
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STBLLM: BREAKING THE 1-BIT BARRIER WITH
STRUCTURED BINARY LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present the first structural binarization method for LLM com-
pression to less than 1-bit precision. Although LLMs have achieved remarkable
performance, their memory-bound nature during the inference stage hinders the
adoption of resource-constrained devices. Reducing weights to 1-bit precision
through binarization substantially enhances computational efficiency. We observe
that some weights in binarized LLMs can be randomly flipped without significant
performance degradation, suggesting the potential for further compression. To ex-
ploit this, our STBLLM employs an N:M sparsity technique to achieve structural
binarization of the weights. Specifically, we introduce a novel Standardized Im-
portance (SI) metric, which considers weight magnitude and input feature norm
to more accurately assess weight significance. Then, we propose a layer-wise ap-
proach, allowing different layers of the LLM to be sparsified with varying N:M ra-
tios, thereby balancing compression and accuracy. Furthermore, we implement a
fine-grained grouping strategy for less important weights, applying distinct quan-
tization schemes to sparse, intermediate, and dense regions. Finally, we design a
specialized CUDA kernel to support structural binarization. We conduct extensive
experiments on LLaMA-1/2/3, OPT family, and Mistral to evaluate the effective-
ness of STBLLM. The results demonstrate that our approach performs better than
other compressed binarization LLM methods while significantly reducing mem-
ory requirements.

1 INTRODUCTION

The advent of large language models (LLMs), such as (Zhang et al., 2022a; Touvron et al., 2023a;
Brown et al., 2020), has revolutionized the field of natural language processing (NLP) (Wei et al.,
2022b). These powerful models exhibit remarkable performance, surpassing human capabilities in
certain domains (Wei et al., 2022a; Bubeck et al., 2023). However, the immense scale and com-
plexity of LLMs present significant challenges in terms of memory requirements, hindering their
widespread deployment, especially in resource-constrained environments. To address this issue,
model compression techniques, such as quantization (Frantar et al., 2023; Lin et al., 2024a; Dong
et al., 2023), pruning (Meng et al., 2020), distillation (Gu et al., 2024), and low-rank decomposi-
tion (Ashkboos et al., 2024), have gained increasing attention in reducing the computational foot-
print while preserving their performance. One promising approach is network binarization, the most
aggressive quantization method. Binarization quantizes original floating-point weights with binary
values (−1 or +1), significantly reduces memory storage.

Pioneering binarization methods (Rastegari et al., 2016; Liu et al., 2018) present customized binary
structures and training paradigms for binarized neural networks (BNNs) in vision tasks. Building
upon these foundational approaches, subsequent methods (Wang et al., 2020; 2021b;a; Liu et al.,
2022; Li & Ren, 2020; Munagala et al., 2020) have advanced the field by integrating sparse kernel
techniques (Wang et al., 2023b; 2021b) and pruning methodologies (Wang et al., 2021a; Li & Ren,
2020; Munagala et al., 2020). For LLMs, inspired by the success of 4-bit and 8-bit quantization
methods, some studies (Huang et al., 2024; Xu et al., 2024; Shang et al., 2024) continue to ex-
plore ultra-low-bit or even 1-bit precision. For example, the post-training method PB-LLM (Shang
et al., 2024) partially binarizes LLMs with an optimal scaling factor strategy, preserving a small
subset of the higher bit-precision weights. BiLLM (Huang et al., 2024) proposes a residual ap-
proximation strategy to improve 1-bit LLMs. While these methods represent the most aggressive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The impact of random flipping non-
salient binarized weights on accuracy in a
1-Bit LLaMA-2-7B. The x-axis represents the
percentage of binarized weights flipped from -1
to 1 or vice versa. As the ratio increases, the ac-
curacy does not decline significantly, indicating
redundancy in the 1-bit representation.

16 8 4 2 1 0.5
Quantization Bit-width

101

102

Pe
rp

le
xi

ty
 in

 lo
g 1

0
sc

al
e

10.73
5.68 5.68 6.28

25.53

5.68 5.68 6.19

11.1

152.31

9.66
11.33

17.22
15.14

22.55

39.61

124.72PB-LLM (Int8 10%)
RTN
GPTQ
BiLLM
STBLLM (Ours)

Figure 2: The perplexity of LLaMA-1-13B
on the Wikitext2 under different bit-widths.
RTN and GPTQ (Frantar et al., 2023) show
a drastic performance drop at ultra-low bit-
widths. Our proposed STBLLM achieves
higher performance compared to BiLLM at sub
1-bit widths.

quantization approaches, it is crucial to consider that popular floating-point LLMs already contain
model sizes ranging from 7 billion to 140 billion parameters. As a result, 1-bit LLMs still need to
be further accelerated and optimized for many resource-constrained devices and real-time scenarios.
This naturally raises a key question: Is there any compression method with less than 1-bit weight
representation that can further push the quantization of LLMs?

For this question, there are two key observations: ① Not all weights contribute equally to the per-
formance of 1-bit LLMs. As shown in Figure 1, performing random weight flipping for non-salient
weights results in only a minimal performance drop (For more details, refer to Appendix B). This
finding indicates that even in highly quantized 1-bit LLMs, a subset of redundant weights exists that
can be compressed without impacting the performance. It suggests the potential for further com-
pression by selectively encoding the most significant weights while discarding or compressing the
less important ones. ② Structured sparsity techniques, such as N:M sparsity methods (Hubara
et al., 2021; Zhang et al., 2022b; Zhou et al., 2021), leverage the inherent structure and patterns
in the weight distribution, allowing for more efficient compression. These N:M sparsity methods
have good hardware-accelerated support in recent LLM pruning models (Frantar & Alistarh, 2023;
Sun et al., 2024; Dong et al., 2024), enabling efficient deployment on NVIDIA Ampere architec-
ture (Nvidia, 2020). However, traditional binarization techniques (Rastegari et al., 2016) often treat
weights as independent entities, failing to exploit the inherent structure and patterns in the weight
matrices. These observations encourage us to explore N:M sparsity tailored specifically for 1-bit
LLMs to achieve further speedups and compression gains.

Based on these observations, we develop our STBLLM approach, STructured Binarization for LLMs
to achieve extreme compression while mitigating performance degradation. Our workflow applies
the metric-based sparsity and performs the adaptive N:M binarization. Specifically, to measure
the importance of weights, we introduce a Standardized Importance (SI) metric that addresses the
issues of extreme weight values and computationally expensive Hessian-based methods used in prior
work. We then propose an adaptive layer-wise structured binarization approach, where different
layers of the LLM can be sparsified with varying N:M ratios to balance compression and accuracy.
We employ a residual approximation technique (Huang et al., 2024) for the salient parameters to
preserve the critical information. For the non-salient parameters, we utilize a fine-grained grouping
strategy based on a trisection search algorithm to find optimal splitting points p∗ and apply different
quantization schemes to the sparse, intermediate, and dense regions as presented in Figure 3(c).
By tailoring these structured representations specifically for 1-bit LLMs, we unlock a new avenue
for model compression and optimization, enabling more widespread deployment of these powerful
LLMs in resource-constrained environments.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: (a) PTQ framework in Structured Binarized LLM (STBLLM). We apply structured bi-
narization to all of the weights. (b) Structured Binarized Weight Computation Procedure. We first
perform N:M structure pruning to pre-trained weight (here N=2, M=4), then show how we process
the non-salient weight. (c) Trisection partition for Symmetric Gaussian Distribution of Non-salient
Weight. (d) Illustration of Weight Standardization on LLaMA-2-7B.

To validate the effectiveness of STBLLM, we conduct extensive experiments on various LLMs, in-
cluding the LLaMA-1/2/3 (Touvron et al., 2023a;b), OPT (Zhang et al., 2022a) and Mistral (Jiang
et al., 2023). As presented in Figure 2, our STBLLM achieves a better trade-off between perfor-
mance and bit-width. STBLLM with 0.8 bit can achieve lower perplexity than BiLLM with 1.1 bit.
STBLLM achieves a perplexity of 31.72 at just 0.55 bits per weight, compared to 688.73 for BiLLM
- an over 20× gain. Even at 65B parameters, our 0.55-bit STBLLM outperforms BiLLM’s 0.7-bit
and PB-LLM’s 1.7-bit versions. STBLLM retains significantly higher accuracy for zero-shot bench-
marks than BiLLM under 4:8 and 6:8 structured binarization settings across 13B and 30B LLaMA.
For example, on LLaMA-1-30B, our 0.55-bit STBLLM achieves 51.78% average accuracy versus
just 43.72% for BiLLM. The contribution of our work is as follows:

• We introduce STBLLM, a novel structural binarization framework that compresses Large
Language Models (LLMs) to less than 1-bit precision, enabling significant memory and
computational savings while preserving model performance.

• STBLLM employs an N:M binary weight kernel approach, where we perform structural
binarization of the weights using efficient gradient-free metrics to determine weight im-
portance, channel rearrangement to preserve salient weights, and adaptive layer mixed-
structure binarization for better accuracy-efficiency trade-offs.

• We implement a specialized CUDA kernel for structural binarization, leveraging NVIDIA’s
Ampere GPU sparse tensor cores, achieving a 17.85x speedup over ABQ-LLM’s 2-bit
implementation.

