŵ (2), W ∗(3), W ∗(4) · · · , W ∗(L)),

since the activations of the first two-layer block are identical. Second, note that the regularization terms
R

(1)
θ :=

∑m
j=1 ∥W

(1)
·j ∥2

p + ∥W (2)
j· ∥2

p are also equal since R
(1)
θ̂1

< R
(1)
θ∗ contradicts the optimality of θ∗ in (22)

and R
(1)
θ̂1

> R
(1)
θ∗ contradicts the optimality of (Ŵ (1), Ŵ (2)) in (82).

Next, we analyze the remaining layers. We define the optimal activations before and after the ℓ-th two-layer
NN block as follows

X∗ℓ = σ(· · ·σ(XW ∗(1))W ∗(2) · · ·W ∗(ℓ−1))
Y ∗ℓ = σ(· · ·σ(XW ∗(1))W ∗(2) · · ·W ∗(ℓ−1))W ∗(ℓ+1).

Consider the auxiliary problem for the ℓ-th two-layer block

(Ŵ (ℓ), Ŵ (ℓ+1)) = arg min
W (ℓ),W (ℓ+1)

m∑
j=1
∥W (ℓ)

·j ∥
2
p + ∥W (ℓ+1)

j· ∥2
p (83)

s.t. σ(X∗ℓW (ℓ))W (ℓ+1) = Y
∗(ℓ).
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We show that θ̂ℓ :=
(
W ∗(1), W ∗(2), · · · Ŵ (ℓ), Ŵ (ℓ+1) · · · , W ∗(L−1), W ∗(L)), which equals θ∗ optimal in (22)

except the ℓ-th and (ℓ+1)-th layer weights are replaced with an optimal solution of (83), is an optimal solution
of (22). As in the above case, the outputs of the network, fθ∗(X) and fθ̂ℓ

(X), are identical by construction.
Moreover, the regularization terms R

(ℓ)
θ :=

∑m
j=1 ∥W

(ℓ)
·j ∥2

p + ∥W (ℓ+1)
j· ∥2

p are also equal since R
(ℓ)
θ̂ℓ

< R
(ℓ)
θ∗

contradicts the optimality of θ∗ in (22) and R
(ℓ)
θ̂ℓ

> R
(ℓ)
θ∗ contradicts the optimality of (Ŵ (ℓ), Ŵ (ℓ+1)) in (83)

since (Ŵ (ℓ), Ŵ (ℓ+1)) is feasible in (83), i.e., σ(X∗ℓW ∗(ℓ))W ∗(ℓ+1) = Y
∗(ℓ).

Finally, we finish the proof by iteratively applying the above claims to invoke the two-layer result given in
Theorem 14. Given an optimal solution θ∗ of (22), we replace the first two-layer NN block with (Ŵ (1), Ŵ (2))
from (82) while maintaining global optimality with respect to (22). For ℓ = 2, 3, ..., L we repeat this process
in pairs of consecutive layers to reach the claimed result.

Proof of Theorem 7. The proof proceeds similar to the proof of Theorem 6. We first show that given an
optimal solution θ∗, we can replace the first two layers (W ∗(1), W ∗(2)) with (Ŵ (1), Ŵ (2)), where

(Ŵ (1), Ŵ (2)) = arg min
W

(1)
1 ,W

(2)
2

m∑
j=1
∥W (1)

·j ∥
2
2 + ∥W (2)

j· ∥
2
2 (84)

s.t. σ(XW (1))W (2) = Y
∗(1),

and Y
∗(1) := σ(XW ∗(1))W ∗(2). By Corollary 18, the weights (Ŵ (1), Ŵ (2)) only increase the regularization∑m

j=1 ∥W
(1)
·j ∥2

2 +∥W (2)
j· ∥2

2 by a factor of 1/(1−D(X)), while producing the identical network output fθ̂(X) =
fθ∗(X).

Next, we analyze the remaining layers one by one. We define the optimal activations before and after the
ℓ-th two-layer NN block as follows

X∗ℓ = σ(· · ·σ(XW ∗(1))W ∗(2) · · ·W ∗(ℓ−1))
Y ∗ℓ = σ(· · ·σ(XW ∗(1))W ∗(2) · · ·W ∗(ℓ−1))W ∗(ℓ+1).

