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Abstract

Identifying the most representative subset for a
close-to-submodular objective while satisfying
the predefined partition constraint is a fundamen-
tal task with numerous applications in machine
learning. However, the existing distorted local-
search methods are often hindered by their pro-
hibitive query complexities and the rigid require-
ment for prior knowledge of difficult-to-obtain
structural parameters. To overcome these lim-
itations, we introduce a novel algorithm titled
Multinoulli-SCG, which not only is parameter-
free, but also can achieve the same approximation
guarantees as the distorted local-search methods
with significantly fewer function evaluations. The
core of our Multinoulli-SCG algorithm is an in-
novative continuous-relaxation framework named
Multinoulli Extension(ME), which can effectively
convert the discrete subset selection problem sub-
ject to partition constraints into a solvable continu-
ous maximization focused on learning the optimal
multinoulli priors across the considered partition.
In sharp contrast with the well-established multi-
linear extension for submodular subset selection,
a notable advantage of our proposed ME is its
intrinsic capacity to provide a lossless rounding
scheme for any set function. Finally, we vali-
date the practical efficacy of our proposed algo-
rithms by applying them to video summarization,
A-optimal design and coverage maximization.
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1. Introduction
Subset selection aims to identify a small group of repre-
sentative items from a vast ground set, which finds numer-
ous real-world applications in the fields of machine learn-
ing, operations research and statistics, including feature
selection (Das & Kempe, 2008; 2011; Qian et al., 2015;
2017), data summarizarion (Lin & Bilmes, 2010; 2011; Wei
et al., 2015; Mirzasoleiman et al., 2016), product market-
ing (Kempe et al., 2003; Tang et al., 2018; Han et al., 2021),
sensor placement (Krause et al., 2008; Hashemi et al., 2019;
DeValve et al., 2023) and in-context learning (Kumari et al.,
2024a;b; Fan et al., 2025). Beyond the aforementioned rep-
resentational capacity, ensuring the diversity and fairness of
the chosen subset is of significant importance. For instance,
in various marketing scenarios, it is essential to equitably
allocate free products across different communities (Tsang
et al., 2019). To this end, partition constraints are often
imposed in the process of subset selection, which involves
dividing the entire set into non-overlapping sub-classes and
then fairly distributing the total budget among them. Mo-
tivated by these findings, this paper explores the subset
selection problem under partition constraints.

Broadly speaking, the subset selection problem is NP-
hard (Natarajan, 1995; Feige, 1998), implying that no
polynomial-time algorithms can solve it optimally. In light
of this hurdle, many studies have focused on designing
efficient approximation algorithms to address the subset
selection problem. Especially when the utility function as-
sociated with the subset selection problem is submodular,
a plethora of effective and practical algorithms have been
proposed for maximizing this type of functions subject to
partition constraints (Fisher et al., 1978; Calinescu et al.,
2011; Filmus & Ward, 2012b; 2014). Additionally, it has
been frequently observed that there are also many scenarios
inducing utility functions that are “close-to-submodular”,
but not strictly submodular. Examples include variable se-
lection for regression (Das & Kempe, 2018; Elenberg et al.,
2018), video summarization (Chen et al., 2018a), neural
network pruning (El Halabi et al., 2022) and sparse optimal
transport (Manupriya et al., 2024).

Compared to the extensive literature on submodular func-
tions, there is a limited amount of research exploring the
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maximization of “close-to-submodular” objectives under
partition constraints. Notably, Thiery & Ward (2022) re-
cently proposed a distorted local-search algorithm to maxi-
mize an important class of “close-to-submodular” functions
named (γ, β)-weakly submodular functions and demon-

strated that this approach can secure a γ2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2 -

approximation under partition constraints, where γ and β
represent the lower and upper submodularity ratio respec-
tively. Subsequently, Lu et al. (2022) extended this local
search to another class of “close-to-submodular” functions
known as α-weakly DR-submodular functions and also con-
firmed a (1−e−α)-approximation guarantee under partition
constraints, where α is the diminishing-return(DR) ratio.

Despite the superior theoretical guarantees of distorted local-
search methods, their practical implementation often faces
two significant challenges: i) Reliance on Unknown Pa-
rameters: Distorted local search generally requires prior
knowledge of specific structural parameters regarding the
objective functions, such as the submodularity ratio and
diminishing-return(DR) ratio. However, in practice, accu-
rately estimating these parameters can incur exponential
computations. ii) Prohibitive Query Complexity: Due
to the absence of necessary structural parameters, Lu et al.
(2022) and Thiery & Ward (2022) have to adopt a brute-
force O(1/ϵ)-round guesses of these unknown parameters
to approximate the distorted local-search methods, which
will result in an extremely high Õ(1/ϵ6) and Õ(1/ϵ3) num-
ber of value queries to the objective function, respectively.
Thus, a natural question arises:

Is it possible to develop a parameter-free and query-
efficient algorithm for the “close-to-submodular”
subset selection problems under partition constraints
while keeping strong approximation guarantees?

In this paper, we will provide an affirmative answer to
this question by presenting an effective algorithm titled
Multinoulli-SCG, which not only reduces the strict require-
ment for the exact knowledge of both submodularity ra-
tio and DR ratio, but also can attain the same approxima-
tion guarantees as the aforementioned distorted local-search
methods with only O(1/ϵ2) function evaluations. The cor-
nerstone of our Multinoulli-SCG algorithm is an innovative
continuous-relaxation framework termed as the Multinoulli
Extension(ME), which aims to learn a multinoulli distribu-
tion for each community within the partition constraints and
subsequently leverage these distributions to make selection.
In sharp contrast with the well-established multi-linear ex-
tension (Calinescu et al., 2011), a notable advantage of our
proposed ME is its inherent capability to provide a lossless
rounding scheme for any set function. Instead, all known
lossless rounding schemes for multi-linear extension require

Table 1. Comparison of theoretical guarantees for α-weakly DR-
submodular maximization over partition constraints. Note that
‘Para-free’ indicates whether the method does not rely on prior
knowledge of α, ‘OPT’ represents the optimal value of the subset
selection problem (1), ‘Distorted-LS’ is the abbreviation for the
distorted local-search method,‘Distorted-LS-Guessing’ denotes
the distorted local-search method with O(1/ϵ)-round guesses, r is
the rank of partition constraint, e.g., r =

∑K
k=1 Bk in problem (1),

and n is the size of the ground set, namely, n = |V| in problem (1).

Method Para-free? Queries Utility
Standard Greedy

(Khashayar & Manuel, 2019) ✔ O(nr)
(

α
1+α

)
OPT

Distorted-LS
(Lu et al., 2022) ✘ Ω(nr2r) (1− e−α)OPT

Distorted-LS-Guessing
(Lu et al., 2022) ✔ Õ(nr

4

ϵ6 ) (1− e−α − ϵ)OPT

Multinoulli-SCG
(Theorem 4&Remark 8) ✔ O( r

3n2

ϵ2 ) (1− e−α)OPT−ϵ

that the objective set function is submodular.

Our Contributions. i): This paper introduces a novel prob-
abilistic framework for the subset selection problem under
partition constraints, which we refer to as the Multinoulli
Extension(ME). Furthermore, we conduct an in-depth explo-
ration of the differentiability, smoothness and monotonicity
regarding the ME. More importantly, we establish an up-
per bound for the gap between the function value of our
proposed ME and that of the original set function. ii): We
propose a novel algorithm named Multinoulli-SCG, which
effectively integrates the concept of continuous greedy, the
path-integrated differential estimator and the relationship
between our proposed ME and its original set function. More-
over, we prove that, when the objective function is mono-
tone α-weakly DR-submodular or (γ, β)-weakly submod-
ular, our Multinoulli-SCG algorithm can attain a value of

(1 − e−α)OPT − ϵ or (γ
2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2 )OPT − ϵ with
only O(1/ϵ2) function evaluations, where OPT denotes the
optimal value. These results not only significantly improve
the previous Õ(1/ϵ6) and Õ(1/ϵ3) number of function eval-
uations associated with the distorted local-search methods,
but also match the information-theoretic O(1/ϵ2) lower
bound (Karbasi et al., 2019; Hassani et al., 2020). iii): We
demonstrate the practical efficacy of our proposed algo-
rithms by applying them to video summarization, bayesian
A-optimal design and maximum coverage.

Related Work. Due to space limits, we primarily focus
on the most relevant studies, with a more comprehensive
discussion provided in Appendix A. Chen et al. (2018a) was
the first to investigate weakly submodular maximization
beyond simple cardinality constraints, which pointed out
that the Residual Random Greedy method of (Buchbinder
et al., 2014) can achieve an approximation ratio of γ2

(1+γ)2

for the problem of maximizing a monotone γ-weakly sub-
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Table 2. Comparison of theoretical guarantees for (γ, β)-weakly
submodular maximization over partition constraints. Note that

ϕ(γ, β) = γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2 and ‘Para-free’ means whether
the method does not rely on prior knowledge of γ and β

Method Para-free? Queries Utility
Residual Random Greedy

(Chen et al., 2018a) ✔ O(nr)
(

γ2

(1+γ)2

)
OPT

Standard Greedy
(Khashayar & Manuel, 2019) ✔ O(nr)

(
0.4γ2

√
γr+1

)
OPT

Residual Random Greedy
(Thiery & Ward, 2022) ✔ O(nr)

(
γ

γ+β

)
OPT

Distorted-LS
(Thiery & Ward, 2022) ✘ Ω(nr2r) ϕ(γ, β)OPT

Distorted-LS-Guessing
(Thiery & Ward, 2022) ✔ Õ(nr

4

ϵ3 ) (ϕ(γ, β)− ϵ)OPT

Multinoulli-SCG
(Theorem 4&Remark 8) ✔ O( r

3n2

ϵ2 ) ϕ(γ, β)OPT−ϵ

modular functions subject to a matroid constraint. Note
that matroid constraint is a natural generalization of the
partition constraints considered in this paper. Subsequently,
Khashayar & Manuel (2019) examined the approximation
performance of standard greedy algorithm on both γ-weakly
submodular and α-weakly DR-submodular maximization
over a matroid constraint. Next, in order to improve the ap-
proximation performance of the Residual Random Greedy
method, Thiery & Ward (2022) introduced the notion of
upper submodularity ratio β and developed a more powerful
distorted local-search algorithm for (γ, β)-weakly submod-
ular maximization. Concurrently, Lu et al. (2022) also pro-
posed a similar local-search method to maximize α-weakly
DR-submodular functions. A detailed comparison of our
proposed Multinoulli-SCG algorithm with existing studies
is presented in Table 1 and Table 2.

Remark on Table 2: Thiery & Ward (2022) has demon-
strated that when γ < 1

7 , the approximation guarantee
of Residual Random Greedy method (Chen et al., 2018a),
namely γ2

(1+γ)2 , will surpass the ratio ϕ(γ, β). To overcome
this drawback, Thiery & Ward (2022) initializes their dis-
torted local-search method by the returned subset of the
Residual Random Greedy method. Similarly, when γ < 1

7 ,
we also can produce a better subset by comparing the re-
turned subset of our proposed Multinoulli-SCG algorithm
with that of the Residual Random Greedy method.

2. Preliminaries
In this section we present several important notations and
concepts that we will frequently use throughout this paper.

Notations: For any positive integer K, [K] stands for the
set {1, . . . ,K}. The symbol ⟨·, ·⟩ denotes the inner prod-
uct. Moreover, ∆m represents the standard m-dimensional
simplex, i.e., the set {(x1, . . . , xm)|

∑m
i=1 xi ≤ 1 and xi ≥

0,∀i ∈ [m]}. Especially, the symbol ‘Multi(p)’ denotes a
multinoulli distribution with (m+ 1) possible states where
p ∈ ∆m. Note that the multinoulli distribution is also
known as the categorical distribution (Murphy, 2012).

Partition of A Set: Given a finite ground set V , we say
{V1, . . . ,VK} is a partition of set V if and only if i) Vi ∩
Vj = ∅ for any i ̸= j ∈ [K]; ii) V =

⋃K
k=1 Vk.

Subset Selection under Partition Constraints: Let f :
2V → R+ be a set function that maps any subset of V to a
non-negative utility. Given a partition {V1, . . . ,VK} of V
and a collection of budgets {B1, . . . , BK} where 0 < Bk ≤
|Vk| ∀k ∈ [K], the goal of the subset selection problems
subject to partition constraints is aimed at finding a subset
S from V such that the utility set function f is maximized
within the constraints |S ∩ Vk| ≤ Bk for any k ∈ [K], i.e.,

max
S⊆V

f(S) s.t. |S ∩ Vk| ≤ Bk ∀k ∈ [K]. (1)

Monotonicity: We say that a set function f : 2V → R+ is
monotone if and only if f(A) ≤ f(B) for any A ⊆ B ⊆ V .

Weak Submodularity: Given a set function f : 2V → R+

and any two subsets A,B ⊆ V , we denote by f(B|A) the
marginal contribution of adding the elements of B to A, i.e.,
f(B|A) := f(A ∪B)− f(A). For simplicity, when B is a
singleton set {v}, we also use f(v|A) to represent f({v}|A).
Therefore, we say that a set function f : 2V → R+ is γ-
weakly submodular from below for some γ ∈ (0, 1] if and
only if, for any two subsets A ⊆ B ⊆ V ,∑

v∈B\A

f(v|A) ≥ γ
(
f(B)− f(A)

)
, (2)

where we denote γ as the lower submodularity ratio. Simi-
larly, we also can define the weak submodularity from above,
that is, a set function f : 2V → R+ is β-weakly submodular
from above for some β ≥ 1 iff, ∀A ⊆ B ⊆ V ,∑

v∈B\A

f(v|B − {v}) ≤ β
(
f(B)− f(A)

)
, (3)

where β is called as the upper submodularity ratio. When a
set function f satisfies both Eq.(2) and Eq.(3), we say it is
(γ, β)-weakly submodular (Thiery & Ward, 2022).

Weak DR-submodularity: A set function f : 2V → R+ is
α-weakly DR-submodular for some α ∈ (0, 1] iff f(v|A) ≥
αf(v|B) for any two subsets A ⊆ B ⊆ V and v ∈ V\B. In
particular, α is often called as the diminishing-return(DR)
ratio (Kuhnle et al., 2018). Note that, from Eq.(2) and
Eq.(3), we can infer that an α-weakly DR-submodular func-
tion automatically satisfies the conditions for being (α, 1

α )-
weakly submodular. Moreover, when α = 1, weakly DR-
submodular objectives will reduce to the standard submodu-
lar functions (Nemhauser et al., 1978; Fujishige, 2005)
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Figure 1. Diagram of Multinoulli Extension.

3. Multinoulli Extension
Generally speaking, the discrete nature of subset selection
problem (1) poses a significant challenge in finding effective
solutions. In recent years, compared to discrete optimiza-
tion, continuous optimization developed an array of efficient
and advanced algorithmic tools. Thus, an alternative strat-
egy to address the subset selection problem (1) is to bring
it into the world of continuous optimization via relaxation-
rounding frameworks, which typically involve three critical
stages: first, converting the problem (1) into a solvable con-
tinuous optimization; second, applying the gradient-based
methods to output a high-quality continuous solution; and
third, rounding the previous continuous solution back to the
partition constraint of Eq.(1) without any loss in terms of
the function value. In the subsequent part of this section, we
will present a novel relaxation-rounding framework named
the Multinoulli Extension(ME) for problem (1).

Prior to this, Calinescu et al. (2011) proposed a continuous
relaxation technique known as the multi-linear extension for
submodular subset selection problems. Unfortunately, this
extension cannot be directly applied to the general subset se-
lection problem (1) because most known lossless rounding
schemes for multi-linear extension, such as pipage round-
ing (Ageev & Sviridenko, 2004), swap rounding (Chekuri
et al., 2010) and contention resolution (Chekuri et al., 2014),
are heavily dependent on the submodular assumption. Up
to now, how to losslessly round the multi-linear extension of
non-submodular set functions, e.g. (γ, β)-weakly submod-
ular and α-weakly DR-submodular functions, still remains
an open question (Thiery & Ward, 2022). Given the un-
solved rounding challenge of multi-linear extension, this
paper choose to introduce a new relaxation technique named
Multinoulli Extension(ME) to address the problem (1).