• Extensive experiments on various LLMs, including the LLaMA-1/2/3 and OPT, demon-
strate STBLLM’s superior performance compared to other compressed binarization meth-
ods.

2 RELATED WORK

Quantization and Binarization. Quantization reduces full-precision parameters to lower bits,
thereby decreasing storage and computation requirements. Recent research has effectively applied
Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ) to LLMs. QAT (Liu
et al., 2024; Du et al., 2024; Chen et al., 2024) incorporates quantization during training, allowing to
learn better representations for low-bit weights. However, due to the massive parameters, retraining
is too costly and inefficient for LLMs. In contrast, PTQ (Frantar et al., 2023; Chee et al., 2023; Lin
et al., 2024b; Lee et al., 2024; Dettmers et al., 2023) can directly quantize pre-trained models with-
out additional training. GPTQ (Frantar et al., 2023) and QuIP (Chee et al., 2023) minimized LLM

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

block quantization errors through second-order error compensation. Other approaches (Lin et al.,
2024b; Lee et al., 2024; Dettmers et al., 2023) focus on prioritizing salient weights to maintain their
information representation capacity. Binarization, which constrains quantized parameters to a 1-bit
representation, is the most extreme quantization method and has proven effective for vision tasks,
such as XNOR-Net (Rastegari et al., 2016) and Bi-Real Net (Liu et al., 2018). To further compress
binary neural networks, sparse kernel techniques (Wang et al., 2020; 2021b;a; Liu et al., 2022) are in-
troduced to reduce the redundancy in binary neural networks. For LLM binarization, BitNet (Wang
et al., 2023a) trained 1-bit LLM from scratch. OneBit (Xu et al., 2024) employ the QAT paradigm
for 1-bit LLM while BiLLM (Huang et al., 2024) employ the PTQ paradigm with residual approxi-
mation technique. In this paper, we further reduce weights below 1-bit by identifying and removing
the redundant parameters.

Sparsity Methods for LLM. Pruning removes less important parameters from a neural network to
reduce its size and improve efficiency. For LLMs, Pruning can be divided to structured pruning (Ma
et al., 2023; Ashkboos et al., 2024; Xia et al., 2024; An et al., 2023), semi-structured pruning (Fran-
tar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b) and unstructured pruning (Frantar &
Alistarh, 2023; Sun et al., 2024; Dong et al., 2024). Structured pruning methods, including LLM-
Pruner (Ma et al., 2023) and Sheared LLaMA (Xia et al., 2024), aim to simplify LLM by removing
specific components such as heads, layers, and dimensions. Although these techniques enhance
model efficiency, they often result in significant performance degradation and require extensive re-
training to recover lost capabilities. In contrast, unstructured pruning methods (Frantar & Alistarh,
2023; Sun et al., 2024) remove individual weights based on their significance within the model.
However, this approach leads to irregular sparsity patterns that do not effectively leverage hard-
ware acceleration. Semi-structured pruning offers a more balanced approach to model optimization.
Methods such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024) exemplify this
strategy by maintaining regular, hardware-friendly sparsity patterns, such as N:M sparsity. This ap-
proach combines the fine-grained control characteristic of unstructured pruning with the operational
efficiency associated with structured pruning.

Synergy of Pruning and Quantization. The complementary nature of pruning and quantization
has been extensively explored in the literature, where pruning reduces the number of parameters
in a neural network, and quantization focuses on the precision of those parameters. Deep Com-
pression (Han et al., 2016) integrates pruning, trained quantization, and Huffman coding into a
unified compression pipeline to significantly reduce the storage requirements of deep neural net-
works (DNNs). Subsequent works have developed in-parallel pruning-quantization methods (Tung
& Mori, 2018; Yang et al., 2019; Hu et al., 2021) to optimize compression allocation, such as un-
structured pruning sparsity and quantization strategies. For extreme cases like binarization, several
approaches (Munagala et al., 2020; Li & Ren, 2020; Wang et al., 2021a) combine pruning and com-
pression to achieve high levels of compression and speedup. Specifically, STQ-Nets (Munagala
et al., 2020) extend convolutional neural network (CNN) binarization by incorporating structured
pruning, BNN Pruning (Li & Ren, 2020) utilizes weight flipping frequency for further pruning of
binary neural networks (BNNs), and BAP (Wang et al., 2021a) introduces binary augmented sparse
convolution to attain 98% sparsity. However, these methods often necessitate a fine-tuning process,
which is impractical for LLMs.

3 METHODOLOGY

In this section, we introduce our STBLLM framework, as depicted in Figure 3. We employ struc-
tured binarization for all weights within the Feed-forward Network (FFN) and Multi-head Self-
attention (MHSA) modules. Specifically, we introduce the concept of Standardized Importance (SI)
to evaluate the saliency of each weight under N:M sparsity constraints (refer to the left part of Fig-
ure 3(b)). We leverage the Hessian matrix to distinguish between salient and non-salient weights
for the binarization process. Salient weights are handled using residual approximation, following
the methodology outlined in BiLLM (Huang et al., 2024). For non-salient weights, we propose a
Non-salient Aware Quantization technique, which further divides these weights into Dense, Inter-
mediate, and Sparse regions (as shown in the right part of Figure 3(c)). To optimally partition the
non-salient weights into three distinct regions, we utilize a trisection search strategy to determine the
appropriate p∗1 and p∗2 values. In the subsequent update step, we apply block-wise error compensa-
tion (Frantar & Alistarh, 2023; Frantar et al., 2023) to preserve performance following post-training

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Framework of STBLLM: Details of each function are shown in Algorithm 2

1: function STRUCTUREDBINARYLLM(W, X, β, λ)
2: Input: W ∈ Rn×m denotes weight matrix; X ∈ Rr×d represents calibration data;
3: β denotes block size; λ represents hessian regularizer
4: Output: B - structured binarized weights
5: H← 2XX⊤ ▷ ℓ2 error hessian matrix
6: Hc ← Cholesky((H+ λI)

−1
)

7: B← 0n×m

8: for b = 0, β, 2β, ..., N do
9: Wsi ← Standardized Importance(W:,b:b+β)

10: Ws ← Semi-Structured(Wsi
:,b:b+β ,W:,b:b+β)

11: rows{·} ← Salient(W:,b:b+β ,H
c)

12: B̃1 ← Res Approx(Ws
:,j∈{rows})

13: p∗1, p
∗
2 ← NonSalientAwareQuant(Ws

i,j /∈{rows})

14: B̃2, B̃3, B̃4 ← Trisection(W|wi,j |, p
∗
1, p

∗
2)

15: B:,b:b+β ← B̃1 ∪ B̃2 ∪ B̃3 ∪ B̃4

16: E← (W:,b:b+β −B:,b:b+β)/H
c
b:b+β,b:b+β

17: W:,b+β: ←W:,b+β: −E ·Hc
b:b+β,b+β: ▷ block-wise OBC

18: end for
19: return B
20: end function

quantization (PTQ). Algorithm 1 provides a comprehensive overview of the STBLLM process, with
detailed implementation steps in Appendix A.

3.1 PRELIMINARIES

Binarization. Binarized compression seeks to quantize floating-point (FP) weights, represented as
WFP , into 1-bit values (i.e., ±1). During forward propagation, the sign function is used to binarize
the original parameter tensor:

B := α · sign(WFP), (1)

sign(w) :=

{
1 if x ≥ 0,

−1 others,
(2)

where WFP ∈ Rn×m is the 32-bit floating-point weight, and B ∈ Rn×m is the binarized output,
and α :=

||W||l1
m . The parameter n and m represent the size of the weight matrix. The scaling factor

α ∈ Rn is applied in a channel-wise manner (Rastegari et al., 2016).

N:M Sparsity. Inspired by the experiments shown in Figure 1, we observe the binarized the redun-
dancy in LLMs. By applying the N:M binarization for LLMs, we can achieve an extreme compres-
sion ratio of less than 1 bit. Specifically, we introduce an innovative N:M sparsity technique that
encodes N consecutive non-zero elements in the weight matrix using a single M-bit representation.
Although this approach can accelerate computations, it may lead to performance degradation. To
alleviate this problem, we propose several techniques from different perspectives: ① Importance
Measurement. Previous methods (Frantar et al., 2023; Chen et al., 2024; Huang et al., 2024) utilize
Hessian-based methods to measure the importance, but these methods can be computationally ex-
pensive and may not capture the true importance of parameters in LLMs. ② Layer-wise Assignment.
Previous PTP methods (Frantar & Alistarh, 2023; Zhang et al., 2024b) utilize the uniform sparsity
ratio among different layers. However, recently, evidence (Yin et al., 2024) shows that not all layers
have the same redundant level thus non-uniform sampling can help retain the performance. ③ Hi-
erarchical Quantization. Previous PTQ methods for LLM like AWQ (Lin et al., 2024b), OWQ (Lee
et al., 2024) and BiLLM (Huang et al., 2024) split the weights into salient and non-salient parameters
using the magnitude of activation or Hessian matrix. They mainly focus on salient weights, as most
researchers believe they contribute to the final performance. However, the non-salient parameters
also play an essential role in quantization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 STANDARDIZED IMPORTANCE METRIC

