
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENFORCE: NONLINEAR CONSTRAINED LEARNING
WITH ADAPTIVE-DEPTH NEURAL PROJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensuring neural networks adhere to domain-specific constraints is crucial for ad-
dressing safety and ethical concerns while also enhancing inference accuracy. De-
spite the nonlinear nature of most real-world tasks, existing methods are predom-
inantly limited to affine or convex constraints. We introduce ENFORCE, a neural
network architecture that uses an adaptive projection module (AdaNP) to enforce
nonlinear equality constraints in the predictions. We mathematically prove that
our projection mapping is 1-Lipschitz under mild assumptions, making it well-
suited for stable training. We evaluate ENFORCE on multiple tasks, including
function fitting, a real-world engineering simulation, and learning optimization
problems. For the latter, we introduce a class of scalable optimization problems
as a benchmark for nonlinear constrained learning. The predictions of our new
architecture satisfy NC equality constraints that are nonlinear in both the inputs
and outputs of the neural network, while maintaining scalability with a tractable
computational complexity of O(N3

C) at training and inference time.

1 INTRODUCTION

Neural networks (NNs) are the backbone of many recent advancements in artificial intelligence (AI),
excelling in tasks such as natural language processing, image analysis, and scientific discovery due
to their modularity, simplicity, and strong generalization capabilities. However, their ability falls
short when strict adherence to domain-specific constraints is required. Depending on the task, prior
knowledge about the system (e.g., from physics, safety, or ethics) is often available and is typi-
cally leveraged by humans in decision-making processes. In contrast, data-driven methods such
as NNs rely solely on data. Thus, trained NNs may be accurate on a training and test data set
but still may not satisfy known constraints, leading to inconsistent predictions. This limitation not
only generates substantial skepticism, hindering their adoption in real-world applications, but can
also lead to erroneous or physically infeasible outcomes in decision-making processes. Moreover,
when domain knowledge is available as analytical equations, ensuring that NNs adhere to this in-
formation is crucial to avoid a suboptimal utilization of expert insights and potentially reduce data
demand (E. Samadi et al., 2022).
Enforcing strict constraints in NNs is a promising area of research for many fields. For example,
in AI for Science, integrating first-principle laws ensures physically consistent models, enabling
insightful scientific discovery (Wang et al., 2023; Xu et al., 2021) or system modeling in engineer-
ing (Schweidtmann et al., 2024). A prominent area of application involves using NNs to safely
accelerate computationally intensive tasks such as learning surrogate models (Lastrucci et al., 2025)
or solutions to (parametric) constrained optimization problems (also known as proxy optimization),
either in a supervised or unsupervised manner (Kotary et al., 2021; Donti et al., 2021; Di Vito et al.,
2024; Schweidtmann & Mitsos, 2018). More broadly, constraining neural network predictions can
have a transformative impact in domains where strict adherence to critical requirements is essential,
including safety-critical systems (Gupta et al., 2021; Gerke et al., 2020), bias mitigation (Feuerriegel
et al., 2020; Hardt et al., 2016), and compliance with regulatory standards (Cao, 2022). Additionally,
with the rise of generative AI (GenAI), enforcing constraints on generation processes could mitigate
risks by ensuring that generated data respects given criteria (Li et al., 2025). Constraining the neural
network output to adhere to strict rules is also beneficial to tackle traditional machine learning chal-
lenges, such as overfitting in data-scarce regimes (Min et al., 2024).
Enforcing constraints in NNs is not straightforward. The majority of existing approaches rely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

on incorporating penalty terms into the loss function to minimize constraint violations (Raissi
et al., 2019). Yet, these penalty-based methods offer no guarantees of constraint satisfaction (soft-
constrained). In contrast, other methods aim to ensure strict adherence to analytical constraints
by design (hard-constrained). For instance, one can use sigmoid functions to bound outputs. To
enforce analytical constraints, recent studies incorporate correction layers into NNs to project or
complete the predictions, ensuring they lie within a feasible region. For example, developed meth-
ods can enforce constraints defined by affine relationships between input and output variables or by
convex regions (Chen et al., 2024; 2021; Min et al., 2024; Iftakher et al., 2025). However, many
applications, e.g., in science or sociology, are inherently governed by nonlinear constraints (Mize,
2019; Nicolis, 1995). Existing approaches for handling nonlinear constraints predominantly rely
on external root-finding or constrained optimization solvers (Donti et al., 2021; Mukherjee & Bhat-
tacharyya, 2024; Iftakher et al., 2025). These methods introduce significant computational overhead
and complicate model development, thereby compromising the modularity and flexibility typically
associated with NNs.
We propose ENFORCE, a neural network architecture that enforces predictions to satisfy nonlinear
equality constraints. ENFORCE is trained using standard unconstrained optimization techniques
and leverages an adaptive-depth neural projection (AdaNP) module to enforce constraints by con-
struction without relying on external solvers. We evaluate ENFORCE on multiple problems, includ-
ing a real-world engineering simulation and a scalable class of nonlinear parametric optimization
problems that we propose as a benchmark for nonlinear constrained learning.

2 RELATED WORK

This section reviews different approaches to enforcing constraints in NNs, with a focus on existing
hard-constrained methods.

2.1 SOFT-CONSTRAINED NEURAL NETWORKS

One of the earliest approaches to embedding domain knowledge into NNs involves the use of soft
constraints. Soft constraints are incorporated as penalty terms appended to the loss function, penal-
izing residuals of algebraic (Erichson et al., 2019; Pfrommer et al., 2020) or differential equations
underlying the system (Wang et al., 2021). Physics-informed Neural Networks (PINNs) (Raissi
et al., 2019) represent a widely used framework designed to solve partial differential equations
(PDEs) with deep learning by employing soft constraints and collocation points. Although the soft-
constrained approach places no restrictions on the complexity of the constraints, it has the drawback
of not guaranteeing strict adherence to them. Furthermore, the complication of the loss landscape
– especially when the different terms vary in nature or scale – can degrade the optimization perfor-
mance of the neural network, often resulting in suboptimal accuracy (Wang et al., 2020a;b).