To provide a clearer exposition of our proposed ME, we
first make some assumptions regarding the problem (1): we
define Vk := {v1k, . . . , v

nk

k } for any k ∈ [K] and set |V| =
n, i.e., n =

∑K
k=1 nk. More specifically, the core idea of

our ME is to learn a prior multinoulli distribution ‘Multi(pk)’
for each community Vk, where pk := (p1k, . . . , p

nk

k ) ∈ ∆nk

and each pmk denotes the probability that element vmk is

selected within its own community Vk for any m ∈ [nk] and
k ∈ [K]. Subsequently, ME employs each prior distribution
‘Multi(pk)’ to conduct Bk independent random selections
for every community Vk, which can ultimately yield a subset
that adheres to the partition constraint of problem (1). In
Figure 1, we present a three-community example of ME. It
is noteworthy that, with the probability 1−

∑nk

m=1 p
m
k , the

multinoulli prior ‘Multi(pk)’ won’t pick any member from
Vk. In other words, sometimes we might end up with no
selection, i.e., ∅. Formally, we can define the ME as:
Definition 1 (Multinoulli Extension). Given a set function
f : 2V → R+, its Multinoulli Extension F :

∏K
k=1 ∆nk

→
R+ for problem (1) can be defined as:

F (p1, . . . ,pK) := E
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
))

=
∑

eb̂
k̂
∈Vk̂∪{∅}

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
) K∏
k̂=1

Bk̂∏
b̂=1

Pr(eb̂
k̂
|pk̂)

)
,

where each eb̂
k̂

denotes the element chosen at the b̂-th

random trail of community Vk̂, ∀b̂ ∈ [Bk̂],∀k̂ ∈ [K],
pk̂ = (p1

k̂
, . . . , p

nk̂

k̂
) ∈ ∆nk̂

is the probability vector for

the community Vk̂, ∀k̂ ∈ [K], Pr(vm
k̂
|pk̂) = pm

k̂
, ∀m ∈

[nk̂],∀k̂ ∈ [K] and Pr(∅|pk̂) = 1−
∑nk̂

m=1 p
m
k̂
, ∀k̂ ∈ [K].

Remark 1. The introduction of ME is aimed at converting
the general subset selection problem (1) into a continuous
maximization task focused on identifying the optimal multi-
noulli priors across the partition {V1, . . . ,VK}. Specifically,
we hope to address the following continuous optimization:

max
pm
k ≥0

F (p1, . . . ,pK) s.t.
nk∑

m=1

pmk ≤ 1,∀k ∈ [K]. (4)

Remark 2. In comparison with the multi-linear exten-
sion (Calinescu et al., 2011), a notable advantage of our
ME is that it does not assign probabilities to any subsets
that are out of the partition constraint of problem (1). This
means that, for any set function f : 2V → R+ and any given
(p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we can, through the definition
of ME, easily produce a subset that conforms to the partition
constraint of problem (1) without any loss in terms of the
expected function value F (p1, . . . ,pK). For more details
about multi-linear extension, please refer to Appendix A.1.

Although the ME is naturally endowed with a lossless round-
ing scheme for any set function, there are two crucial ques-
tions that must be answered in order to leverage this tool
to tackle the subset selection problem (1) : i): What is the
relationship between the function value of our proposed
Multinoulli Extension F and the original set function f? ii):
How to solve the relaxed problem (4)? For the rest of this
section, we will focus on the first question. The exploration
of the second question will be presented in Section 4.
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3.1. The Properties of Multinoulli Extension

In this subsection, we will concentrate on characterizing
several important properties about our proposed ME. Specif-
ically, we have the following theorem:

Theorem 1 (Proof provided in Appendix C.1). For a
set function f : 2V → R+, its Multinoulli Extension
F :

∏K
k=1 ∆nk

→ R+ for problem (1), as described in
the Definition 1, satisfies the following properties:

1): The first-order partial derivative of F at any point
(p1, . . . ,pK) ∈

∏K
k=1 ∆nk

can be written as follows:

∂F

∂pmk
:= Bk

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
vmk

∣∣∣∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
}
)))

,

for any k ∈ [K] and m ∈ [nk];

2): If f is monotone, then ∂F
∂pm

k
≥ 0,∀k ∈ [K],m ∈ [nk];

3): If f is α-weakly DR-submodular, then F is α-weakly con-
tinuous DR-submodular (Hassani et al., 2017; Zhang et al.,
2022; 2024) over the domain

∏K
k=1 ∆nk

, that is, for any
two point (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

and (p̂1, . . . , p̂K) ∈∏K
k=1 ∆nk

, if p̂k ≥ pk for any k ∈ [K], we have that

∇F (p1, . . . ,pK) ≥ α∇F (p̂1, . . . , p̂K);

4): If f is γ-weakly submodular from below, then F is
upper-linearizable (Pedramfar & Aggarwal, 2024) over
the domain

∏K
k=1 ∆nk

, that is, for any two point x :=

(p1, . . . ,pK) ∈
∏K

k=1 ∆nk
and x̂ := (p̂1, . . . , p̂K) ∈∏K

k=1 ∆nk
, if p̂k ≥ pk for any k ∈ [K], we have that

γ
(
F (x̂)− F (x)

)
≤
〈
x̂− x,∇F (x)

〉
.

Remark 3. The first point of Theorem 1 provides a specific
form about the first-order derivative of our proposed ME.
The second point indicates that the mononicity of the set
function f can be inheritable by its ME. Furthermore, the
third and fourth points reveal that when the set function f
exhibits the weak DR-submodularity or weak submodularity,
its corresponding ME is weakly continuous DR-submodular
or upper-linearizable over the domain

∏K
k=1 ∆nk

.

Remark 4. Note that both upper-linearizable and weakly
continuous DR-submodular functions defined over the box
constraint [0, 1]n have been extensively studied by (Hassani
et al., 2017; 2020; Zhang et al., 2024; Wan et al., 2023;
Pedramfar & Aggarwal, 2024). However, it is crucial to em-
phasize that these former results cannot be directly applied
to our ME. This is because all of them require the domain of
objective functions to be closed under the coordinate-wise
maximum operation ∨, i.e., x ∨ y = max(x,y). Unfortu-
nately, the domain of our ME does not meet this requirement.
For further details, please refer to Appendix A.3.

Next, we uncover the relationship between the function
value of our proposed ME F and that of the original f . To
be more precise, we have the following theorem:

Theorem 2 (Proof provided in Appendix C.2). When the
set function f : 2V → R+ is monotone and α-weakly
DR-submodular, for any subset S within the partition con-
straint of problem (1) and any point x := (p1, . . . ,pK) ∈∏K

k=1 ∆nk
, the following inequality holds:

α
(
f(S)− F (x)

)
≤

〈
K∑

k=1

1

Bk
1S∩Vk

,∇F (x)

〉
,

where the symbol 1S is the indicator function over the set S,
meaning that, for any element vmk ∈ S, the corresponding
coordinate of its probability pmk in 1S is set to 1; other-
wise, 0. Similarly, when the set function f : 2V → R+ is
monotone and (γ, β)-weakly submodular, for any subset S
within the partition constraint of problem (1) and any point
x := (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we can infer that

γ2f
(
S
)
−(β(1−γ)+γ2)F

(
x
)
≤

〈
K∑

k=1

1S∩Vk

Bk
,∇F (x)

〉
.

Remark 5. Theorem 2 implies that when f is monotone and
α-weakly DR-submodular, for any S within the partition
constraint of problem (1) and any point x ∈

∏K
k=1 ∆nk

,
the discrepancy between f(S) and F (x) can be bounded
by the inner product

〈∑K
k=1

1
Bk

1S∩Vi
,∇F (x)

〉
. Similarly,

if f is monotone and (γ, β)-weakly submodular, this inner
product

〈∑K
k=1

1
Bk

1S∩Vi
,∇F (x)

〉
also can bound the gap

between γ2f(S) and (β(1− γ) + γ2)F (x).

4. Approximation Algorithms for Subset
Selection over Partition Constraints

In this section, we delve into the development of efficient ap-
proximation algorithms for the subset selection problem (1)
based on our introduced Multinoulli Extension F .

4.1. Stochastic Variant of Continuous Greedy Algorithm

This subsection aims to present an effective method named
Multinoulli-SCG to maximize our introduced ME, which is
primarily inspired by the continuous greedy(CG) algorithm
for the multi-linear extension (Calinescu et al., 2011; Bian
et al., 2017b; 2020; Mokhtari et al., 2018a; 2020).

The CG algorithm typically comprises two critical steps:
First, it begins with x(1) = 0 and then, at each iteration
t ∈ [T ], the algorithm identifies the optimal ascent direction
v(t) = argmaxv∈C

〈
v,∇G

(
x(t)

)〉
to update the current

variable x(t) according to the rule x(t+1) = x(t)+ 1
T v(t)

where G is the multi-linear extension of a set function

5



Multinoulli Extension: A Lossless Yet Effective Probabilistic Framework for Subset Selection over Partition Constraints

Algorithm 1 Stochastic Continuous Greedy Algorithm for
Multinoulli Extension(Multinoulli-SCG)
Input: Batch size L, number of iterations T , set function f
and partition {V1, . . . ,VK} of set V

1: Initialize: x(1) = (p1(1), . . . ,pK(1)) = 0;
2: for t = 1, . . . , T do
3: if t = 1 then ▷ Differential Estimator(Lines 3-12)
4: Compute g(1) := ∇F (0) based on Theorem 1;
5: else
6: Sample {a(1), . . . , a(L)} uniformly from [0, 1];
7: Set xl(t) = a(l)x(t)+(1−a(l))x(t−1),∀l ∈ [L];
8: Compute the Hessian estimator ∇̂2F

(
xl(t)

)
based

on Remark 6 for any l ∈ [L];
9: Compute ∇̂2

t := 1
L

∑L
l=1 ∇̂2F

(
xl(t)

)
;

10: Compute ξt := ∇̂2
t

(
x(t)− x(t− 1)

)
;

11: Aggregate the estimator g(t) = g(t− 1) + ξt;
12: end if ▷ Stochastic Continuous Greedy(Lines13-14)
13: S(t) = argmax|S∩Vk|≤Bk

〈
g(t),

∑K
k=1

1
Bk

1S∩Vk

〉
;

14: Update x(t+ 1) = x(t) + 1
T

∑K
k=1

1
Bk

1S(t)∩Vk
;

15: end for
16: Return S by rounding x(T + 1);

f and C is a convex domain. The motivation behind
the CG algorithm is that when f is submodular, the
inequality

〈
y,∇G

(
x
)〉

≥ G(y) − G(x) holds for any
feasible x,y. Note that, in Theorem 2, we establish a
similar relationship between our proposed ME F and
its original set function f , that is , the inner product〈∑K

k=1
1
Bk

1S∩Vi
,∇F (x)

〉
can bound a specific form of

weighted discrepancy between f(S) and F (x), when f
is monotone α-weakly DR-submodular or (γ, β)-weakly
submodular. Motivated by these findings, we naturally
consider a two-step variant of CG algorithm to maximize
our proposed ME: Initially, we set x(1) = 0, and then, at
each iteration t ∈ [T ], we find the optimal subset S(t) :=
argmax|S∩Vk|≤Bk,∀k∈[K]

〈
∇F (x(t)),

∑K
k=1

1
Bk

1(S∩Vk)

〉
to update the current variable x(t) according to the rule
x(t+ 1) := x(t) + 1

T

∑K
k=1

1
Bk

1(S(t)∩Vk).

However, the implementation of the aforementioned two-
step algorithm requires accurately computing the gradi-
ents of our proposed ME F , which is typically computa-
tionally intensive. To circumvent this obstacle, we adopt
the stochastic path-integrated differential estimator (Fang
et al., 2018; Yurtsever et al., 2019; Hassani et al., 2020),
namely, for a sequence of iterations {x(t)}T+1

t=1 , we es-
timate each gradient ∇F

(
x(t)

)
by the following path-

integral form: ∇̃F
(
x(t)

)
:= ∇F

(
x(1)

)
+
∑t

s=2 ξs,
where each ξs is an unbiased estimator for the difference
Diffs := ∇F (x(s)) − ∇F (x(s − 1)). Note that, for
any 2 ≤ s ≤ T , the difference Diffs can be rewritten

as: Diffs =
∫ 1

0
∇2F (xa(s))da

(
x(s) − x(s − 1)

)
, where

xa(s) = ax(s) + (1− a)x(s− 1),∀a ∈ [0, 1] and ∇2F is
the Hessian of F . Hence, if we uniformly sample the pa-
rameter a from [0, 1], the difference Diffs can be unbiasedly
estimated by ξs := ∇̃2F (xa(s))

(
x(s)− x(s− 1)

)
where

∇̃2F is an unbiased estimator of ∇2F . Following this idea,
we proceed to demonstrate how to estimate the second-order
derivative of our proposed ME, that is to say,
Theorem 3 (Proof provided in Appendix C.3). For a set
function f : 2V → R+, the second-order derivative of
its Multinoulli Extension F at any point (p1, . . . ,pK) ∈∏K

k=1 ∆nk
can be written as follows:

1): If k1 ̸= k2 ∈ [K], for any m1 ∈ [nk1
] and m2 ∈ [nk2

],

∂2F

∂pm1

k1
∂pm2

k2

= Bk1
Bk2

E
(
f
(
vm1

k1

∣∣∣S∪{vm2

k2
}
)
−f
(
vm1

k1

∣∣∣S)),
where S = ∪(k̂,b̂)̸={(k1,1),(k2,1)}{e

b̂
k̂
} and each eb̂

k̂
is drawn

from the multinoulli distribution Multi(pk̂);

2): As for k1 = k2 = k ∈ [K], if Bk = 1, for any m1,m2 ∈
[nk], we have ∂2F

∂p
m1
k ∂p

m2
k

= 0; Moreover, when Bk ≥ 2,

∂2F

∂pm1

k ∂pm2

k

= (B2
k−Bk)E

(
f
(
vm1

k

∣∣∣S∪{vm2

k }
)
−f
(
vm1

k

∣∣∣S)),
where S = ∪(k̂,b̂)̸={(k,1),(k,2)}{e

b̂
k̂
} and each eb̂

k̂
is indepen-

dently drawn from the multinoulli distribution Multi(pk̂).
Remark 6. Theorem 3 provides a detailed characterization
of the second-order derivative of our proposed ME F , which
implies that we can estimate the Hessian of F by sampling
a sequence of random elements. Specifically, when each
eb̂
k̂

is independently drawn from the multinoulli distribution

‘Multi(pk̂)’ for any k̂ ∈ [K] and b̂ ∈ [Bk̂], we can estimate
∂2F

∂p
m1
k1

∂p
m2
k2

(p1, . . . ,pK) as: when k1 ̸= k2 ∈ [K],

∂̂2F

∂pm1

k1
∂pm2

k2

= Bk1
Bk2

(
f
(
vm1

k1

∣∣∣S∪{vm2

k2
}
)
−f
(
vm1

k1

∣∣∣S)),
where S = ∪(k̂,b̂) ̸={(k1,1),(k2,1)}{e

b̂
k̂
}; As for k1 = k2 =

k ∈ [K] and Bk ≥ 2,

∂̂2F

∂pm1

k ∂pm2

k

= (B2
k−Bk)

(
f
(
vm1

k

∣∣∣S∪{vm2

k }
)
−f
(
vm1

k

∣∣∣S)),
where S = ∪(k̂,b̂)̸={(k,1),(k,2)}{e

b̂
k̂
}.

Incorporating this second-order approximation and the idea
of differential estimator into the previously mentioned two-
step algorithm, we can develop a stochastic algorithm for
maximizing our ME, as detailed in Algorithm 1.

Furthermore, based on the results of Theorem 1 and Theo-
rem 2, we can show that
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Theorem 4 (Proof provided in Appendix D.1). When the
set function f : 2V → R+ is monotone and α-weakly DR-
submodular, if we set the batch size L = O(T ), the subset
S output by Algorithm 1 satisfies:

E
(
f(S)

)
≥
(
1− e−α

)
f(S∗)−O

(r√n

T

)
,

where S∗ is the optimal solution of problem (1), r is the rank
of partition constraint, i.e., r =

∑K
k=1 Bk and n = |V|.

Similarly, if the set function f : 2V → R+ is (γ, β)-weakly
monotone submodular and L = O(T ), the subset S output
by Algorithm 1 satisfies:

E
(
f(S)

)
≥
(γ2(1− e−(β(1−γ)+γ2))

β(1− γ) + γ2

)
f(S∗)−O

(r√n

T

)
.

