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ABSTRACT

In-context learning (ICL) allows large language models (LLMs) to learn new tasks
from demonstrations and to predict unseen inputs without parameter updates. Ex-
isting studies typically fix the number of demonstrations as a static hyperparam-
eter (e.g., 5 or 10), overlooking the variability across models and inputs. We
empirically find that the same query text may yield different outcomes depending
on the number of demonstrations used. Motivated by this observation, we pro-
pose Dynamic-k In-Context Learning (D-k-ICL), a novel method that adaptively
determines the most suitable number of demonstrations for each query text. The
core component is a performance predictor—a neural network that jointly encodes
the query text and candidate in-contexts (constructed with varying demonstration
counts) to estimate expected inference quality. At inference time, we retrieve
the top-k semantically similar demonstrations and progressively vary k to gener-
ate candidate in-contexts. The predictor then selects the candidate most likely to
yield the best output, thereby dynamically adapting both the number and composi-
tion of demonstrations. Across three LLMs and eight datasets, D-k-ICL achieves
considerable results, with up to 77.8% accuracy, 0.641 MSE, 0.271 ROUGE-1,
and 0.295 BLEU. Furthermore, even when trained under few-shot, weakly super-
vised, or self-supervised settings, the predictor remains effective. Finally, D-k-
ICL consistently improves performance on commercial LLMs such as GPT-4o,
demonstrating its robustness and broad applicability.

1 INTRODUCTION

In-context learning (ICL) has emerged as a central paradigm for leveraging large language models
(LLMs) to perform downstream tasks without parameter updates (Zhao et al., 2025; Li et al., 2024b;
2025b). While extensive research has examined the selection (Kassianik et al., 2025; Gao et al.,
2024; Liu et al., 2024b), formatting (He et al., 2023; Lin & Lee, 2024), and ordering of demonstra-
tions (Oorloff et al., 2025; Xu et al., 2024), relatively little attention has been devoted to the number
of demonstrations, commonly denoted as k in k-shot ICL. Most existing ICL methods treat k as a
fixed hyperparameter, typically determined through heuristics or grid search and applied uniformly
across all query texts and LLMs (Mao et al., 2024; Kassianik et al., 2025). In everyday life, it would
be unreasonable to expect everyone to wear the same shoe size; instead, shoe sizes should be tailored
to each individual’s foot length. By analogy, we contend that the number of in-context demonstra-
tions should not be fixed as a static hyperparameter, but rather adaptively chosen based on both the
query text and the LLM used during inference. Consequently, fixing the number of demonstrations
cannot deliver state-of-the-art performance across all datasets and models.

To test this hypothesis, we conduct comprehensive empirical studies on two representative natu-
ral language processing (NLP) tasks (text classification and machine translation) using two re-
cent LLMs (GLM4 9B and Qwen2.5 7B), with the number of demonstrations k varying from
2, 4, 6, 8, 10. As shown in Fig. 1, our experiments reveal that k has substantial and occasionally
non-monotonic effects on performance. Notably, the optimal value of k differs across tasks, models,
and even individual test instances, indicating that it should not be treated as a static hyperparameter.

Motivated by these findings, we propose Dynamic-k In-Context Learning (D-k-ICL), a novel
method that adaptively selects the optimal number of demonstrations for each input. The core idea
involves training a performance predictor, which is a neural network that accepts both the query text
and a candidate in-context demonstration set with a variable number of examples, and estimates the
expected inference performance.
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To train the performance predictor for D-k-ICL, we construct a dataset of (text, in-context,
actual performance) tuples. The labeled retrieval dataset Dretrieval is randomly partitioned
into a context retrieval set Dcontext and a text set Dtext. For each text xi

tx in Dtext, we retrieve the
top-k most semantically similar examples from Dcontext, ranked by descending similarity to xi

tx.
These demonstrations are assembled into k candidate in-contexts for xi

tx, where the j-th candidate
in-context (1 ≤ j ≤ k) contains the top-j most similar demonstrations. Each text xi

tx paired with its
k candidate in-contexts is processed by the LLM. The LLM’s output is compared with the ground-
truth label yitx to compute an evaluation metric (e.g., MSE for regression, BLEU for translation),
which defines the actual performance. Finally, we train a dual-input, single-output neural
network that takes the text and a candidate context as input to predict the corresponding actual
performance.

Similarly, during inference, for each text xi
test in the test dataset, we retrieve the top-k most semanti-

cally similar demonstrations from the retrieval dataset Dretrieval to construct k candidate in-contexts.
The w-th candidate in-context (1 ≤ w ≤ k) comprises the top-w most similar demonstrations. Each
text xi

test is then paired with its k candidate in-contexts are fed into the trained performance predic-
tor, generating k corresponding performance scores. The in-context yielding the greatest predicted
performance is selected for xi

test, with its size determining the optimal number of demonstrations for
that xi

test.

We evaluate D-k-ICL across five tasks, eight datasets, and three LLMs. D-k-ICL achieves consid-
erable results, outperforming the second-best baseline by average margins of 5.67% in accuracy,
with corresponding reductions of 0.066 in MSE and improvements of 0.007 in ROUGE-1 and 0.044
in BLEU. D-k-ICL also achieves state-of-the-art performance on the proprietary GPT-4o model,
attaining 65.8% accuracy. The approach exhibits strong generalization capabilities, transferring ef-
fectively both across LLMs and across datasets. Furthermore, D-k-ICL functions as a plug-and-play
module that enhances the performance of existing ICL methods. Our contributions are summarized
as follows:

• We conduct the first systematic empirical study of demonstration number in ICL, revealing
its significant but previously underexplored impact.

• We propose D-k-ICL, a general and efficient framework that dynamically selects the num-
ber of demonstrations via performance prediction.

• We demonstrate that D-k-ICL achieves considerable results on five tasks, eight datasets,
and three LLMs, and further show that: (i) it generalizes robustly across models, datasets,
and tasks; and (ii) it can be used as a plug-and-play module to enhance other ICL methods.