2.2 HARD-CONSTRAINED NEURAL NETWORKS

Hard-constrained neural networks refer to methodological approaches ensuring that neural network
predictions adhere to analytical constraints by construction. These constraints, explicitly encoded
within the architecture, act as inductive biases, guiding the learning process toward compliance with
domain knowledge or restrictions (Karniadakis et al., 2021). Architectures such as convolutional
neural networks (CNNs) (LeCun et al., 1989) and graph neural networks (GNNs) (Bronstein et al.,
2017; Wu et al., 2021) encode inductive biases by guaranteeing invariance with respect to patterns
and symmetries. Simple analytical constraints can be enforced using differentiable functions, such
as sigmoids or ReLU for output bounding and softmax for simplex constraints. Recent literature
includes significant contributions for enforcing analytical inequality constraints, such as convex
polytopes and convex sets more generally (Frerix et al., 2020; Donti et al., 2021; Wang et al., 2024;
Tordesillas et al., 2023; Konstantinov & Utkin, 2023). One can also constrain the neural network
to guarantee specific functional characteristics, such as Lipschitz continuity (Anil et al., 2018) or
Lyapunov stability (Manek & Kolter, 2020). Nevertheless, this falls outside the scope of this study.
For a broad and recent review on hard-constrained NNs, the reader is also referred to (Min et al.,
2024). Since this paper focuses on analytical equality constraints, the following literature review
considers existing methods for this specific case.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Projection methods Many methods for encoding hard equality constraints utilize projection tech-
niques, which correct preliminary neural network predictions by appending a non-trainable layer to
the output. Projections can be formulated as optimization problems (i.e., distance minimization) or
derived from geometric principles. For example, in Chen et al. (2021) neural network predictions
of physical systems governed by PDEs are projected to ensure solutions satisfy the finite difference
discretization of the underlying linear PDEs. A more general approach is the KKT-hPINN, which
enforces linear equality constraints in the inputs and outputs (Chen et al., 2024). Recently, Hard-
Net was introduced to enforce equality and inequality constraints affine in the output, without input
restrictions, via a closed-form projection step (Min et al., 2024). Moreover, Iftakher et al. (2025)
proposed a method to enforce nonlinear constraints leveraging log-exponential reformulation and a
Newton method.

Predict-and-complete NNs can also predict a subset of output variables, yP ∈ RNO−NC , and
complete the prediction by solving the system of constraints based on this partial output (null-space
methods). This approach ensures that the constraints are always satisfied. For instance, Beucler et al.
(2019) introduced this concept to simulate physical systems such as climate modeling. However,
when the constraints are not available in explicit form, solving the system requires a root-finding
solver. Similar approaches have been proposed within the hybrid modeling community, particularly
in the serial configuration, where a fully data-driven method is used to predict unknown inputs to a
mechanistic model (Schweidtmann et al., 2024). While studies like DC3 (Donti et al., 2021) have
developed efficient backpropagation techniques, scenarios involving implicit nonlinear constraints
can be computationally expensive to tackle with predict-and-complete methods. Moreover, we rig-
orously show in Appendix B.6 that predict-and-complete approaches can suffer training instabilities
if the constraints Jacobian is ill-conditioned (Beucler et al., 2019).

Constrained optimization To enforce analytical constraints, researchers leveraged constrained
optimization to deploy specialized layers or directly train the neural network. OptNet (Amos &
Kolter, 2017) is an optimization layer developed to solve quadratic programs. Agrawal et al. (2019)
expand the methodology to convex programs. They develop efficient differentiation techniques
through such layers. Min et al. (2024) leveraged such optimization layers to develop HardNet-Cvx,
a neural network enforcing convex constraints. However, the forward pass always requires the so-
lution of a constrained optimization problem. Recently, Mukherjee and Bhattacharyya (Mukherjee
& Bhattacharyya, 2024) approached the constrained learning paradigm by training a neural network
using a constrained optimization solver such as IPOPT (Wächter & Biegler, 2005) instead of stan-
dard unconstrained optimization algorithms. However, these approaches pose severe limitations in
terms of NNs and dataset size.

Other methods Other methods have been proposed for constrained learning in NNs, mostly con-
sidering affine or convex regions (Tao et al., 2023; Tao & Thakur, 2024). Many of them consider
constraints only dependent on the input of the neural network (Schweidtmann et al., 2021; Torde-
sillas et al., 2023; Balestriero & LeCun, 2022; Brosowsky et al., 2020), others design strategies to
include the dependence on both inputs and outputs (Konstantinov & Utkin, 2023; Lastrucci et al.,
2025). Recently, contributions to enforce general logic and linear constraints have been proposed
by the neuro-symbolic AI community, developing loss terms or constraining layers using logic pro-
gramming (Giunchiglia & Lukasiewicz, 2021; Stoian et al., 2024; Fischer et al., 2019). However,
to the best of our knowledge, no existing method enforces nonlinear equality constraints involving
both the input and output of a neural network by embedding them into the architecture while allow-
ing training with unconstrained solvers such as Adam (Kingma & Ba, 2014) or relying on Newton
solvers.

3 PRELIMINARIES

Problem statement Given a dataset (x∗
i , y

∗
i)i=1,...,N , without loss of generality we consider a

neural network fθ with parameters θ to approximate the underlying relationships while satisfying a
set of known algebraic equality constraints c(x, y) = 0. In general, c can be a nonlinear function
in the input x and output y of the neural network, incorporating domain knowledge or specifying
critical requirements. Similarly, fθ can be any neural network architecture.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Assumption 1. i) The constraints c(x, y) = 0 are feasible and linearly independent, ii) NC < NO,
where NC is the number of equality constraints and NO is the output dimensionality of the neural
network, i.e., there are available degrees of freedom to learn.