Consider the auxiliary problem for the ℓ-th two-layer block

(Ŵ (ℓ), Ŵ (ℓ+1)) = arg min
W (ℓ),W (ℓ+1)

m∑
j=1
∥W (ℓ)

·j ∥
2
2 + ∥W (ℓ+1)

j· ∥2
2 (85)

s.t. σ(X∗ℓW (ℓ))W (ℓ+1) = Y
∗(ℓ).

By Theorem 14, replacing the weights Ŵ (ℓ), Ŵ (ℓ+1) only increases the regularization term for those weights
by a factor of 1/(1 − D(X∗ℓ)) while maintaining the network output fθ̂(X) = fθ∗(X). We can repeat
this process for all ℓ = 2, 3, ..., L one by one, i.e., replacing layers 1 and 2, 2 and 3,.... (as opposed to
pairs of consecutive weights as in the proof of Theorem 6), we replace all the weights by increasing the total
regularization term by a factor of at most 2/(1−ϵ) assuming D(X) ≤ ϵ and D(X∗ℓ) ≤ ϵ for ℓ ∈ {1, ..., L−2}.
The factor 2 is needed to account for the overlapping weights in the replacement process.

8.7 Proof of Theorem 16 and Theorem 5

The proof closely parallels the proofs of Theorems 17 and 4. The dual problem in (5) when an additional
bias term is present takes the form

p∗ ≥ d∗ ≜ max
v∈Rn

−ℓ∗(v, y) s.t. |vT σ(Xw + 1b)| ≤ λ, ∀w ∈ Bd
p , b ∈ R. (86)

As in the proof of Theorem 1, we focus on the dual constraint subproblem

sup
w∈Bd

p, b∈R
|vT σ(Xw + 1b)| ≤ λ (87)
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and observe that the above objective is piecewise linear in b. Moreover, the objective tends to infinity as
b → ∞ as long as

∑
i vi ̸= 0. Otherwise, an optimal choice for b is −xT

j w∗ for some index j ∈ [n] for some
optimal w∗.

Therefore, the constraint (87) can be rewritten as two constraints:

max
j∈[n]

sup
w∈Bd

p

|
∑

i

viσ((xi − xj)T w∗)| ≤ λ and
n∑

i=1
vi = 0. (88)

Now, we define X̃ := X − 1nxT
j and observe that the form of the dual constraint is identical to the ones

analyzed in Theorems 17 and 4 for each fixed j ∈ [n]. We repeat the argument for each j ∈ [n], and use the
same steps that to obtain the convex programs and approximation result. In particular, when the chamber
diameters D(X − 1nxT

j ) ≤ ϵ uniformly for all j ∈ [n],

8.8 Additional Lemmas

Lemma 22 (Extreme points of polytopes restricted to an affine set). Suppose that A ∈ Rn×d, b ∈ Rb, c ∈ Rd

and d ∈ R are given. A vector x ∈ Rd is an extreme point of C ≜
{

Ax ≤ b, cT x = d
}

if and only if there
exists a subset S of n linearly independent rows of A such that x is the unique solution of the linear system[

AS

cT

]
x =

[
0
d

]
, (89)

where the matrix
[
AS

cT

]
∈ Rd×d is full rank. Here, AS ∈ Rd−1×d is the submatrix of A obtained by selecting

the d− 1 rows indexed by S.

Proof. We first provide a proof of the first direction (extreme point =⇒ full rank) by contradiction. Let
x∗ be an extreme point of C. We define S as the subset of inequality constraints active at x∗ and Sc as the
subset of inequality constraints inactive. More precisely, we have ASx∗ = 0 and AScx∗ < 0 for some subset
S of n rows of A and its complement Sc. Suppose that the matrix

[
AS

cT

]
∈ Rd×d is not full rank. Then we

may pick v ̸= 0 in the nullspace of this matrix. Define x1 ≜ x∗ + ϵv and x2 ≜ x∗ − ϵv, which are feasible for
C for any sufficiently small ϵ > 0 since

[
AS

cT

]
v = 0 and AScx∗ < 0. However, this is a contradiction since

1
2 x1 + 1

2 x2 = x∗ and x1, x2 ̸= x∗ implies that x∗ is not an extreme point of C.