2 RELATED WORK

Current research on ICL predominantly addresses three critical dimensions (Mavromatis et al., 2023;
Li et al., 2024b; Zhao et al., 2025): demonstration selection, formatting strategies, and optimal
ordering (Lin & Lee, 2024; Li et al., 2025b). These factors are systematically utilized to optimize
LLM performance (Kassianik et al., 2025).

Demonstration Selection. Current approaches fall into unsupervised and supervised paradigms.
Unsupervised methods typically retrieve top-k nearest neighbors using similarity metrics (cosine/L2
distance) over embeddings (Tanwar et al., 2023; Qin et al., 2023; Wang et al., 2025), with extensions
like kNN-based retrieval (Liu et al., 2022a; Cao et al., 2025) and multilingual adaptationsTanwar
et al. (2023); Li et al. (2024b). Alternative metrics include mutual information (Sorensen et al., 2022;
Zhao et al., 2025), perplexity (Gonen et al., 2023a), and model-generated probabilities (Nguyen &
Wong, 2023; Chen et al., 2025; Liu et al., 2024a).

Demonstration Reformatting. Reformatting techniques enhance alignment with LLM behavior.
Self-generated demonstrations (Kim et al., 2022) synthesize examples without training data, while
structured prompting (Hao et al., 2022) modifies attention mechanisms via positional embeddings.
Representation-level methods (e.g., ICVs (Liu et al., 2024a), Feature-Adaptive Prompting (Li et al.,
2024a)) adapt latent features during inference.
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WNT19-En-Zh SST5
Kate CDKate CD

Figure 1: The results of the empirical study conducted on the WNT19-En-Zh and SST5 datasets.

Demonstration Ordering. Order sensitivity is well-documented: entropy-based metricsLu et al.
(2022), similarity-driven proximityLiu et al. (2022a), and curriculum-based difficulty ranking
(ICCL (Liu et al., 2024c)) have been proposed to optimize sequence effects.

Current ICL methods predominantly neglect the influence of demonstration quantity on model per-
formance Kassianik et al. (2025); Zhang et al. (2024). The prevailing approach employs a fixed
k-value as a hyperparameter in demonstration selection (Li et al., 2023; Liu et al., 2022a; Rubin
et al., 2022; Qin et al., 2023). Nevertheless, existing literature offers insufficient justification for
specific k-value choices, especially concerning their adaptability to diverse task scenarios—an area
that warrants further investigation.

3 EMPIRICAL STUDY

To examine how the number of demonstrations affects ICL performance, we evaluate two ICL meth-
ods—KATE Liu et al. (2022b) and Cluster-Diversity (CD) Naik et al. (2023)—on the SST-5 (text
classification) and WMT19-En-Zh (machine translation) datasets using GLM4 9B and Qwen2.5 7B
LLMs. As illustrated in Figure 1, the inference performance of ICL exhibits considerable variation
across datasets and LLMs as the number of demonstrations changes. For example, on the SST5
dataset with the GLM4 9B LLM and Kate ICL method, increasing the number of demonstrations
leads to substantial fluctuations in performance, ranging between 40.2% accuracy and 43.3% accu-
racy. Moreover, we observe that the optimal number of demonstrations differs depending on the
dataset, LLM, and ICL method. For instance, on the WNT19-En-Zh dataset using the GLM4 9B
LLM and the Kate ICL method, the best performance is achieved when the number of demonstra-
tions is set to 6. In contrast, for the SST5 dataset with the Qwen2.5 7B LLM and the CD ICL
method, optimal performance occurs at 10. These empirical results suggest that rather than being a
fixed hyperparameter, the number of demonstrations ought to be dynamically determined according
to the LLM and input text.

4 METHOD

Based on the preceding analysis, we conclude that the number of demonstrations should be dynamic
and performance-driven. In particular, the optimal number of demonstrations varies adaptively for
each LLMs and each query text x. To address this, we propose a performance predictor of D-k-
ICL, denoted as P , which estimates the expected task performance of a given query when paired
with the in-context containing a specific number of demonstrations. Formally, given a query x and
a candidate in-context Cj

x (comprising j demonstrations), the predictor outputs a score P(x,Cj
x),

which approximates the actual performance of x with in-context Cj
x.

To train the predictor of D-k-ICL, as Fig. ?? shows, we construct a dataset of (text,
in-context, actual performance) tuples. This dataset serves as the training input for
the performance predictor P . After training, for each query text xi in the test dataset Dtest,
we apply a chosen ICL method to generate multiple candidate in-contexts, each with a different
number of demonstrations. The trained performance predictor P is then used to estimate the
expected performance for each candidate. The candidate in-context associated with the greatest pre-
dicted performance score is selected as the final in-context, along with its corresponding number of

3
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Figure 2: Overall framework of Dynamic-k In-Context Learning (D-k-ICL).

demonstrations. Our proposed D-k-ICL framework comprises three key stages: ❶ Constructing the
training dataset for the performance predictor P . ❷ Training the performance predictor P . ❸
Using the trained performance predictor P to identify the optimal number of demonstrations and
corresponding in-context for each query text xi in the test dataset Dtest.

4.1 TRAINING DATASET CONSTRUCTION

To train this predictor P , we require a dataset of (text, in-context, actual
performance) tuples. In the following, we provide a detailed description of how the text,
in-context, and the corresponding actual performance are constructed.

Training-text construction: As Fig. 2 shows, the retrieval dataset Dretrieval is randomly partitioned
into a context retrieval set and a text set Dtext. Formally:

Dretrieval = Dcontext ∪Dtext, Dcontext ∩Dtext = ∅ (1)

The text xi
tx in the text set Dtext serves as the source of texts used in constructing the (text,

in-context, actual performance) tuples.