One way to enforce the neural network prediction ŷ to satisfy the constraints is to project it onto the
feasible hypersurface (manifold) defined by c(x, y) = 0. The projection operation can be defined as
an optimization problem:

ỹ = argmin
y

1

2
(y − ŷ)TW (y − ŷ) s.t. c(x, y) = 0 (1)

If W is the identity matrix, the prediction is corrected by an orthogonal projection onto the feasible
region. This can be interpreted as finding the feasible solution that minimizes the Euclidean distance
from the original prediction ŷ. A local solution to the nonlinear program in Eq. 1 can be found
by solving the first-order necessary optimality conditions, known as Karush–Kuhn–Tucker (KKT)
conditions (Nocedal & Wright, 2006). However, the latter is not necessarily straightforward as it
may involve solving a system of nonlinear equations.

Quadratic projection When c(x, y) is an affine function in the neural network input and output,
then the problem results in a quadratic program (QP) and a closed-form analytical solution is avail-
able for the KKT conditions (Chen et al., 2024). An extension to the closed-form is available when
generalizing to any function in the input x, as the projection operation is still a QP. Consider an
affine constraint on y of the form c = C(x)y− v(x)− b = 0, where C(x) and v(x) act as the linear
coefficient matrix and translation vector, respectively. For a given input xi and prediction ŷi, any
function of xi can be treated as constant with respect to the optimization problem in Eq. 1, which
thus reduces to a QP.
Enforcing affine functions is not new and is also achieved through other techniques (Min et al., 2024;
Balestriero & LeCun, 2022). However, relaxing the assumption to allow for nonlinear constraints
of both the input and output of the neural network commonly results in decreased computational
efficiency and stability, as it typically requires the use of constrained optimization (Mukherjee &
Bhattacharyya, 2024) or root-finding solvers such as Newton’s methods (Donti et al., 2021; Iftakher
et al., 2025).

4 NONLINEAR CONSTRAINED LEARNING

We present ENFORCE, a framework designed for general and efficient nonlinear constrained learn-
ing. The method employs a computationally cheap adaptive neural projection module and has no
restriction on the nonlinearity of C1 constraints involving both the input and output of the neural net-
work. We prove the neural projection to be a 1-Lipschitz mapping, implying adversarial robustness
and stable gradient flow dynamics when compared to state-of-the-art constrained learning methods
such as predict-and-complete.

4.1 ADANP: ADAPTIVE-DEPTH NEURAL PROJECTION

We locally approximate the nonlinear program in Eq. 1 and exploit the efficiency of quadratic pro-
jections to generalize the methodology to any nonlinear constraint. Assuming c is of class C1, we
use first-order Taylor expansion to locally linearize the constraints around the neural network input
x0 and prediction ŷ:

c(x, y) ≃ c(x0, ŷ) + Jxc|x0,ŷ
(x− x0) + Jyc|x0,ŷ

(y − ŷ), (2)

where Jxc and Jyc are the Jacobian matrices with respect to the variable x and y, respectively.
Since the neural network input is fixed for a given sample, the linearization is exact in x, thus, x =
x0. Considering orthogonal projection for notation simplicity, the nonlinear optimization problem
in Eq. 1 is locally approximated by a (linearly constrained) QP:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ỹ = argmin
y

1

2
∥y − ŷ∥2 s.t. c(x, ŷ) + Jyc|x,ŷ (y − ŷ) = 0 (3)

Definition 1 (Projection operator P). Given an input x ∈ RNI to a neural network fθ, its prediction
ŷ = fθ(x) ∈ RNO , and a set of constraints c ∈ C1(Ω,RNC), with NC < NO, we define an operator
P such that ỹ = P(ŷ) is the solution to the linearized quadratic program in Eq. 3, in the domain Ω
where the constraints are defined.
In particular, ỹ = B∗ŷ + v∗, with B∗ = I − BT (BBT)−1B and v∗ = BT (BBT)−1v, where
I ∈ RNO×NO is the identity matrix, B = Jyc|x,ŷ , and v = Jyc|x,ŷ ŷ − c(x, ŷ).

Given the closed-form expression of the operator P derived in Appendix B.1, we can define a differ-
entiable neural projection (NP) layer representing the operator P . The forward and backward passes
of an NP layer are computationally cheap (more details on implementation and computational cost
are given in Appendix C). However, the operator P projects the neural network prediction onto a
linear approximation of the nonlinear constraints (i.e., the tangent hyperplane). The error that we
introduce is proportional to the projection displacement eD = ||ỹ − ŷ||. From this consideration,
it follows that (1) the error is mitigated as the projection displacement is small, i.e., the neural net-
work prediction is sufficiently accurate, and (2) a single NP layer cannot ensure exact adherence to
nonlinear constraints. It is worth noting that a single NP layer guarantees strict satisfaction of equal-
ity constraints that are affine in y and nonlinear in x, i.e., it efficiently enforces constraint classes
considered in similar recent works (Chen et al., 2024; Min et al., 2024).

To address the challenge of satisfying nonlinear constraints, we propose AdaNP: an adaptive-depth
neural projection composition that, under certain conditions, enforces nonlinear constraint satisfac-
tion to arbitrary tolerance ϵ.

Definition 2 (AdaNP module). Given an operator P as defined in Def. 1, AdaNP is a composition
of n operators P , such that:

AdaNP = P1 ◦ · · · ◦ Pn

Proposition 1 (Convergence of AdaNP). Given an arbitrarily small scalar ϵ, n ∈ N and assuming
ŷ in the positive reach (cf. Def. 4, Appendix B.4) of the constraints manifoldM = {x ∈ RNI , y ∈
RNO : c(x, y) = 0}, then ỹn is computed as:

ỹn = (P1 ◦ · · · ◦ Pn)(ŷ)

and converges to a feasible prediction such that |c(x, ỹn)| < ϵ with linear convergence rate under
constraint smoothness conditions (cf. proof in Appendix B.3).

