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Abstract—Evaluating the perceptual quality of AI-generative
music remains a challenge in music information retrieval and
computational creativity applications. Approaches such as those
adopted in the MusicEval and AudioMOS challenges primarily
rely on CLAP, a contrastive audio-text model to extract embed-
dings for Mean Opinion Score (MOS) prediction. While CLAP
excels at coarse audio-text alignment, it struggles to capture fine-
grained musical attributes such as timbral richness, rhythmic
precision, and structural coherence, leading to suboptimal align-
ment with expert human evaluations. We introduce ConvM2D2,
a novel dual-branch neural architecture that leverages M2D2, a
second-generation masked modeling framework, as the upstream
audio encoder for MOS prediction. M2D2 is trained to recon-
struct masked audio segments, enabling it to capture temporally-
and acoustically-detailed features that more closely reflect human
perceptual criteria. The ConvM2D2 model processes audio and
text embeddings jointly through specialized convolutional and
multi-layer perceptron pathways to predict both Overall Musical
Quality and Textual Alignment scores. We evaluate ConvM2D2
on the MusicEval benchmark, comparing its performance against
other models and achieve improvements across all evaluation
metrics (MSE, LCC, SRCC, and KTAU) at both utterance- and
system-level evaluation. ConvM2D2 reaches a system-level LCC
of 0.964 and reduces MSE by 88% compared to the baseline,
demonstrating strong alignment with human judgments across
both overall musical quality and textual alignment tasks. This
big improvement indicates ConvM2D2 can judge AI-generated
music much more like a musical expert, making it easier to find,
improve, and recommend better-sounding music.

Index Terms—AI-generated music, perceptual quality, mu-
sic evaluation, CLAP, M2D2, ConvM2D2, contrastive learning,
masked modeling, audio-text alignment, mean opinion score
(MOS), MusicEval, AudioMOS, music information retrieval,
computational creativity.

I. INTRODUCTION

A surge in generative models for music synthesis has opened
new avenues for creative uses of AI, enabling systems to pro-
duce increasingly convincing and diverse musical outputs [1],
[2]. As illustrated in Figure 1, a textual prompt is provided as
input to a Text-to-Music system, which then generates a large-
scale dataset of audio samples conditioned on the prompt.
However, evaluating the perceptual quality of these generative
outputs remains a bottleneck. Unlike objective tasks such as
transcription or source separation, music quality assessment
involves subjective, multi-dimensional human judgments that
are challenging to quantify algorithmically [3]. As of July
2025, human evaluations via Mean Opinion Scores (MOS)
remain the gold standard [4], but these are labor-intensive,
costly, and inherently non-scalable. This motivates the need
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Fig. 1. Generative music AI models leverage textual prompts to synthesize
audio music samples, advancing tasks in music information retrieval and
computational creativity. The MusicEval dataset, containing diverse prompts
and model-generated outputs, is used to evaluate the quality and alignment of
the generated music.

for automated, perceptually aligned evaluation models that can
serve as reliable proxies for expert human ratings. [5].

Prior efforts, including the MusicEval and AudioMOS chal-
lenges, primarily employ Contrastive Language-Audio Pre-
training (CLAP), a contrastive audio-text pretrained model,
to extract embeddings for MOS prediction [6]. While CLAP
effectively models cross-modal alignment, its training objec-
tive prioritizes broad audio-text similarity rather than capturing
intricate musical properties such as timbral texture, rhythmic
accuracy, melodic coherence, and dynamic variation [7]. As a
result, existing CLAP-based MOS prediction systems often
struggle to align with the evaluations provided by expert
listeners.

In this work, we introduce ConvM2D2, a new architecture
designed to address these limitations by leveraging the Masked
Modeling Duo (M2D2) framework as the upstream audio
encoder for generative music evaluation. Unlike CLAP, M2D2
employs self-supervised masked reconstruction objectives that
force the model to learn fine-grained temporal and acoustic
features that are critical to human perceptions of musical
quality [8]. This appears to be the first time M2D2 is being
leveraged for subjective music evaluation tasks.