Candidate in-contexts construction: For each text xi
tx in Dtext, we select the candidate in-context

with different demonstration numbers from the context retrieval set Dtext. In previous works on ICL,
numerous methods have employed similarity metrics to select relevant demonstrations Zhou et al.
(2024); Liu et al. (2022b). Building on these methods, we also select the most semantically similar
demonstrations from Dtext to xi

tx. The process is outlined as follows:

(1) Text Vectorization: We begin by vectorizing all texts in Dcontext and Dtext using a pretrained
model. Specifically, the vector representations for the texts xi

tx ∈ Dtext and the context texts tjcon ∈
Dcontext are computed as follows:

v(xi
tx) = fpre(x

i
tx), v(tjcon) = fpre(t

j
con), (2)

where fpre denotes the pre-trained encoder.

(2) Semantic similarity computation: We compute the cosine similarity between each text vector
v(xi

tx) and every context vector v(tjcon) , denoted as CSij . The cosine similarity is defined as:

CSij =
v(xi

tx) · v(t
j
con)

∥v(xi
tx)∥∥v(t

j
con)∥

, (3)

where v(xi
tx) and v(tjcon) represent the vector representations of xi

tx and tjcon, respectively. The
semantic similarity between xi

tx and all context samples is given by Si = {CSi1, CSi2, · · · , CSin} ,
where n is the total number of Dcontext.

4
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(3) Selection and Ranking: After computing the cosine similarities, we select the top k most similar
context examples. We denote the k most similar texts to xi

tx and their corresponding labels, ranked
in descending order according to cosine similarity, as follows:{

(t1xi
tx
, y1xi

tx
), (t2xi

tx
, y2xi

tx
), · · · , (tkxi

tx
, ykxi

tx
)
}
, (4)

where tk
xi

tx
denote the k-th most similar text to xi

tx, and let yk
xi

tx
be the corresponding label of that text.

(4) Construction of in-contexts with varying numbers of demonstrations: The first candidate
in-context for xi

tx is C1(x
i
tx) = {(t1

xi
tx
, y1

xi
tx
)}, the second candidate in-context is C2(x

i
tx) =

{(t1
xi

tx
, y1

xi
tx
), (t2

xi
tx
, y2

xi
tx
)}, and, in general, the k-th candidate in-context is Ck(x

i
tx) =

{(t1
xi

tx
, y1

xi
tx
), (t2

xi
tx
, y2

xi
tx
), · · · , (tk

xi
tx
, yk

xi
tx
)}.

Actual Performance Construction: To illustrate the construction of Actual Performance, we take
the classification task as an example. Given the text xi

tx and its associated candidate in-context
Ck(x

i
tx), we query the LLM to obtain the predicted label ŷi,jtx . Formally, the prediction is defined as

ŷi,jtx = fLLM
(
xi

tx | Ck(x
i
tx))
)
, where fLLM(· | ·) denotes the output of the LLM given the candidate

in-context. The Actual Performance score is then defined as

AP i,j

{
1, ŷi,jtx = yitx,

0, otherwise.
(5)

For tasks with score outputs, Actual Performance is defined as the mean squared error (MSE)
between the LLM’s predictions and the ground-truth scores. In machine translation, we employ the
BLEU score to measure the similarity between generated and reference translations, using this value
as the Actual Performance metric. For other tasks, we compute appropriate task-specific
evaluation metrics by comparing LLM predictions with ground-truths, with the resulting scores
serving as the Actual Performance measure.

4.2 MODEL TRAINING

When training the performance predictor P , we adopt a dual-input single-output model architecture
for the performance predictor P . The two inputs correspond to the query text and the in-context,
respectively, while the output represents the actual performance score associated with the
pair (e.g., a classification label such as 0 or 1, or a BLEU score in translation tasks). The detailed
model architecture and training procedure are described in the section titled Model Architecture
and Training Details (Section 5.1).

4.3 PREDICTING OPTIMAL DEMONSTRATION NUMBER

For each text xi
test in the test dataset, we apply the same retrieval strategy to{

(t1xi
test
, y1xi

test
), (t2xi

test
, y2xi

test
), · · · , (tkxi

test
, ykxi

test
)
}
, (6)

where tj
xi

test
denotes the j-th most semantically similar text to xi

test, with yj
xi

test
being its corresponding

label. The tuple (tj
xi

test
, yj

xi
test
) thus represents the j-th most similar demonstration.

Cj(x
i
test) = {(t1xi

test
, y1xi

test
), (t2xi

test
, y2xi

test
), · · · , (tkxi

test
, yj

xi
test
)}. (7)

Next, we employ the performance predictor fp trained in Section 4.2 to estimate the performance
score for each candidate in-context . We then select the candidate in-context with the greatest pre-
dicted performance score as the final in-context, and use its corresponding demonstration number of
in-contexts as the final demonstration number for xi

test.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks and Datasets To comprehensively evaluate the effectiveness of D-k-ICL, We investigate the
results of D-k-ICL in 5 NLP tasks across 8 widely used benchmark datasets. Specifically: ❶ Ma-
chine Translation: machine translation automatically converts text from one language into another.

5
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Table 1: The results of D-k-ICL and other methods. Best results in bold; second-best underlined.
LLMs GLM Llama Qwen GLM Llama Qwen GLM Llama Qwen GLM Llama Qwen
Metric Accuracy (%) ↑ Accuracy (%) ↑ ROUGE-1 ↑ ROUGE-1 ↑

Task & Data Classification: Emotion Classification: SST5 Summarization: Gigaword Text expansion: Gigatiny
BM25 54.3 38.0 59.0 34.2 31.4 49.9 0.024 0.020 0.108 0.122 0.128 0.135

CD 16.0 39.8 55.5 43.3 36.4 45.9 0.043 0.025 0.134 0.172 0.102 0.240
Kate 63.5 40.0 72.3 43.9 35.7 51.8 0.057 0.032 0.106 0.203 0.125 0.253

DKNN 70.5 46.5 43.0 49.8 35.7 45.0 0.033 0.028 0.114 0.167 0.107 0.237
TTF 52.5 38.5 52.9 45.0 38.5 46.8 0.043 0.036 0.114 0.163 0.099 0.264
ICCL 52.3 38.2 69.7 46.2 31.7 48.8 0.043 0.032 0.106 0.194 0.115 0.230
PPL 60.2 39.4 51.0 48.2 32.1 48.7 0.043 0.037 0.115 0.197 0.110 0.249