AdaNP is a differentiable stack of n-NP layers that can be composed on every neural network back-
bone. The depth n adjusts adaptively during training and inference depending on the nonlinearities
and the specified tolerance (cf. Algorithm 1 in Appendix C.1 for details about the adaptive behav-
ior). Accurate NNs typically result in shallower AdaNP modules, since the linearization error eD is
related to the distance ||ŷ − y∗|| between the neural network prediction ŷ and ground truth output
y∗. This introduces a trade-off between the complexity of the backbone and the required depth of
AdaNP to satisfy the specified tolerance criteria.

Analogy with Sequential Quadratic Programming AdaNP can also be seen as an iterative
method that recursively improves the solution of a linearized nonlinear program. Here, we no-
tice the similarity to sequential quadratic programming (SQP) techniques. Specifically, AdaNP is a
simple case of SQP method for which the objective function is naturally quadratic while the nonlin-
ear constraints are linearized (in contrast to full SQP, in which the objective function is quadratically
approximated). This observation allows to analyze the convergence rate of the method starting from
SQP theory (Nocedal & Wright, 2006; Fletcher & Leyffer, 2002; Fletcher et al., 2002). The reader
is referred to the Appendix B.3 for a complete discussion.

Deviation from Newton’s method While the KKT conditions for a nonlinear program (Eq. 1)
can be more generally solved using Newton’s methods, our method circumvents the computational
overhead associated with calculating the Hessian matrix of the constraints (cf. Appendix B.2) at the
cost of reduced convergence rate (i.e., full Newton’s method converges quadratically).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: ENFORCE consists of a backbone neural network and an adaptive neural projection
(AdaNP) module. The backbone network can be of every kind, such as fully connected, convo-
lutional, or transformer architecture. AdaNP includes an adaptive number of neural projection (NP)
layers, each composed of an auto-differentiation and a local projection step.

4.2 CONDITIONING ANALYSIS

The set of constraints c(x, y) = 0 describes an infinite-wide feasible region (i.e., a hypersurface)
where the constraints are defined. Hence, one could ask whether the projections are unique as well
as whether the projection mapping is stable and well-conditioned, and thus suitable for guiding
the learning process. In Appendix B.4 and B.5 we provide rigorous theoretical conditions for the
uniqueness and no-worse property of the projected prediction, along with evidence of regularity and
robustness of our method, and show that other state-of-the-art constrained learning approaches do
not guarantee these properties.
Regularity and robustness of appended layers (e.g., projection or null-space completion) can in-
fluence the stability of the neural network training. We prove the projection operation to be a non-
expansive mapping in the neighborhood of the constraint manifold (i.e., its Lipschitz constant L ≤ 1)
under mild assumptions. This ensures adversarial robustness of the neural projection layer during
the forward pass and stable gradient flow dynamics. Proofs and extensive discussion are given in
Appendix B.6.

4.3 ARCHITECTURE

The architecture of ENFORCE (Fig. 1) is composed of (1) a neural network (without loss of gener-
ality) as backbone, which can be of any kind and complexity, and (2) an AdaNP module. The depth
of AdaNP depends on the backbone performance and specified tolerance. Indeed, the tolerance of
AdaNP can be tuned to increase training efficiency (Section 4.4). A single NP layer is composed of
two steps: (1) automatic differentiation and (2) local neural projection.

Exact Jacobian computation To compute the Jacobian of the constraint system, when not
available analytically, we leverage automatic differentiation available in most deep learning li-
braries (Paszke et al., 2019; Abadi et al., 2015; Bradbury et al., 2018). Computing the local Jacobian
Jyc|x,ŷ is computationally inexpensive, as it requires propagating derivatives only through the con-
straints and does not involve the neural network backbone. Furthermore, its computation can be
efficiently parallelized on GPU.

Local neural projection The neural projection defined by the operator P in Def. 1 depends on
individual input-prediction instances. Thus, the projection is locally defined in the neighborhood of
(xi, ŷi). We parallelize the computation of local neural projections by building a rank-3 tensor B and
a rank-2 tensor v (Appendix C.3). Thus, we reduce the apparent complexity of an NP layer from
O(BS × N3

C) to O(N3
C), allowing effective training with stochastic gradient descent techniques

with virtually no limitation on the batch dimension (BS). On modern hardware, handling up to
NC < 103 constraints results in a computational cost that remains practical, particularly when using
Cholesky decomposition for matrix inversion (Burden & Faires, 2005). Moreover, the complexity
of this method is equivalent to other state-of-the-art methods such as DC3 (Donti et al., 2021) and
KKT-Hardnet (Iftakher et al., 2025). Additional insights into memory requirements are provided in
Appendix C.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.4 TRAINING ENFORCE

We train ENFORCE using standard unconstrained gradient descent methods (i.e., Adam). We de-
velop and use a constrained learning methodology using AdaNP to guide the neural network train-
ing to convergence, supported by the theoretical implications of orthogonal projections described in
Section 4.2.

Loss function The loss function used throughout this study takes the following general form:

ℓ = ℓT + ℓD + ℓC = ℓT +
λD

N

N∑
i=1

||ŷi − ỹi||2 +
λC

N

N∑
i=1

||c(xi, ỹi)||, (4)

where the first term, ℓT , is a task-specific loss function selected based on the target model. The
second and third terms are regularization penalties that respectively minimize the projection
displacement, ||ŷi − ỹi||, and the constraint residual ||c(xi, ỹi)||. The relative contributions of these
terms are controlled by the scalar weights λD and λC . Minimizing the projection displacement
aims to (1) ensure minor linearization error (ϵL ∼ ∆y) and (2) prevent the neural network from
learning alternative functions whose projections onto the constraints fall within the neighborhood
of the desired functions. Also, this additional loss term is suggested to reduce reliance on AdaNP,
thereby lowering the computational cost during inference (i.e., by decreasing the depth of AdaNP).