Remark 7. Theorem 4 implies that, when the set function
f is α-weakly monotone DR-submodular, if we set T =
O(1/ϵ), the subset yielded by our proposed Algorithm 2
can secure a value of (1− e−α)OPT − ϵ, where OPT is the
maximum value of problem (1). Moreover, when f is (γ, β)-
weakly monotone submodular, Algorithm 2 also can achieve(γ2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2

)
OPT−ϵ after O(1/ϵ) iterations. Note

that, during the process of O(1/ϵ) iterations, Algorithm 2
only requires evaluating the set function O(1/ϵ2) times.

Remark 8. From Line 13, we know that each S(t) has at
most r non-zero entries, where r =

∑K
k=1 Bk. Hence, in

Line 10, the computation of ξt only utilizes O(nr) entries in
the Hessian estimation ∇̂2

t . This implies that it is sufficient
to estimate up to O(nr) second-order partial derivatives for
each point xl(t) at Line 8.

Remark 9. Note that, in Line 16, when rounding x(T + 1)
based on the definition of ME, there is a risk that two distinct
random selections may yield the same element. To avoid
this issue for monotone set functions, we present an effective
rounding-without-replacement method in Appendix D.2.

Compared to the local-search methods (Thiery & Ward,
2022; Lu et al., 2022), our Algorithm 1 not only eliminates
the need for prior knowledge of parameters α, γ, and β, but
can achieve the same worst-case approximation guarantees
with fewer O(1/ϵ2) value queries to the set function f .

4.2. Stationary Point and Stochastic Gradient Ascent

Furthermore, an alternative solution for the subset selection
problem (1) is to initially apply the off-the-shelf gradient-
based methods, like gradient ascent (Nesterov, 2013; Bert-
sekas, 2015), to maximize our proposed ME F , and subse-
quently, to finalize our selection by rounding the resulting
continuous solution. As is well known, under mild con-
ditions, a broad range of first-order gradient algorithms,
including the aforementioned gradient ascent, will converge
to the stationary points of their target objectives (Ghadimi

& Lan, 2013; Lacoste-Julien, 2016; Allen-Zhu, 2018; Drori
& Shamir, 2020; Lan, 2020). Regrettably, we observe that,
compared to the previously proposed Multinoulli-SCG al-
gorithm, the stationary points of our ME only can guarantee
a sub-optimal approximation to the maximum value of the
subset selection problem (1). Before going into the details,
we firstly revisit the definition of stationary points, that is,

Definition 2. Given a differentiable objective function G :
K → R and a domain C ⊆ K, a point x ∈ C is called as a
stationary point for the function G over the domain C if and
only if maxy∈C⟨y − x,∇G(x)⟩ ≤ 0.

Next, we will detail the specific performance of the sta-
tionary points of the Multinoulli Extension relative to the
maximum value of problem (1). Specifically, we have that

Theorem 5 (Proof provided in Appendix E.1). If the set
function f : 2V → R+ is monotone and α-weakly DR-
submodular, then for any stationary point (p1, . . . ,pK) of
its Multinoulli Extension F over the domain

∏K
k=1 ∆nk

, the
following inequality holds:

F (p1, . . . ,pK) ≥
( α2

1 + α2

)
f(S∗),

where S∗ is the optimal solution of problem (1). Similarly,
when the set function f : 2V → R+ is monotone and (γ, β)-
weakly submodular, for any stationary point (p1, . . . ,pK)

over the domain
∏K

k=1 ∆nk
, we also can show that

F (p1, . . . ,pK) ≥
( γ2

β + β(1− γ) + γ2

)
f(S∗).

Remark 10. Theorem 5 suggests that when the set func-
tion f is monotone α-weakly DR-submodular or (γ, β)-
weakly submodular, the direct application of gradient-based
methods that aim for stationary points, such as gradient
ascent, into the relaxed problem (4) only can ensure a
( α2

1+α2 )-approximation or ( γ2

β+β(1−γ)+γ2 )-approximation to
the maximum value of the subset selection problem (1).

Despite these limited theoretical approximation guarantees
regarding the stationary points of our proposed ME, we
have found that gradient-based methods targeting stationary
points, such as the stochastic gradient ascent, can achieve
remarkable empirical performance across numerous real-
world subset selection problems (See Section 5). Due to
space limitations, an in-depth analysis of the stochastic gra-
dient ascent method is presented in Appendix E.2.

5. Numerical Experiments
In this section, we empirically compare the performance
of our proposed Multinoulli-SCG and Multinoulli-SGA
against the standard greedy method (Khashayar & Manuel,
2019) and the residual random greedy method (Chen et al.,

7
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Table 3. Results on video summarization. Note that ‘obj’ denotes the utility function value, where a higher value is preferable, and
‘queries’ represents the magnitude of the total number of function evaluations, that is , the log10 of the total number of value queries to
the set objective function, with a smaller value being more favorable. ‘Distorted-LS-G’ is the abbreviation for the distorted local-search
method with O(1/ϵ)-round guesses, namely, Algorithm B.1 in (Thiery & Ward, 2022). Both V1 and V2 are sourced from websites,
which are related with Cooking and Animation, respectively. V3–V7 are derived from the VSUMM dataset and encompass topics such as
Soccer, Live news, Broadcast, Concert as well as TV Show. The time following the name of each video indicates the video duration. In
each column of ‘obj’, ■ indicates ranking the 1st and ■ stands for the 2nd.

Method
Video V1(3min30s) V2(7min45s) V3(2min37s) V4(2min17s) V5(2min58s) V6(4min42s) V7(2min52s)

obj queries obj queries obj queries obj queries obj queries obj queries obj queries

Standard Greedy 46.48 3.85 79.25 3.95 47.64 3.61 19.55 3.48 52.39 3.73 96.33 4.11 44.85 3.73
Residual-Greedy 48.45 3.85 75.58 3.95 48.65 3.61 18.84 3.48 52.02 3.73 92.37 4.11 44.94 3.73
Distorted-LS-G 50.08 10.40 79.25 10.50 51.71 10.17 19.56 10.02 54.36 10.26 98.73 10.70 46.79 10.27

Multinoulli-SGA 50.17 6.53 79.57 6.58 51.77 6.41 19.59 6.35 54.44 6.46 98.81 6.66 47.06 6.46
Multinoulli-SCG 50.17 8.59 79.50 8.68 51.77 8.34 19.59 8.21 54.44 8.46 98.80 8.84 47.20 8.46

2018a) as well as the distorted local search (Thiery & Ward,
2022) across three distinct applications: video summariza-
tion, bayesian A-optimal design and maximum coverage.
Note that Multinoulli-SGA represents the stochastic gra-
dient ascent applied to our proposed ME, as detailed in Ap-
pendix E.2. Due to the space limits, here we only show the
results on video summarization. More discussions about the
experiment setup and the results on both maximum coverage
and bayesian optimal design are presented in Appendix B.

5.1. Video Summarization

The objective of video summarization is aimed at picking
a few representative frames from a given video such that
these frames can capture as much content as possible. To
achieve this, a common strategy is to formulate the frame
selection problem as the maximization of a Determinantal
Point Process(DPP) objective function (Gong et al., 2014;
Mirzasoleiman et al., 2018; Chen et al., 2018a). DPP has
recently emerged as a powerful tool that favors subsets of
a ground set of items with higher diversity (Kulesza et al.,
2012). More specifically, for an n-frame video, we represent
each frame by a p-dimensional vector. Then, we compute
the Gramian matrix X of the n resulting vectors by setting
each Xij as the Gaussian kernel between the i-th and j-th
vectors. With this matrix X , the DPP objective function can
be defined as f(S) = det(I +XS) where S ⊆ [n], XS is
the principal submatrix of X indexed by S and I is a |S|-
dimensional identity matrix. Note that Bian et al. (2017a)
has proven that this set function f is monotone and weakly
submodular from below. Moreover, Nguyen & Thai (2022)
also verified the weak DR-submodularity of f .

For our experiments, we use five videos from the VSUMM
dataset (De Avila et al., 2011) and two videos about ‘An-
imation’ and ‘Cooking’ from websites like YouTube. Ad-
ditionally, we utilize the method described in (Gong et al.,
2014) to prune each video, namely, for long videos(≥ 5min),
we uniformly sampled one frame per second, and for short
videos, we sampled one frame every half second. Subse-

quently, we choose to create a summary of each video by
extracting one representative frame from every 25 frames,
that is, we consider the following partition constraint:∣∣S ∩ [25(i− 1) + 1, 25i]

∣∣ ≤ 1 ∀ 1 ≤ i ≤ ⌈n/25⌉.

Table 3 illustrates the performance of our proposed
Multinoulli-SCG and Multinoulli-SGA algorithms against
three benchmark methods, namely, ‘Standard Greedy’,
‘Residual-Greedy’ and ‘Distorted-LS-G’. It is quite easy
to observe that our Multinoulli-SCG and Multinoulli-SGA
algorithms produce summaries with higher diversity than
the other three baselines. Specifically, Multinoulli-SCG
achieves Top-1 performance on 5 out of the 7 videos, while
Multinoulli-SGA attains Top-1 performance on 6 out of the
7 videos. Furthermore, the number of function evaluations
required by our Multinoulli-SCG and Multinoulli-SGA
is 2 and 4 orders of magnitude lower than that of the state-
of-the-art ‘Distorted-LS-G’, respectively. This result aligns
well with our previous theoretical findings in Section 4.

6. Conclusion
This paper introduces a novel continuous-relaxation frame-
work named Multinoulli Extension(ME) for the subset se-
lection problem under a partition constraint. In contrast
to the well-known multi-linear extension for submodular
subset selection, a notable advantage of our ME is that it
can provide a lossless round scheme for any set objective
function. Subsequently, base on ME, we develop an efficient
algorithm titled Multinoulli-SCG, which can achieve a

value of (1−e−α)OPT−ϵ or (γ
2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2 )OPT−ϵ

with only O(1/ϵ2) function evaluations for monotone α-
weakly DR-submodular or (γ, β)-weakly submodular ob-
jective functions. This result significantly improves the pre-
vious Õ(1/ϵ6) and Õ(1/ϵ3) number of function evaluations
associated with the distorted local-search methods. Finally,
extensive empirical evaluations have been conducted to val-
idate the effectiveness of our proposed algorithms.
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Borsos, Z., Mutnỳ, M., Tagliasacchi, M., and Krause, A.
Data summarization via bilevel optimization. Journal of
Machine Learning Research, 25(73):1–53, 2024.

Buchbinder, N. and Feldman, M. Constrained submodular
maximization via a nonsymmetric technique. Mathemat-
ics of Operations Research, 44(3):988–1005, 2019.

Buchbinder, N. and Feldman, M. Constrained submodular
maximization via new bounds for dr-submodular func-
tions. In Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, pp. 1820–1831, 2024.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R.
Submodular maximization with cardinality constraints.
In Proceedings of the twenty-fifth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 1433–1452. SIAM,
2014.

Calinescu, G., Chekuri, C., Pal, M., and Vondrák, J. Max-
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A. Additional Related Work
A.1. Submodular Maximization

Submodularity (Fujishige, 2005; Bach et al., 2013) is a fundamental concept, which widely exists in various disciplines,
including combinatorial optimization, economics, and machine learning. To be more precise, a set function f : 2V → R+ is
called submodular if and only if it satisfies the diminishing-return property, namely, for any two subsets A ⊆ B ⊆ V and
v ∈ V \B, f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). In other words, the marginal benefit of adding an element to a set
diminishes as the set becomes larger.

Generally speaking, the maximization of submodular functions is NP-hard, implying that no polynomial-time algorithms
can solve it optimally. To overcome this challenge, Nemhauser et al. (1978) proposed a greedy algorithm for solving the
monotone submodular maximization problem under a cardinality constraint and demonstrated that this greedy algorithm can
achieve an approximation ratio of (1−e−1). Furthermore, Feige (1998) showed that this (1−e−1)-approximation guarantee
is tight for monotone submodular maximization under reasonable complexity-theoretic assumptions. After that, Fisher
et al. (1978) extended the greedy algorithm to the general matroid constraint and proved that the greedy algorithm only can
guarantee a sub-optimal approximation ratio of 1/2 under matroid constraint. To achieve the tight (1− e−1)-approximation
under matroid constraint, Calinescu et al. (2011) introduced a continuous greedy algorithm for submodular functions. The
core of this continuous greedy algorithm is a novel continuous-relaxation technique known as the multi-linear extension.
The problem of maximizing submodular functions also has been studied for the non-monotone case (Feldman et al., 2011;
Chekuri et al., 2014; Buchbinder & Feldman, 2019; 2024).

Before delving into the details of other related studies, we introduce the multi-linear extension of (Calinescu et al., 2011) for
submodular maximization and simultaneously compare it with our proposed Multinoulli Extension(ME) in Section 3. In
order to better illustrate the multi-linear extension, this subsection supposes |V| = n and set V := [n] = {1, . . . , n} .

Definition 3. For a set function f : 2V → R+, we define its multi-linear extension as

G(x) =
∑
A⊆V

(
f(A)

∏
a∈A

xa

∏
a/∈A

(1− xa)
)
= ER∼x

(
f(R)

)
, (5)

where x = (x1, . . . , xn) ∈ [0, 1]n and R ⊆ V is a random set that contains each element a ∈ V independently with
probability xa and excludes it with probability 1 − xa. We write R ∼ x to denote that R ⊆ V is a random set sampled
according to x.

From the Eq.(5), we can view multi-linear extension G at any point x ∈ [0, 1]n as the expected utility of independently
selecting each action a ∈ V with probability xa. With this tool, we can cast the previous discrete subset selection problem (1)
into a continuous maximization which learns the independent probability for each element a ∈ V , that is, we consider the
following continuous optimization:

max
x∈[0,1]n

G(x), s.t.
∑
a∈Vk

xa ≤ Bk,∀k ∈ [K] (6)

where G(x) is the multi-linear extension of f .

It is important to note that, if we round any point x included into the constraint of problem (6) by the definition of multi-linear
extension, i.e., Eq.(5), there is a certain probability that the resulting subset will violate the partition constraint of the
subset selection problem (1). Therefore, for multi-linear extension, we need to specifically design the rounding methods
based on the properties of the set objective functions. However, current known lossless rounding schemes for multi-linear
extension, such as pipage rounding (Ageev & Sviridenko, 2004), swap rounding (Chekuri et al., 2010) and contention
resolution (Chekuri et al., 2014), are heavily dependent on the submodular assumption. Moreover, how to losslessly round
the multi-linear extension of non-submodular set functions, e.g. (γ, β)-weakly submodular and α-weakly DR-submodular
functions, still remains an open question (Thiery & Ward, 2022).

In contrast, our ME does not assign probabilities to any subsets that are out of the partition constraint of problem (1), which
means that, for any set function f : 2V → R+ and any given (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we can, through the definition of
ME, easily produce a subset that conforms to the partition constraint of problem (1) without any loss in terms of the expected
function value F (p1, . . . ,pK).
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A.2. Close-to-Submodular Function Maximization

Weakly Submodular Maximization: A particularly important class of “close-to-submodular” functions is known as
γ-weakly submodular functions. Specifically, for a set function f : 2V → R+, it is called γ-weakly submodular if and only
if, for any two subsets A ⊆ B ⊆ V , the following inequality holds:

∑
v∈B\A f(v|A) ≥ γ

(
f(B)− f(A)

)
. The γ-weakly

submodular functions were originally introduced by a work of (Das & Kempe, 2011), which also demonstrated that the
standard greedy algorithm achieves a good approximation ratio of (1− e−γ) for the problem of maximizing such functions
subject to a cardinality constraint. On the inapproximability side, Harshaw et al. (2019) proved that no polynomial-time
algorithm achieves (1− e−γ + ϵ)-approximation for the problem of maximizing a γ-weakly submodular function subject to
a cardinality constraint, for any ϵ > 0. Subsequently, Chen et al. (2018a) investigate weakly submodular maximization
beyond simple cardinality constraints and pointed out that the Residual Random Greedy method of (Buchbinder et al.,
2014) can achieve an approximation ratio of γ2

(1+γ)2 for the problem of maximizing a monotone γ-weakly submodular
functions subject to a matroid constraint. After that, Khashayar & Manuel (2019) examined the approximation performance
of standard greedy algorithm on γ-weakly submodular maximization over matroid constraints, which showed that the
standard greedy algorithm can offer an approximation factor of 0.4γ2

√
rγ+1 where r is the rank of the matroid. It is important to

note that this approximation ratio 0.4γ2

√
rγ+1 is not a constant guarantee and highly depends on the matroid rank r. In order to

improve the approximation performance of these greedy-based algorithms, Thiery & Ward (2022) introduced the notion of
upper submodularity ratio β, defined as Eq. (3). Moreover, Thiery & Ward (2022) also developed a more powerful distorted
local-search algorithm for (γ, β)-weakly submodular maximization, which is inspired by the non-oblivious search (Filmus &

Ward, 2012b; 2014) for submodular maximization and can guarantee a γ2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2 -approximation for the problem

of maximizing a monotone (γ, β)-weakly submodular functions subject to a matroid constraint. Note that, when the (γ, β)-

weakly submodular function is closer to being submodular, namely, γ, β → 1, the approximation ratio γ2(1−e−(β(1−γ)+γ2))
β(1−γ)+γ2

will approach the tight (1− 1/e). Conversely, when γ, β → 1, the approximation guarantee γ2

(1+γ)2 of the Residual Random
Greedy method (Chen et al., 2018a) will trends toward the sub-optimal 1/4.