This paper presents several contributions to the field of
automatic evaluation of AI-generated music, particularly in the
context of perceptual quality assessment:

• We introduce a new dual-branch ConvM2D2 model
that uses both audio and text features to separately
predict scores for Overall Musical Quality and Textual
Alignment.

• We thoroughly test ConvM2D2 on the MusicEval
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dataset and show that it beats both the official challenge
baseline and the top-performing WhisQw/OT model [9]
on all major metrics, including MSE, LCC, SRCC, and
KTAU.

• We show that using M2D2’s masked modeling for
audio creates richer audio features, which match expert
human opinions about music quality much better than the
older CLAP model.

To our knowledge, this represents the first application of
ConvM2D2 for generative music evaluation, and this approach
supports a more reliable automated evaluation framework for
advancing generative music systems. The development of
ConvM2D2 for generative music evaluation has the poten-
tial to democratize access to high-quality music assessment
tools. Our approach enables researchers and creators from
diverse backgrounds to evaluate generative music systems
more efficiently. This work paves the way for more inclusive,
scalable, and transparent evaluation pipelines in computational
creativity and music AI.

II. BACKGROUND AND RELATED WORKS

A. Generative Music Quality Evaluation
Evaluating the perceptual quality of AI-generated music

remains a challenging area of research in music information
retrieval and computational creativity [10], [11]. Traditional
evaluation metrics such as Inception Score (IS) and Fréchet
Audio Distance (FAD) have been adapted from generative
image models to assess distributional similarity between gener-
ated and real music datasets [12], [13]. However, these metrics
are often poorly aligned with subjective human judgment,
particularly for complex musical dimensions such as expres-
siveness, coherence, and semantic alignment with conditional
inputs.

To address these limitations, human evaluations using Mean
Opinion Scores (MOS) remain the gold standard for assessing
generative music quality. MOS assessments involve collecting
ratings from expert or lay listeners on a Likert scale, providing
direct insight into perceived quality and relevance. Recogniz-
ing the need for scalable and reproducible evaluation, the Au-
dioMOS Challenge introduced MOS prediction as a supervised
learning task, encouraging the development of models that
can approximate human judgments [14]. Building on this, the
MusicEval benchmark expanded the evaluation framework by
incorporating textual conditioning, requiring models to jointly
assess both musical quality and textual alignment [6]. This
shift reflects the growing importance of controllable music
generation and the need for evaluation protocols that account
for both audio fidelity and semantic correspondence to user
intent. Recent research continues to explore hybrid approaches
that combine objective and subjective metrics, as well as
novel evaluation protocols that better reflect the creative and
perceptual aspects of music. Nevertheless, developing reli-
able, scalable, and musically meaningful evaluation methods
remains a central challenge for the field.

B. Contrastive Audio-Text Models
Recent progress in multimodal contrastive learning has led

to models such as Contrastive Language-Audio Pretraining

(CLAP), which aligns audio and text representations in a
shared embedding space [14]. CLAP has demonstrated strong
performance on a variety of audio-text retrieval tasks and has
been widely adopted as a feature extractor for downstream ap-
plications, including MOS prediction for generative music [6],
[15]. However, CLAP’s training objective emphasizes coarse-
grained audio-text matching and does not explicitly model
detailed musical structure, leading to suboptimal sensitivity
to perceptual aspects such as rhythm, melody, and timbre that
are critical for expert human evaluation.