Many previous works, such as DB-LLM (Chen et al., 2024), SparseGPT (Frantar & Alistarh, 2023),
GPTQ (Frantar et al., 2023), and BiLLM (Huang et al., 2024), utilize the Hessian metric to measure
the importance of weights. However, we observe that extreme values in the weights significantly
impact Hessian computation (See Appendix D). To address this issue, we present a Standardized
Importance (SI) metric. The computation of SI does not involve the second-order information of the
weights, which can be computationally expensive for LLMs. Specifically, we employ standardiza-
tion to mitigate the issue of extreme values in weights by transforming the weights to have a mean
of zero and a standard deviation of one. This process ensures that all weights are on a similar scale,
reducing the disproportionate influence of extreme values on the Hessian matrix. For a linear layer
with weight W ∈ Rn×m, which takes in input activation X ∈ Rr×d, where r is the batch size and
d = m is the input dimension. We propose to evaluate the importance of each weight by the product
of its magnitude and the corresponding input feature norm. The score for the current weight Wi,j
is defined as:

Si,j = σ(µ(|Wi,j |)) · ||X:,j ||2, σ(ŵ) =
w − µW

σW
, µ(|Wi,j |) =

|Wi,j |∑
j |Wi,j |

+
|Wi,j |∑
i |Wi,j |

, (3)

where σ(·) is a normalization function that standardizes the weight magnitude µ(|Wi,j |) using the
mean µW and standard deviation σW of all weights in the layer. The weight magnitude µ(|Wi,j |)
is computed as the sum of the L1-normalized magnitude across the input dimension j and the output
dimension i. The input feature norm ||X:,j ||2 is calculated as the L2 norm of the j-th column
input activation X. By multiplying the standardized weight magnitude σ(µ(|Wi,j |)) with the input
feature norm ||X:,j ||2, the importance score Si,j takes into account both the significance of the
weight itself and the activation level of the associated input feature. To prune the linear layer, we
rank all the weights based on their importance scores Si,j and remove a specified percentage of the
weights with the lowest scores. This pruning strategy aims to preserve the most significant weights
contributing to the layer’s output while eliminating less important weights to reduce the model’s size
and computational complexity.

3.3 ADAPTIVE LAYER-WISE BINARIZATION

N:M Binary Weight Vector. To achieve compression beyond standard binarization, we propose an
N : M sparsity approach, where M binary values are represented by N values (N < M). This allows
for further compression while preserving the salient information in the weight tensors. Specifically,
we employ the mixed N:8 sparsity configuration following DominoSearch (Sun et al., 2021).

Layer-wise N:M Assignment. To achieve better accuracy-efficiency trade-offs, we introduce adap-
tive layer-wise structured binarization, where different layers of the LLM can be sparsified with
different N:M ratios. (For example, with a target ratio of 4:8, layers can have ratios like 3:8, 4:8,
and 5:8 while maintaining the overall 4:8 ratio.) This flexibility allows for more aggressive com-
pression in less important layers while preserving higher precision in crucial layers. The layer-wise
N:M ratios are assigned based on the relative importance of each layer, measured by the L2 norm
of its weight parameters. Let ωi and ωtotal be the L2 norm of layer i and the sum across all lay-
ers, respectively. The relative importance αi of layer i is αi = ωi

ωtotal
. The N:M ratio for layer i is

Ni

Mi
= αi + (1 − αi) · Rtarget, where Rtarget is the target overall compression ratio. More important

layers have higher N:M ratios (less sparsification), approaching 1:1 for the most important ones.
Less important layers have lower N:M ratios, approaching Rtarget for the least important ones. This
ensures the overall compression ratio meets Rtarget.

3.4 NON-SALIENT AWARE QUANTIZATION

Based on the observations that a small fraction of salient weights is critical to the LLM quantiza-
tion (Lin et al., 2024b; Shao et al., 2023), we split the weights into the salient and non-salient parts
and then apply a higher bit for salient one and lower-bit for non-salient one, as:

Salient Part: In our cases, for salient weight, we apply residual approximation (Huang et al., 2024),
which is composed of residual approximation weight, as follows:{

α∗
o,B

∗
o = argminαo,Bo

∥W − αoBo∥2,
α∗
r ,B

∗
r = argminαr,Br

∥(W − α∗
oB

∗
o)− αrBr∥2,

(4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average bit results from structural searching and residual binarization of OPT, LLaMA-1,
and LLaMA-2 families. *OPT-66B, LLaMA-1-65B and LLaMA-2-70B.

Model BiLLM BiLLM-4:8 BiLLM-5:8 BiLLM-6:8
7B 13B 30B 65-70B* 7B 13B 30B 65-70B* 7B 13B 30B 65-70B* 7B 13B 30B 65-70B*

OPT 1.10 1.12 1.12 1.13 0.55 0.56 0.56 0.56 0.69 0.70 0.70 0.71 0.83 0.84 0.84 0.85
LLaMA-1 1.09 1.09 1.10 1.10 0.54 0.54 0.55 0.55 0.68 0.68 0.69 0.69 0.82 0.82 0.83 0.83
LLaMA-2 1.07 1.08 N/A 1.09 0.53 0.54 N/A 0.54 0.67 0.67 N/A 0.68 0.80 0.81 N/A 0.82

Table 2: Perplexity comparison of PB-LLM and BiLLM on the LLaMA model family. The columns
represent the perplexity results on the Wikitext2 for different model sizes. The average bit-width for
each model is provided in the table. For more precise bit-width results, please refer to Table 1.

Settings LLaMA-1 LLaMA-2 LLaMA-3

Method Block Size W-Bits 7B 13B 30B 65B 7B 13B 8B

FullPrecision - 16 5.68 5.09 4.1 3.53 5.47 4.88 6.10
RTN - 1 1.7e5 1.4e6 1.5e4 6.5e4 1.6e5 4.8e4 2.7e6
GPTQ 128 1 2.7e5 1.1e5 6.7e4 2.5e4 1.2e5 9.4e3 5.7e4
PB-LLM 128 1.7 102.36 36.6 33.67 12.53 69.2 151.09 41.80
BiLLM 128 1.09 35.04 15.14 10.52 8.49 32.48 16.77 28.30

BiLLM 128 0.80 (6:8) 80.36 22.55 13.22 9.09 50.25 27.28 94.15
BiLLM 128 0.70 (5:8) 126.99 39.61 18.69 11.57 87.84 58.14 161.48
BiLLM 128 0.55 (4:8) 688.73 124.72 37.96 29.22 263.61 124.78 663.91

STBLLM 128 0.80 (6:8) 15.03 9.66 7.56 6.43 13.06 11.67 33.44
STBLLM 128 0.70 (5:8) 19.48 11.33 9.19 7.91 18.74 13.26 49.12
STBLLM 128 0.55 (4:8) 31.72 17.22 13.43 11.07 27.93 20.57 253.76

where Bo denotes the original binary tensor, and Br represent the residual binarized matrix as the
compensation. The final approximation of W is W ≈ α∗

oB
∗
o + α∗

rB
∗
r .

Non-Salient Part: For the non-salient part (which is also symmetric Gaussian distribution), we
find that significant information is retained in the non-salient part. To make the trade-off with
bit and performance, we utilize a fine-grained grouping strategy called the Trisection search al-
gorithm (See Algorithm 2), whose aim is to find the optimal two break-point p∗1, p

∗
2. With these two

break-points, we can segment the symmetric Gaussian distribution into three groups, which is sparse
Rs[−m,−p∗2]∪ [p∗2,m], intermediate Ri[−p∗2,−p∗1]∪ [p∗1, p∗2], and dense region Rd[−p∗1, p∗1]. Then,
we derive the quantization error:

θ2p∗
1 ,p

∗
2
= ||Ws − αsBs||2 + ||Wi − αiBi||2 + ||Wd − αdBd||2, (5)

αs =
1

ns
||Ws||l1, αi =

1

ni
||Wi||l1, αd =

1

nd
||Wd||l1 (6)

where Ws, Wi, Wd are the sums of absolute weight values in the sparse, intermediate, and dense
regions. Bs, Bi, Bd are the binarized weights for those regions. These three regions are binarized
separately. This method introduces an additional 2 bits for group identification, which constitutes a
minor portion of the overall bit count, while the majority of computing parameters remain at 1 bit.

Average Bits. In STBLLM, we introduce extra bits while pruning the redundant or less important
weights. The overhead of weight parameters is Nparam = 2×rsalient+1×(1−rsalient). The additional
hardware overhead is Nstoring = 2 + 1

bsize
, where rsalient denotes the proportion of salient weights

and bsize denotes the block size in OBC compensation, with 2 bits allocated for marking the division
of non-salient weights. Under N:M binarization settings, where N and M are positive integers with
N < M , we prune the model weights by retaining only a fraction (N/M) of the original weights.
Consequently, the number of parameters in the pruned STBLLM model is Nstbllm = Nparam × N

M .
This N:M binarization method allows for a significant reduction in model size.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Perplexity results on Wikitext2 datasets of OPT and Mistral models with BiLLM and
STBLLM. For more precise bit-width results, please refer to Table 1.