Weakly DR-Submodular Maximization: Another significant class of “close-to-submodular” functions is known as
α-weakly DR-submodular functions, where α is variously referred to as the diminishing-return(DR) ratio (Kuhnle et al.,
2018), the generalized curvature (Bogunovic et al., 2018) or the generic submodularity ratio (Gong et al., 2021). The
work of Khashayar & Manuel (2019) is the first to give a study of maximizing a α-weakly DR-submodular maximization
subject to general matroid constraints. Specifically, Khashayar & Manuel (2019) proved that the greedy algorithm achieves
approximation ratios of α

1+α for the matroid-constrained α-weakly DR-submodular maximization. After that, Gong
et al. (2021) extended this result to p-matroid constraints. Moreover, Nguyen & Thai (2022) also considered the impact
of curvature (Vondrák, 2010; Sviridenko et al., 2017) on the standard greedy algorithm for α-weakly DR-submodular
maximization under partition matroid. Recently, Gong et al. (2019) showed that the continuous greedy combined with the
contention resolution scheme (Chekuri et al., 2014) can obtain a sub-optimal approaximation ratio of α(1− 1/e)(1− e−α)
for the problem of maximizing a monotone α-weakly DR-submodular functions subject to a matroid constraint. To achieve
the tight (1− e−α)-approximation guarantee, Lu et al. (2022) recently have proposed a novel distorted local-search method,
which is also motivated via the non-oblivious search (Filmus & Ward, 2014).

A.3. Monotone Continuous DR-submodular Maximization

Submodularity can be naturally extended to continuous domains. Generally speaking, a differentiable function F : [0, 1]n →
R+ is DR-submodular if ∇F (x) ≤ ∇F (y) for any x ≥ y. In deterministic setting, Bian et al. (2017b) first proposed a
variant of Frank-Wolfe for continuous DR-submodular maximization problem with (1− 1/e− ϵ)-approximation guarantee
after O(1/ϵ) iterations. When considering the stochastic gradient oracle, Hassani et al. (2017) proved that the stochastic
gradient ascent can guarantee a (1/2)-approximation after O(1/ϵ2) iterations. Then, Mokhtari et al. (2018a) proposed the
stochastic continuous greedy algorithm, which achieves a (1− 1/e− ϵ)-approximation after O(1/ϵ3) iterations. Moreover,
by assuming the Hessian of objective is Lipschitz continuous and considering non-oblivious stochastic noise, Hassani
et al. (2020) proposed the stochastic continuous greedy++ algorithm, which can guarantee a (1− 1/e− ϵ)-approximation
after O(1/ϵ2) iterations. After that, Zhang et al. (2022; 2024) proposed a non-oblivious auxiliary function for continuous
DR-submodular functions, which can efficiently improve the approximation ratio of stochastic gradient ascent (Hassani
et al., 2017) from 1/2 to (1− 1/e). In addition, numerous variants of continuous DR-submodular maximization have been
extensively studied, for instance, online scenarios (Chen et al., 2018b; Zhang et al., 2019; Pedramfar et al., 2023; 2024;
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Zhang et al., 2023a), decentralized environments (Mokhtari et al., 2018b; Xie et al., 2019; Zhu et al., 2021; Gao et al., 2021;
Zhang et al., 2023b; 2025), and bandit scenarios (Chen et al., 2020; Zhang et al., 2019; Wan et al., 2023; Pedramfar et al.,
2024; Zhao et al., 2025; Zhao & Lai, 2024; Yu et al., 2024a;b; Jin et al., 2024; 2025).

We need to emphasize that, when the set function f is monotone submodular, Theorem 2 implies that our proposed
Multinoulli Extension is also monotone continuous DR-submodular over the domain

∏K
k=1 ∆nk

. However, it is worth
noting that these former results about continuous DR-submodular maximization cannot be directly applied to our ME and the
relaxed problem (4). This is because all of them highly rely on the following inequality: if G is a monotone continuous
DR-submodular function,

⟨y − x,∇G(x)⟩ ≥ ⟨y ∨ x− x,∇G(x)⟩ ≥ G(y ∨ x)−G(x) ≥ G(y)−G(x), (7)

where ∨ is the coordinate-wise maximum operation, i.e., x ∨ y = max(x,y).

Note that the second inequality in Eq.(7) requires that the vector y ∨ x is included into the domain of objective function
G. In other words, the domain of objective function G should be closed under the coordinate-wise maximum operation ∨.
However, the domain

∏K
k=1 ∆nk

of our ME does not meet this requirement. Similarly, to the best of our knowledge, the
latest research on both upper-linearizable and weakly continuous DR-submodular maximization also requires the domain of
the objective function to be closed under the coordinate-wise maximum operation ∨. (See (Hassani et al., 2017; Zhang et al.,
2022; Pedramfar & Aggarwal, 2024))

B. Additional Experimental Results
B.1. More Discussions on Experiment Setup

In this subsection, we highlight some additional details about the experiments. At first, we describe the parameter setups
regarding our proposed ‘Multinoulli-SGA’, ‘Multinoulli-SCG’ and ‘Distorted-LS-G’. More specifically, we consider the
following parameter configurations:

• ‘Distorted-LS-G’: Algorithm B.1 in (Thiery & Ward, 2022) where we set the number of guesses L = 1+⌈log(1−ϵ)(
3
16 )⌉,

the total number of improvements M = r
ϵ , the number of samples N = r

ϵ2 and ϵ = 0.01 where r is the rank of the
partition constraint, namely, r =

∑K
k=1 Bk in problem (1);

• ‘Multinoulli-SGA’: Algorithm 3 is implemented with batch size L = 20, the step size η = 1√
T

and the number of
iterations T = 167. Moreover, we round each continuous solution via Algorithm 2. As for the Euclidean projection of
Step 6 in Algorithm 3, we utilize the CVX optimization tool (Grant & Boyd, 2014). It is worth noting that there exists
efficient algorithms for handling the projection over partitions if we view it as multiple independent singly constrained
quadratic programmings problems(See (Pardalos & Kovoor, 1990) or Appendix B in (Zhou et al., 2022));

• ‘Multinoulli-SCG’: Algorithm 1 is implemented with batch size L = ⌈T
2 ⌉ and the number of iterations T = 167.

Furthermore, in order to obtain a high-quality subset, we apply Algorithm 2 to round the x(T + 1) a total of T 2 times
and then select the best one among these resulting subsets.

Note that, when ϵ = 0.01, the number of guesses L = 1 + ⌈log(1−ϵ)(
3
16 )⌉ ≈ 167 in ‘Distorted-LS-G’ such that we set the

total of iterations T = 167 in both ‘Multinoulli-SGA’ and ‘Multinoulli-SCG’. Given the long runtimes of ‘Multinoulli-
SCG’ and ‘Distorted-LS-G’, we report their average results in Table 3 based on 5 repeated experiments. In contrast,
‘Multinoulli-SGA’ and ‘Residual-Greedy’ algorithms are repeated 10 times. Finally, all experiments are performed in
Python 3.6.5 on a MacBook Pro with Apple M1 Pro and 16GB RAM.

B.2. Maximum Coverage

In the tasks of video summarization, it is easily observed that our Multinoulli-SGA algorithm exhibits exceptional empirical
performance. However, according to both Theorem 5 and Theorem 9, we know that our Multinoulli-SGA only can
ensure a sub-optimal approximation guarantee in the worst case. To verify the theoretical correctness of our proposed
Multinoulli-SGA algorithm, we consider a special maximum coverage problem as discussed in (Filmus & Ward, 2012a).

Let the universe set U consist of n− 1 elements {x1, . . . , xn−1} and n− k elements {y1, . . . , yn−k}, all of weight 1, and
n−1 elements {ϵ1, . . . , ϵn−1} of arbitrarily small weight ϵ > 0. Then, we define two different set Ai and Bi for any i ∈ [n],
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Table 4. Results on coverage maximization(2nd-6th columns) and bayesian A-optimal design(the final column). Note that ‘obj’ denotes
the utility function value, where a higher value is preferable, and ‘queries’ represents the magnitude of the total number of function
evaluations, that is , the log10 of the total number of value queries to the set objective function, with a smaller value being more favorable.
‘Distorted-LS-G’ is the abbreviation for the distorted local-search method with O(1/ϵ)-round guesses, namely, Algorithm B.1 in (Thiery
& Ward, 2022). In each column of ‘obj’, ■ indicates ranking the 1st and ■ stands for the 2nd.

Method
Setting n=15, k=5 n=20, k=5 n=30, k=6 n=40, k=8 n=50, k=10 Housing

obj queries obj queries obj queries obj queries obj queries obj queries

Standard Greedy 14.14 2.65 19.19 2.90 29.29 3.26 39.39 3.51 49.49 3.70 61.295 3.70
Residual-Greedy 21.04 2.65 32.52 2.90 48.25 3.26 64.67 3.51 77.13 3.70 61.104 3.70
Distorted-LS-G 24.00 9.06 34.00 9.44 53.00 9.98 71.00 10.36 89.00 10.65 61.285 10.26

Multinoulli-SGA 14.14 5.45 19.18 5.56 29.26 5.72 39.34 5.83 49.43 5.92 61.745 6.61
Multinoulli-SCG 24.00 7.39 34.00 7.64 53.00 7.99 71.00 8.24 89.00 8.43 61.456 8.44

that is to say ,
Ai = {ϵi} for 1 ≤ i ≤ n− 1, An = {x1, . . . , xn−1},
Bi = {xi} for 1 ≤ i ≤ n− 1, Bn = {y1, . . . , yn−k}.

After that, we define a coverage set function f : 2V → R+ over these 2n distinct set {A1, . . . , An, B1, . . . , Bn} where
V = [2n]. More specifically, we have that, for any subset F ⊆ V ,

f(F) =
∑

v∈
⋃

j∈F Sj

w(v), (8)

where w(v) is the weight of element v, Sj = Aj when 1 ≤ j ≤ n and Sj = Bj−n as for n+ 1 ≤ j ≤ 2n.

Moreover, we consider a partition constraint that contains at most one of {Ai, Bi} for any i ∈ [n]. If we set Vi =
{i, i+ n}(V =

⋃
i∈[n] Vi = [2n]), we naturally obtain the following coverage maximization problem:

max
F⊆V

f(F) s.t. |F ∩ Vi| ≤ 1 ∀i ∈ [n]. (9)

From the result of (Filmus & Ward, 2012a), we know that the problem (9) is a submodular maximization problem subject
to a partition matroid constraint, namely, α = β = γ = 1. A key feature of this coverage maximization problem is that
Filmus & Ward (2012a) found that the standard greedy (Nemhauser et al., 1978) will be stuck at a local maximum subset
{A1, . . . , An} where F = [n] and f(F) = (1 + ϵ)n. In contrast, when ϵ is very small, the optimal subset for problem (9) is
{B1, . . . , Bn} where F = {n+ 1, . . . , 2n} and f(F) = 2n− k − 1. Note that limn→∞ limϵ→0 and k→0

(1+ϵ)n
2n−k−1 = 1

2 .

Motivated by this finding of (Filmus & Ward, 2012a) and the correspondence between the set [n] and {A1, . . . , An} in
problem (9), we conjecture that the point 1[n] may be a local stationary point of the Multinoulli Extension of the set function
f in Eq.(8). Before showing the rigorous proof of the previous conjecture, we firstly compare the empirical performance of
our proposed Multinoulli-SCG and Multinoulli-SGA against the standard greedy method and the residual random greedy
method as well as the distorted local search across distinct coverage maximization (9) with different n and k, where we
uniformly set the weight ϵ = 0.01.

From the results in Table 4, we found that both our proposed ‘Multinoulli-SCG’ and ‘Distorted-LS-G’ algorithm eventually
select the optimal subset, i.e., {B1, . . . , Bn}. In contrast, in all settings of maximum coverage problems, ‘Multinoulli-SGA’
and ‘Standard-Greedy’ algorithm are trapped around the local-optimal set {A1, . . . , An}. Moreover, the ‘Residual-Greedy’
method oscillates between the optimal subset {B1, . . . , Bn} and the local maximum set {A1, . . . , An}. Similar to the
video summarization in Section 5.1, Table 4 also demonstrated that the number of function evaluations required by our
Multinoulli-SCG is 2 orders of magnitude lower than that of the ‘Distorted-LS-G’ algorithm,which highlights the efficiency
and effectiveness of Multinoulli-SCG algorithm.

Now, we show that the point 1[n] is a stationary point for the ME of the set function f in Eq.(8). Before that, we detail the
ME F of the set function f of Eq.(8), that is,

F (p1, . . . ,pn) =

n∑
i=1

∑
e1i∈{i,i+n,∅}

(
f
(
∪n
i=1 {e1i }

) n∏
i=1

Pr(e1i |pi)

)
, (10)
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where we set pi = (p1i , p
2
i ), Pr(i|pi) = p1i , Pr(n+ i|pi) = p2i and Pr(∅|pi) = 1− p1i − p2i .

From Theorem 1, we know that,

∂F

∂(p1i )
(1[n]) = ϵ for 1 ≤ i ≤ n− 1,

∂F

∂(p1n)
(1[n]) = n− 1,

∂F

∂(p2i )
(1[n]) = 0 for 1 ≤ i ≤ n− 1,

∂F

∂(p2n)
(1[n]) = n− k.

As a result, for any (p1, . . . ,pn) ∈
∏n

i=1 △2, we have

⟨(p1, . . . ,pn)− 1[n],∇F (1[n])⟩

=

n∑
i=1

(
p1i

∂F

∂(p1i )
(1[n]) + p2i

∂F

∂(p2i )
(1[n])

)
− (1 + ϵ)(n− 1)

= ϵ

n−1∑
i=1

p1i + (n− 1)p1n + (n− k)p2n − (1 + ϵ)(n− 1)

= ϵ

n−1∑
i=1

(p1i − 1) + (n− 1)p1n + (n− k)p2n − (n− 1)

= ϵ

n−1∑
i=1

(p1i − 1) +
(
(n− k)− (n− 1)

)
p2n − (n− 1)(1− p1n − p2n) ≤ 0.

As a result, 1[n] is a stationary point of the ME F . Note that F (1[n])

F (1{n+1,...,2n})
= (1+ϵ)(n−1)

2n−1−k → 1
2 when k → 0, ϵ → 0 and

n → ∞, which implies that the approximation guarantee of Theorem 5 is tight when α = β = γ = 1.

B.3. Bayesian A-Optimal Design

In this subsection, we consider a classical subset selection problem in experimental design (Hashemi et al., 2019; Borsos
et al., 2020; 2024), namely, bayesian A-optimal design.

We first describe the details of the bayesian A-optimal design. Suppose that θ ∈ Rd is an unknown parameter vector
that we wish to estimate from noisy linear measurements using least squares regression. Our goal is to choose a set
S of linear measurements (the so-called experiments) which have low cost and also maximally reduce the variance of
our OLS estimate. More precisely, let X = [x1, . . . , xn] ∈ Rd×n be a matrix including n different measurements.
Given a set of measurement vectors S ⊆ [n], we may run the experiments and obtain the noisy linear observations
yS = XT

S θ + ϵS , where ϵS ∼ N(0, σ2I|S|). We estimate θ using the OLS θ̂ = (XSX
T
S )

−1XT
S yS . After assuming a

normal Bayesian prior distribution on the unknown parameter θ ∼ N(0,Σ), we can compute the sum of the variance
of the coefficients as r(S) = tr(Σ + 1

σ2XSX
T
S )

−1 where tr(·) is the trace of a matrix. If we redefine the g(S) =
r(∅) − r(S) = tr(Σ) − tr(Σ + 1

σ2XSX
T
S )

−1, we can reformulate the bayesian A-optimal design as a (γ,β)-weakly
submodular maximization problem (Thiery & Ward, 2022) with β = 1/γ.