D-k-ICL 73.0 64.0 77.8 50.5 45.2 52.9 0.062 0.050 0.140 0.202 0.140 0.271
Metric MSE ↓ MSE ↓ BLEU ↑ MSE ↓

Task & Data Textual Similarity: STS14 Textual Similarity: STSB Translation: WNT19-En-Zh TQA: EN-CS
BM25 2.192 1.404 0.797 0.993 1.146 0.763 0.032 0.033 0.040 3488.983 531.930 352.005

CD 2.831 1.263 0.965 1.272 1.291 0.898 0.204 0.134 0.225 388.383 686.084 354.231
Kate 0.920 1.441 0.813 1.070 1.138 0.747 0.211 0.137 0.104 452.645 499.811 343.921

DKNN 1.087 1.511 0.804 1.258 1.425 0.781 0.202 0.138 0.174 453.106 517.100 354.981
TTF 3.041 1.578 0.748 1.343 1.583 0.982 0.231 0.146 0.008 498.559 666.192 401.761
ICCL 2.252 1.361 0.727 1.118 1.199 0.786 0.214 0.139 0.111 392.296 484.441 348.676
PPL 2.538 1.372 0.989 1.101 1.403 0.816 0.219 0.144 0.165 410.250 462.403 347.495

D-k-ICL 0.827 1.241 0.641 0.790 1.128 0.767 0.222 0.219 0.295 453.131 427.227 338.486

We assess performance on the WNT19-En-Zh (Zhang & Wang, 2025) and WNT19-EN-CS (Novak
& Svoboda, 2025) dataset. ❷ Text Expansion: As a generative task, text expansion involves extend-
ing a brief input into a more detailed and coherent expression while retaining its original meaning.
For evaluation, we use the Gigatiny (Liu & Zhou, 2025) dataset. ❸ Text Summarization: summa-
rization aims to generate concise summaries that preserve the key information of the source text.
We conduct experiments on the Gigaword (Napoles & Dredze, 2025) dataset. ❹ Semantic Textual
Similarity (STS): This task measures the degree of semantic similarity between sentence pairs. We
evaluate performance using the STS-Benchmark (STS-B) Cer et al. (2017) and STS14 (Cer & Diab,
2025) datasets. ❺ Text Classification with SST5 Socher et al. (2013) and Emotion Saravia et al.
(2018) dataset. Detailed information regarding the tasks and datasets can be found in Appendix
Sections C and D.

Metrics, baselines and LLMs: For metrics, we use BLEU (Johnson & Li, 2025) for machine
translation, ROUGE-1 (Cheng & Tan, 2025) for text expansion and summarization, MSE (Huang &
Zhao, 2025) for STS, and accuracy (Park & Kim, 2025) for text classification. Lower MSE values
indicate better performance, while higher BLEU, ROUGE-1, and accuracy scores correspond to
stronger results. The formal definitions and computational procedures for these metrics are provided
in Appendix B. Meanwhile, we consider TTF (Liu et al., 2025), Delta-KNN (DKNN) (Li et al.,
2025a), Clustering-Retrieval (CR) Li & Qiu (2023), KATE Liu et al. (2022b), Cluster-Diversity
(CD) Naik et al. (2023), ICCL Liu et al. (2024b), and PPL (Gonen et al., 2023b) as comparative
baselines. Moreover, experiments are conducted on three large language models (LLMs): GLM-4
9B Zeng et al. (2024), LLaMA 3.1 8B Touvron et al. (2024), and Qwen2.5 7B Team (2024).

Model architecture and training details and prompt: We adopt BERT-base-uncased (Devlin
et al., 2019) as the backbone encoder and augment it with five hidden layers. The model is trained
for 10 epochs with a learning rate of 1e-3. Optimization is carried out using the AdamW opti-
mizer (Loshchilov & Hutter, 2025) with a linear warmup scheduler to enhance training stability.
Additionally, a dropout rate of 0.2 is applied in the classification layers to mitigate overfitting. In
addition, the specific prompts for different datasets are provided in Appendix Sections D.

Other setup: For the baseline methods, the number of in-context demonstrations is fixed at 10.
In D-k-ICL, the maximum number of demonstrations is also set to 10 for a fair comparison. The
pretrained model used in Equation 2 is MiniLM-L6-v2. We randomly partitioned the retrieval
dataset into a context retrieval set (30%) and a text set (70%).

5.2 MAIN RESULTS

Table 1 compares the performance of D-k-ICL against baseline methods. D-k-ICL consistently
achieves considerable results across diverse tasks. Specifically, it improves the BLEU score by an
average of 0.044 in machine translation, and enhances ROUGE-1 by averages of 0.008 and 0.006
for text summarization and expansion, respectively. For STS, it reduces the MSE by an average of
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0.066. In classification tasks, D-k-ICL outperforms the second-best baseline by an average of 5.67%
in accuracy. These results demonstrate that dynamically adjusting the number of demonstrations
enables D-k-ICL to achieve substantial and consistent performance gains across all evaluated tasks.

W W/O

Accuracy(%)  ROUGE-1, BLUE  MSE  MSE 

Figure 3: The results of the ablation study comparing D-k-ICL with and without the dynamic se-
lection process. D-k-ICL incorporating the dynamic selection mechanism achieves significantly
superior performance. The notation Emotion-Q refers to the results of the Emotion dataset obtained
with the Qwen model; likewise, Emotion-G and Emotion-L refer to those with the GLM and Llama
models. This suffix convention (-Q, -G, -L) is consistently used across all datasets.

Accuracy(%)  ROUGE-1, BLUE  MSE  MSE 

BM25CDSimilarity-based

Figure 4: The results comparing performance with and without similarity-based retrieval. D-k-ICL
augmented with similarity-based retrieval achieves superior performance. The notation Emotion-Q
refers to the results of the Emotion dataset obtained with the Qwen model; likewise, Emotion-G and
Emotion-L refer to those with the GLM and Llama models. This suffix convention (-Q, -G, -L) is
consistently used across all datasets.