We next provide a proof of the second direction (full rank =⇒ extreme point) by contradiction. Suppose
that x∗ ∈ C is a point such that ASx∗ = 0 and AScx∗ < 0 for some subset S its complement Sc, cT x∗ = d,
and the matrix

[
AS

cT

]
∈ Rd×d is full row rank. It follows that x∗ is the unique solution of the linear system[

AS

cT

]
x =

[
0
d

]
. We will show that x∗ is an extreme point. Suppose that this is not the case and there

exists x1, x2 ∈ C distinct from x∗ such that x∗ = 1
2 x1 + 1

2 x2. Then, we have Ax1 ≤ 0, Ax2 ≤ 0 and
1
2 ASx1 + 1

2 ASx2 = 0. Note that ASx1 ≤ 0 and ASx2 ≤ 0 together with 1
2 ASx1 + 1

2 ASx2 = 0 imply that
ASx1 = ASx2 = 0 (In order to see this, suppose that aT

j x1 < 0 for some row aj of A such that j ∈ S.
Then we have 1

2 aT
j x1 + 1

2 aT
j x2 < 0 which is a contradiction.). Finally, noting cT x1 = cT x2 = d implies that[

AS

cT

]
x1 =

[
0
b

]
and

[
AS

cT

]
x2 =

[
0
b

]
, which is a contradiction since x∗ is the unique solution of this linear

system.

Lemma 23 (Rank reduction). Let us denote the Singular Value Decomposition (SVD) of X as X = UΣV T

in compact form, where U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rr×d and let X = [U U⊥]
[
Σ 0
0 0

]
[V V ⊥]T denote
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the full SVD of X. Then, the following optimization problems are equivalent

p∗
2 = min

W (1),W (2),b
ℓ
( m∑

j=1
σ(XW

(1)
j )W (2)

j , y
)

+ λ

m∑
j=1
∥W (1)

j ∥
2
2 + ∥W (2)

j ∥
2
2, (90)

pr
2 = min

W̃ (1),W̃ (2),b
ℓ
( m∑

j=1
σ(UΣW̃

(1)
j )W̃ (2)

j , y
)

+ λ

m∑
j=1
∥W̃ (1)

j ∥
2
2 + ∥W̃ (2)

j ∥
2
2, (91)

i.e., p∗ = pr. Optimal solutions of (90) and (91) satisfy (V ⊥)T W
(1)
j = 0, V T W

(1)
j = W̃

(1)
j and W

(2)
j = W̃

(2)
j

∀j ∈ [m].

Proof of Lemma 23. We define [W̃ (1)
j Ŵ

(1)
j ] ≜ [V V ⊥]W (1)

j and plug-in the compact SVD of X in the expres-
sion (90)

min
W (1),W (2),b

ℓ
( m∑

j=1
σ(UΣW̃

(1)
j )W (2)

j , y
)

+ λ
m∑

j=1
∥W̃ (1)

j ∥
2
2 + ∥Ŵ (1)

j ∥
2
2 + ∥W (2)

j ∥
2
2, (92)

where we have ∥W (1)
j ∥2

2 = ∥[V V ⊥]W (1)
j ∥2

2 = ∥W̃ (1)
j ∥2

2 + ∥Ŵ (1)
j ∥2

2. It can be seen that Ŵ
(1)
j = 0 ∀j and

V T W
(1)
j = W̃

(1)
j ∀j.