In our experiment, we use the Boston Housing dataset (Harrison Jr & Rubinfeld, 1978), a standard benchmark dataset
containing d = 14 features of n = 506 Boston homes, including average number of rooms per dwelling, proximity to the
Charles River, and crime rate per capita. Like Harshaw et al. (2019), we preprocessed the data by normalizing the features
to have a zero mean and a standard deviation of 1. After that, we set σ = 1/

√
d and randomly generated a normal prior with

covariance Σ = ADAT where A ∼ N(0, I) and D is a diagonal matrix with Di,i = (i/d)2. As for the partition constraint,
we randomly cut the all 506 data points into 10 different groups and then select at most one element from each group. Then,
we present the results of bayesian A-optimal design in the final column in Table 4.

From the final column in Table 4, the performance of our proposed Multinoulli-SCG and Multinoulli-SGA algorithms sur-
passes that of three benchmark methods, namely, ‘Standard Greedy’, ‘Residual-Greedy’ and ‘Distorted-LS-G’. Furthermore,
like the previous experiments about video summarization and maximum coverage, the number of value queries to the set
function required by our Multinoulli-SCG and Multinoulli-SGA is 2 and 4 orders of magnitude lower than that of the
‘Distorted-LS-G’, respectively.
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C. The Properties of Multinoulli Extension
C.1. Proof of Theorem 1

In this section, we prove the Theorem 1.

Proof. 1): At first, we review the definition of Multinoulli Extension. For any given set function f : 2V → R+ and any
point (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we define its Multinoulli Extension for the subset selection problem (1) as:

F (p1, . . . ,pK) :=
∑

eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
) K∏
k̂=1

Bk̂∏
b̂=1

Pr(eb̂
k̂
|pk̂)

)
, (11)

where Pr(vm
k̂
|pk̂) = pm

k̂
and Pr(∅|pk̂) = 1−

∑nk̂
m=1 p

m
k̂

for any m ∈ [nk̂] and k̂ ∈ [K].

From Eq.(11), for any parameter pmk where m ∈ [nk] and k ∈ [K], we have the following equality:

∂F

∂pmk
(p1, . . . ,pK) =

∑
eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)∂(∏K

k̂=1

∏Bk̂

b̂=1
Pr(eb̂

k̂
|pk̂)

)
∂pmk

)
. (12)

Then, according to the definition of Pr(eb̂
k̂
|pk̂), we can show that, if k ̸= k̂,

∂Pr(eb̂
k̂
|pk̂)

∂pm
k

= 0 for any eb̂
k̂
∈ Vk̂ ∪ {∅}. When

k = k̂, we also can show that, if eb̂
k̂
= vmk ,

∂Pr(eb̂
k̂
|pk̂)

∂pm
k

= 1 and if eb̂
k̂
= ∅,

∂Pr(eb̂
k̂
|pk̂)

∂pm
k

= −1. As for eb̂
k̂
/∈ {vmk , ∅}, when

k = k̂,
∂Pr(eb̂

k̂
|pk̂)

∂pm
k

= 0. As a result, we can rewrite the Eq.(12) as:

∂F

∂pmk
=

∑
eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
) ∑
b̂1∈[Bk]

(( ∏
(k̂,b̂)̸=(k,b̂1)

Pr(eb̂
k̂
|pk̂)

)∂Pr(eb̂1k |pk)

∂pmk

))

=
∑

b̂1∈[Bk]

( ∑
eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)∂Pr(eb̂1k |pk)

∂pmk

( ∏
(k̂,b̂)̸=(k,b̂1)

Pr(eb̂
k̂
|pk̂)

)))

=
∑

b̂1∈[Bk]

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂) ̸=(k,b̂1)

( ∑
eb̂k∈Vk∪{∅}

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)∂Pr(eb̂1k |pk)

∂pmk

∏
(k̂,b̂)̸=(k,b̂1)

Pr(eb̂
k̂
|pk̂)

)))

=
∑

b̂1∈[Bk]

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂) ̸=(k,b̂1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,b̂1)

{eb̂
k̂
}
) ∏

(k̂,b̂)̸=(k,b̂1)

Pr(eb̂
k̂
|pk̂)

))

= Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

= Bk

(( ∑
e1k∈Vk∪{∅}

Pr(e1k|pk)
) ∑

eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂) ̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂) ̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

= Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

k̂∈[K]

∏
b̂∈[Bk]

Pr(eb̂
k̂
|pk̂)

))

= Bk

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
vmk

∣∣∣ ∪(k̂,b̂)̸=(k,1) {e
b̂
k̂
}
)))

,

(13)
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where the fifth equality comes from that each random element eb̂1k is independently drawn the same multinoulli distribution
Multi(pk) for any b̂1 ∈ [Bk] and the sixth equality follows from

∑
e1k∈Vk∪{∅} Pr(e1k|pk) = 1.

2): Next, we prove the second point of Theorem 1. At first, the monotonicity of f implies that for any two subsets A ⊆ B ⊆
V , f(A) ≤ f(B) such that we know that f

(
vmk

∣∣∣ ∪(k̂,b̂)̸=(k,1) {e
b̂
k̂
}
)
≥ 0 for any random elements eb̂

k̂
,∀b̂ ∈ [Bk̂],∀k̂ ∈ [K].

As a result, we have If f is monotone, then ∂F
∂pm

k
≥ 0,∀k ∈ [K],m ∈ [nk].

3): As for the third point, we firstly unify the process of generating random elements regarding two different multinoulli
distributions with parameters pk = (p1k, . . . , p

nk

k ) ∈ ∆nk
and p̂k = (p̂1k, . . . , p̂

nk

k ) ∈ ∆nk
where p̂mk ≥ pmk for any

m ∈ [nk] and k ∈ [K]. More specifically, we will transform the sampling process from each multinoulli distribution
Multi(pk) or Multi(p̂k) into a function of two independent uniform random variables on the interval [0, 1]. Namely, for any
two independent uniform random variables X,Y on the interval [0, 1], we define that

e(X,Y,pk, p̂k) =



v1k If X ∈ [0, p1k)

vck If X ∈ [

c−1∑
m=1

pmk ,

c∑
m=1

pmk ) for some integer c ∈ [2, nk]

∅ If X ≥
nk∑

m=1

pmk

We can easily check that, when X and Y are uniform random variables over the interval [0, 1], the random element
e(X,Y,pk, p̂k) follows the multinoulli distribution Multi(pk) over the community Vk := {v1k, . . . , v

nk

k }, where pk =
(p1k, . . . , p

nk

k ) ∈ ∆nk
and Pr

(
e(X,Y,pk, p̂k) = vmk

)
= pmk . Similarly, we also can generate a random element ê from the

community Vk according to the multinoulli distribution Multi(p̂k) if we set

ê(X,Y,pk, p̂k) =



e If X <

nk∑
m=1

pmk

v1k If X ≥
nk∑

m=1

pmk and Y ∈ [0,
p̂1k − p1k

1−
∑nk

m=1 p
m
k

)

vck If X ≥
nk∑

m=1

pmk and Y ∈
[∑c−1

m=1(p̂
m
k − pmk )

1−
∑nk

m=1 p
m
k

,

∑c
m=1(p̂

m
k − pmk )

1−
∑nk

m=1 p
m
k

)
for c ∈ [2, nk]

∅ If X ≥
nk∑

m=1

pmk and Y ≥
nk∑

m=1

(p̂mk − pmk )

From the definition of e(X,Y,pk, p̂k) and ê(X,Y,pk, p̂k), we can show that, for any fixed X,Y , {e(X,Y,pk, p̂k)} ⊆
{ê(X,Y,pk, p̂k)}. Thus, if we generate multiple independent pairs (X b̂

k̂
, Y b̂

k̂
) for any b̂ ∈ [Bk̂] and k̂ ∈ [K], from the first

point of Theorem 1, we have that,

∂F

∂pmk
(p1, . . . ,pK) = Bk

(
E
(
f
(
vmk

∣∣∣ ∪(k̂,b̂)̸=(k,1) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)))
∂F

∂pmk
(p̂1, . . . , p̂K) = Bk

(
E
(
f
(
vmk

∣∣∣ ∪(k̂,b̂)̸=(k,1) {ê
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)))
.

Due to {eb̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)} ⊆ {êb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}, we can show that,(

∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)

)
⊆
(
∪(k̂,b̂)̸=(k,1) {ê

b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
.

As a result, from the definition of weakly DR-submodularity, we know that if f is α-weakly DR-submodular, we have
∂F
∂pm

k
(p1, . . . ,pK) ≥ α ∂F

∂pm
k
(p̂1, . . . , p̂K) such that ∇F (p1, . . . ,pK) ≥ α∇F (p̂1, . . . , p̂K).
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4): We prove the fourth point of Theorem 1. From the definition of Multinoulli Extension and previous definitions of
e(X,Y,pk, p̂k) and ê(X,Y,pk, p̂k), we can infer that the Multinoulli Extension F of set function f satisfies the following
relationships:

F (p1, . . . ,pK) = E

(
f
(
∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

F (p̂1, . . . , p̂K) = E

(
f
(
∪K
k̂=1

∪Bk

b̂=1
{êb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))
.

As a result, we have

F (p̂1, . . . , p̂K)−F (p1, . . . ,pK) = E

(
f
(
∪K
k̂=1

∪Bk

b̂=1
{êb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
−f
(
∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))
.

If f is γ-weakly submodular from below and p̂k ≥ pk for any k ∈ [K], we have that

γ
(
F (p̂1, . . . , p̂K)− F (p1, . . . ,pK)

)
= γE

(
f
(
∪K
k̂=1

∪Bk

b̂=1
{êb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
− f

(
∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

≤
K∑

k̄=1

Bk̄∑
b̄=1

E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))
,

where the final inequality follows from the γ-weakly submodular property of f , namely, for any two subsets A ⊆ B ⊆ V ,∑
v∈B f(v|A) =

∑
v∈B\A f(v|A) ≥ γ

(
f(B)− f(A)

)
.

Then, if X b̄
k̄
<
∑nk̄

m=1 p
m
k̄

, we know that êb̄
k̄
(X b̄

k̄
, Y b̄

k̄
,pk̄, p̂k̄) = eb̄

k̄
(X b̄

k̄
, Y b̄

k̄
,pk̄, p̂k̄) such that f

(
êb̄
k̄
(X b̄

k̄
, Y b̄

k̄
,pk̄, p̂k̄)

∣∣∣∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
= 0. As for the case that X b̄

k̄
≥
∑nk̄

m=1 p
m
k̄

, namely, eb̄
k̄
(X b̄

k̄
, Y b̄

k̄
,pk̄, p̂k̄) = ∅, which means

that we have the following equality:

f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
= f

(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪(k̂,b̂)̸=(k̄,b̄) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
.

(14)

Therefore, we have

γ
(
F (p̂1, . . . , p̂K)− F (p1, . . . ,pK)

)
≤

K∑
k̄=1

Bk̄∑
b̄=1

E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

=

K∑
k̄=1

Bk̄∑
b̄=1

E

(
E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)∣∣∣∣∣(Xb
k, Y

b
k ), (k, b) ̸= (k̄, b̄)

))

=

K∑
k̄=1

Bk̄∑
b̄=1

E

(
E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
I(X b̄

k̄ <

nk̄∑
m=1

pmk̄ )

∣∣∣∣∣(Xb
k, Y

b
k ), (k, b) ̸= (k̄, b̄)

))

+

K∑
k̄=1

Bk̄∑
b̄=1

E

(
E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
I(X b̄

k̄ ≥
nk̄∑

m=1

pmk̄ )

∣∣∣∣∣(Xb
k, Y

b
k ), (k, b) ̸= (k̄, b̄)

))

=

K∑
k̄=1

Bk̄∑
b̄=1

E

(
E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
I(X b̄

k̄ ≥
nk̄∑

m=1

pmk̄ )

∣∣∣∣∣(Xb
k, Y

b
k ), (k, b) ̸= (k̄, b̄)

))
,

where the final equality comes from f
(
êb̄
k̄
(X b̄

k̄
, Y b̄

k̄
,pk̄, p̂k̄)

∣∣∣∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
= 0 when X b̄

k̄
<
∑nk̄

m=1 p
m
k̄

.
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Then, from Eq.(14), we also can show that

E

(
f
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄)

∣∣∣ ∪K
k̂=1

∪Bk

b̂=1
{eb̂

k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
I(X b̄

k̄ ≥
nk̄∑

m=1

pmk̄ )

∣∣∣∣∣(Xb
k, Y

b
k ), (k, b) ̸= (k̄, b̄)

)

=

nk̄∑
c=1

Pr
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄) = vck̄, X

b̄
k̄ ≥

nk̄∑
m=1

pmk̄

)
f
(
vck̄

∣∣∣ ∪(k̂,b̂)̸=(k̄,b̄) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
=

nk̄∑
c=1

(p̂ck̄ − pck̄)f
(
vck̄

∣∣∣ ∪(k̂,b̂)̸=(k̄,b̄) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

)
,

(15)

where the equality comes from that

Pr
(
êb̄k̄(X

b̄
k̄, Y

b̄
k̄ ,pk̄, p̂k̄) = vck̄, X

b̄
k̄ ≥

nk̄∑
m=1

pmk̄

)
= Pr

(
X b̄

k̄ ≥
nk̄∑

m=1

pmk̄ , Y b̄
k̄ ∈

[∑c−1
m=1(p̂

m
k̄
− pm

k̄
)

1−
∑nk̄

m=1 p
m
k̄

,

∑c
m=1(p̂

m
k̄
− pm

k̄
)

1−
∑nk̄

m=1 p
m
k̄

))
= (p̂mk̄ − pmk̄ ).

As a result, we have

γ
(
F (p̂1, . . . , p̂K)− F (p1, . . . ,pK)

)
=

K∑
k̄=1

Bk̄∑
b̄=1

E

(
nk̄∑

m=1

(p̂mk̄ − pmk̄ )f
(
vmk̄

∣∣∣ ∪(k̂,b̂) ̸=(k̄,b̄) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

=

K∑
k̄=1

Bk̄∑
b̄=1

E

(
nk̄∑

m=1

(p̂mk̄ − pmk̄ )f
(
vmk̄

∣∣∣ ∪(k̂,b̂) ̸=(k̄,1) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

=

K∑
k̄=1

nk̄∑
m=1

(p̂mk̄ − pmk̄ )Bk̄E

(
f
(
vmk̄

∣∣∣ ∪(k̂,b̂) ̸=(k̄,1) {e
b̂
k̂
(X b̂

k̂
, Y b̂

k̂
,pk, p̂k)}

))

=

K∑
k̄=1

nk̄∑
m=1

(p̂mk̄ − pmk̄ )
∂F

∂pm
k̄

(p1, . . . ,pK) =
〈
(p̂1, . . . , p̂K)− (p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
,

where the second equality follows from the independence of eb̂
k̂

for any b̂ ∈ [Bk̂] and k ∈ [K].

C.2. Proof of Theorem 2

In this section, we verify the Theorem 2.

Proof. At first, we recall that Vk := {v1k, . . . , v
nk

k } for any k ∈ [K]. Therefore, for any subset S within the partition
constraint of problem (1), we assume |S ∩ Vk| = sk ≤ Bk and we can represent each S ∩ Vk as

S ∩ Vk = {vm
1
k

k , . . . , v
m

sk
k

k },

where mb1
k ̸= mb2

k ∈ [nk] for any b1, b2 ∈ [sk] for any k ∈ [K].

As a result, we can rewrite that〈
K∑

k=1

1S∩Vk

Bk
,∇F (p1, . . . ,pK)

〉
=

K∑
k=1

sk∑
b=1

1

Bk

∂F

∂p
mb

k

k

(p1, . . . ,pK)

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
}
)))

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪(k̂,b̂) ̸=(k,b) {e
b̂
k̂
}
)))

,

(16)
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where the final equality follows from that, for any fixed k̂ ∈ [K], the elements eb
k̂
,∀b ∈ [Bk̂] are independently drawn from

the same multinoulli distribution Multi(pk̂).