Settings OPT Mistral
Method W-Bits 1.3B 2.7B 6.7B 30B 7B

BiLLM 0.80 (6:8) 51.62 23.03 15.82 15.82 72.29
BiLLM 0.70 (5:8) 69.15 30.62 20.58 20.58 82.84
BiLLM 0.55 (4:8) 106.99 55.28 79.68 79.68 189.73

STBLLM 0.80 (6:8) 29.84 17.02 12.79 12.80 27.31
STBLLM 0.70 (5:8) 33.01 20.82 14.38 14.38 25.64
STBLLM 0.55 (4:8) 45.11 30.34 18.80 18.80 70.14

Table 4: Accuracies (%) for 7 zero-shot tasks from structured binarized LLaMA-1-13B, LLaMA-2-
13B, and LLaMA-1-30B with BiLLM and STBLLM. We compare the performance under the same
N:M setting to achieve sub-1-bit quantization.

Models Method Winogrande OBQA Hellaswag Boolq ARC-e ARC-c RTE Mean

LLaMA-1-13B

FullPrecision 72.77 33.20 59.94 77.89 77.40 46.50 70.40 62.59
BiLLM(6:8) 58.80 30.60 46.25 62.96 49.96 23.97 53.42 46.57
BiLLM(4:8) 52.09 28.00 30.82 61.25 32.66 21.25 53.07 39.88
STBLLM(6:8) 65.98 36.20 63.67 65.38 68.86 34.04 56.68 55.83
STBLLM(4:8) 63.06 34.80 52.65 62.48 56.90 28.33 52.71 50.13

LLaMA-2-13B

FullPrecision 72.22 35.20 60.06 80.52 79.42 48.46 65.34 63.03
BiLLM(6:8) 56.43 30.60 35.53 62.48 41.29 24.74 53.43 43.50
BiLLM(4:8) 50.59 24.00 28.96 62.08 30.51 22.35 53.07 38.79
STBLLM(6:8) 63.93 37.00 57.76 71.53 60.56 31.99 54.15 53.85
STBLLM(4:8) 55.88 29.40 44.03 64.31 48.86 26.54 52.71 45.96

LLaMA-1-30B

FullPrecision 75.69 36.00 63.35 82.69 80.30 52.82 66.79 65.38
BiLLM(6:8) 66.54 36.40 58.18 66.15 62.37 31.91 46.93 50.32
BiLLM(4:8) 54.93 29.40 38.85 62.17 43.6 24.74 52.35 43.72
STBLLM(6:8) 71.59 41.00 69.85 77.37 71.55 41.3 48.01 60.10
STBLLM(4:8) 64.01 34.60 56.46 63.06 60.86 31.48 51.99 51.78

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experimental Setup. Our STBLLM utilizes PyTorch (Paszke et al., 2019) and Huggingface (Wolf
et al., 2019) libraries. Most LLMs except 65B can be evaluated on a single NVIDIA A800 GPU. For
the LLaMA-1-65B model, we employ four NVIDIA A800 GPUs for evaluation. It takes 1.8 hours
for the post-training process of 7B models on an RTX 4090 GPU and 2.8 hours for 13B models on
an A6000 GPU. Following BiLLM (Huang et al., 2024), our proposed STBLLM also eliminates the
need for fine-tuning, offering an efficient post-training quantization framework.

Datasets and Models. We measure the perplexity for language generation tasks on Wikitext2 (Mer-
ity et al., 2016), C4 (Raffel et al., 2020) and PTB (Marcus et al., 1993), and accuracy for the
zero-shot tasks including Winogrande (Sakaguchi et al., 2021), OBQA (Mihaylov et al., 2018),
Hellaswag (Zellers et al., 2019), BoolQ (Clark et al., 2019), ARC (Clark et al., 2018) and
RTE (Chakrabarty et al., 2021). We conduct experiments on LLaMA-1/2/3 (Touvron et al., 2023a;b),
OPT (Zhang et al., 2022a), and Mistral (Jiang et al., 2023). For perplexity evaluation in Table 2 and
3, we employ the C4 dataset as the calibration dataset and report the perplexity on Wikitext2.

Baseline. Our primary baseline is BiLLM (Huang et al., 2024), which is a 1-bit PTQ framework
for LLMs. We perform an N:M sparse pattern on pre-trained LLMs and then conduct the same
procedure as BiLLM to report the results that are less than 1 bit (e.g. 0.8, 0.7, 0.55 bits). We conduct
the N:M sparsity using Wanda (Sun et al., 2024) as the baseline, a gradient-free post-training pruning
method. We compare the results of STBLLM with BiLLM under the same N:M settings. For more
information on average bits under N:M settings, please refer to Table 1. Previous low-bit methods
like PB-LLM (Shang et al., 2024), GTPQ (Frantar et al., 2023) and vanilla RTN are also selected for
comparison.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 MAIN RESULTS

Comparison with PTQ methods. We comprehensively compare the performance of different
LLaMA families across various model sizes (7B-65B). For a fair comparison, we set the same
block size to 128. As presented in Table 2, the model under RTN and GPTQ fails to retain the
performance at 1-bit. PB-LLM has shown a satisfactory perplexity under 1.7 bit but deteriorates
performance compared with BiLLM under 1.09 bit. To further compare the performance at sub-1-
bit, we apply the same N:M setting to BiLLM and our proposed STBLLM. As shown in Figure 2,
our proposed STBLLM achieves a better trade-off between bit-widths and perplexity across model
sizes from 7B to 65B. STBLLM surpasses BiLLM by a large margin (688.73→ 31.72) on LLaMA-
1-7B, especially on the most extreme compression case, 4:8 structured binarization, which means
setting half of the parameter to zero. It is also noteworthy that when the parameter size reaches 65B,
our STBLLM, at 0.55 bit, achieves a perplexity of 11.07, surpassing that of PB-LLM (12.53) at 1.7
bit and that of BiLLM (11.57) at 0.7 bit. To our knowledge, our STBLLM is the first work that
breaks the 1-bit barriers by further reducing the redundant weights in an N:M pattern. Moreover, we
conduct further experiments on the OPT family from 1.3B to 30B and Mistral-7B at sub-1-bit PTQ
settings. From Table 3, we observe the same trend as in LLaMA. Our proposed STBLLM performs
significantly better than BiLLM across all models and all N:M structured binarization settings.

Table 5: Ablation for pruning metric.

Model Magnitude Wanda SparseGPT Ours (SI)
LLaMA-1-7B 4797.41 207.32 32.82 31.72
LLaMA-2-7B 2287.24 97.54 31.55 27.93

Table 6: Ablation study for allocation strategy.

Models Uniform Sin-shape Ours
LLaMA-1-7B 80.36 67.78 15.03
LLaMA-2-7B 50.25 33.61 13.06

Zero-Shot Performance. To conduct a more comprehensive evaluation of binary LLMs, we ex-
tend our experiments to 7 zero-shot datasets on LLaMA-1-13B, LLaMA-2-13B, and LLaMA-1-
30B, each tested with FullPrecision, BiLLM(6:8), BiLLM(4:8), STBLLM(6:8), and STBLLM(4:8)
methods. We mainly focus on the performance of these models under the sub-1-bit setting. Specifi-
cally, we compare the BiLLM and our STBLLM under 4:8 and 6:8 structured binarization settings.
As illustrated in Table 4, we find that the performance drop in reduced precision methods is more
pronounced in BiLLM methods compared to STBLLM methods, indicating that STBLLM methods
are more robust alternatives when memory resources are constrained.

4.3 ENHANCING INFERENCE EFFICIENCY ON HARDWARE.

We present specialized CUDA kernels designed to support 1-bit 2:4 sparsification. As illustrated
in Figure 4(a), we utilize a 2-bit implementation on recent RTX4090 GPU from ABQ-LLM (Zeng
et al., 2024) as the baseline (W2A16 and W2A8) and compare it with our highly-optimized 2:4 1-bit
implementation. We provide a comparative analysis of runtime and throughput across various se-
quence lengths, demonstrating the significant gains in computational efficiency and reduced memory
footprint. Specifically, for typical sequence lengths of 4096 and 8192, our implementation achieves
up to 17.85 times speedup compared to ABQ-LLM’s 2-bit implementation. At a sequence length of
8192, our kernel reaches 263.45 TFLOPS, which is 79.74% of the RTX4090’s 2:4 sparse tensor core
peak performance. Notably, the speedup becomes more pronounced as sequence length increases.
Furthermore, as illustrated in Figure 4 (b), our method yields lower perplexity for LLaMA-1/2 mod-
els. This indicates superior model performance and accuracy compared to 2-bit round-to-nearest
(RTN), GPTQ, and AWQ. Refer to Appendix C for the memory comparison and implementation
details.

4.4 ABLATION STUDIES

Ablation for Metric. Table 5 shows the impact of post-training pruning metrics (Magnitude,
Wanda (Sun et al., 2024), SparseGPT (Frantar & Alistarh, 2023) and our SI) on 4:8 binary STBLLM
regarding LLaMA-1/2-7B. During PTP, we employ the C4 dataset as the calibration dataset and re-
port the perplexity on the Wikitext2 dataset. SparseGPT requires second-order information, which
involves a massive computation burden. Similar to Wanda, our SI does not require gradient or
second-order information. Our method achieves better performance among these metrics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Comparison of Magnitude, Wanda, SparseGPT, and SI across different datasets.