Adaptive training strategy We propose a strategy to facilitate constrained learning during the
early stages of training, guided by the theoretical insights presented in Section 4.2. In the initial
training phases, the preliminary prediction ŷ may be inaccurate and lie far from the constraint mani-
foldM. Under such conditions, projecting onto a locally linearized approximation of the constraints
can introduce substantial errors in the prediction. To mitigate this issue in practice, inspired by trust-
region methods (Nocedal & Wright, 2006), we activate AdaNP only when the projection operation
leads to an improvement in the prediction accuracy (e.g., quantified by a decrease in some loss mea-
sure mℓ). This often leads to an unconstrained pre-training phase, followed by the activation of the
AdaNP module. In other words, this serves as a heuristic to ensure that the prediction ŷ lies suffi-
ciently close to the constraint manifoldM. Details about the algorithm and loss measures used in
this study are reported in Appendix C.2.

5 EXPERIMENTS AND DISCUSSION

We evaluate the proposed method on different tasks: (i) learning solutions to scalable nonlinear
optimization problems and (ii) a real-world engineering simulation on a chemical process. We
also perform an extensive analysis of hyperparameters and training dynamics using an illustrative
curve-fitting task, and we report additional examples with special constraints (see Appendix D). All
experiments were conducted using an NVIDIA A100 Tensor Core GPU 80 GB, while the nonlinear
programming solver (Section 5.1) runs on a CPU (11th Gen Intel(R) Core(TM) i7, 4 Core(s), 8
Logical Processor(s)).

5.1 CONSTRAINED OPTIMIZATION PROBLEM

A relevant field in NNs research involves learning approximate solutions to constrained optimiza-
tion problems as an inexpensive alternative to traditional solvers. Existing benchmarks for such a
task lack scalable problems involving nonlinear equality constraints, which limits the evaluation of
methods beyond the linear setting. We address this gap by introducing a new benchmark that incor-
porates nonlinear equality constraints while retaining scalability in problem complexity, following a
state-of-the-art protocol.
We compare our method with alternative baselines for learning (or solving) constrained optimization
problems, such as MLP, soft-constrained MLP, the state-of-the-art DC3 (Donti et al., 2021), and the
deterministic nonlinear programming solver IPOPT (Wächter & Biegler, 2005). We do not compare
with baselines specialized for affine or convex constraints, such as RAYEN (Tordesillas et al., 2023)
and HardNet (Min et al., 2024), as they are not designed to handle nonlinear equality constraints.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

For every model, we use an equivalent fully-connected neural network backbone consisting of 2 hid-
den layers with 200 neurons. Training is performed with a batch size of 200, a learning rate of 10−4,
and until model convergence (3,500 epochs for DC3; 1,000 for ENFORCE and the other baselines).
Every run is repeated 5 times. We run the test inference on a single batch of 833 samples, and for
the inference time of the optimizer, we assume full parallelization on 833 CPUs.

5.1.1 NONCONVEX PROBLEM WITH LINEAR CONSTRAINTS

We consider the same class of nonconvex optimization problems as in Donti et al. (2021), with the
focus on equality constraints:

min
y∈RNO

fobj(y) =
1

2
yTQy + pT sin y, s.t. cT y = x, (5)

where Q ∈ RNO×NO ⪰ 0, p ∈ RNO , and c ∈ RNC×NO are randomly sampled constant parameters,
while x ∈ RNC (with NC = NI) is the variable parameter across problem instances. Q is a diagonal
matrix chosen to be positive semi-definite and x is uniformly sampled in the interval [−5, 5]. We
aim to learn the optimal y given an instance of x in an unsupervised fashion. Rather than using a
dataset of solved optimization instances, we minimize the objective in the unsupervised task loss
ℓT = fobj(y) =

1
2y

TQy + pT sin y.

Table 1: Results on a batch of 833 instances of nonconvex optimization problems with linear equal-
ity constraints involving 200 variables and 150 equality constraints. ENFORCE guarantees the
feasibility of the solutions, is 25× faster than IPOPT, and learns a 40% better optimum than the
state-of-the-art DC3 method. Baseline deep learning and soft-constrained methods show significant
constraint violations and suboptimal predictions.

Method Obj. value Max eq. Mean eq. Inference [s] Training [min]

IPOPT −10.64± 0.00 0.00± 0.00 0.00± 0.00 0.379± 0.060 –
MLP −52.99± 0.01 45.38± 0.56 9.14± 0.02 0.001± 0.001 9.0± 0.2
Soft (λc = 1) −8.18± 0.18 1.47± 0.41 0.09± 0.00 0.001± 0.001 10.9± 0.5
DC3 −6.27± 0.07 0.00± 0.00 0.00± 0.00 0.004± 0.000 25.2± 8.6
ENFORCE −10.59± 0.00 0.00± 0.00 0.00± 0.00 0.016± 0.002 13.9± 0.1

In Table 1, we report the results on the constrained nonconvex task for 200 variables and 150 linear
equality constraints. In Appendix D (Table 5), we show how the performance of the methods scales
with varying numbers of variables and constraints. Given the linear nature of the constraints, EN-
FORCE consistently guarantees the feasibility for all the test samples. ENFORCE learns a solution
that is only 0.47% suboptimal relative to the objective value obtained by IPOPT, while obtaining
a 25× acceleration. ENFORCE shows faster training convergence when compared to DC3 and an
optimal objective gain of 40%. This improvement can be attributed to the stability of the projec-
tion mapping, in contrast to the null-space completion method. As expected, unconstrained and
soft-constrained methods do not guarantee feasibility and may yield predicted optima with lower
objective values than those computed by constraint-respecting solvers. However, in constrained
optimization, such infeasible solutions are inadmissible, regardless of their objective value.