When the set function f is α-weakly monotone DR-submodular, we can show that〈
K∑

k=1

1S∩Vk

Bk
,∇F (p1, . . . ,pK)

〉

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪(k̂,b̂)̸=(k,b) {e
b̂
k̂
}
)))

≥ α

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
⋃(

∪(k̄,b̄)<(k,b) {v
mb̄

k̄

k̄
}
))))

= α

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k=1 ∪

sk
b=1{v

mb
k

k }
∣∣∣ ∪K

k̂=1
∪Bk̂

b̂=1
{eb̂

k̂
}
)))

≥ α

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k=1 ∪

sk
b=1{v

mb
k

k }
)
− f

(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)))

(Monotonicity)

= α
(
f(S)− F (p1, . . . ,pK)

)
,

(17)

where the first inequality follows from the α-weakly DR-submodularity, namely, f(v|A) ≥ αf(v|B) for any two subsets
A ⊆ B ⊆ V and the partially ordered set {(k̄, b̄) < (k, b)} = {(k̄, b̄)

∣∣k̄ < k or b̄ < b when k̄ = k}.

As for the settings that the set function f is (γ, β)-weakly monotone submodular, we firstly can show that for any two
elements e1, e2 ∈ V and the subset B ⊆ V , we have that

γ
(
f(e1|B ∪ {e2}) + f(e2|B)

)
= γ

(
f(B ∪ {e1, e2})− f(B)

)
≤ f(e1|B) + f(e2|B),

such that

f(e1|B) ≥ γf(e1|B ∪ {e2})− (1− γ)f(e2|B). (18)

From Eq.(18), we can show that〈
K∑

k=1

1S∩Vk

Bk
,∇F (p1, . . . ,pK)

〉

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪(k̂,b̂)̸=(k,b) {e
b̂
k̂
}
)))

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
γf
(
v
mb

k

k

∣∣∣ ∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)
− (1− γ)f

(
ebk

∣∣∣ ∪(k̂,b̂) ̸=(k,b) {e
b̂
k̂
}
))))

(19)

Then, from the γ-weakly submodularity,(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
v
mb

k

k

∣∣∣ ∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
))))

≥ γE
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k=1 ∪

sk
b=1{v

mb
k

k }
∣∣∣ ∪K

k̂=1
∪Bk̂

b̂=1
{eb̂

k̂
}
)))

≥ γ
(
f(S)− F (p1, . . . ,pK)

)
,

(20)

where the final inequality follows from the monotonicity.
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Furthermore, from the β-weakly upper submodularity,we also have,
K∑

k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
ebk

∣∣∣ ∪(k̂,b̂) ̸=(k,b) {e
b̂
k̂
}
))))

≤
K∑

k=1

Bk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
ebk

∣∣∣ ∪(k̂,b̂) ̸=(k,b) {e
b̂
k̂
}
))))

≤ βE
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)
− f(∅)

)
≤ βF (p1, . . . ,pK),

(21)

where the second inequality follows from the definition of β-upper submodularity, namely, Eq.(3).

Merging Eq.(21) and Eq.(20) into Eq.(19), we have that〈
K∑

k=1

1S∩Vk

Bk
,∇F (p1, . . . ,pK)

〉

=

K∑
k=1

sk∑
b=1

(
E
eb̂
k̂
∼Multi(pk̂)

(
γf
(
v
mb

k

k

∣∣∣ ∪K
k̂=1

∪Bk̂

b̂=1
{eb̂

k̂
}
)
− (1− γ)f

(
ebk

∣∣∣ ∪(k̂,b̂) ̸=(k,b) {e
b̂
k̂
}
))))

≥ γ2(f(S)− F (p1, . . . ,pK))− (1− γ)βF (p1, . . . ,pK) = γ2f(S)− (β(1− γ) + γ2)F (p1, . . . ,pK).

C.3. Proof of Theorem 3

In this section, we verify the Theorem 3.

Proof. Firstly, from the fifth equality in Eq.(13), we know that

∂F

∂pmk
(p1, . . . ,pK) = Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))
.

Therefore, if k1 ̸= k2 ∈ [K], for any m1 ∈ [nk1 ] and m2 ∈ [nk2 ],

∂2F

∂pm1
k1

∂pm2
k2

(p1, . . . ,pK)

= Bk1

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k1,1)

(
f
(
vm1
k1

| ∪(k̂,b̂)̸=(k1,1)
{eb̂k̂}

)∂(∏(k̂,b̂)̸=(k1,1)
Pr(eb̂

k̂
|pk̂)

)
∂pm2

k2

))

= Bk1

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k1,1)

(
f
(
vm1
k1

| ∪(k̂,b̂)̸=(k1,1)
{eb̂k̂}

) ∑
b̂1∈[Bk2

]

∂Pr(eb̂1k2
|pk2)

∂pm2
k2

( ∏
(k̂,b̂)̸={(k1,1),(k2,b̂1)}

Pr(eb̂k̂|pk̂)
)))

= Bk1

∑
b̂1∈[Bk2

]

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k1,1)

(
f
(
vm1
k1

| ∪(k̂,b̂)̸=(k1,1)
{eb̂k̂}

)∂Pr(eb̂1k2
|pk2)

∂pm2
k2

( ∏
(k̂,b̂)̸={(k1,1),(k2,b̂1)}

Pr(eb̂k̂|pk̂)
)))

= Bk1Bk2

( ∑
(k̂,b̂)̸={(k1,1),(k2,1)}

( ∑
e1
k2

∈Vk2
∪{∅}

f
(
vm1
k1

| ∪(k̂,b̂)̸=(k1,1)
{eb̂k̂}

)∂Pr(e1k2
|pk2)

∂pm2
k2

( ∏
(k̂,b̂)̸={(k1,1),(k2,1)}

Pr(eb̂k̂|pk̂)
)))

.

Due to that Pr(vm
k̂
|pk̂) = pm

k̂
and Pr(∅|pk̂) = 1−

∑nk̂
m=1 p

m
k̂

, we can show that∑
e1k2

∈Vk2
∪{∅}

f
(
vm1

k1
| ∪(k̂,b̂) ̸=(k1,1)

{eb̂
k̂
}
)∂Pr(e1k2

|pk2
)

∂pm2

k2

= f
(
vm1

k1
| ∪(k̂,b̂)̸={(k1,1),(k2,1)} {e

b̂
k̂
}
⋃

{vm2

k2
}
)
− f

(
vm1

k1
| ∪(k̂,b̂) ̸={(k1,1),(k2,1)} {e

b̂
k̂
}
)
.
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Therefore, if we set S = ∪(k̂,b̂)̸={(k1,1),(k2,1)}{e
b̂
k̂
}, we can show that

∂2F

∂pm1
k1

∂pm2
k2

(p1, . . . ,pK)

= Bk1Bk2

( ∑
(k̂,b̂)̸={(k1,1),(k2,1)}

( ∑
e1
k2

∈Vk2
∪{∅}

f
(
vm1
k1

| ∪(k̂,b̂)̸=(k1,1)
{eb̂k̂}

)∂Pr(e1k2
|pk2)

∂pm2
k2

( ∏
(k̂,b̂)̸={(k1,1),(k2,1)}

Pr(eb̂k̂|pk̂)
)))

= Bk1Bk2

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸={(k1,1),(k2,1)}

(
f
(
vm1
k1

|S ∪ {vm2
k2

}
)
− f

(
vm1
k1

|S
)( ∏

(k̂,b̂)̸={(k1,1),(k2,1)}

Pr(eb̂k̂|pk̂)
)))

= Bk1Bk2Eeb̂
k̂
∼Multi(p

k̂
)

(
f
(
vm1
k1

|S ∪ {vm2
k2

}
)
− f

(
vm1
k1

|S
))

,

where the final equality comes from that the subset S = ∪(k̂,b̂) ̸={(k1,1),(k2,1)}{e
b̂
k̂
} is unrelated with the random elements

e1k1
and e1k2

.

When k1 = k2 = k ∈ [K] and Bk = 1, it is easy to verify that ∂2F
∂p

m1
k ∂p

m2
k

(p1, . . . ,pK) = 0. As for Bk ≥ 2, we have that

∂2F

∂pm1
k ∂pm2

k

(p1, . . . ,pK)

= Bk

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vm1
k | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂}
)∂(∏(k̂,b̂)̸=(k,1) Pr(eb̂

k̂
|pk̂)

)
∂pm2

k

))

= Bk

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vm1
k | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂}
) ∑

2≤b̂1≤Bk

∂Pr(eb̂1k |pk)

∂pm2
k

( ∏
(k̂,b̂)̸={(k,1),(k,b̂1)}

Pr(eb̂k̂|pk̂)
)))

= Bk

∑
2≤b̂1≤Bk

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂) ̸=(k,1)

(
f
(
vm1
k | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂}
)∂Pr(eb̂1k |pk)

∂pm2
k

( ∏
(k̂,b̂)̸={(k,1),(k,b̂1)}

Pr(eb̂k̂|pk̂)
)))

= Bk(Bk − 1)

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vm1
k | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂}
)∂Pr(e2k|pk)

∂pm2
k

( ∏
(k̂,b̂) ̸={(k,1),(k,2)}

Pr(eb̂k̂|pk̂)
)))

= Bk(Bk − 1)

( ∑
(k̂,b̂)̸={(k,1),(k,2)}

( ∑
e2
k
∈Vk∪{∅}

f
(
vm1
k | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂}
)∂Pr(e2k|pk)

∂pm2
k

( ∏
(k̂,b̂) ̸={(k,1),(k,2)}

Pr(eb̂k̂|pk̂)
)))

.

Also, because Pr(vm
k̂
|pk̂) = pm

k̂
and Pr(∅|pk̂) = 1−

∑nk̂
m=1 p

m
k̂

, we can show that

∑
e2k∈Vk∪{∅}

f
(
vm1

k | ∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
}
)∂Pr(e2k|pk)

∂pm2

k2

= f
(
vm1

k | ∪(k̂,b̂) ̸={(k,1),(k,2)} {e
b̂
k̂
}
⋃

{vm2

k }
)
− f

(
vm1

k | ∪(k̂,b̂) ̸={(k,1),(k,2)} {e
b̂
k̂
}
)
.

As a result, if we set S = ∪(k̂,b̂) ̸={(k,1),(k,2)}{e
b̂
k̂
}, we have that

∂2F

∂pm1
k ∂pm2

k

(p1, . . . ,pK)

= Bk(Bk − 1)

( ∑
eb̂
k̂
∈V

k̂
∪{∅},(k̂,b̂)̸={(k,1),(k,2)}

((
f
(
vm1
k |S ∪ {vm2

k }
)
− f

(
vm1
k |S

))( ∏
(k̂,b̂)̸={(k,1),(k,2)}

Pr(eb̂k̂|pk̂)
)))

=(B2
k −Bk)Eeb̂

k̂
∼Multi(p

k̂
)

(
f
(
vm1
k |S ∪ {vm2

k }
)
− f

(
vm1
k |S

))
,
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where the final equality comes from that the subset S = ∪(k̂,b̂)̸={(k,1),(k,2)}{e
b̂
k̂
} is unrelated with the random elements e1k

and e2k.

D. Stochastic Variant of Continuous Greedy Method for Mutinoulli Extension
D.1. Proof of Theorem 4

In this section, we prove the Theorem 4.

Before going into the details, we firstly bound each second-order derivative of our proposed ME F , that is to say,
Lemma 1. Given a monotone set function f : 2V → R+, if we denote the maximum marginal value of f as Mf =

maxS⊆V,e∈V\S

(
f(e|S)

)
, we have that, for any k1, k2 ∈ [K], m1 ∈ [nk1

] and m2 ∈ [nk2
],∣∣∣ ∂2F

∂pm1

k1
∂pm2

k2

(p1, . . . ,pK)
∣∣∣ ≤ B̄2Mf ,

where (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
and B̄ = maxKk=1 Bk is the maximum budget over the K communities {V1, . . . ,VK}.

Proof. From the Theorem 3, we know that, If k1 ̸= k2 ∈ [K], the second-order derivative of the Multinoulli Extension F at
any point (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

can be written as follows:

∂2F

∂pm1

k1
∂pm2

k2

(p1, . . . ,pK) = Bk1Bk2Eeb̂
k̂

(
f
(
vm1

k1
|S ∪ {vm2

k2
}
)
− f

(
vm1

k1
|S
))

,

where S = ∪(k̂,b̂)̸={(k1,1),(k2,1)}{e
b̂
k̂
} and each eb̂

k̂
is drawn from the multinoulli distribution Multi(pk̂). Furthermore, for

any monotone set function f and any subset S ⊆ V , we can easily know that:

−Mf ≤ −f
(
vm1

k1
|S
)
≤ f

(
vm1

k1
|S ∪ {vm2

k2
}
)
− f

(
vm1

k1
|S
)
≤ f

(
vm1

k1
|S ∪ {vm2

k2
}
)
≤ Mf

such that, when k1 ̸= k2 ∈ [K],

| ∂2F

∂pm1

k1
∂pm2

k2

(p1, . . . ,pK)| ≤ Bk1Bk2Mf ≤ B̄2Mf .

Similarly, we also can verify that when k1 = k2 = k ∈ [K], for any m1 ∈ [nk1
] and m2 ∈ [nk2

], we have that∣∣∣ ∂2F
∂p

m1
k ∂p

m2
k

(p1, . . . ,pK)
∣∣∣ ≤ B̄2Mf .

Similarly, we also can verify that the estimations of the second-order derivative of Multinoulli Extension F in Remark 6 are
also bounded by B̄2Mf , that is to say,
Lemma 2. Given a monotone set function f : 2V → R+, if we denote the maximum marginal value of f as Mf =

maxS⊆V,e∈V\S

(
f(e|S)

)
, we can infer that each second-order estimators in Remark 6 is also bounded by B̄2Mf , i.e., for

any k1, k2 ∈ [K], m1 ∈ [nk1
] and m2 ∈ [nk2

], we have that

| ∂̂2F

∂pm1

k1
∂pm2

k2

((p1, . . . ,pK))| ≤ B̄2Mf

where (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
and B̄ = maxKk=1 Bk is the maximum budget over the K communities {V1, . . . ,VK}.

As a result, we also show that
Lemma 3. Given a monotone set function f : 2V → R+, if we denote the maximum marginal value of f as
Mf = maxS⊆V,e∈V\S

(
f(e|S)

)
, we can infer that each Hessian approximation ∇̂2

t := 1
L

∑L
l=1 ∇̂2F

(
xl(t)

)
in Line

9 of Algorithm 1 satisfies that,
∥∇̂2

t∥22,∞ ≤ nB̄2Mf

where t ∈ [T ], n = |V|, L is a positive integer, B̄ = maxKk=1 Bk is the maximum budget over the K communities
{V1, . . . ,VK}.
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Remark 11. For any matrix A ∈ Rn×n, the (2,∞)-norm of A is defined as ∥A∥2,∞ = sup{∥Ax∥∞ : x ∈ Rn, ∥x∥2 = 1}
where ∥ · ∥ denotes the L2 norm.

Proof. From the definition of the norm ∥ · ∥2,∞, we can show that

∥∇̂2
t∥22,∞ = max

i∈[n]
∥∇̂2

t (i, :)∥22 ≤ nB̄2Mf ,

where ∇̂2
t (i, :) is the i-th line of the Hessian approximation ∇̂2

t and the final inequality follows from the Lemma 2.

With the Lemma 3, we next verify the gap between our gradient estimator g(t) and the exact gradient ∇F (x(t)), that is,

Lemma 4. Given a monotone set function f : 2V → R+, if we denote the maximum marginal value of f as Mf =

maxS⊆V,e∈V\S

(
f(e|S)

)
, we can show that each gradient estimator g(t) in Line 11 of Algorithm 1 satisfies that, for any

t ∈ [T ]

E
(
∥g(t)−∇F (x(t))∥22

)
≤ nrB̄2Mf

LT
,

where L is the batch size, n = |V|, B̄ = maxKk=1 Bk is the maximum budget over the K communities {V1, . . . ,VK} and the
rank r =

∑K
k=1 Bk.

Proof. Note that in Lines 4 of Algorithm 1, we compute the exact gradient of our proposed Multinoulli Extension F at the
point 0 and then assign this value to g(1). Therefore, we know that when t = 1,

∥g(1)−∇F (x(1))∥ = ∥g(1)−∇F (0)∥ = 0 ≤ nrB̄2Mf

LT
.