8.9 Extreme rays of convex cones

In this subsection, we present some definitions and lemmas related to extreme rays of convex cones Fenchel
and Blackett (1953); Weyl (1950).
Definition 5 (Rays). Let K be a convex cone in Rd. A cone R ⊆ K is called a ray of K if R = {λx : λ ≥ 0},
for some x ∈ K.
Definition 6 (Extreme rays). Let K be a convex cone in Rd. A ray R = {λx : λ ≥ 0} ⊆ K generated
by some vector x is called an extreme ray of K if x is not a positive linear combination of two linearly
independent vectors of K.
Lemma 24 (Weyl’s Facet Lemma Weyl (1950)). Define the convex cone K = {w ∈ Rd : wT pi ≤ 0, i ∈
[k]} ⊆ Rd, where p1, ..., pk ∈ Rd are a collection of vectors. Then, a non-zero vector x ∈ K is an element of
an extreme ray of K if and only if dim Span(pi : xT pi = 0, i ∈ [k]) = d− 1.

8.10 Convex Duality and Lasso

Lemma 25 (Lagrange Dual of Lasso). Suppose that K ∈ Rn×P is a matrix whose columns are given by
the vectors k1, ..., kp ∈ Rn and λ > 0 is a regularization parameter. Then, the primal and dual optimization
problems for Lasso are given by

min
z

ℓ(Kz, y) + λ∥z∥1 = max
v : |vT kj |≤λ ∀j∈[p]

−ℓ∗(v) (93)

Lemma 26 (Lagrange Dual of Lasso with a bias term). Consider the problem in Lemma 25 with an additional
bias term. Then, the primal and dual optimization problems for Lasso are given by

min
z, b

ℓ(Kz + 1b, y) + λ∥z∥1 = max
v : |vT kj |≤λ ∀j∈[p]∑

i
vi=0

−ℓ∗(v) (94)

Proof. Lemma 25 and 26 are based on a standard application of Lagrangian duality Boyd and Vandenberghe
(2004). Strong duality holds, i.e., the primal and dual problems have the same value which are both achieved,
in both problems since v = 0 in the dual problem is strictly feasible for the inequalities due to λ > 0.
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8.11 Optimizing scaling coefficients

Our characterization of the hidden neurons using geometric algebra in Theorem 4 and 17 determine the
direction of optimal neurons. The magnitude of the optimal neuron can be analytically determined. In this
section, we show that the optimal scaling coefficients are given by the ratio of the norms of the corresponding
weights.

Consider the two-layer neural network training problem given below

p∗ ≜ min
W (1),W (2),b

ℓ
( m∑

j=1
σ(XW

(1)
j + 1bj)W (2)

j , y
)

+ λ

m∑
j=1
∥W (1)

j ∥
2
p + ∥W (2)

j ∥
2
p, (95)

where the activation function is positively homogeneous, i.e., σ(αx) = ασ(x) for α > 0. Introducing non-
negative scaling coefficients α1, ..., αm to scale hidden neuron weight and bias, and dividing the corresponding
second layer weight by the same scalar we obtain

p∗ ≜ min
W (1),W (2),b
α1,...,αm≥0

ℓ
( m∑

j=1
σ(XW

(1)
j αj + 1bjαj)W (2)

j α−1
j , y

)
+ λ

m∑
j=1
∥W (1)

j ∥
2
pα2

j + ∥W (2)
j ∥

2
pα−2

j , (96)

= min
W (1),W (2),b
α1,...,αm≥0

ℓ
( m∑

j=1
σ(XW

(1)
j + 1bj)W (2)

j , y
)

+ λ

m∑
j=1
∥W (1)

j ∥
2
pα2

j + ∥W (2)
j ∥

2
pα−2

j , (97)

where the last equality follows from the fact that σ(αx) = ασ(x) for α > 0. Through simple differentiation,
it is straightforward show that the optimal scaling coefficients are given by

α∗
j =

(∥W (2)
j ∥p

∥W (1)
j ∥p

)1/2
for j ∈ [m]. (98)

8.12 Proof for three-layer networks with inputs of arbitrary dimension

We consider the scalar output three-layer network

f(x) =
m∑

j=1
((xT W

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), (99)

where W
(1)
j ∈ Rd×q, W

(2)
j ∈ Rq×q, W

(3)
j ∈ R, b(1) ∈ Rp, b(2) ∈ Rq and b(3) ∈ R are trainable weights.