Models LLaMA-1-7B Models LLaMA-2-7B

Dataset Magnitude Wanda SparseGPT Ours(SI) Dataset Magnitude Wanda SparseGPT Ours(SI)

PTB 11608.88 306.57 61.53 68.48 PTB 45564.36 2027.33 236.03 690.76
C4 1545.34 153.29 33.06 36.04 C4 1034.84 86.45 30.53 30.81
Wikitext2 4797.42 207.32 32.82 31.72 Wikitext2 2287.25 97.54 31.56 27.93

(a) Runtime and throughput comparison. (b) Perplexity comparison.

Figure 4: (a) Runtime and throughput comparison across sequence lengths for ours and ABQ-LLM.
(b) Perplexity comparison across model sizes under 2:4 setting for LLaMA-1/2.

Ablation for Quantization Strategy. We conduct an ablation study on different quantization strate-
gies. Comparing the perplexity of our Non-salient Aware Quantization (dubbed as Non-salient) and
Bell-shaped Distribution Splitting (dubbed as Bell-shaped) in BiLLM (Huang et al., 2024) on both
LLaMA-1-7B and LLaMA-2-7B, as shown in Table 8. The perplexity of Non-salient changes a lot
when moving from LLaMA-1-7B to LLaMA-2-7B, while our Non-salient exhibits nearly identical
perplexity in both models, significantly lower than that of Bell-shaped.

Ablation for Allocation Strategy. Table 6 presents an ablation study on different allocation strate-
gies. We compare our method with Uniform and Sin-shaped allocation strategies. The Sin-shaped
strategy assigns layer-wise sparsity following a sine wave pattern, where the initial layers have lower
sparsity and the latter have higher sparsity. The performance of Uniform and Sin-shaped strategies
varies significantly across different models. In contrast, our strategy consistently achieves nearly
identical performance across both models, outperforming the other two allocation strategies.

Ablation for Group Size. Table 9 presents the results of our ablation study on the group size
configuration. We evaluate the perplexity of LLaMA-1-7B and LLaMA-2-7B with group sizes of
64, 128, 256, and 512. Generally, as the group size increases, performance improves. However, this
also results in higher computational and storage demands. We choose a group size of 128 to balance
performance and resource consumption.

Table 8: Ablation for quantization strategy.

Models Bell-shaped Non-salient
LLaMA-1-7B 80.35 15.03
LLaMA-2-7B 50.25 13.06

Table 9: Ablation for group size.

Model 64 128 256 512 1024
LLaMA-1-7B 29.58 31.72 33.97 41.29 146.46
LLaMA-2-7B 27.12 27.93 50.62 54.68 507.44

5 CONCLUSION

In this paper, we introduce STBLLM, a structured Binary LLM PTQ framework designed for sub-
1-bit quantization. We address redundancy in binarized LLMs, highlighting the potential for further
compression. Specifically, we present a Standardized Importance (SI) metric for N:M structured
pruning. Then, we use the Hessian matrix to partition weights into salient and non-salient categories.
We propose Non-salient Aware Quantization for non-salient weights, identifying optimal splitting
points to create sparse, intermediate, and dense regions, each with tailored binarization. Finally,
we design a specialized CUDA kernel with a sparse tensor core to achieve significant speedup. We
validate the performance of STBLLM across LLaMA-1/2/3, OPT, and Mistral, demonstrating that
STBLLM achieves a superior trade-off at sub-1-bit settings. By achieving LLM performance under
1 bit, STBLLM highlights the potential of extreme LLM compression. Limitation: STBLLM does
not support Mixture of Experts (MoE) or Mamba-based language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In AAAI, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. SliceGPT: Compress large language models by deleting rows and columns. In ICLR,
2024.

Wenlei Bao, Li-Wen Chang, Yang Chen, Kefeng Deng, Amit Agarwal, Emad Barsoum, and Abe
Taha. Ngemm: Optimizing gemm for deep learning via compiler-based techniques. ArXiv,
abs/1910.00178, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Tuhin Chakrabarty, Debanjan Ghosh, Adam Poliak, and Smaranda Muresan. Figurative language in
recognizing textual entailment. In ACL, 2021.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees. In NeurIPS, 2023.

Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, Xiabin Zhou, Yifu Ding, Xuebo Liu, Min
Zhang, Jinyang Guo, Xianglong Liu, and Dacheng Tao. Db-llm: Accurate dual-binarization for
efficient llms. ACL, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), ACL, pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. ICLR, 2023.

Peijie Dong, Lujun Li, Zimian Wei, Xin Niu, Zhiliang Tian, and Hengyue Pan. Emq: Evolving
training-free proxies for automated mixed precision quantization. In ICCV, pp. 17076–17086,
2023.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In ICML,
2024.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. In ACL, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In ICML, pp. 10323–10337, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In ICLR, 2023.

Georgi Gerganov. llama.cpp: a c/c++ port of facebook ai’s llama language model, 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In ICLR, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In ICLR, 2016.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M. Sabry Aly, and Jie Lin. Opq: Compressing deep
neural networks with one-shot pruning-quantization. AAAI, 2021.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. ICML, 2024.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
NeurIPS, 34:21099–21111, 2021.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons learned
from activation outliers for weight quantization in large language models. In AAAI, 2024.

Yixing Li and Fengbo Ren. Bnn pruning: Pruning binary neural network guided by weight flipping
frequency. 2020 21st International Symposium on Quality Electronic Design (ISQED), pp. 306–
311, 2020.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. In NeurIPS, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024b.

Chen Liu, Ziqi Zhao, Sabine Süsstrunk, and Mathieu Salzmann. Robust binary models by prun-
ing randomly-initialized networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), NeurIPS, 2022.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In ECCV, 2018.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
ACL, pp. 467–484, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. In NeurIPS, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Sri Aurobindo Munagala, Ameya Prabhu, and Anoop M. Namboodiri. Stq-nets: Unifying network
binarization and structured pruning. In BMVC, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nvidia. Nvidia a100 tensor core gpu architecture, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. NeurIPS, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Joseph. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. ACM, 2021.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large lan-
guage models. ICLR, 2024.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In ICLR2024 Spotlight, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. In ICLR, 2024.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven, Andrew Nelson, Hongsheng Li, and
Henk Corporaal. Dominosearch: Find layer-wise fine-grained n:m sparse schemes from dense
neural networks. In NeurIPS, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint, 2023b.

Frederick Tung and Greg Mori. Clip-q: Deep network compression learning by in-parallel pruning-
quantization. CVPR, pp. 7873–7882, 2018.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. ArXiv, abs/2310.11453, 2023a.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng, Zim-
ing Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling efficient low-
precision deep learning computing through hardware-aware tensor transformation. In USENIX
Symposium on Operating Systems Design and Implementation, 2024.

Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian Cheng. Sparsity-inducing binarized
neural networks. In AAAI, 2020.

Peisong Wang, Fanrong Li, Gang Li, and Jian Cheng. Extremely sparse networks via binary aug-
mented pruning for fast image classification. IEEE Transactions on Neural Networks and Learn-
ing Systems, 34:4167–4180, 2021a.

Yikai Wang, Yi Yang, Fuchun Sun, and Anbang Yao. Sub-bit neural networks: Learning to compress
and accelerate binary neural networks. ICCV, pp. 5340–5349, 2021b.

Yikai Wang, Wen bing Huang, Yinpeng Dong, Fuchun Sun, and Anbang Yao. Compacting binary
neural networks by sparse kernel selection. CVPR, pp. 24374–24383, 2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Jaeyeon Won, Jeyeon Si, Sam Son, Tae Jun Ham, and Jae W. Lee. Ulppack: Fast sub-8-bit matrix
multiply on commodity simd hardware. In Conference on Machine Learning and Systems, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. ICLR, 2024.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. In NeurIPS, 2024.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression
by sparsity-quantization joint learning: A constrained optimization-based approach. CVPR, pp.
2175–2185, 2019.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (OWL): A
missing secret sauce for pruning LLMs to high sparsity. In ICML, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? ACL, 2019.

Chao Zeng, Songwei Liu, Yusheng Xie, Hong Liu, Xiaojian Wang, Miao Wei, Shu Yang, Fangmin
Chen, and Xing Mei. Abq-llm: Arbitrary-bit quantized inference acceleration for large language
models. arXiv preprint arXiv:2408.08554, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022a.

Ying Zhang, Peng Zhang, Mincong Huang, Jingyang Xiang, Yujie Wang, Chao Wang, Yineng
Zhang, Lei Yu, Chuan Liu, and Wei Lin. Qqq: Quality quattuor-bit quantization for large language
models. ArXiv, abs/2406.09904, 2024a.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In ICLR, 2024b.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong
Ji. Learning best combination for efficient n: M sparsity. In NeurIPS, 2022b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: M fine-grained structured sparse neural networks from scratch. In ICLR,
2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX OVERVIEW

• Section A: STBLLM Implementation.

• Section B: Details of Motivation Experiments.

• Section C: Details of Hardware Accelerations.

• Section D: Impact of Extreme Weight on the Hessian Matrix.

• Section E: More Experimental Results and Ablation Study.