CLAP consists of two main components: an audio encoder
and a text encoder. The audio encoder is based on a hierarchi-
cal token semantic audio transformer (HTS-AT) architecture,
specifically employing a multi-layer Swin Transformer to
process log-Mel spectrograms of audio signals [16]. The Mel-
spectrogram input is divided into patches, which are then
embedded and passed through cascaded Swin Transformer lay-
ers to extract hierarchical audio features. This design enables
the model to capture both local and global time-frequency
patterns in the audio [16], [17]. For the text modality, CLAP
utilizes a RoBERTa-based encoder to extract semantic features
from natural language descriptions [18]. Both the audio and
text encoders project their respective features into a common
latent space of identical dimension. During pretraining, CLAP
uses a contrastive loss to maximize the similarity between
paired audio and text samples while minimizing it for non-
matching pairs, effectively aligning the modalities in the
shared embedding space [16], [19].

By leveraging this dual-encoder architecture and contrastive
training objective, CLAP is able to learn joint representations
that bridge the gap between audio and language. Its large-
scale pretraining leverages hundreds of thousands of audio-
text pairs from diverse sources, enabling strong zero-shot
and transfer capabilities across tasks such as text-to-audio
retrieval, zero-shot audio classification, and supervised audio
classification [18], [19]. Despite these strengths, the model’s
focus on global semantic alignment means it may overlook
fine-grained musical details, which are crucial for perceptual
quality assessment and expert-level music evaluation.

C. Self-Supervised Masked Audio Modeling

To overcome the limitations of contrastive objectives, self-
supervised masked modeling approaches have gained increas-
ing attention for learning rich acoustic representations [6], [9].
Inspired by masked language modeling in NLP, models such as
M2D2 (Masked Modeling Duo) train encoders to reconstruct
missing audio segments, forcing them to learn fine-grained
temporal, spectral, and structural properties of audio signals
[8].

Beyond M2D2, several other self-supervised masked mod-
eling methods have been proposed in the audio domain.
Wav2Vec 2.0 [20] is a prominent example, where a portion
of the raw audio waveform is masked and the model is
trained to predict the masked content based on the surrounding
context. This approach enables the model to capture both
local and global dependencies in the audio signal, leading to
robust representations for downstream tasks such as speech
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recognition and audio classification. HuBERT [21] extends
this idea by first clustering acoustic features to create discrete
targets and then training the model to predict these targets for
masked segments. This method combines masked prediction
with unsupervised clustering, further enhancing the model’s
ability to capture high-level semantic information from audio.
Data2Vec [22] generalizes masked modeling by encouraging
the model to predict contextualized latent representations of
masked regions, rather than reconstructing the original input
or predicting discrete labels. This allows the model to learn
more abstract and task-agnostic representations. Additionally,
methods such as BEATs [23] and MAE-AST [24] adapt
masked autoencoding strategies from vision and language to
the audio spectrogram domain, masking patches or frames
and training the model to reconstruct the missing parts. These
approaches have demonstrated strong performance on a va-
riety of audio understanding tasks. Collectively, these self-
supervised masked modeling techniques have advanced the
field by enabling models to learn powerful and generaliz-
able audio representations without requiring large amounts
of labeled data. They are now foundational in state-of-the-
art systems for speech, music, and general audio processing.
Although masked modeling has shown promise in speech and
general audio tasks, its application to music quality evaluation
remains largely unexplored.

D. MOS Prediction Architectures

To leverage upstream features for MOS prediction, re-
searchers have proposed a variety of neural architectures, from
simple MLP regressors operating on frozen embeddings to
fully end-to-end trainable models. WhisQw/OT introduces a
sequence-level co-attention architecture between audio and
text embeddings, combined with a Sinkhorn Optimal Trans-
port regularization to enforce semantic alignment which re-
sulting in significantly improved alignment performance on
text-conditional music MOS prediction tasks [9]. However, the
model still relies on frozen pretrained encoders for both audio
(Whisper-Base) and text (Qwen-3), which limits its ability to
adapt representations specifically for the MOS prediction task
and to capture fine-grained perceptual cues unique to music.

In evaluating such models, the Mean Opinion Score (MOS)
is widely used as the primary metric for subjective quality
assessment in audio and music generation tasks. MOS reflects
the average rating given by human listeners on a Likert
scale (typically 1 to 5), capturing perceived quality in a way
that closely aligns with human judgment. In the context of
music generation, MOS is collected for two key dimensions:
overall musical impression and textual alignment, providing a
comprehensive view of both the intrinsic musical quality and
the relevance to the given text prompt.