When t > 1, we have that

E
(
∥g(t)−∇F (x(t))∥22

)
= E

(
∥g(t− 1) + ξt −∇F (x(t))∥22

)
= E

(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+ E

(
∥ξt −

(
∇F (x(t))−∇F (x(t− 1))

)
∥22
)

+ E
(〈

g(t− 1)−∇F (x(t− 1)), ξt −
(
∇F (x(t))−∇F (x(t− 1))

)〉)
.

Note that

E
(〈

g(t− 1)−∇F (x(t− 1)), ξt −
(
∇F (x(t))−∇F (x(t− 1))

)〉)
= E

(
E
(〈

g(t− 1)−∇F (x(t− 1)), ξt −
(
∇F (x(t))−∇F (x(t− 1))

)〉 ∣∣∣x(t)))

= E
(〈

g(t− 1)−∇F (x(t− 1)),E
(
ξt|x(t)

)
−
(
∇F (x(t))−∇F (x(t− 1))

)〉))
= 0.

27



Multinoulli Extension: A Lossless Yet Effective Probabilistic Framework for Subset Selection over Partition Constraints

Therefore, we have

E
(
∥g(t)−∇F (x(t))∥22

)
= E

(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+ E

(
∥ξt −

(
∇F (x(t))−∇F (x(t− 1))

)
∥22
)

= E
(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+ E

(∥∥∥∇̂2
t

(
x(t)− x(t− 1)

)
−
(
∇F (x(t))−∇F (x(t− 1))

)∥∥∥2
2

)
= E

(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+ E

(∥∥∥∥∥( 1L
L∑

l=1

(
∇̂2F

(
xl(t)

)(
x(t)− x(t− 1)

))
−
(
∇F (x(t))−∇F (x(t− 1))

)∥∥∥∥∥
2

2

)
= E

(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+

1

L
E

(∥∥∥(∇̂2F
(
x1(t)

)(
x(t)− x(t− 1)

))
−
(
∇F (x(t))−∇F (x(t− 1))

)∥∥∥2
2

)

≤ E
(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+

1

L
E

(
∥∇̂2F

(
x1(t)

)(
x(t)− x(t− 1)

)
∥22

)

≤ E
(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+

1

L
E

(
∥∇̂2F

(
x1(t)

)
∥22,∞∥x(t)− x(t− 1)∥22

)

= E
(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+

1

L
E

(
∥∇̂2F

(
x1(t)

)
∥22,∞∥ 1

T

K∑
k=1

1

Bk
1S(t−1)∩Vk

∥22

)

≤ E
(
∥g(t− 1)−∇F (x(t− 1))∥22

)
+

nrB̄2Mf

LT 2

. . .

≤ E
(
∥g(1)−∇F (x(1))∥22

)
+

nrB̄2Mf

LT 2
(t− 1) ≤ nrB̄2Mf

LT
,

where the first inequality follows from E
(
X − E(X)

)2 ≤ E(X2) for any random variable X; the second inequality
comes from the definition of the norm ∥ · ∥2,∞; the third inequality follows from the Lemma 3 and the ascent direction∑K

k=1
1
Bk

1S(t−1)∩Vk
has at most r non-zero elements.

Now, we verify the Theorem 4.

Proof. From calculus, we know that, there exist a constant a ∈ [0, 1] such that

F (x(t+ 1))− F (x(t))− ⟨∇F (x(t)),x(t+ 1)− x(t)⟩ = 1

2

〈
∇2F (xa(t))

(
x(t+ 1)− x(t)

)
,x(t+ 1)− x(t)

〉
,

where xa(t) = ax(t) + (1− a)x(t− 1). Therefore, we can show that

F (x(t+ 1))

≥ F (x(t)) + ⟨∇F (x(t)),x(t+ 1)− x(t)⟩ − 1

2

∣∣∣〈∇2F (xa(t))
(
x(t+ 1)− x(t)

)
,x(t+ 1)− x(t)

〉∣∣∣
≥ F (x(t)) + ⟨∇F (x(t)),x(t+ 1)− x(t)⟩ − ∥∇2F (xa(t))∥2,∞

2
∥x(t+ 1)− x(t)∥22

≥ F (x(t)) + ⟨∇F (x(t)),x(t+ 1)− x(t)⟩ −
B̄
√
nMf

2
∥x(t+ 1)− x(t)∥22,

(22)

where the final inequality follows from Lemma 3.
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With Eq.(22) and x(t+1) = x(t)+ 1
T v(t), we also have that,for any subset S within the partition constraint of problem (1),

F (x(t+ 1))

≥ F (x(t)) + ⟨∇F (x(t)),x(t+ 1)− x(t)⟩ −
B̄
√

nMf

2
∥x(t+ 1)− x(t)∥22

= F (x(t)) +
1

T

〈
∇F (x(t)),

K∑
k=1

1

Bk
1S(t)∩Vk

〉
−

B̄
√

nMf

2T 2
∥

K∑
k=1

1

Bk
1S(t)∩Vk

∥22

= F (x(t)) +
1

T

〈
g(t),

K∑
k=1

1S(t)∩Vk

Bk

〉
+

1

T

〈
∇F (x(t))− g(t),

K∑
k=1

1

Bk
1S(t)∩Vk

〉
−

B̄
√
nMf

2T 2
∥

K∑
k=1

1

Bk
1S(t)∩Vk

∥22

≥ F (x(t)) +
1

T

〈
g(t),

K∑
k=1

1S∩Vk

Bk

〉
+

1

T

〈
∇F (x(t))− g(t),

K∑
k=1

1

Bk
1S(t)∩Vk

〉
−

B̄
√
nMf

2T 2
∥

K∑
k=1

1

Bk
1S(t)∩Vk

∥22,

where the final inequality follows from
∑K

k=1

1S∩Vk

Bk
∈
∏T

k=1 ∆nk
if the subset S is included into the partition constraint of

problem (1) and Line 13 in Algorithm 1.

As a result, we can show that, in expectation,

E
(
F (x(t+ 1))

)
≥ E

(
F (x(t))

)
+

1

T
E
(〈

g(t),

K∑
k=1

1S∩Vk

Bk

〉)
+

1

T
E
(〈

∇F (x(t))− g(t),

K∑
k=1

1

Bk
1S(t)∩Vk

〉)
−

B̄
√

nMf

2T 2
E
(
∥

K∑
k=1

1S(t)∩Vk

Bk
∥22
)

= E
(
F (x(t))

)
+

1

T

〈
E
(
g(t)

)
,

K∑
k=1

1S∩Vk

Bk

〉
+

1

T
E
(〈

∇F (x(t))− g(t),

K∑
k=1

1

Bk
1S(t)∩Vk

〉)
−

B̄
√

nMf

2T 2
E
(
∥

K∑
k=1

1S(t)∩Vk

Bk
∥22
)

= E
(
F (x(t))

)
+

1

T

〈
∇F (x(t)),

K∑
k=1

1S∩Vk

Bk

〉
+

1

T
E
(〈

∇F (x(t))− g(t),

K∑
k=1

1

Bk
1S(t)∩Vk

〉)
−

B̄
√

nMf

2T 2
E
(
∥

K∑
k=1

1S(t)∩Vk

Bk
∥22
)
,

(23)

where the final equality follows from g(x(t)) is the unbiased estimator of ∇F (x(t)) for any t ∈ [T ].

1): When the set function f : 2V → R+ is monotone and α-weakly DR-submodular, from Theorem 2, we can show that

E
(
F (x(t+ 1))

)
= E

(
F (x(t))

)
+

1

T

〈
∇F (x(t)),

K∑
k=1

1S∩Vk

Bk

〉
+

1

T
E
(〈

∇F (x(t))− g(t),

K∑
k=1

1S(t)∩Vk

Bk

〉)
−

B̄
√

nMf

2T 2
E
(
∥

K∑
k=1

1S(t)∩Vk

Bk
∥22
)

≥ E
(
F (x(t))

)
+

α

T

(
f(S)− E

(
F (x(t))

)
++

1

T
E
(〈

∇F (x(t))− g(t),

K∑
k=1

1S(t)∩Vk

Bk

〉)
−

B̄
√

nMf

2T 2
E
(
∥

K∑
k=1

1S(t)∩Vk

Bk
∥22

≥ E
(
F (x(t))

)
+

α

T

(
f(S)− E

(
F (x(t))

)
− 1

2B̄
√

nMf

E
(
∥F (x(t))− g(t)∥22

)
−

B̄
√

nMf

T 2
E
(
∥

K∑
k=1

1

Bk
1S(t)∩Vk

∥22
))

≥ E
(
F (x(t))

)
+

α

T

(
f(S)− E

(
F (x(t))

))
−

rB̄
√

nMf

2LT
−

rB̄
√

nMf

T 2

(24)
where the second inequality follows from the Young’s inequality.
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By rearranging the Eq.(24), we can show that(
f(S)− E

(
F (x(t+ 1))

))
≤ (1− α

T
)
(
f(S)− E

(
F (x(t))

)
+

rB̄
√
nMf

2LT
+

rB̄
√
nMf

T 2

≤ . . .

≤ (1− α

T
)t
(
f(S)− E

(
F (x(1))

)
+
(rB̄√nMf

2LT
+

rB̄
√

nMf

T 2

) t−1∑
i=0

(1− α

T
)i

≤ (1− α

T
)t
(
f(S)− E

(
F (x(1))

)
+
(rB̄√nMf

2LT
+

rB̄
√

nMf

T 2

)T
α

≤ (1− α

T
)tf(S) +

rB̄
√

nMf

2αL
+

rB̄
√

nMf

αT
.

Finally, we have that
E
(
F (x(T + 1)

)
≥
(
1− (1− α

T
)T
)
f(S)−

rB̄
√
nMf

2αL
−

rB̄
√
nMf

αT

≥
(
1− e−α

)
f(S)−

rB̄
√

nMf

2αL
−

rB̄
√

nMf

αT
,

where the final inequality follows from (1− α
T )

T ≤ e−α when T ≥ 3.

Therefore, when L = T
2 , we have that

E
(
F (x(T + 1)

)
≥
(
1− e−α

)
f(S∗)−

2rB̄
√
nMf

αT
.

2: When the set function f : 2V → R+ is monotone and (γ, β)-weakly submodular, from the Theorem 2, we can show that

E
(
F (x(t+ 1))

)
≥ E

(
F (x(t))

)
+

γ2

T
f(S)− β(1− γ) + γ2

T
E
(
F (x(t))

)
−

rB̄
√
nMf

2LT
−

rB̄
√
nMf

T 2
. (25)

By rearranging the Eq.(25), we can have that(
γ2f(S)− (β(1− γ) + γ2)E

(
F (x(t+ 1))

))
(1− β(1− γ) + γ2

T
)
(
γ2f(S)− (β(1− γ) + γ2)E

(
F (x(t))

))
+
(rB̄√nMf

2LT
+

rB̄
√

nMf

T 2

)
(β(1− γ) + γ2)

≤ . . .

≤ (1− β(1− γ) + γ2

T
)t
(
fγ2f(S)− (β(1− γ) + γ2)E

(
F (x(0))

)
+
(rB̄√nMf

2LT
+

rB̄
√

nMf

T 2

)
T (β(1− γ) + γ2)

≤ (1− β(1− γ) + γ2

T
)tγ2f(S) +

rB̄
√

nMf

2L
+

rB̄
√
nMf

T
.

Finally, we have that

(β(1− γ) + γ2)E
(
F (x(T + 1)

)
≥
(
1− (1− β(1− γ) + γ2

T
)T
)
γ2f(S) +

rB̄
√
nMf

2L
+

rB̄
√

nMf

T

≥ γ2(1− e−(β(1−γ)+γ2))f(S) +
rB̄
√
nMf

2L
+

rB̄
√
nMf

T
,

where the final inequality follows from (1− β(1−γ)+γ2

T )T ≤ e−(β(1−γ)+γ2) when T ≥ 3.
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Algorithm 2 Rounding Without Replacement

Input: Point (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
where pk = (p1k, . . . , p

nk

k ) and
∑nk

m=1 p
m
k = 1 for any k ∈ [K], Partition

(V1, . . . ,VK) of set V where Vk := {v1k, . . . , v
nk

k } for any k ∈ [K], Budget set {B1, . . . , BK}
1: Initialize S = ∅;
2: for k̂ = 1, . . . ,K do
3: P = 0
4: for b̂ = 1, . . . , Bk do
5: if b̂ = 1 then
6: Sampling a number N1 from [nk] according to the probability Pr(N1 = m) = pm

k̂
for any m ∈ [nk̂];

7: else
8: Sampling a number Nb̂ from [nk]− {N1, . . . , Nb̂−1} according to the probability Pr(Nb̂ = m) =

pm
k̂

1−P for any

m ∈
(
[nk̂]− {N1, . . . , Nb̂−1}

)
;

9: end if
10: Set S = S ∪ {vNb̂

k̂
} and P = P + p

Nb̂

k̂
;

11: end for
12: end for
13: Return S;

Therefore, when L = T
2 , we have that

E
(
F (x(T + 1)

)
≥
(γ2(1− e−(γ(1−β)+γ2))

γ(1− β) + γ2

)
f(S)−

2rB̄
√
nMf

T (γ(1− β) + γ2)
.

Remark 12. If T = L = O( r
√
n

ϵ ) and S is the optimal subset of problem (1), we can show that, when the objective function
is monotone α-weakly DR-submodular or (γ, β)-weakly submodular, our Multinoulli-SCG algorithm can attain a value of

(1− e−α)f(S)− ϵ or (γ
2(1−e−(β(1−γ)+γ2))

β(1−γ)+γ2 )f(S)− ϵ. Note that, during the process of O( r
√
n

ϵ ) iterations, if L = O( r
√
n

ϵ ),

due to Remark 8, Multinoulli-SCG only requires evaluating the set function O( r
3n2

ϵ2 ) times.

D.2. Rounding Without Replacement

In this section, we aim to present a more effective rounding method for our proposed Multinoulli Extension F when its
original set function f is monotone.

Given the second point of Theorem 1, we know that when the set function f exhibits monotonicity, its Multinoulli Extension
F is also monotone. Therefore, it can be deduced that the optimal value of the relaxed problem (4) must be attained at the
boundary of

∏K
k=1 ∆nk

. Therefore, this section primarily concentrates on how to design more effective rounding method
for the points at the boundary of

∏K
k=1 ∆nk

. The specific details are presented in Algorithm 2.

The core of our our proposed Algorithm 2 lies in the Line 8, that is, instead of independently sampling according to
each probability vector pk̂, we take into account the elements previously selected within the same community, namely,

{vN1

k̂
, . . . , v

Nb̂−1

k̂
}. As a result, we can prove that

Theorem 6. For any point (p1, . . . ,pK) at the boundary of the domain
∏K

k=1 ∆nk
, i.e., ∥pk∥1 = 1 for any k ∈ [K], if the

set function f is monotone, we can show that the subset S returned by Algorithm 2 satisfies:

• for any k ∈ [K], |S ∩ Vk| = Bk;

• E
(
f(S)

)
≥ F (p1, . . . ,pK) where F is the Multinoulli Extension of f .

Proof. The first point of Theorem 6 is easy to verify. We mainly focus on the second point.
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At first, fixing a k̂ ∈ [K] and a b̂ ∈ [nk̂], we firstly prove that, when S = {vNb

k : (k, b) < (k̂, b̂)}, the following inequality
holds:

E
v
N

b̂
k̂

(
f
(
S ∪ {vNb̂

k̂
}
)∣∣∣S) ≥ Ee∼Multi(pk̂)

(
f
(
S ∪ {e}

)∣∣∣S). (26)

In order to verify Eq.(26), we first show that

E
v
N

b̂
k̂

(
f
(
S ∪ {vNb̂

k̂
}
)

=
∑

m∈[nk̂]−{N1,...,Nb̂−1}

( pm
k̂

1− P
f
(
S ∪ {vm

k̂
}
))

=
P

1− P

∑
m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

+
∑

m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

≥ P

1− P

∑
m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S
))

+
∑

m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

= Pf
(
S
)
+

∑
m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

,

(27)

where the first inequality from the monotonicity of f . Then, we also have that

Ee∼Multi(pk̂)

(
f
(
S ∪ {e}

)∣∣∣S)
=

∑
m∈[nk̂]

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

=
∑

m∈{N1,...,Nb̂−1}

(
pm
k̂
f
(
S
))

+
∑

m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

= Pf
(
S
)
+

∑
m∈[nk̂]−{N1,...,Nb̂−1}

(
pm
k̂
f
(
S ∪ {vm

k̂
}
))

.