A STBLLM IMPLEMENTATION

Following BiLLM (Huang et al., 2024), STBLLM does not change the operations on salient weights.
Instead, STBLLM mainly focuses on the non-salient weight. We present NonSalientAwareQuant
and Trisection function in Algorithm 2.

For NonSalientAwareQuant function, it aims to find two optimal break-points to partition the sym-
metric Gaussian distribution of non-salient weight. A naive approach for searching the break-point
is using two nested loops, whose complexity is O(N2), where N denotes the length of the search
space. To reduce the complexity to O(N), we propose to utilize p2 = σ × p1 to locate the p2. It is
natural to assume that p2 > p1 and we have σ > 1. In practice, we set the σ = 2 and it works well.

For Trisection function, it aims to partition the symmetric Gaussian distribution presented in Fig-
ure 3(c) into three parts, which are Sparse, Intermediate, and Dense region. These three parts have
no intersection and by uniting them together, we have all of the non-salient structured binarized
weight.

Algorithm 2 STBLLM

func Salient (W,Hc)

1: function SALIENT(W,Hc)
2: S←W2/[Hc

b:b+β;b:b+β]
2 ▷ Salient matrix

3: rows ← topk(sum(abs(S)), dim = 0)
4: e←∞ ▷ Searching error
5: n∗ ← 0 ▷ Optimal number of salient columns
6: for i = 1 to len(rows) do
7: B1 ← binary(W:,j , j ∈ rows[: i])
8: B2 ← binary(W:,j , j /∈ rows[: i])
9: if ∥W − (B1 ∪B2)∥2 < e then

10: e← ∥W − (B1 ∪B2)∥2
11: n∗ ← i
12: end if
13: end for
14: return rows[: n

∗]
15: end function

1: function BINARY(W)
2: α← ∥W∥ℓ1

m
3: B← α · sign(W)
4: return B
5: end function

1: function RES APPROX(W)
2: B1 ← BINARY(W)
3: R←W −B1

4: B2 ← BINARY(R)
5: B← B1 +B2

6: return B
7: end function

1: function NONSALIENTAWAREQUANT(W)
2: e←∞ ▷ Searching error
3: p∗1 ← 0 ▷ Optimal break-point for trisection
4: p∗2 ← 0 ▷ Optimal break-point for trisection
5: for i ∈ np.linspace(0.1, 0.9, 160) do
6: p1 ← i ·max(|W|)
7: p2 ← σ × p1
8: if p2 > 0.9×max(|W|) then
9: continue

10: end if
11: B1 ← BINARY(W|wi,j |>p2)

12: B2 ← BINARY(Wp1<|wi,j |≤p2)

13: B3 ← BINARY(W|wi,j |≤p1)

14: if ∥W − (B1 +B2 +B3)∥2 < e then
15: e← ∥W − (B1 +B2 +B3)∥2
16: p∗1 ← p1
17: p∗2 ← p2
18: end if
19: end for
20: return p∗1, p

∗
2

21: end function

1: function TRISECTION(W, p∗1, p
∗
2)

2: B̃2 ← BINARY(W|wi,j |>p∗2
)

3: B̃3 ← BINARY(Wp∗1<|wi,j |≤p∗2
)

4: B̃4 ← BINARY(W|wi,j |≤p∗1
)

5: return B̃2, B̃3, B̃4

6: end function

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Column bitmap under 2:4 semi-structure pruned binarized matrix partition illustration

Figure 5 provides a detailed illustration of our weight matrix partitioning strategy, complementing
the overview presented in Figure 3(b). The figure demonstrates how we first partition weights into
salient and non-salient regions based on Hessian matrix. For the salient weights, which constitute a
small portion of the total weights, we employ residual approximation following BiLLM Huang et al.
(2024). The non-salient weights undergo our novel trisection partitioning scheme, where they are
further divided into three distinct regions (dense, intermediate, and sparse) for optimized quantiza-
tion. This hierarchical partitioning enables fine-grained control over compression while preserving
model performance. The visualization shows how each region is processed differently, with the tri-
section boundaries clearly delineating the transitions between dense, intermediate, and sparse non-
salient weight regions.

B DETAILS OF MOTIVATION EXPERIMENT

In this section, we delineate the specifics of the motivation experiments as illustrated in Figure 1.
Initially, we elucidate the procedure for inverting the signs of elements within a matrix, as detailed
in Algorithm 3, to examine its effects on various computational tasks. This algorithm is designed to
efficiently invert the signs of a specified proportion of elements in a given matrix W. Subsequently,
we employ this function on RES APPROX and invert the signs of each binary matrix, including
B1 and B2.

Algorithm 3 Algorithm for Efficiently Flipping Signs of Matrix Elements

1: function FLIPSIGNSEFFICIENT(W, ratio,C← None)
2: n← numel(W) ▷ Total number of elements in W
3: k ← int(n× ratio) ▷ Number of elements to flip
4: if C ̸= None then
5: assert shape(C) = shape(W) ▷ Ensure C matches W
6: , idx← sort(C.view(−1)) ▷ Flatten C and get sorted indices
7: idx to flip← idx[: k] ▷ Select least significant elements to flip
8: else
9: idx to flip← random indices(0, n, k) ▷ Random select elements to flip

10: end if
11: Wflip ←W.clone() ▷ Create a copy of W
12: Wflip−flat ←Wflip.view(−1) ▷ View the copy as a 1D tensor
13: Wflip−flat[idx to flip]←Wflip−flat[idx to flip]×−1 ▷ Flip the signs of selected

elements
14: return Wflip

15: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: The impact of random flipping non-salient binarized weights on accuracy in 1-Bit LLaMA-
2-7B with group size of 512.

We further visualize the impact of random flipping non-salient binarized weights on accuracy at
higher ratios (from 0.2 to 0.5) in Figure 6. As shown in the table below, we find that as the ratio
increases, the performance fluctuates but does not deteriorate drastically across multiple tasks like
RTE (accuracy ranging from 0.3-0.9), HellaSwag (stable around 0.3), BoolQ (0.2-0.7), and ARC
Easy (0.3-0.5). This suggests a degree of robustness in our approach to varying ratios of flipped
non-salient weights.

C DETAILS OF HARDWARE ACCELERATION

C.1 IMPLEMENTATION DETAILS

Recent advancements in low-precision computing have significantly enhanced the practical imple-
mentation of efficient neural network techniques. A prime example is the introduction of Ladder
(Wang et al., 2024), released as BitBLAS, a software library that seamlessly integrates into existing
Deep Neural Network (DNN) and Large Language Model (LLM) frameworks. This integration en-
ables highly efficient low-precision computations across various hardware platforms. The impact of
these developments is evident in popular frameworks like llama.cpp (Gerganov, 2023), which now
supports 1.5-bit quantization through BitNet (Wang et al., 2023a). This advancement has resulted
in impressive performance gains, achieving 198 tokens per second on a single CPU core. Moreover,
for large-scale models such as LLaMA-2-70B, the implementation of Ladder (Wang et al., 2024) to
accelerate BitNet 1.58 (Wang et al., 2023a) has yielded remarkable results, demonstrating a 4.6×
speedup compared to FP16 precision.

The emergence of Sparse Tensor Cores (SPTCs) since NVIDIA’s Ampere architecture has revo-
lutionized the processing of sparse matrices, offering an efficient mechanism for handling 50%
sparsity. Theoretically, by eliminating half of the computations, SPTCs can potentially double the
computational power compared to Dense Tensor Cores. There are already several research over
accelerating dense tensor core, including ULPPack (Won et al., 2022), NGEMM (Bao et al., 2019)
and QQQ (Zhang et al., 2024a). However, efficiently representing 1-bit values (+1, −1, and 0 for
sparsity) and achieving sufficient real-world acceleration pose significant challenges. To address
these, we propose a novel 2-bit integer representation method, particularly useful for the General
Matrix Multiply (GEMM) operation, formulated as D = A(E) × B + C. Here, A represents the
2:4 1-bit sparse matrix, B, C, and D are dense tensors, and E employs uint16 to denote the valid
indices of A.

Our approach introduces a 6-bit encoding scheme for each group of 2:4 sparse 1-bit values. This
scheme comprises four bits for indexing and two bits for physical value representation, where 1 →
+1, 0→ −1, and positions unmarked by E indicate sparsity (0). This method significantly improves
memory efficiency compared to a baseline approach using 2-bit integers to represent −1, 0, and +1,
which would require 8 bits for an equivalent group size. Consequently, our encoding method reduces
memory footprint by approximately 25%, leading to decreased global memory access requirements.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Structured Pruned Matrix 4-Group Index Representation for 2:4 Structured Sparsity Ac-
celeration.

Figure 8: The overview of sparsity pattern of 1-bit kernel
that convert weight matrix to structured pruned matrix.

Figure 9: 2:4 Structured Sparsity Matrix
Multiplication Using Tensor Cores.

In memory-bound scenarios typical of large-scale model inference, this approach theoretically offers
up to a 1.333-fold increase in processing speed compared to the 2-bit variant.