To ensure a thorough assessment of model performance,
evaluations are conducted at both the utterance and system lev-
els. Utterance-level evaluation refers to computing metrics at
the level of individual music clips, where the model predicts a
quality score for each generated sample, and these predictions
are directly compared to the corresponding human ratings.
This level of granularity is crucial for assessing how well a

model can evaluate the quality of each unique piece of music,
capturing sample-specific nuances. In contrast, system-level
evaluation aggregates predictions and human ratings across
all samples generated by a particular model or system. This
approach provides a higher-level view of a model’s ability to
rank or assess the overall performance of different generative
systems, which is important for benchmarking and comparing
systems in a fair and consistent manner. Together, these eval-
uation strategies offer a robust framework for measuring the
effectiveness of MOS prediction architectures in the context
of text-to-music generation [6], [9].

The quality of MOS prediction models is further assessed
using a set of objective metrics that provide a comprehensive
evaluation of model performance. These metrics capture both
the accuracy of the predicted scores and the consistency of
ranking across samples and systems:

• Mean Squared Error (MSE): Measures the average
squared difference between predicted and actual MOS
values, quantifying the accuracy of the predictions.

• Linear Correlation Coefficient (LCC): Assesses the linear
relationship between predicted and ground-truth MOS
scores, indicating how well the model’s predictions fol-
low the actual ratings.

• Spearman Rank Correlation Coefficient (SRCC): Evalu-
ates the monotonic relationship between predicted and
actual rankings, reflecting the model’s ability to preserve
the order of quality across samples or systems.

• Kendall’s Tau (KTAU): Another rank-based metric that
measures the strength of association between predicted
and ground-truth rankings, providing additional insight
into ranking consistency.

Among these, MSE and LCC are generally the most
important metrics when the goal is to predict the exact
quality scores, as they directly measure the accuracy and trend
alignment between predicted and actual MOS values. SRCC
and KTAU become especially important when the primary
concern is the correct ranking of samples or systems, such
as in benchmarking or recommendation settings. By employ-
ing all four metrics, researchers can systematically compare
different MOS prediction models, capturing both the absolute
accuracy of the predicted scores and the fidelity of ranking
at various levels of granularity. In this work, we advance the
state-of-the-art by combining the representational strength of
M2D2 with a dual-branch convolutional architecture, enabling
richer feature extraction and joint modeling of both audio and
text for improved MOS prediction.

III. METHODOLOGY

We aim to develop an automated system capable of predict-
ing the human-assessed quality of AI-generated music. Our
evaluation is grounded in two expert-defined criteria:

1) Overall Musical Impression: This criterion refers to
the general aesthetic and emotional impact of the music.
Specifically, the score takes into account factors such
as the authenticity of the music and the quality of the
melody, rhythm, and chords. A low score indicates that
the sample lacks musicality and is of very poor quality,
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or exhibits noticeable machine-generated artifacts. In
contrast, a high score suggests that the sample is of
excellent overall quality, characterized by a clear rhythm,
a pleasant melody, and a coherent chord progression,
making it difficult to distinguish whether it was com-
posed by a human or generated by a system.

2) Textual Alignment: This criterion assesses how well the
generated music matches or complements a given text
prompt. It examines whether the mood, tempo, and style
of the music appropriately reflect the content, emotion,
and intent of the text. The textual alignment score
evaluates how well the audio sample corresponds to the
given text description, reflecting the system’s ability to
adhere to the prompt. A low score indicates little or no
relevance between the generated music sample and the
text description, while a high score suggests a strong
alignment between the two.

By predicting these two aspects, our goal is to create a
model that closely mirrors human judgment in evaluating both
the intrinsic musical quality and the appropriateness of the
music in relation to its intended textual context.