8.12.1 Optimal scaling

Our characterization of the hidden neurons using geometric algebra in Theorem 4 and 17 determine the
direction of optimal neurons. The magnitude of the optimal neuron can be analytically determined. In this
section, we show that the optimal scaling coefficients are given by the ratio of the norms of the corresponding
weights.
Lemma 27. Consider the three-layer neural network training problem given below

p∗ ≜ min
W (1),W (2),W (3),b(1),b(2)

ℓ
( m∑

j=1
((XW

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), y

)
(100)

+ λ

3

m∑
j=1
∥W (1)

j ∥
3
p + ∥W (2)

j ∥
3
p + |W (3)

j |
3. (101)

The above problem is equivalent to

min
∥W

(1)
j

∥p=1,∥W
(2)
j

∥p=1 ∀j,W (3),b(1),b(2)
ℓ
( m∑

j=1
((XW

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), y

)
+ λ

m∑
j=1
|W (3)

j |. (102)
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Proof. Consider scalar non-negative weights α1, α2, α3 satisfying α1jα2jα3j = 1 for j ∈ [m]. Applying the
scaling W

(1)
j ← α1jW

(1)
j , W

(2)
j ← α2jW

(2)
j , and W

(3)
j ← α3jW

(3)
j for all j ∈ [m], we observe that the loss

term ℓ(·) does not change due to the positive homogeneity of ReLU. Optimizing over these scalars, we obtain

p∗ ≜ min
α1j ,α2j ,α3j∈R+

α1jα2jα3j=1,j∈[m]

min
W (k),b(k),k∈[3]

ℓ
( m∑

j=1
((XW

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), y

)
(103)

+ λ

3

m∑
j=1

α3
1j∥W

(1)
j ∥

3
p + α3

2j∥W
(2)
j ∥

3
p + α3

3j |W
(3)
j |

3 (104)

≥ min
α1j ,α2j ,α3j∈R+

α1jα2æα3j=1,∀j∈=[m]

min
W (k),b(k),k∈[3]

ℓ
( m∑

j=1
((XW

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), y

)
(105)

+ λ

m∑
j=1

(
α3

1jα3
2jα3

3j∥W
(1)
j ∥

3
p∥W

(2)
j ∥

3
p|W

(3)
j |

3
)1/3

(106)

= min
W (k),b(k),k∈[3]

ℓ
( m∑

j=1
((XW

(1)
j + b(1))+W

(2)
j + b(2))+W

(3)
j + b(3), y

)
(107)

+ λ

m∑
j=1
∥W (1)

j ∥p∥W (2)
j ∥p|W (3)

j |, (108)

where the inequality follows from the AM-GM inequality, which holds with equality when αkj =
∥W (k)

j ∥−1
p

∏3
k=1 ∥W

(k)
j ∥p for all j ∈ [m], k ∈ [3]. Finally, we scale W 3

j by ∥W (1)
j ∥−1

p ∥W
(2)
j ∥−1

p for all j ∈ [m]
and obtain the claimed result.

Next, we present the convex dual of the problem in Lemma 27.
Lemma 28. The dual of the problem in (102) is given by

d∗ = max
v∈Rn

1T
n v=0

−ℓ∗(v) (109)

s.t. max
∥W (1)∥p=1,∥W (2)∥p=1,b(1),b(2)

∣∣∣vT
(
(XW (1) + b(1))+W (2) + b(2))

+

∣∣∣ ≤ λ. (110)

The proof of this lemma parallels the proof of Proposition 5 in Wang et al. (2022), where it was also shown
that strong duality holds, i.e., p∗ = d∗, as long as the number of neurons, m, is sufficiently large.