5.3 ABLATION STUDY

With and without the dynamic selection process: For the D-k-ICL variant without dynamic selec-
tion, the context is constructed by retrieving the top 10 demonstrations using the D-k-ICL retriever
and directly concatenating them for the LLM. As illustrated in Fig. 3, dynamically determining the
number of demonstrations yields superior results. Specifically, for machine translation, it improves
BLEU by an average of 0.1 over the strongest static baseline; for text summarization and expansion,
it enhances ROUGE-1 by averages of 0.025 and 0.059, respectively; for semantic STS, it lowers
MSE by an average of 0.404; and for classification tasks, D-k-ICL exceeds the best static baseline
by an average of 17.4% in accuracy.

With and without similarity-based retrieval: Since D-k-ICL utilizes similarity-based retrieval for
in-context demonstrations, we investigate the impact of this mechanism by comparing it with alter-
native retrieval strategies from BM25 and CD. As shown in Fig. 4, the incorporation of similarity-
based retrieval consistently improves the performance of SICL. For example, on the Emotion dataset
using the Qwen LLM, D-k-ICL with similarity-based retrieval achieves an 11.76% higher accuracy
than its counterpart without this mechanism.
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6 ANALYSIS

Plug-and-play integration for other ICL methods: D-k-ICL can function as a plug-and-play
component to enhance existing in-context learning (ICL) methods. As shown in Table 2, integrat-
ing D-k-ICL’s dynamic demonstration selection mechanism with baseline ICL methods yields an
average accuracy improvement of 5.01% on the SST-5 and Emotion datasets.

Table 2: The results of plug-and-play
integration.

With SICL Without SICL

Method Emotion SST5 Emotion SST5

CD 44.3 42.4 39.8 36.4
Kate 43.5 38.4 40.0 35.7
ICCL 44.6 36.3 38.2 31.7
PPL 45.9 38.0 39.4 32.1

Table 3: The performance predictor produced in D-k-ICL
generalizes across different datasets
Test Data WNT19-En-Zh

Metric BLEU ↑
LLMs GLM Llama Qwen

Train Data WNT19-En-Zh STSB WNT19-En-Zh STSB WMT19 STSB

Result 0.222 0.206 0.219 0.214 0.295 0.246

Increasing the maximum number of demonstrations enhances performance. We evaluate
D$k$ICL with maximum demonstration numbers set to 4, 7, and 10. As shown in Tab. 4, increasing
this maximum consistently enhances model performance across all datasets. Specifically, when the
maximum number rises from 4 to 7 to 10, accuracy on the Emotion dataset improves from 58.8%
to 61.5% to 64.0%; MSE on STSB refines from 1.165 to 1.134 to 1.128; and ROUGE-1 on the
Gigatiny dataset increases from 0.125 to 0.133 to 0.140.

Application to GPT-4o: D-k-ICL demonstrates strong compatibility with proprietary LLM, includ-
ing closed-source and commercial APIs such as GPT-4o. As reported in Table 6, D-k-ICL achieves
SOTA performance on the Emotion dataset using GPT-4o, attaining an accuracy of 65.8%.

Generalization Ability of the Performance Predictor in D-k-ICL: (1) The performance predictor
produced in D-k-ICL generalizes across different models. As shown in Tab. 5, when the D-k-ICL
trained on the Emotion dataset with Qwen and then applied to a test model Llama, it still achieves
an accuracy of 57.8%. Although this is lower than the accuracy obtained when training directly on
Llama (by 6.2% accuracy), it remains higher than the best accuracy of other ICL baselines (by 11.3%
accuracy). (2) The performance predictor of D-k-ICL demonstrates strong generalization capability
across datasets. As shown in Table 3, D-k-ICL—trained solely on the STS-B dataset—achieves
a BLEU score of 0.214 on the WMT19-En-Zh machine translation dataset using the Llama LLM,
surpassing all baseline methods. This result underscores the exceptional cross-task and cross-dataset
generalization ability of the D-k-ICL framework.

7 DISCUSSION

Training the performance predictor of D-k-ICL on open-source and free LLMs and apply-
ing it to commercial models. D-k-ICL requires access to the test LLM during training to con-
struct the actual performance values. Consequently, if the test LLM is commercial (e.g.,
GPT-4o), additional costs are incurred. However, as shown in Section 6, the performance predictor
trained with D-k-ICL generalizes effectively across models. To reduce cost, we construct actual
performance values and train the predictor on free, open-source LLMs, before applying it to
commercial models. As reported in Tab. 6, when trained on GPT-4 9B with the SST5 dataset, the
predictor still achieves an accuracy of 59.2% on GPT-4o, outperforming all baseline methods.

Table 4: Results with different maximum demonstration numbers.
Accuracy (%) ↑ ROUGE-1 ↑ MSE ↓ BLEU ↑ MSE ↓

Maximum Number Emotion SST5 Gigaword Gigatiny STS14 STSB WNT19-En-Zh EN-CS

10 64.0 45.2 0.050 0.140 1.241 1.128 0.219 427.227
7 61.5 43.8 0.048 0.133 1.249 1.134 0.205 430.740
4 58.8 42.1 0.045 0.125 1.287 1.165 0.190 438.791
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Table 5: The performance predictor produced in D-k-ICL general-
izes across different models

Data Emotion

Metric Accuracy (%) ↑
Test model GLM Llama Qwen
Train model GLM Llama Qwen GLM Llama Qwen GLM Llama Qwen

Result 73.0 66.0 72.3 55.5 64.0 57.8 74.8 71.5 77.8
Data STSB

Metric MSE ↓
Test model GLM Llama Qwen
Train model GLM Llama Qwen GLM Llama Qwen GLM Llama Qwen

Result 0.790 0.816 0.814 1.146 1.128 1.156 0.790 0.802 0.767

Table 6: The results of GPT-4o with SST5 dataset. D-k-ICL in-
dicates training on GPT-4o; D-k-ICL (GLM) indicates training on
GLM and testing on GPT-4o.
BM25 CD Kate DKNN TTF ICCL PPL D-k-ICL D-k-ICL (GLM)

52.5 51.8 57.3 53.1 54.5 56.4 56.9 65.8 59.2

Table 7: Performance of
D-k-ICL trained on weakly-
supervised, unlabeled, and
few-shot datasets. The eval-
uation metric is Accuracy (%)
↑. The numbers 5 and 10 de-
note the number of demon-
strations.