(28)

With Eq.(27) and Eq.(28), we get the result of Eq.(26). Therefore, if we start by the final subset S and recurrently apply the
Eq.(26), we can get E

(
f(S)

)
≥ F (p1, . . . ,pK).

E. Stationary-Point Strategy for Mutinoulli Extension
E.1. Proof of Theorem 5

In this section, we prove the Theorem 5. Firstly, we prove a lower bound about
〈
(p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
for any

point (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
, that is to say,

Theorem 7. When the set function f : 2V → R+ is α-weakly DR-submodular, for any point (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
,

the following inequality holds: 〈
(p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
≥ 1

α
F (p1, . . . ,pK), (29)

where α ∈ (0, 1]. Similarly, when the set function f : 2V → R+ is β-weakly submodular from above, for any point
(p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we also can infer that〈
(p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
≥ βF (p1, . . . ,pK),

where β ≥ 1.
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Proof. At first, we assume each pk := (p1k, . . . , p
nk

k ) for any k ∈ [K]. Then, from the first point of Theorem 1 and the fifth
equality in Eq.(13), we have that

∂F

∂pmk
(p1, . . . ,pK) = Bk

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
vmk

∣∣∣ ∪(k̂,b̂)̸=(k,1) {e
b̂
k̂
}
)))

= Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂) ̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

As a result, we have that〈
(p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
=

K∑
k=1

nk∑
m=1

pmk
∂F

∂pmk
(p1, . . . ,pK)

=

K∑
k=1

nk∑
m=1

pmk Bk

(
E
eb̂
k̂
∼Multi(pk̂)

(
f
(
vmk

∣∣∣ ∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
}
)))

=

K∑
k=1

nk∑
m=1

pmk Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂) ̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

=

K∑
k=1

nk∑
m=1

Pr(vmk |pk)Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂) ̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

=

K∑
k=1

Bk

nk∑
m=1

Pr(vmk |pk)

( ∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂) ̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) ∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

=

K∑
k=1

Bk

(
nk∑

m=1

∑
eb̂
k̂
∈Vk̂∪{∅},(k̂,b̂)̸=(k,1)

(
f
(
vmk | ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
)

Pr(vmk |pk)
∏

(k̂,b̂)̸=(k,1)

Pr(eb̂
k̂
|pk̂)

))

=

K∑
k=1

Bk

( ∑
eb̂
k̂
∈Vk̂∪{∅},∀b̂∈[Bk̂],∀k̂∈[K]

(
f
(
e1k| ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
) K∏

k̂=1

Bk̂∏
b̂=1

Pr(eb̂
k̂
|pk̂)

))

=

K∑
k=1

BkEeb̂
k̂
∼Multi(pk̂)

(
f
(
e1k| ∪(k̂,b̂)̸=(k,1) {e

b̂
k̂
}
))

=

K∑
k=1

nk∑
b=1

E
eb̂
k̂
∼Multi(pk̂)

(
f
(
ebk| ∪(k̂,b̂) ̸=(k,b) {e

b̂
k̂
}
))

,

where the fourth equality follows from Pr(vmk |pk) = pmk ; the seventh equality comes from e1k ∼ Multi(pk) and f(∅|B) = 0
for any B ⊆ V as well as the final equality follows from that each ebk is independently drawn from the multinoulli distribution
Multi(pk).

If f is β-weakly submodular from above, we can show that

K∑
k=1

nk∑
b=1

f
(
ebk| ∪(k̂,b̂)̸=(k,b) {e

b̂
k̂
}
)
≤ β

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1

)
− f(∅)

)
≤ βf

(
∪K
k̂=1

∪Bk̂

b̂=1

)
,

where the final inequality follows from f(∅) ≥ 0 (Note that we define f : 2V → R+).
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As a result, when f is β-weakly submodular from above, we have that〈
(p1, . . . ,pK),∇F (p1, . . . ,pK)

〉
=

K∑
k=1

nk∑
b=1

E
eb̂
k̂
∼Multi(pk̂)

(
f
(
ebk| ∪(k̂,b̂) ̸=(k,b) {e

b̂
k̂
}
))

≤ βE
eb̂
k̂
∼Multi(pk̂)

(
f
(
∪K
k̂=1

∪Bk̂

b̂=1

))
= βF (p1, . . . ,pK).

Note that an α-weakly DR-submodular function automatically satisfies the conditions for being 1
α -weakly submodular from

above. Thus, we get the Eq.(29).

Merging Theorem 7 into Theorem 2, we also can get that

Theorem 8. When the set function f : 2V → R+ is monotone and α-weakly DR-submodular, for any subset S within the
partition constraint of problem (1) and any point (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, the following inequality holds:〈
K∑

k=1

1

Bk
1S∩Vk

−
(
p1, . . . ,pK

)
,∇F

(
p1, . . . ,pK

)〉
≥ αf(S)− (α+

1

α
)F
(
p1, . . . ,pK

)
.

Similarly, when the set function f : 2V → R+ is monotone and (γ, β)-weakly submodular, for any subset S within the
partition constraint of problem (1) and any point (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

, we also can infer that〈
K∑

k=1

1

Bk
1S∩Vk

−
(
p1, . . . ,pK

)
,∇F

(
p1, . . . ,pK

)〉
≥ γ2f(S)− (β + β(1− γ) + γ2)F

(
p1, . . . ,pK

)
.

From the definition of stationary point, we know that if (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
is the stationary point over the domain∏K

k=1 ∆nk
, for any point y ∈

∏K
k=1 ∆nk

,〈
y −

(
p1, . . . ,pK

)
,∇F

(
p1, . . . ,pK

)〉
≤ 0. (30)

Also, for any S within the partition constraint of problem (1), we can easily show that
∑K

k=1
1
Bk

1S∩Vk
∈
∏K

k=1 ∆nk
such

that we know that, for any S within the partition constraint of problem (1),〈
K∑

k=1

1

Bk
1S∩Vk

−
(
p1, . . . ,pK

)
,∇F

(
p1, . . . ,pK

)〉
≤ 0.

Therefore, when the set function f : 2V → R+ is monotone and α-weakly DR-submodular, we have that αf(S) −
(α + 1

α )F
(
p1, . . . ,pK

)
≤ 0 such that F

(
p1, . . . ,pK

)
≥ α2

1+α2 f(S
∗) where S∗ is the optimal solution of problem (1).

Similarly, when the set function f : 2V → R+ is monotone and (γ, β)-weakly submodular,, we have that γ2f(S)− (β +

β(1− γ) + γ2)F
(
p1, . . . ,pK

)
≤ 0 such that F

(
p1, . . . ,pK

)
≥
(

γ2

β+β(1−γ)+γ2

)
f(S∗).

E.2. Stochastic Gradient Ascent for Multinoulli Extension

In general, a simple strategy is to initially apply the well-established Gradient Ascent (GA) method to maximize our proposed
Multinoulli Extension F , and subsequently, to finalize our selection by rounding the resulting continuous solution. However,
the implementation of GA often requires accurately computing the gradients of F , which is typically computationally
intensive. Fortunately, the first point of Theorem 1 indicates that it is feasible to sample a sequence of random elements
to construct an unbiased estimator for each ∂F

∂pm
k
(p1, . . . ,pK) where (p1, . . . ,pK) ∈

∏K
k=1 ∆nk

. Specifically, when each
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Algorithm 3 Stochastic Gradient Ascent for Mutinoulli Extension(Multinoulli-SGA)
Input: Batch size L, step size η, number of iterations T , partition {V1, . . . ,VK} of set V where Vk = {v1k, . . . , v

nk

k } and
the set function f

1: Initialize x(1) = (p1(1), . . . ,pK(1)) ∈
∏K

k=1 △nk
;

2: for t = 1, . . . , T do
3: Generate a subset St by rounding x(t);
4: Compute the estimator ∇̂F (x(t)) based on Eq.(31);
5: Set y(t+ 1) := x(t) + η∇̂F (x(t));
6: x(t+ 1) := argminz∈

∏K
k=1 △nk

∥z− y(t+ 1)∥2;
7: end for
8: Return S := argmaxt∈[T ] f(St);

eb̂
k̂
(l) is independently drawn from the multinoulli distribution Multi(pk̂) for any k̂ ∈ [K], b̂ ∈ [nk̂] and l ∈ [L], we can

estimate ∂F
∂pm

k
(p1, . . . ,pK) as:

∂̂F

∂pmk
(p1, . . . ,pK) :=

Bk

L

L∑
l=1

(
f
(
vmk

∣∣∣ ∪(k̂,b̂) ̸=(k,1) {e
b̂
k̂
(l)}

))
. (31)

By merging this stochastic gradient Eq.(31) into the standard GA method, we can derive a stochastic variant of gradient
ascent method for our proposed ME, as detailed in Algorithm 3. Furthermore, based on the previous results of Theorem 1
and Theorem 2, we also can verify that:

Theorem 9. When the set function f : 2V → R+ is monotone and α-weakly DR-submodular, if we set the batch size
L = O(1), the subset S output by Algorithm 3 satisfies:

E
(
f(S)

)
≥
( α2

1 + α2

)
f(S∗)− K

ηT
− η

nB̄2M2
f

4
,

where S∗ is the optimal solution of problem (1),B̄ = maxKk=1 Bk is the maximum budget over the K communities

{V1, . . . ,VK} and Mf = maxS⊆V,e∈V\S

(
f(e|S)

)
. Similarly, if the set function f : 2V → R+ is (γ, β)-weakly monotone

submodular and L = O(1), the returned subset S of Algorithm 3 satisfies:

E
(
f(S)

)
≥
( γ2

β + β(1− γ) + γ2

)
f(S∗)− 8K

7ηT
− η

2nB̄2M2
f

7
.

Remark 13. Theorem 5 shows that, when the set function f is monotone and α-weakly DR-submodular, if we set O( 1√
T
),

the subset S output by Algorithm 3 satisfies:

E
(
f(S)

)
≥
( α2

1 + α2

)
f(S∗)−O(

1√
T
),

where S∗ is the optimal solution of problem (1), which implies that after O(1/ϵ2) iterations, the subset output by our
proposed Algorithm 1 can attain ( α2

1+α2 )OPT − ϵ where OPT is the maximum value of problem (1). Similarly, when f is
(γ, β)-weakly monotone submodular, if we set O( 1√

T
), the subset S output by Algorithm 3 satisfies:

E
(
f(S)

)
≥
( γ2

β + β(1− γ) + γ2

)
f(S∗)−O(

1√
T
),

which also means that, after O( 1
ϵ2 ) iterations, Algorithm 1 also can achieve

(
γ2

β+β(1−γ)+γ2

)
OPT − ϵ. Note that, during

the process of O( 1
ϵ2 ) iterations, Algorithm 2 only requires evaluating the set function O( 1

ϵ2 ) times if we set the step size
L = O(1).
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In the following part, we prove the Theorem 9. At first, we give a easy-to-verify lemma about the upper bound of gradients
of our proposed Multinoulli Extension F .

Lemma 5. Given a monotone set function f : 2V → R+, if we denote the maximum marginal value of f as Mf =

maxS⊆V,e∈V\S

(
f(e|S)

)
, we have that, for any k ∈ [K], m ∈ [nk],∣∣∣ ∂F

∂pmk
(p1, . . . ,pK)

∣∣∣ ≤ B̄Mf ,

where (p1, . . . ,pK) ∈
∏K

k=1 ∆nk
and B̄ = maxKk=1 Bk is the maximum budget over the K communities {V1, . . . ,VK}.

Similarly, we also can infer that the gradient estimation Eq.(31) also can be bounded by B̄Mf ,i.e., for any positive integer
L, ∣∣∣ ∂̂F

∂pmk
(p1, . . . ,pK)

∣∣∣ ≤ B̄Mf .

With this Lemma 5, we then prove the Theorem 9.

Proof. Let S∗ denote the optimal subset of problem 1. Then, from the Line 6 in Algorithm 3, we know that∥∥∥∥∥x(t+ 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

≤

∥∥∥∥∥y(t+ 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

=

∥∥∥∥∥x(t+ 1) + η∇̂F (x(t))−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

=

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ 2η

〈
∇̂F (x(t)),x(t)−

K∑
k=1

1S∗∩Vk

Bk

〉
+ η2

∥∥∥∇̂F (x(t))
∥∥∥2
2

≤

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ 2η

〈
∇̂F (x(t)),x(t)−

K∑
k=1

1S∗∩Vk

Bk

〉
+ η2nB̄2M2

f ,

where the first inequality follows from
∑K

k=1

1S∗∩Vk

Bk
∈
∏K

k=1 ∆nk
and the final inequality comes from Lemma 5.

As a result, we have that

E

∥∥∥∥∥x(t+ 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ 2ηE

〈
∇̂F (x(t)),x(t)−

K∑
k=1

1S∗∩Vk

Bk

〉
+ η2nB̄2M2

f

= E

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ 2ηE
(〈

E
(
∇̂F (x(t))

∣∣∣x(t)),x(t)− K∑
k=1

1S∗∩Vk

Bk

〉)
+ η2nB̄2M2

f

= E

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ 2ηE
(〈

∇F (x(t),x(t)−
K∑

k=1

1S∗∩Vk

Bk

〉)
+ η2nB̄2M2

f .

(32)
Then, if 1): the set function f : 2V → R+ is monotone and α-weakly DR-submodular, from Theorem 8 and Eq.(32), we
have that

E

∥∥∥∥∥x(t+ 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

− 2ηE
(〈

∇F (x(t),

K∑
k=1

1S∗∩Vk

Bk
− x(t)

〉)
+ η2nB̄2M2

f

≤ E

∥∥∥∥∥x(t)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

− 2η
(
αf(S∗)− (α+

1

α
)F (x(t))

)
+ η2nB̄2M2

f .
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As a result, we have that

2η

T∑
t=1

(
αf(S∗)− (α+

1

α
)F (x(t))

)
≤ E

∥∥∥∥∥x(T + 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

− E

∥∥∥∥∥x(1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+ Tη2nB̄2M2
f .

Due to that E(f(St)) = E(F (x(t))) from Algorithm 3, we can infer that

E(f(S)) ≥
∑T

t=1 E(F (x(t)))

T

≥ α2

1 + α2
f(S∗)−

E
∥∥∥x(T + 1)−

∑K
k=1

1S∗∩Vk

Bk

∥∥∥2
2

2ηT (α+ 1
α )

− η
nB̄2M2

f

2(α+ 1
α )

≥ α2

1 + α2
f(S∗)− K

ηT
− η

nB̄2M2
f

4
,

where the final inequality follows from α + 1
α ≥ 2 and

∥∥∥x(T + 1)−
∑K

k=1

1S∗∩Vk

Bk

∥∥∥2
2

≤ 2(∥x(T + 1)∥22 +∥∥∥∑K
k=1

1S∗∩Vk

Bk

∥∥∥2
2
) ≤ 4K.

Furthermore, 2): if the set function f : 2V → R+ is monotone and (γ, β)-weakly submodular, we also can show that, from
Theorem 8,

2η

T∑
t=1

(
γ2f(S∗)−(β+β(1−γ)+γ2)F (x(t))

)
≤ E

∥∥∥∥∥x(T + 1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

−E

∥∥∥∥∥x(1)−
K∑

k=1

1S∗∩Vk

Bk

∥∥∥∥∥
2

2

+Tη2nB̄2M2
f .

Finally, we have that Due to that E(f(St)) = E(F (x(t))) from Algorithm 3, we can infer that

E(f(S)) ≥
∑T

t=1 E(F (x(t)))

T

≥
( γ2

β + β(1− γ) + γ2

)
f(S∗)−

E
∥∥∥x(T + 1)−

∑K
k=1

1S∗∩Vk

Bk

∥∥∥2
2

2ηT (β + β(1− γ) + γ2)
− η

nB̄2M2
f

2(β + β(1− γ) + γ2)

≥
( γ2

β + β(1− γ) + γ2

)
f(S∗)− 8K

7ηT
− η

2nB̄2M2
f

7
,

where the final inequality follows from
∥∥∥x(T + 1)−

∑K
k=1

1S∗∩Vk

Bk

∥∥∥2
2
≤ 2(∥x(T + 1)∥22 +

∥∥∥∑K
k=1

1S∗∩Vk

Bk

∥∥∥2
2
) ≤ 4K,

β ≥ 1 and β(1− γ) + γ2 ≥ 3
4 (Lemma B.1 in (Thiery & Ward, 2022)).
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