8.12.2 Proofs for three-layer networks without bias terms

Proof of Theorem 12. We focus on the maximization subproblem in the constraints of the dual problem in
Lemma 28. We use the same steps in the proof of Theorem 4 and 17 to maximize over the layer two and
three weights while the first layer weights are fixed, and finally maximize over the first layer weights. This
yields dual constraints analogous to a nested version of (88) given by {Z(v) ≤ β, 1T

n v = 0}, where Z = Z(v)
is given by

Z := max
j∈[n]

max
∥w∥1=1

max
(∣∣∣∣∣

n∑
i=1

(
(xT

i w)+ − (xT
j w)+

)
+ vi

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
i=1

(
(xT

j w)+ − (xT
i w)+

)
+ vi

∣∣∣∣∣
)

(111)

= max(Z(−1),Z(1),X (−1),X (1)). (112)

Here,

Z(s) := max
j∈[n]

max
∥w∥1=1

s

n∑
i=1

(
(xT

i w)+ − (xT
j w)+

)
+ vi for s ∈ {−1, +1}. (113)
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and

X (s) := max
j∈[n]

max
∥w∥1=1

s

n∑
i=1

(
(xT

j w)+ − (xT
i w)+

)
+ vi for s ∈ {−1, +1}. (114)

We focus on Z(1) since the analysis for Z(−1),X (−1),X (1) are identical except small changes. Using hyper-
plane arrangements of the matrix X, we can write the above problem as

Z(1) = max
j∈[n],k∈[P ]

max
w∈Ck,∥w∥1=1

n∑
i=1

(
Dkiix

T
i w −DkjjxT

j w
)

+ vi, (115)

where D1, ..., DP are the P diagonal matrices of the hyperplane arrangement of X and Dkii is the i-th
diagonal element of the matrix Dk. Here Ck is defined as Ck := {w ∈ Rd : (2Dk − I)Xw ≥ 0}. Now note
that Dkii = 0 implies that

Dkiix
T
i w −DkjjxT

j w = −(xT
j w)+ ≤ 0.

Therefore, we can write the above problem as

Z(1) = max
j∈[n],k∈[P ]

max
w∈Ck,∥w∥1=1

n∑
i=1

Dkii

(
xT

i w −DkjjxT
j w
)

+ vi, (116)

= max
j∈[n],k∈[P ]

max
w∈Ck,∥w∥1=1

vT Dk

(
Xw −Dkjj1xT

j w
)

+ (117)

Now we split the above problem into two subproblems by considering the values of Dkj .

Z(1) = max(M1,M2), (118)

where

M1 = max
j∈[n],k∈[P ],Dkj=1

max
w∈Ck,∥w∥1=1

vT Dk

(
(X − 1xT

j )w
)

+ (119)

and

M2 = max
j∈[n],k∈[P ],Dkj=0

max
w∈Ck,∥w∥1=1

vT DkXw. (120)

Note that (DkXw)+ = DkXw, which we used to simplify the expression for M2. Now we focus on the
subproblem M1, by considering the hyperplane arrangements of the matrix X − 1xT

j . Suppose that the
diagonal arrangement patterns of the matrix X − 1xT

j are given by Hj1, ..., HjG, and the corresponding
convex cones are given by Fj1, ...,FjG. Then, we can write the subproblem M1 as

M1 = max
j∈[n],k∈[P ],Dkj=1,ℓ∈[G]

max
w∈Fjℓ∩Ck,∥w∥1=1

vT Hjℓ(X − 1xT
j )w. (121)

We also rewrite the subproblem M2 using the same hyperplane arrangements for reasons that will become
clear later.

M2 = max
j∈[n],k∈[P ],ℓ∈[G],Dkj=0

max
w∈Fjℓ∩Ck,∥w∥1=1

vT DkXw. (122)

Using Lemma 19, we can rewrite the subproblems using the extreme points

Ejkℓ := Ext(Tjkℓ) where Tjkℓ := Fjℓ ∩ Ck ∩ {w : ∥w∥1 = 1} , (123)

as follows

M1 = max
j∈[n],k∈[P ],ℓ∈[G],Dkj=1

max
w∈Ejkℓ

vT Dk

(
Xw −Dkjj1xT

j w
)

+ , (124)
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and

M2 = max
j∈[n],k∈[P ],ℓ∈[G],Dkj=0

max
w∈Ejkℓ

vT Dk

(
Xw −Dkjj1xT

j w
)

+ . (125)

Then, we can write

Z(1) = max(M1,M2) = max
j∈[n],k∈[P ],ℓ∈[G]

max
w∈Ejkℓ

vT Dk

(
Xw −Dkjj1xT

j w
)

+

= max
w∈∪j∈[n],k∈[P ],ℓ∈[G]Ejkℓ

n∑
i=1

(
(xT

i w)+ − (xT
j w)+

)
+ vi.