A. Dataset

We assess our approach on Track 1 of the AudioMOS 2025
Challenge, utilizing the expert-annotated dataset released by
the MusicEval benchmark [6]. The MusicEval dataset com-
prises 2,748 generated music clips produced by 31 different
text-to-music models, covering a broad spectrum of generative
systems. The dataset features 384 unique text prompts, in-
cluding 80 manually crafted prompts, 20 from the MusicCaps
dataset, and 284 extracted from system demo pages. These
prompts span a range of musical aspects, such as emotion,
structure, rhythm, theme, and instrumentation. They focus
on the pop and classical genres to leverage the evaluators’
expertise. For evaluation, 14 raters (2 professional teachers and
12 experienced students from conservatories) assessed each

music clip. All ratings were collected using a 5-point Likert
scale, with each audio sample evaluated by five different raters.
To ensure reliability, the evaluation protocol incorporated qual-
ity control measures, including the insertion of real human-
created music clips and duplicate samples to identify and
filter out inconsistent ratings. In total, the benchmark includes
13,740 high-quality ratings, providing a robust foundation for
assessing the performance of text-to-music generation systems.

B. Model Architecture

Our model, ConvM2D2, employs a dual-branch architecture
that independently encodes audio and text inputs before fusing
their representations for joint regression tasks. We utilize a
pre-trained second-generation Masked Modeling Duo (M2D2-
CLAP) encoder to extract D-dimensional embeddings from
both the audio signal and its corresponding text prompt. These
embeddings are projected into a shared latent space to facilitate
semantic alignment between text and the acoustic features of
the audio.

The audio branch includes a feature extractor composed of
four sequential convolutional blocks. Each block consists of a
1D convolution layer (kernel size = 3, stride = 1, padding
= 1), followed by a ReLU activation and a max-pooling
operation (kernel size = 2). The number of output channels
in the convolutional layers increases as follows: 64, 128, 256,
and C respectively. This results in a feature map of shape
(batch size, C, T ′), where T ′ is the temporally downsampled
sequence length. A global average pooling operation is applied
across the temporal dimension to yield a final C-dimensional
audio feature vector.

For the alignment pathway, the audio feature is concatenated
with the corresponding D-dimensional text embedding to pro-
duce a joint 2D-dimensional representation. Two separate 3-
layer multilayer perceptrons (MLPs) are then used to generate
scalar predictions:

Fig. 2. Overview of the proposed ConvM2D2 architecture. The input audio is transformed into a log-mel spectrogram and paired with its corresponding text
prompt. Both modalities are encoded using pretrained M2D2 models. The resulting embeddings are fused via sequence-level coattention, followed by two
lightweight MLP heads that independently predict the overall musical quality (MOS1) and textual alignment score (MOS2).
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• Overall Quality Branch: An MLP that takes the C-
dimensional audio feature as input and outputs a single
score.

• Textual Alignment Branch: An MLP that takes the 2D-
dimensional audio-text feature and outputs a single align-
ment score.

C. Model Formulation

Let xa ∈ RT denote the raw audio input, and xt ∈ RP

denote the corresponding text prompt. Both inputs are first
passed through pretrained encoders to obtain their global
embeddings:

za = Eaudio(xa) ∈ RD,

zt = Etext(xt) ∈ RD.

To enhance local feature extraction, the raw audio input xa

is further processed through a convolutional feature extractor:

hconv = ConvBlock(xa),

where ConvBlock(·) consists of a sequence of one-
dimensional convolution, activation, and pooling operations.
After global average pooling along the temporal axis, we
obtain:

fa = GlobalPool(hconv) ∈ RC .

For the textual alignment branch, the audio and text features
are concatenated to form a joint representation:

falign =

[
fa
zt

]
∈ RC+D.

Two independent multilayer perceptrons (MLPs) then pro-
duce the quality predictions:

ŷoverall = MLPoverall(fa),

ŷalign = MLPalign(falign).