5.1.2 NONCONVEX PROBLEM WITH NONLINEAR CONSTRAINTS

Extending the linear benchmark setting above, we introduce scalable problems with nonlinear equal-
ity constraints in both inputs and outputs, enabling systematic high-dimensional analysis beyond the
linear case:

min
y∈RNO

fobj(y) =
1

2
yTQy + pT sin y, s.t. yTAy + cT y + d = x3. (6)

Here, A ∈ RNC×NO×NO denotes a tensor holding NC randomly generated symmetric matrices,
while the remaining parameters follow the same sampling procedure as previously described. The
varying parameter x is uniformly drawn from the range [−5, 5], and the dataset dimensionality and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on nonconvex problems with nonlinear equality constraints in-
volving 200 variables and 150 constraints. ENFORCE predicts feasible and near-optimal solutions
across the entire test set, achieving a 25× speedup over IPOPT. Other deep learning methods exhibit
significant constraint violations and suboptimal performance.

Method Obj. value Max eq. Mean eq. Inference [s] Training [min]

IPOPT −29.45± 0.0 0.0± 0.0 0.0± 0.0 3.40± 1.40 –
MLP −53.07± 0.00 497.4± 4.6 118.4± 0.1 0.002± 0.001 10.6± 0.3
Soft (λc = 1) > 104 79.3± 3.7 16.7± 0.1 0.001± 0.000 15.0± 0.6
ENFORCE −27.77± 0.02 0.0± 0.0 0.0± 0.0 0.14± 0.08 69.4± 23.1

split remain unchanged. We consider a problem with 200 variables and 150 nonlinear constraints.
The results are reported in Table 2. ENFORCE successfully predicts optimal solutions satisfying
the set of nonlinear constraints across the whole test set. ENFORCE consistently achieves a 25×
speedup in inference compared to the nonlinear programming solver, while maintaining the optimal
objective within 6%. Traditional deep learning and soft constraint methods perform poorly when
faced with nonlinear constraints, resulting in significant infeasibility or failure to approximate an
optimal solution. Note that a comparison with DC3 is not included, as the original implementation
does not support large-scale problem benchmarking involving nonlinear constraints. Once again, a
scalability analysis across multiple problem dimensions is reported in Appendix D (Table 6 and 7).

5.2 REAL-WORLD CASE STUDY

We evaluate ENFORCE on the real-world engineering case study introduced by Iftakher et al. (2025)
and described in Appendix D.4. They propose KKT-Hardnet, a neural network surrogate designed to
approximate simulation data of a chemical process while enforcing nonlinear physical constraints.
To compare to this baseline, we use the same dataset published by the authors (cf. Iftakher et al.
(2025) for data generation details), the same backbone architecture (1 hidden layer with 64 neurons),
and training parameters (1200 epochs, learning rate of 10−3). In Table 3, we compare ENFORCE
against the results published by the authors. When enforcing nonlinear constraints on the simulation
of chemical processes, ENFORCE results in several orders of magnitude more accurate predictions
and a speed up of about 100x during inference and training, compared to the recent model KKT-
Hardnet.

Table 3: Real-world case study on a chemical process simulation with nonlinear physical constraints.
ENFORCE outperforms the baseline method KKT-Hardnet in terms of accuracy and computational
time at training and inference, while strictly enforcing the nonlinear physical constraints.

Method MSE Max eq.
·10−2

Mean eq.
·10−3

Inference
[s]

Training
[min]

MLP (1.5± 1.4) · 10−5 3.8± 1.6 6.1± 1.8 (1.0± 0.0) · 10−4 2.0± 0.0
KKT-Hardnet 1.1 · 10−1 0.00 0.00 0.998 194.5
ENFORCE (8.0± 7.9) · 10−6 0.00± 0.00 0.00± 0.00 0.01± 0.00 7.5± 0.5

6 CONCLUSIONS

We propose ENFORCE, a method to ensure that neural network predictions satisfy a set of C1
nonlinear constraints c(x, y) = 0, without relying on external solvers or incurring significant com-
putational overhead. We prove the stability of the proposed projection mapping during training
and provide theoretical insights into its convergence properties and applicability. The effectiveness
of the method is demonstrated on (i) large-scale nonconvex optimization problems with nonlinear
constraints and (ii) a real-world engineering simulation. Our findings show that (1) ENFORCE
consistently achieves constraint feasibility up to specified tolerance in the case studies, (2) task per-
formance improves (up to 40%) when using ENFORCE over baseline methods, and (3) ENFORCE
accelerates (×25) computationally intensive tasks such as constrained optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All experimental results are fully reproducible. The datasets, source code, model architecture, train-
ing strategy, and analysis are provided in the supplemental material, along with model checkpoints
and results. The anonymized repository includes clear instructions and configuration files to repli-
cate experiments, while Sections 5 and Appendix D of the paper describe the data generation pro-
cess, data splitting, optimizer, and training hyperparameters in detail.

LLM USAGE DECLARATION

The use of LLMs in this paper was limited to writing, editing, and formatting tasks (e.g., grammar
and spelling improvements), while they did not impact the proposed core methodology.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers. 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada, 2019. doi: https://doi.org/10.48550/arXiv.1910.
12430.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR
70, 2017, 2017. doi: https://doi.org/10.48550/arXiv.1703.00443.

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. Proceed-
ings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR
97, 2019, 2018. doi: https://doi.org/10.48550/arXiv.1811.05381.

Randall Balestriero and Yann LeCun. Police: Provably optimal linear constraint enforcement for
deep neural networks. arXiv preprint, 2022. doi: https://doi.org/10.48550/arXiv.2211.01340.

Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. Enforc-
ing analytic constraints in neural-networks emulating physical systems. Physical Review Letters,
126(9):098302, March 2019. ISSN 1079-7114. doi: https://doi.org/10.1103/PhysRevLett.126.
098302.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE392o,
Stanford University, Autumn Quarter, 2004(01), 2003.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, July 2017. ISSN 1558-0792. doi: https://doi.org/10.1109/MSP.2017.2693418.