To fully leverage these optimizations, we employ semi-structured pruning techniques specifically
tailored for NVIDIA’s GPU architecture. These techniques enable the use of Sparse Tensor Cores
optimized for processing sparse matrices. By structuring the sparsity (e.g., N :M sparsity where N
out of M weights are non-zero), we can effectively utilize the Sparse Tensor Cores, leading to sub-
stantial improvements in processing speed and efficiency. Specifically, the process of implementing
these optimizations involves several key steps in matrix compression and manipulation:

1. Matrix Compression: The input matrix is partitioned into 4-element groups as shown in
Figure 7. Zero elements are identified and non-zero elements are extracted. The positions
of non-zero elements are recorded in a Non-Zeros Meta Index, which is then encoded into
a compact Uint16 Meta Index. This encoding facilitates efficient localization of non-
zero elements during matrix operations, enhancing computational speed by enabling the
omission of zero elements.

2. Value Compression: Similar to matrix compression, the matrix is divided into 4-element
groups as shown in Figure 8. The sign of each non-zero element is extracted to form
the Non-Zeros Pruned-Binary Real Value. These values are then converted to a binary
format, creating the Non-Zeros Real Value. Finally, the each of eight binary values are
concatenated into a compact Uint8 Real Value, optimizing storage and computation by
focusing on the non-zero elements and their signs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Roofline for Sparse GEMM Quantization.

3. Matrix Multiplication with Structured Sparsity: The input matrices undergo pruning to
retain only non-zero elements and their corresponding indices as shown in Figure 9. The
pruned matrices are then quantized, extracting non-zero values and their positions. Both
processed matrices are subsequently input into the Sparse Tensor Cores, which executes
efficient multiplication by focusing on the non-zero elements, resulting in a compressed
and accelerated computation.

C.2 THEORY ANALYSIS

To evaluate the performance of various matrix multiplication algorithms across different problem
sizes, we present a comprehensive roofline model analysis in Figure 10. Each subplot depicts the
relationship between arithmetic intensity (FLOPS/Byte) and performance (TFLOPS). During pre-
filling stage, N denotes the product of sequence length and batch size. For decoding stage, N
denotes the batch size. M and K correspond to the dimension of weight matrix. To compare dif-
ferent implementations, we include standard FP16 GEMM, 2-bit quantized GEMM, and 1-bit 2vs4
quantized GEMM, alongside theoretical performance limits represented by roofline models for Ten-
sor Core and Tensor Core Sparse operations. From our analysis, we observe that as N increases,
all algorithms exhibit improved performance, with quantized versions consistently outperforming
standard GEMM. We find that our 1-bit 2vs4 quantized GEMM demonstrates superior performance,
particularly at larger N values, often approaching the Tensor Core Sparse roofline.

The advantages of our 1-bit 2:4 quantized GEMM kernel arise from reduced memory access over-
head and the higher compute upper bound of Sparse Tensor Cores (SPTCs). When N is small
(particularly during the decoding phase), all GEMM kernels are memory-bound, but our 1-bit 2:4
quantized GEMM kernel achieves relatively better performance due to its higher compression rate.
As N increases (especially during the prefilling stage), the quantized GEMM kernels tend to become
compute-bound. In this case, our specialized GEMM kernel can theoretically achieve a 2× speedup
compared to other GEMM kernels.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

This extreme quantization approach significantly reduces both computational overhead and memory
footprint by limiting the precision of weights to just two possible states. Such a method is par-
ticularly advantageous in resource-constrained environments, improving the deployability of large
models on devices with limited hardware capabilities.

C.3 MEMORY COMPARISON

As illustrated in Figure 11, we present the memory consumption of FP16, CUTLASS, ABQ-LLM,
and our implementation for LLaMA-7B, 13B, and 30B models. Our proposed methodology demon-
strates a substantial memory compression gain, exceeding 3.1 times that of SmoothQuant. This
performance significantly surpasses current mainstream inference techniques. Furthermore, our ap-
proach achieves an approximate 15% reduction in memory usage compared to ABQ-LLM. These
notable improvements have important implications for the field of large language models (LLMs).
By reducing the memory footprint, our method decreases the operational costs associated with LLM
services and facilitates their practical deployment in real-world applications.

Figure 11: Memory Usage Comparison of Various Quantization Methods for LLaMA Models

D IMPACT OF EXTREME WEIGHT ON THE HESSIAN MATRIX

The Hessian matrix H is defined as: Hij = ∂2L
∂wi∂wj

, where L is the loss function, and wi and wj

are weights. If a weight wk has extreme values, the corresponding elements in the Hessian matrix,
particularly Hkk, will be significantly larger than others.

For instance, if w1 is an extreme value, the Hessian matrix might look like:

H =

h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

hn1 hn2 · · · hnn

Here, h11 is much larger than other elements. This disproportionate value significantly influences
the Hessian’s eigenvalues, with at least one eigenvalue becoming very large. During optimization,
methods like Newton’s method update weights using the inverse of the Hessian matrix:

wnew = w − ηH−1∇L(w),

where η is the learning rate, and ∇L(w) is the gradient. The presence of an extreme value in h11

causes the corresponding element in H−1 to be very small, affecting the step size in weight updates:

∆w1 ≈ −η
∂L

∂w1
/h11,

∆w2 ≈ −η
∂L

∂w2
/h22.

Since h11 is large, ∆w1 becomes small, indicating minimal adjustments for the extreme value
weight, while ∆w2 remains relatively larger for the normal weights.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

LLaMA-1-7B LLaMA-2-7B
Model

101

102

103

104

Pe
rp

le
xi

ty
4797.42

2287.25

207.32
97.54

32.82 31.5631.72 27.93

Magnitude
Wanda

SparseGPT
Ours

Figure 12: Ablation study on post-training
pruning metrics on STBLLM on LLaMA-1-
7B and LLaMA-2-7B. Our method achieves
the best performance among these metrics.

LLaMA-1-7B LLaMA-2-7B
Model

0
10
20
30
40
50
60
70
80

Pe
rp

le
xi

ty

80.36

50.25

67.78

33.61

15.03 13.06

Uniform
Sin-shape
Ours

Figure 13: Ablation study on allocation
strategies on STBLLM on LLaMA-1-7B
and LLaMA-2-7B. Our strategy consistently
achieves nearly identical perplexity across both
models, significantly outperforming the other
two allocation strategies

64 128 256 512 1024
0

100

200

300

400

Pe
rp

le
xi

ty

30
.91 36

.04 39
.45 44

.31
12

9.6
2

28
.73 30

.81 40
.64

40
.52

34
8.1

8

C4

LLaMA-1-7B
LLaMA-2-7B

64 128 256 512 1024

Group Size

0

500

1000

63
.24 68

.48
68

.15 90
.19

28
3.2

5
54

3.4
8 69

0.7
6

24
4.2

2
28

2.5
8

10
99

.61

PTB

LLaMA-1-7B
LLaMA-2-7B

64 128 256 512 1024
0

200

400

29
.58 31

.72 33
.97 41

.29
14

6.4
6

27
.12

27
.93 50

.62 54
.68

50
7.4

4

Wikitext2

LLaMA-1-7B
LLaMA-2-7B

Figure 14: Comparison across different sizes for LLaMA-1-7B and LLaMA-2-7B.

E MORE EXPERIMENTAL RESULTS

E.1 MODULE ABLATION STUDY

To evaluate the interdependent interaction between quantization and pruning within our STBLLM
framework, we conduct a module ablation study. This study isolates the effects of quantization-only,
pruning-only, and our combined method on the performance of the LLaMA-1-7B and LLaMA-2-7B
models across the PTB, C4, and Wikitext2 datasets. The results are presented in Table 10.

The ablation results highlight the synergistic effect of combining quantization and pruning in our
approach, significantly outperforming each method applied in isolation.

LLaMA-1-7B Analysis

- PTB Dataset: Our combined method achieves a score of 68.48, markedly higher than quantization-
only (23.52) and pruning-only (14.24). This demonstrates the substantial performance gains
achieved by leveraging the complementary strengths of both techniques.

- C4 Dataset: Our method scores 36.04, compared to 15.75 for quantization-only and 10.52 for
pruning-only. The combined approach effectively mitigates the limitations of individual methods,
resulting in superior performance.

- Wikitext2 Dataset: The score of 31.72 for our method far exceeds the results of quantization-only
(12.29) and pruning-only (8.13), underscoring the enhanced model efficiency and accuracy through
our integrated approach.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Comparison of Quant-Only, Structure-Only, and ours across different datasets.

LLaMA-1-7B LLaMA-2-7B
Dataset Quant-Only Structure-Only Ours Quant-Only Structure-Only Ours

PTB 23.52 14.24 68.48 2071.44 69.25 690.76
C4 15.75 10.52 36.04 14.62 10.29 30.81
Wikitext2 12.29 8.13 31.72 11.17 7.85 27.93

Table 11: Comparison of C4, PTB, and Wikitext2 across LLaMA-1-7B and LLaMA-2-7B

LLaMA-1-7B LLaMA-2-7B
Dataset C4 PTB Wikitext2 C4 PTB Wikitext2

C4 36.04 68.48 31.72 30.81 690.76 27.93
PTB 54.57 35.13 49.27 43.04 4569.03 40.94
Wikitext2 40.76 71.81 20.48 37.01 1970.76 20.60

LLaMA-2-7B Analysis

- PTB Dataset: Although quantization-only achieves an unusually high score of 2071.44, our com-
bined method still significantly outperforms pruning-only (690.76 vs. 69.25). This suggests that
while quantization might retain certain advantageous structures, the integration with pruning leads
to a more balanced and robust model.