D. Training Procedure

The network is optimized in an end-to-end manner using
mini-batch stochastic gradient descent (SGD). A loss of the
mean absolute error (L1) is employed, applied independently
to each of the two prediction branches of the model.

At each training step, the overall Mean Opinion Score
(MOS) prediction is supervised using:

Loverall = |ŷoverall − yoverall| ,

and the alignment (or coherence) prediction is supervised
using:

Lalign = |ŷalign − yalign| .

The total training loss is computed as the average of the two:

Ltotal =
1

2
(Loverall + Lalign) .

We use SGD with a momentum coefficient of 0.9 and a
learning rate of 5 × 10−4. No weight decay is applied, as
preliminary experiments indicated that regularization was not

necessary to prevent overfitting in our setting. This may be
due to the size of our dataset and regularization. We use a
mini-batch size of 32 for training and 8 for validation, which
strikes a practical balance between stable model convergence
and GPU memory constraints imposed by the large size of
full audio and text embeddings, consistent with findings that
smaller batch sizes often improve generalization and training
stability [25]. The model is trained for up to 1000 epochs with
early stopping, where training terminates if the validation loss
does not improve for 20 consecutive epochs, and the check-
point with the lowest validation loss is selected as the best-
performing model. To enhance robustness, we employ 10-fold
cross-validation on the training set with data shuffled using
a fixed random seed; each fold is used once for validation
while the remaining nine are used for training. Final validation
performance is reported on a separate held-out development
set. All training and evaluation are performed on a single GPU-
equipped server 1 GPU (NVIDIA RTX A5000), with CUDA
support. Evaluation Metrics include Mean Squared Error
(MSE), Pearson (LCC), Spearman (SRCC), and Kendall Tau
(KTAU) correlations. However, training progress is monitored
using the average L1 loss on the validation set, as we observed
no significant difference in performance when compared to
other loss metrics. MAE also provides a straightforward and
interpretable measure of prediction error, making it a practical
choice for this task.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of our proposed ConvM2D2
model on the MusicEval Track-1 validation set. The evaluation
covers both the Overall Musical Quality and Textual Align-
ment tasks, assessed at both utterance-level and system-level.
Performance is measured using Mean Squared Error (MSE),
Linear Correlation Coefficient (LCC), Spearman Rank Corre-
lation Coefficient (SRCC), and Kendall’s Tau (KTAU) metrics.
Table 1 presents the comprehensive results across four models:
(1) the baseline model provided by the MusicEval Track-
1 challenge organizers [6]; (2) Conv-Augmented Baseline
(CAB), which extends the baseline model with an additional
convolutional block to enhance local feature extraction [9];
(3) WhisQw/OT, a state-of-the-art model for music quality
assessment [9]; and (4) our proposed ConvM2D2 model.

A. Performance Analysis

Across all evaluation metrics, ConvM2D2 consistently out-
performs the baselines, achieving substantial improvements. In
particular, for the SRCC metric on overall musical impression,
ConvM2D2 achieves a score that is approximately 35% higher
than the baseline.

To investigate the impact of local feature extraction, we
augmented the baseline model by introducing a convolutional
block, resulting in the Conv-Augmented Baseline (CAB)
model. The convolutional layer enhances the model’s ability to
capture local acoustic patterns such as noise bursts, clipping,
and transient distortions often overlooked by global represen-
tations. The results demonstrate that capturing local details,
such as brief distortions or irregularities in the audio, provides
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TABLE I
COMPREHENSIVE EVALUATION RESULTS ON MUSICEVAL TRACK-1 TESTING DATASET

OVERALL MUSICAL QUALITY TEXTUALL ALIGNMENT

Utterance-level System-level Utterance-level System-level

MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

Baseline 0.698 0.603 0.615 0.452 0.378 0.821 0.818 0.623 0.585 0.514 0.521 0.375 0.199 0.744 0.724 0.532