Shot 5 10

BM25 42.0 45.9
CD 12.8 12.8
Kate 44.8 50.4

DKNN 13.6 11.6
TTF 17.2 13.2

ICCL 49.5 52.8
PPL 25.0 21.0

DKCIL (weak) 53.4 55.5
DKCIL (unlabeled) 48.7 48.6
DKCIL (few-shot) 51.3 52.3

Training with weakly supervised, unlabeled or few-shot datasets. ❶ The performance predictor
of D-k-ICL can also be trained with weakly supervised or unlabeled datasets. In earlier experiments,
the training split was used as the retrieval set and the test split as the evaluation set. In practice, how-
ever, high-quality labeled retrieval sets may not be available. In such cases, weak supervision can be
employed. For example, the TREC dataset contains both coarse-grained (6-class) and fine-grained
(50-class) labels. Annotating retrieval data with 50 fine-grained labels is costly, whereas coarse
6-class labeling is considerably more efficient. As shown in Section 6, the performance predictor
of D-k-ICL generalizes across datasets: training with 6-class labels and evaluating on the 50-class
dataset still yields the best accuracy of 55.5% (Table 7). Similarly, when no labels are available, we
use GPT-4 9B to generate 6-class pseudo-labels. The predictor trained with these pseudo-labels also
achieves the best accuracy of 48.7% (Table 7). ❷ The performance predictor of D-k-ICL can further
be trained in few-shot settings. In previous experiments, 30% of the retrieval dataset was randomly
sampled for training. Here, we restrict training data to only 30 examples. As described in Section 4,
training requires (text, in-context, actual performance) tuples. When text data
are limited, additional tuples can be generated by pairing each text with multiple in-context demon-
strations from diverse ICL methods. Specifically, we use TTF, DKNN, KATE, CD, ICCL, D-k-
ICL, and PPL to construct demonstrations for 25 texts, producing 175 (text, in-context,
actual performance) tuples. As shown in Table 7, D-k-ICL continues to perform strongly
under this few-shot setting, reaching a maximum accuracy of 52.3%.

Cost: D-k-ICL’s training on SST-5 takes 18.7 minutes and 468 MB storage, with 0.28s average
inference time per text. Although these computational and storage requirements are non-negligible,
they represent a worthwhile trade-off given the substantial performance gains achieved by D-k-ICL.

8 CONCLUSION

We find that dynamically selecting the number of in-context demonstrations based on the query text
and the test LLM during inference yields superior performance compared to using a fixed number
as a static hyperparameter. To capitalize on this observation, we propose D-k-ICL, a method that
adaptively determines the number of demonstrations conditioned on both the specific input and the
LLM in use. Extensive evaluations show that D-k-ICL achieves considerable performance across
3 LLMs, 5 tasks, and 8 datasets, and remains highly effective when applied to the commercial
LLM GPT-4o. The method also demonstrates remarkable generalization capability, transferring
effectively across different LLMs, datasets, and tasks. Furthermore, D-k-ICL functions effectively
as a plug-and-play module to enhance existing ICL methods.
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OVERVIEW OF THE APPENDIX

This appendix includes our supplementary materials as follows:

• The LLM usage statement in Section A

• More detailed descriptions of the evaluation metrics in Section B

• Formal definitions of the tasks in Section C

• More details about the datasets in Section D

• Models access information and URLs in Section E

A LLM USAGE STATEMENT

Large Language Models (LLMs) assisted in manuscript preparation by enhancing language qual-
ity, improving readability, and ensuring textual clarity. The models supported sentence refinement,
grammatical correction, and improved narrative flow.

Crucially, LLMs were not involved in conceptual development, research methodology, or experi-
mental design. All intellectual contributions, analytical frameworks, and research concepts orig-
inated from the authors. LLM assistance was strictly limited to linguistic enhancement, with no
participation in scientific content creation or data analysis.

The authors assume complete responsibility for all manuscript content, including LLM-polished
text. We confirm adherence to ethical standards, ensuring no plagiarism or scientific misconduct
occurred.

B METRICS

This section provides formal definitions and computational methodologies for the four evaluation
metrics employed in our study to assess the performance of large language models across diverse
tasks.

B.1 BLEU

The Bilingual Evaluation Understudy (BLEU) metric is predominantly utilized for evaluating the
quality of machine-generated text, particularly in machine translation, by comparing it to one or
more human-written reference translations. It operates by calculating modified n-gram precision
scores, which penalize candidate translations that overgenerate ”reasonable” words. The final BLEU
score is a weighted geometric mean of individual n-gram precisions up to a specified order N (typ-
ically N = 4), multiplied by a Brevity Penalty (BP) factor that penalizes candidates shorter than
their references.

The computation is formally defined as follows:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(8)

where:

• pn is the modified n-gram precision for n-grams of length n, calculated as:

pn =

∑
C∈{Candidates}

∑
n-gram∈C Countclip(n-gram)∑

C′∈{Candidates}
∑

n-gram′∈C′ Count(n-gram′)
(9)

Here, Countclip is the maximum number of times an n-gram appears in any single reference
translation, clipped by the count of that n-gram in the candidate translation.

• wn is the positive weight assigned to each n-gram precision, typically wn = 1/N .
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• BP is the Brevity Penalty, which addresses the inherent bias of precision-based metrics
against conciseness. It is defined as:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(10)

where c is the total length of the candidate translation corpus, and r is the effective refer-
ence corpus length, typically computed as the sum of the lengths of the closest reference
sentences for each candidate.