- C4 Dataset: The combined method’s score of 30.81 surpasses quantization-only (14.62) and
pruning-only (10.29), highlighting the effectiveness of our method in maintaining high performance
across varying model versions.

- Wikitext2 Dataset: Our method’s score of 27.93 is higher than both quantization-only (11.17) and
pruning-only (7.85), further confirming the synergistic benefits of combining these techniques.

E.2 ABLATION STUDY OF CALIBRATION DATASET

Table 11 presents an ablation study comparing the performance of LLaMA-1-7B and LLaMA-2-7B
models when trained on different calibration datasets: C4, PTB, and Wikitext2. The purpose of this
experiment is to investigate how the choice of calibration dataset affects the models’ performance
on various evaluation datasets.

In this study, both LLaMA-1-7B and LLaMA-2-7B models are trained on each of the three calibra-
tion datasets separately. The trained models are then evaluated on all three datasets, resulting in a
3x3 matrix of performance scores for each model.

The performance scores in the table likely represent some evaluation metric, such as perplexity or
loss, where lower values indicate better performance. The diagonal values (e.g., C4 evaluated on C4)
represent in-domain performance, while off-diagonal values represent out-of-domain performance.

E.3 ABLATION STUDY OF GROUP SIZE

Table 12 and Figure 14 presents an ablation study that compares the performance of LLaMA-1-
7B and LLaMA-2-7B models across different group sizes. The purpose of this experiment is to
investigate how the choice of group size affects the models’ performance on various evaluation
datasets.

In this study, both LLaMA-1-7B and LLaMA-2-7B models are trained with different group sizes:
64, 128, 256, 512, and 1024. The trained models are then evaluated on three datasets: C4, PTB,
and Wikitext2. The performance scores in the table likely represent some evaluation metric, such as
perplexity or loss, where lower values indicate better performance. By comparing the performance
scores across different group sizes and evaluation datasets, researchers can gain insights into the
impact of group size on the models’ performance and generalization capabilities.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 12: Comparison across different sizes for LLaMA-1-7B and LLaMA-2-7B

LLaMA-1-7B LLaMA-2-7B
Group Size C4 PTB Wikitext2 C4 PTB Wikitext2

64 30.91 63.24 29.58 28.73 543.48 27.12
128 36.04 68.48 31.72 30.81 690.76 27.93
256 39.45 68.15 33.97 40.64 244.22 50.62
512 44.31 90.19 41.29 40.52 282.58 54.68

1024 129.62 283.25 146.46 348.18 1099.61 507.44

Table 13: Motivation vs Top Percentage

Top Percentage Perplexity Top Percentage Perplexity Top Percentage Perplexity
0.01 27.770422 0.02 30.168285 0.03 34.049734
0.04 36.191769 0.05 33.821476 0.06 36.452296
0.07 38.702617 0.08 39.169894 0.09 44.818825
0.10 54.451229 0.11 49.835159 0.12 71.762848
0.13 52.129317 0.14 52.568348 0.15 65.945448
0.16 62.712751 0.17 117.990227 0.18 138.912356

The results show that the performance of both models varies with the choice of group size. For
LLaMA-1-7B, the best performance on C4 and Wikitext2 is achieved with a group size of 64, while
for PTB, the best performance is obtained with a group size of 128. For LLaMA-2-7B, the best
performance on C4 and Wikitext2 is also achieved with a group size of 64, while for PTB, the best
performance is obtained with a group size of 256. Interestingly, the performance of both models
deteriorates significantly when the group size is increased to 1024, suggesting that excessively large
group sizes may lead to overfitting or other training issues.

The provided Figure 1 and Table 13 present an experiment that investigates the relationship be-
tween the top Percentage of data and the corresponding perplexity scores in a LM. The purpose
of this experiment is to understand how the choice of top Percentage affects the model’s perfor-
mance and to determine an optimal threshold for data selection. In this experiment, we randomly
flip 1%-16% weights from binarized LM and evaluate their downstream tasks’ performance includ-
ing ARC (Clark et al., 2018), BoolQ (Mihaylov et al., 2018), Hellaswag (Zellers et al., 2019) and
RTE (Chakrabarty et al., 2021). Table 13 shows the perplexity scores for each top Percentage. Lower
perplexity scores indicate better language model performance, as the model is better able to predict
the next word in a sequence.

Figure 1 provides a visual representation of the relationship between the top Percentage and per-
plexity scores. It shows that the perplexity scores initially improve as the top Percentage increases,
indicating that including more high-quality data points benefits the model’s performance. However,
beyond a certain threshold (around 0.05 to 0.10), the perplexity scores start to deteriorate, suggesting
that including lower-quality data points negatively impacts the model’s performance.

E.4 ABLATION STUDY: PRUNE-THEN-QUANTIZE VS. QUANTIZE-THEN-PRUNE

To validate our choice of prune-then-quantize strategy, we conduct an ablation study comparing it
with the alternative quantize-then-prune approach. As shown in Table 14, the prune-then-quantize
approach consistently achieves better perplexity scores across both LLaMA-1-7B and LLaMA-2-7B
models.

These results empirically support our design choice, showing that prune-then-quantize achieves sig-
nificantly lower perplexity compared to quantize-then-prune. Our analysis suggests this is because
quantization typically causes less performance degradation compared to pruning. When applying
the more damaging operation (pruning) after quantization, it becomes more challenging to recover

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Comparison of Pruning and Quantization Order (6:8 ratio)

Approach Model Perplexity
Prune→ Quantize LLaMA-1-7B 15.03
Prune→ Quantize LLaMA-2-7B 13.06
Quantize→ Prune LLaMA-1-7B 34.02
Quantize→ Prune LLaMA-2-7B 31.98

performance through block-wise OBC. Conversely, applying quantization after pruning allows for
better performance recovery.

E.5 ABLATION STUDY: IMPACT OF WEIGHT PARTITIONING STRATEGIES

To investigate the effectiveness of different weight partitioning approaches, we conducted an abla-
tion study comparing various partitioning strategies under identical experimental conditions using
the LLaMA-2-7B model with 6:8 sparsity ratio:

Table 15: Comparison of Different Weight Partitioning Strategies and their Search Time

Partitions Perplexity Search Time
1 (Bell-shaped) 50.25 ∼0.5h
2 (Non-salient) 13.06 ∼0.5h
2 (Naive implementation) 12.78 ∼6h

The bell-shaped distribution approach, originally proposed in BiLLM, and our non-salient parti-
tioning strategy in STBLLM demonstrate comparable computational efficiency with search times of
approximately 0.5 hours. While the naive implementation method achieves a slightly lower perplex-
ity score of 12.78 compared to our non-salient approach (13.06), it requires a significantly longer
search time of approximately 6 hours - a 12-fold increase in computational cost.

Based on these empirical results, we adopt T=2 (three partitions) for our non-salient partitioning
strategy as it provides an optimal balance between granular weight importance differentiation and
computational efficiency.

E.6 ABLATION STUDY: IMPACT OF DIFFERENT PRUNING METHODS

To comprehensively evaluate the effectiveness of different pruning methods, we conducted exper-
iments using both Wanda and SI pruning on different weight distributions in LLaMA-1-7B and
LLaMA-2-7B models. Table 16 presents the percentage of weights affected by each pruning method
across different weight distributions.

Table 16: Impact of Different Pruning Methods on Weight Distributions

Model Distribution Method Percentage (%)
LLaMA-1-7B Bell-shaped Wanda 80.35

Non-salient SI 15.03
Bell-shaped SI 40.25
Non-salient Wanda 31.72

LLaMA-2-7B Bell-shaped Wanda 50.25
Non-salient SI 13.06
Bell-shaped SI 24.54
Non-salient Wanda 27.93

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The results demonstrate that different pruning methods exhibit varying effectiveness depending on
the weight distribution. For bell-shaped distributions, Wanda pruning affects a larger percentage of
weights (80.35% and 50.25% for LLaMA-1-7B and LLaMA-2-7B respectively), while SI pruning
shows better efficiency on non-salient weights (15.03% and 13.06%). This analysis supports our
strategy of applying different pruning methods based on the weight distribution characteristics.

25

	Introduction
	Related Work
	Methodology
	Preliminaries
	Standardized Importance Metric
	Adaptive Layer-wise Binarization
	Non-salient Aware Quantization

	Experiments
	Implementation Details
	Main Results
	Enhancing Inference Efficiency on Hardware.
	Ablation Studies

	Conclusion
	STBLLM Implementation
	Details of Motivation Experiment
	Details of Hardware Acceleration
	Implementation Details
	Theory Analysis
	Memory Comparison

	Impact of Extreme Weight on the Hessian Matrix
	More Experimental Results
	Module Ablation Study
	Ablation Study of Calibration Dataset
	Ablation Study of Group Size
	Ablation Study: Prune-then-Quantize vs. Quantize-then-Prune
	Ablation Study: Impact of Weight Partitioning Strategies
	Ablation Study: Impact of Different Pruning Methods