Mathis Brosowsky, Olaf Dünkel, Daniel Slieter, and Marius Zöllner. Sample-specific output con-
straints for neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8),
6812-6821, 2020. doi: https://doi.org/10.48550/arXiv.2003.10258.

10

http://tensorflow.org/
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Richard L. Burden and J. Douglas Faires. Numerical Analysis. Thomson Brooks/Cole, Belmont,
CA, 8 edition, 2005. ISBN 9780534404994.

Longbing Cao. Ai in finance: Challenges, techniques, and opportunities. ACM Computing Surveys,
55(3):1–38, February 2022. ISSN 1557-7341. doi: https://doi.org/10.1145/3502289.

Hao Chen, Gonzalo E. Constante Flores, and Can Li. Physics-informed neural networks with hard
linear equality constraints. Computers & Chemical Engineering, 189:108764, October 2024.
ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2024.108764.

Yuntian Chen, Dou Huang, Dongxiao Zhang, Junsheng Zeng, Nanzhe Wang, Haoran Zhang, and
Jinyue Yan. Theory-guided hard constraint projection (hcp): A knowledge-based data-driven
scientific machine learning method. Journal of Computational Physics, 445:110624, November
2021. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2021.110624.

Vincenzo Di Vito, Mostafa Mohammadian, Kyri Baker, and Ferdinando Fioretto. Learning to solve
differential equation constrained optimization problems. arXiv preprint, 2024. doi: https://doi.
org/10.48550/arXiv.2410.01786.

Priya L. Donti, David Rolnick, and J. Zico Kolter. Dc3: A learning method for optimization with
hard constraints. International Conference on Learning Representations, 2021. doi: https://doi.
org/10.48550/arXiv.2104.12225.

Moein E. Samadi, Sandra Kiefer, Sebastian Johaness Fritsch, Johannes Bickenbach, and Andreas
Schuppert. A training strategy for hybrid models to break the curse of dimensionality. PLOS
ONE, 17(9):e0274569, September 2022. ISSN 1932-6203. doi: https://doi.org/10.1371/journal.
pone.0274569.

N. Benjamin Erichson, Michael Muehlebach, and Michael W. Mahoney. Physics-informed autoen-
coders for lyapunov-stable fluid flow prediction. Second Workshop on Machine Learning and
the Physical Sciences (NeurIPS 2019), Vancouver, Canada, 2019. doi: https://doi.org/10.48550/
arXiv.1905.10866.

Herbert Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):
418–491, 1959. doi: 10.1090/S0002-9947-1959-0110078-1.

Stefan Feuerriegel, Mateusz Dolata, and Gerhard Schwabe. Fair ai: Challenges and opportunities.
Business & Information Systems Engineering, 62(4):379–384, May 2020. ISSN 1867-0202. doi:
https://doi.org/10.1007/s12599-020-00650-3.

Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin
Vechev. DL2: Training and querying neural networks with logic. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pp. 1931–1941. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.press/v97/fischer19a.html.

Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Mathematical
Programming, 91(2):239–269, January 2002. ISSN 1436-4646. doi: https://doi.org/10.1007/
s101070100244.

Roger Fletcher, Sven Leyffer, and Philippe L. Toint. On the global convergence of a filter–sqp
algorithm. SIAM Journal on Optimization, 13(1):44–59, January 2002. ISSN 1095-7189. doi:
https://doi.org/10.1137/S105262340038081X.

Thomas Frerix, Matthias Niesner, and Daniel Cremers. Homogeneous linear inequality constraints
for neural network activations. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 521:3229–3234, June 2020. doi: 10.1109/cvprw50498.2020.
00382.

Sara Gerke, Timo Minssen, and Glenn Cohen. Ethical and legal challenges of artificial intelligence-
driven healthcare. Artificial Intelligence in Healthcare, pp. 295–336, 2020. doi: https://doi.org/
10.1016/B978-0-12-818438-7.00012-5.

11

https://proceedings.mlr.press/v97/fischer19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eleonora Giunchiglia and Thomas Lukasiewicz. Multi-label classification neural networks with
hard logical constraints. Journal of Artificial Intelligence Research, 72:759–818, November 2021.
ISSN 1076-9757. doi: https://doi.org/10.1613/jair.1.12850.

Abhishek Gupta, Alagan Anpalagan, Ling Guan, and Ahmed Shaharyar Khwaja. Deep learning for
object detection and scene perception in self-driving cars: Survey, challenges, and open issues.
Array, 10:100057, July 2021. ISSN 2590-0056. doi: https://doi.org/10.1016/j.array.2021.100057.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. 30th
Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain., 2016.
doi: https://doi.org/10.48550/arXiv.1610.02413.

Ashfaq Iftakher, Rahul Golder, Bimol Nath Roy, and M. M. Faruque Hasan. Physics-informed
neural networks with hard nonlinear equality and inequality constraints. arXiv preprint
arXiv:2507.08124, 2025. doi: https://doi.org/10.48550/arXiv.2507.08124.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, may 2021. doi:
10.1038/s42254-021-00314-5.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference for Learning Representations, San Diego, 2015, 2014. doi: https://doi.org/10.48550/
arXiv.1412.6980.

A. V. Konstantinov and L. V. Utkin. A new computationally simple approach for implementing neu-
ral networks with output hard constraints. Doklady Mathematics, 108(S2):S233–S241, December
2023. ISSN 1531-8362. doi: https://doi.org/10.1134/S1064562423701077.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end con-
strained optimization learning: A survey. Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence (IJCAI-21), 2021. doi: https://doi.org/10.48550/arXiv.2103.16378.

Giacomo Lastrucci, Tanuj Karia, Zoë Gromotka, and Artur M. Schweidtmann. Picard-kkt-hpinn:
Enforcing nonlinear enthalpy balances for physically consistent neural networks. arXiv preprint
arXiv:2501.17782, Jan 2025. doi: 10.48550/arXiv.2501.17782. URL https://arxiv.org/
abs/2501.17782.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–
551, December 1989. ISSN 1530-888X. doi: https://doi.org/10.1162/neco.1989.1.4.541.