A higher BLEU score (range 0 to 1, often expressed as a percentage) indicates a stronger alignment
between the candidate and reference texts.

B.2 ROUGE-1

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics designed for eval-
uating automatic summarization and text expansion. Unlike the precision-oriented BLEU, the
ROUGE-N variant focuses on recall, measuring the proportion of n-grams in the reference summary
that are captured by the generated summary. We employ ROUGE-1, which operates on unigrams
(single words), to assess the adequacy of content coverage.

The ROUGE-1 recall score is calculated as:

ROUGE-1Recall =

∑
sr∈Sref

∑
u∈sr

Countmatch(u)∑
sr∈Sref

∑
u∈sr

Count(u)
(11)

where:

• Sref is the set of reference summaries.
• u is a unigram.
• Countmatch(u) is the number of times a unigram u appears in both the candidate summary

and the reference summaries, clipped by the count in the candidate (for multiple references,
the maximum overlap is used).

Often, the F1 score, which is the harmonic mean of unigram precision (P ) and recall (R), is reported
to provide a balanced measure:

ROUGE-1F1 = 2 · P ·R
P +R

(12)

A higher ROUGE-1 F1 score signifies better performance in capturing the salient content of the
source or reference text.

B.3 MEAN SQUARED ERROR (MSE)

Mean Squared Error (MSE) is a standard metric for regression tasks, which we utilize for evaluating
Semantic Textual Similarity (STS). In STS, models predict a continuous similarity score between
two text segments. MSE quantifies the average squared magnitude of the differences between the
predicted values (yi) and the actual ground truth values (ŷi). By squaring the errors, MSE dispro-
portionately penalizes larger deviations.

The MSE for a set of n predictions is given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (13)

A perfect model would achieve an MSE of 0.0. Consequently, a lower MSE value indicates superior
performance, as it reflects a smaller average error in the model’s similarity predictions.
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B.4 ACCURACY

Accuracy is a fundamental metric for evaluating performance in classification tasks. It measures the
fraction of predictions (both positive and negative) that the model classified correctly out of the total
number of instances.

The formula for accuracy is:

Accuracy =
|Correct Predictions|
|Total Instances|

=
TP + TN

TP + TN + FP + FN
(14)

where:

• TP (True Positives) are the positive instances correctly predicted as positive.
• TN (True Negatives) are the negative instances correctly predicted as negative.
• FP (False Positives) are the negative instances incorrectly predicted as positive.
• FN (False Negatives) are the positive instances incorrectly predicted as negative.

Accuracy ranges from 0 to 1 (often expressed as a percentage), where a higher value denotes a
greater proportion of correct predictions and thus better model performance.

C TASK

This section provides formal definitions and contextual background for the five primary Natural
Language Processing (NLP) tasks evaluated in this study to demonstrate the capabilities and gener-
alizability of the proposed model.

C.1 TEXT CLASSIFICATION

Text Classification is a fundamental supervised learning task in NLP that involves assigning a pre-
defined categorical label (or labels) to a given text document based on its content and semantics.
Formally, the goal is to learn a mapping function f : X → Y from an query text space X to a
discrete label space Y . This task is pivotal for applications requiring the organization, structuring,
and categorization of textual data, such as sentiment analysis, topic labeling, spam detection, and
intent classification. Performance is typically quantified using metrics such as **Accuracy**, which
measures the proportion of instances correctly classified over the total number of instances.

C.2 TEXTUAL SIMILARITY ESTIMATION

Textual Similarity Estimation, often referred to as Semantic Textual Similarity (STS), is a core re-
gression task focused on quantifying the degree of semantic equivalence between two text segments.
The objective is to predict a continuous similarity score s ∈ [smin, smax] that reflects the semantic
proximity of a pair of texts (ti, tj), moving beyond mere lexical overlap to capture deeper linguistic
meaning. This task is critical for applications like information retrieval, duplicate detection, and
semantic search. Model performance is rigorously evaluated by measuring the disparity between
predicted similarity scores and human-annotated ground truth values, most commonly using the
**Mean Squared Error (MSE)**.

C.3 ABSTRACTIVE SUMMARIZATION

Abstractive Summarization is an advanced text generation task that requires producing a concise
and coherent summary S from a longer source document D, which accurately encapsulates its core
semantic content. Unlike *extractive* summarization—which selects and compiles existing phrases
or sentences from the source—the abstractive approach involves interpreting the source material,
internalizing its meaning, and generating novel phrases and sentences to convey the salient informa-
tion. This necessitates deep language understanding and generation capabilities. The quality of the
generated summaries is conventionally assessed by measuring the lexical or semantic overlap with
human-authored reference summaries using metrics such as **ROUGE-N** (e.g., **ROUGE-1**).
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C.4 TEXT EXPANSION

Text Expansion is the task of elaborating a short, potentially underspecified text input (e.g., a set
of keywords, a headline, or a telegraphic phrase) into a longer, more detailed, fluent, and coherent
text. The model must act as a contextualizing engine, inferring implicit information and gener-
ating relevant content that is semantically consistent with the source’s intent without introducing
hallucinations. This task evaluates a model’s ability to perform controlled, knowledge-augmented
generation and has practical applications in content creation, writing assistance, and data-to-text
systems. Evaluation often involves comparing the system’s output to human-authored expansions
using n-gram overlap metrics like **ROUGE-1**.

C.5 MACHINE TRANSLATION

Machine Translation (MT) is the canonical task of automatically translating a text sequence from a
source language (Ls) into a target language (Lt). The principal objective is to learn a conditional
mapping P (yt|xs) that produces a translation which is not only syntactically well-formed in Lt but
also semantically faithful to the source text xs in Ls, preserving its meaning, nuance, and style. It
is a profound challenge in NLP, requiring handling of divergent linguistic structures, disambigua-
tion, and cultural specificity. The quality of machine-translated text is automatically evaluated by
comparing it to human-produced reference translations using the **BLEU** (Bilingual Evaluation
Understudy) metric, which calculates a modified n-gram precision score.