WhisQw/OT 0.349 0.744 0.738 0.555 0.144 0.858 0.869 0.706 0.464 0.570 0.572 0.415 0.147 0.790 0.807 0.615

CAB 0.328 0.791 0.791 0.604 0.103 0.937 0.939 0.813 0.424 0.648 0.628 0.464 0.057 0.894 0.874 0.700

ConvM2D2 0.265 0.825 0.831 0.649 0.044 0.963 0.965 0.848 0.433 0.659 0.655 0.486 0.070 0.926 0.904 0.767

valuable information that global pretrained models alone may
overlook. By integrating these local features with the broader
contextual understanding from global embeddings, the model
achieves a more comprehensive and accurate assessment of
musical quality.

Compared to WhisQw/OT, which also uses powerful pre-
trained models for both audio and text, ConvM2D2 delivers a
9.5% improvement in performance across all evaluation met-
rics. Although WhisQw/OT benefits from extensive pretrained
knowledge, it mainly focuses on global information and
may miss subtle musical issues that affect perceived quality.
ConvM2D2 addresses this by combining global context from
pretrained models with additional local features extracted by
the convolutional layer. This allows the model to detect small
distortions, timing issues, and other detailed quality problems
that might otherwise be overlooked. As a result, ConvM2D2
provides a more balanced and accurate assessment of musical
quality.

By providing a robust, self-supervised framework for eval-
uating generative music systems, ConvM2D2 empowers re-
searchers, developers, and artists to objectively assess musical
outputs at scale without the need for costly human annota-
tion. This enables more transparent benchmarking and fairer
comparisons across models, accelerating progress in music AI
research and commercial applications. Beyond objective as-
sessment, ConvM2D2 democratizes access to advanced music
evaluation, empowering a wider range of creators, educators,
and researchers to experiment with and refine generative music
systems. Its integration into creative workflows supports rapid
prototyping and new forms of human-AI collaboration. By es-
tablishing transparent, reproducible benchmarks, ConvM2D2
also fosters responsible innovation and fair competition in
both academia and industry. Furthermore, its use can help
address ethical, economic, and cultural challenges posed by
the proliferation of AI-generated music, ensuring that techno-
logical progress aligns with the broader interests of the music
community.

V. CONCLUSION

In this work, we present ConvM2D2, a dual-branch neural
architecture for automatic prediction of human-judged quality
of AI-generated music, jointly considering both overall musi-
cal impression and textual alignment between audio and text
prompts. Leveraging a pre-trained M2D2-CLAP encoder to
extract modality-specific embeddings, our model effectively
integrates audio and text information through shared latent

projections and specialized regression heads for each evalu-
ation criterion.

We conduct comprehensive experiments on the AudioMOS
Challenge dataset, comparing ConvM2D2 against both the
official MusicEval Baseline, CAP and the WhisQw/OT system
across a wide range of metrics, including MSE, LCC, SRCC,
and KTAU, at both utterance-level and system-level evalua-
tions. Results demonstrate that ConvM2D2 achieves consistent
and substantial improvements across all metrics. Notably, we
observe reductions in MSE of up to 88% and significant gains
in correlation metrics, highlighting ConvM2D2’s capacity to
more accurately capture both absolute quality judgments and
relative ranking consistency in subjective music evaluation.

The dual-branch architecture, together with effective fusion
of audio and text embeddings, enables the model to better
align its predictions with human expert assessments. These
improvements suggest that ConvM2D2 can serve as a reliable
automated proxy for subjective music evaluation, which is
critical for scalable benchmarking of AI-generated music mod-
els. This advancement also enables large-scale, consistent, and
cost-efficient evaluation of generative music systems, reducing
dependence on time-consuming and resource-intensive expert
listening tests.

In the future, we plan to extend the proposed framework to
explore advanced alignment objectives (contrastive learning,
cross-modal consistency losses), and evaluate its generalizabil-
ity across larger, more diverse generative music datasets. We
also aim to investigate real-time deployment possibilities for
continuous monitoring of generative music systems.
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