We now apply the characterization of extreme points from Lemma 19, which shows that

Ejkℓ =

w ∈ Tjkℓ ⊆ Rd | ∃S ⊆ [n], |S| = d− 1, Mw = 0, M :=

 X
X − 1xT

j

I


S

, rank(M) = d− 1

 ,

where Tjkℓ is defined in (123). Now we note that for each fixed j ∈ [n], the sets {Fjl ∩ Ck}k∈[P ],l∈[G] are
chambers of hyperplane arrangements that exhaustively partition Rd. Taking a union over all chambers as
the tuple (k, l) range over [P ]× [G] gives the entire space Rd. Therefore, we have

Z(1) = max
j∈[n], w∈E′

j
⊆Rd

n∑
i=1

(
(xT

i w)+ − (xT
j w)+

)
+ vi.

where E ′
j is defined as

E ′
j =

w ∈ Rd : ∃S ⊆ [n], |S| = d− 1, Mw = 0, M :=

 X
X − 1xT

j

I


S

, rank(M) = d− 1

 .

As in the proof of Theorem 4, we identify the elements of the set E ′
j using the generalized cross product and

obtain the following characterization of Z

Z = max
j∈[n], w∈W⊆Rd

n∑
i=1

(
(xT

i w)+ − (xT
j w)+

)
+ vi.

where Wj is defined as Wj ≜
{
± ×ℓ∈S x̃

(j)
j

∥×ℓ∈S x̃
(j)
j

∥1
: {x̃(j)

j }j∈S linearly independent, |S| = d− 1
}

and the set of

vectors {x̃(j)
i }

2n+d
i=1 are the union of {xi}n

i=1, {xi − xj}n
i=1, and {ei}d

i=1.

The arguments for Z(−1),X (−1),X (1) hold in the same way, and we obtain the following characterization of
the dual problem. Using the convex duality of Lasso from Lemma 25, we obtain the claimed convex bidual
problem, and the optimal solution is given by the extreme points of the set Wj .

8.12.3 Proofs for depth three networks with biases

Proof of Theorem 13. Consider the dual constraint subproblem

Z(b) := max
j∈[n]

max
∥w∥1=1, b∈R

∣∣∣∣∣
n∑

i=1

(
(xT

i w + b)+ − (xT
j w + b)+

)
+ vi

∣∣∣∣∣ . (126)

We now focus on the maximization with respect to the scalar b when the vector w and the index j are fixed.
Observe that the objective is a piecewise linear function of b, when all other variables are fixed. Therefore,
it suffices to check the break points and when β → −∞ or β →∞. The break points are when b such that
xT

i w + b = 0 for some i ∈ [n]. When β →∞ we have

(xT
i w + b)+ − (xT

j w + b)+ = xT
i w + b− xT

j w − b = (xi − xj)T w
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for some i, j ∈ [n]. Then, we rewrite the above problem as

Z(b) = max(Z(b)
1 ,Z(b)

2 ) ,

where Z(b)
1 are the maximum value over the break points b = −xT

i w for each i ∈ [n] and Z(b)
2 is the maximum

value when β →∞ as given below.

Z(b)
1 := max

j∈[n],ℓ∈[n]
max

∥w∥1=1

∣∣∣∣∣
n∑

i=1

(
((xi − xℓ)T w)+ − ((xj − xℓ)T w)+

)
+ vi

∣∣∣∣∣ (127)

and

Z(b)
2 = max

j∈[n]
max

∥w∥1=1

∣∣∣∣∣
n∑

i=1

(
(xi − xj)T w

)
+ vi

∣∣∣∣∣ ,

Finally we note that by re-labeling the data points as xi ← xi − xℓ for some ℓ ∈ [n], the problem Z(b)
1 is

equivalent to the maximization problem Z analyzed in the proof of Theorem 12. The rest of the proof closely
follows the proof of Theorem 12 and we obtain the claimed result.
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