D DATASET

Table 8: Prompts used for different datasets
Dataset Prompt
Emotion You are a helpful assistant. Predict the label of the input text, only give

me the label is enough, for instance, label = ’Anger’, label = ’Fear’, la-
bel = ’Joy’, label = ’Love’, label = ’Sadness’, label = ’Surprise’. Labels
are Anger, Fear, Joy, Love, Sadness, and Surprise, not other labels.

SST5 You are a helpful assistant. Predict the label of the input text, only give
me the label is enough, for instance, label = ’very negative’, label =
’negative’, label = ’neutral’, label = ’positive’, label = ’very positive’.

SST14 You are a helpful assistant. You are asked to predict the semantic textual
similarity of every input text pairs. Your response only contains a single
numerical value with the range from 0 to 5. A larger number indicates
a higher degree of similarity.

STSB You are a helpful assistant. You are asked to predict the semantic textual
similarity of every input text pairs. Your response only contains a single
numerical value with the range from 0 to 5. A larger number indicates
a higher degree of similarity.

gigatiny You are a helpful assistant. Expand this paragraph without altering its
core meaning.

gigaword You are a helpful assistant. Summarize the following text and generate
an abstract.

wmt19 Zh-En You are a helpful assistant. Translate the following text from Chinese
to English.

In this section, we present the datasets utilized in our evaluation, covering a broad spectrum of
natural language processing tasks including text classification, semantic similarity, summarization,
and machine translation. Each dataset serves as a representative benchmark for its respective task.

D.1 SST-5

The Stanford Sentiment Treebank (SST-5) is a fine-grained sentiment classification dataset derived
from movie reviews. It provides five sentiment labels ranging from “very negative” to “very posi-
tive.” Each sentence is parsed into a syntactic tree, enabling supervised learning at both the phrase
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and sentence levels. SST-5 is widely adopted for benchmarking sentiment analysis models requiring
nuanced sentiment discrimination.

D.2 EMOTION

The Emotion dataset is designed for multi-class emotion classification, containing English sentences
annotated with discrete emotional categories such as joy, sadness, anger, fear, surprise, and love.
Unlike sentiment classification, which focuses primarily on polarity, this dataset captures diverse af-
fective states, making it suitable for evaluating emotion recognition capabilities in language models.

D.3 STS14

The Semantic Textual Similarity 2014 (STS14) dataset is part of the SemEval shared task series.
It contains sentence pairs annotated with similarity scores ranging from 0 (completely dissimilar)
to 5 (semantically equivalent). The dataset covers multiple domains, including newswire, forum
discussions, and image captions, thereby serving as a benchmark for semantic similarity estimation.

D.4 STS15

The Semantic Textual Similarity 2015 (STS15) dataset extends the previous year’s benchmark by
including more diverse sentence pairs with human-annotated similarity scores. It emphasizes cross-
domain generalization and remains a standard testbed for evaluating sentence embedding models on
their ability to capture fine-grained semantic relationships.

D.5 STS16

The Semantic Textual Similarity 2016 (STS16) dataset continues the SemEval STS series with sen-
tence pairs drawn from varied domains, including headlines, answer–answer forums, and ques-
tion–question forums. It provides gold-standard similarity annotations, thereby enabling evaluation
of models’ semantic alignment across heterogeneous text sources.

D.6 STS-B

The Semantic Textual Similarity Benchmark (STS-B) is a consolidated benchmark dataset covering
multiple years of the STS shared tasks. It provides human-labeled similarity scores on a continuous
scale between 0 and 5. Unlike individual yearly datasets, STS-B offers a standardized benchmark
with an official train, development, and test split, facilitating consistent model comparison in seman-
tic similarity research.

D.7 GIGAWORD

The English Gigaword dataset is a large-scale text corpus consisting of newswire articles from multi-
ple international news agencies. It has been widely used for abstractive summarization tasks, where
the goal is to generate a concise headline given a news article sentence or paragraph. Gigaword pro-
vides a rich resource for training neural summarization models due to its size and linguistic variety.

D.8 GIGATINY

Gigatiny is a reduced-scale variant of the Gigaword dataset designed for efficient experimentation
in summarization research. By curating a smaller yet representative subset of the original corpus,
Gigatiny enables rapid model prototyping and evaluation while retaining the essential characteristics
of large-scale summarization tasks.

D.9 WMT19 EN–ZH

The WMT19 English–Chinese dataset is part of the annual Workshop on Machine Translation
(WMT) shared tasks. It provides large-scale parallel corpora for training and evaluating neural
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machine translation systems. The dataset covers multiple text domains and reflects real-world trans-
lation challenges, making it a primary benchmark for assessing cross-lingual generalization in ma-
chine translation systems.

Table 9: Datasets and Their URLs
Task Dataset URL
Translation WMT19 En–Zh https://huggingface.co/datasets/

WillHeld/wmt19-valid-only-zh_en

Textual Similarity
Estimation

STS15 https://huggingface.co/datasets/
mteb/sts15-sts

STS14 https://huggingface.co/datasets/
mteb/sts14-sts

STSB https://huggingface.co/datasets/
SetFit/stsb

STS16 https://huggingface.co/datasets/
mteb/sts16-sts

Abstractive Summa-
rization / Text Ex-
pansion

gigatiny https://huggingface.co/datasets/
SpeedOfMagic/gigaword_tiny

gigaword https://huggingface.co/datasets/
Gabriel/gigaword_swe

Text Classification Emotion https://huggingface.co/datasets/
dair-ai/emotion

SST5 https://huggingface.co/datasets/
SetFit/sst5

E THE URL OF MODELS

Table 10: Large Language Models and Their URLs
Model URL
GLM4 9B https://huggingface.co/zai-org/glm-4-9b
LLAMA-3.1-8b https://huggingface.co/meta-llama/Llama-3.1-8B
GPT-4o https://platform.openai.com/docs/models/gpt-4o
Qwen2.5 7b https://huggingface.co/Qwen/Qwen2.5-7B
LLAMA-3.2-3b https://huggingface.co/meta-llama/Llama-3.2-3B
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