Ruoyan Li, Dipti Ranjan Sahu, Guy Van den Broeck, and Zhe Zeng. Deep generative models with
hard linear equality constraints. arXiv preprint, 2025. doi: https://doi.org/10.48550/arXiv.2502.
05416.

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, January 2021. ISSN 1095-7197. doi: https://doi.org/
10.1137/21M1397908.

Gaurav Manek and J. Zico Kolter. Learning stable deep dynamics models. 33rd Conference on
Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2020. doi: https:
//doi.org/10.48550/arXiv.2001.06116.

Youngjae Min, Anoopkumar Sonar, and Navid Azizan. Hard-constrained neural networks with
universal approximation guarantees. ArXiv preprint, 2024. doi: https://doi.org/10.48550/arXiv.
2410.10807.

Trenton Mize. Best practices for estimating, interpreting, and presenting nonlinear interaction ef-
fects. Sociological Science, 6:81–117, 2019. ISSN 2330-6696. doi: 10.15195/v6.a4.

12

https://arxiv.org/abs/2501.17782
https://arxiv.org/abs/2501.17782

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Angan Mukherjee and Debangsu Bhattacharyya. On the development of steady-state and dynamic
mass-constrained neural networks using noisy transient data. Computers & Chemical Engineer-
ing, 187:108722, August 2024. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.
2024.108722.

G. Nicolis. Introduction to Nonlinear Science. Cambridge University Press, June 1995. ISBN
9781139170802. doi: https://doi.org/10.1017/CBO9781139170802.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, NY, 2 edition, 2006. ISBN 978-
0-387-30303-1. doi: 10.1007/978-0-387-40065-5. URL https://doi.org/10.1007/
978-0-387-40065-5.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Samuel Pfrommer, Mathew Halm, and Michael Posa. Contactnets: Learning discontinuous contact
dynamics with smooth, implicit representations. Conference on Robot Learning 2020, 2020. doi:
https://doi.org/10.48550/arXiv.2009.11193.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations. Journal of Computational Physics, 378:686–707, feb 2019. doi: https:
//doi.org/10.1016/j.jcp.2018.10.045.

Artur M. Schweidtmann and Alexander Mitsos. Deterministic global optimization with artificial
neural networks embedded. Journal of Optimization Theory and Applications, 180(3):925–948,
October 2018. ISSN 1573-2878. doi: https://doi.org/10.1007/s10957-018-1396-0.

Artur M. Schweidtmann, Jana M. Weber, Christian Wende, Linus Netze, and Alexander Mitsos.
Obey validity limits of data-driven models through topological data analysis and one-class clas-
sification. Optimization and Engineering, 23(2):855–876, May 2021. ISSN 1573-2924. doi:
https://doi.org/10.1007/s11081-021-09608-0.

Artur M. Schweidtmann, Dongda Zhang, and Moritz von Stosch. A review and perspective on
hybrid modeling methodologies. Digital Chemical Engineering, 10:100136, March 2024. ISSN
2772-5081. doi: https://doi.org/10.1016/j.dche.2023.100136.

Mihaela Cătălina Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, and Eleonora
Giunchiglia. How realistic is your synthetic data? constraining deep generative models for tabular
data. Published as a conference paper at ICLR 2024, 2024. doi: https://doi.org/10.48550/arXiv.
2402.04823.

Zhe Tao and Aditya V. Thakur. Provable editing of deep neural networks using parametric linear
relaxation. In Advances in Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=IGhpUd496D.

Zhe Tao, Stephanie Nawas, Jacqueline Mitchell, and Aditya V. Thakur. Architecture-preserving
provable repair of deep neural networks. arXiv preprint, 2023. doi: https://doi.org/10.48550/
arXiv.2304.03496.

Jesus Tordesillas, Jonathan P. How, and Marco Hutter. Rayen: Imposition of hard convex constraints
on neural networks. ArXiv preprint, 2023. doi: https://doi.org/10.48550/arXiv.2307.08336.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chan-
dak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen,
Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun
Manrai, Debora Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Veličković,
Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, and Marinka Zitnik. Scientific
discovery in the age of artificial intelligence. Nature, 620(7972):47–60, August 2023. ISSN
1476-4687. doi: https://doi.org/10.1038/s41586-023-06221-2.

13

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=IGhpUd496D
https://openreview.net/forum?id=IGhpUd496D

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, and Junchi Yan. Linsat-
net: The positive linear satisfiability neural networks. In Proceedings of the 40th International
Conference on Machine Learning (ICML’23), 2024. doi: https://doi.org/10.48550/arXiv.2407.
13917.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies
in physics-informed neural networks. ArXiv, 2020a. doi: https://doi.org/10.48550/arXiv.2001.
04536.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. ArXiv, 2020b. doi: https://doi.org/10.48550/arXiv.2007.14527.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. ArXiv, 2021. doi: https://doi.org/
10.48550/arXiv.2103.10974.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, January 2021. ISSN 2162-2388. doi: https://doi.org/10.1109/
TNNLS.2020.2978386.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):
25–57, April 2005. ISSN 1436-4646. doi: 10.1007/s10107-004-0559-y.

Yongjun Xu, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu, Yanjun
Wu, Fengliang Dong, Cheng-Wei Qiu, Junjun Qiu, Keqin Hua, Wentao Su, Jian Wu, Huiyu Xu,
Yong Han, Chenguang Fu, Zhigang Yin, Miao Liu, Ronald Roepman, Sabine Dietmann, Marko
Virta, Fredrick Kengara, Ze Zhang, Lifu Zhang, Taolan Zhao, Ji Dai, Jialiang Yang, Liang Lan,
Ming Luo, Zhaofeng Liu, Tao An, Bin Zhang, Xiao He, Shan Cong, Xiaohong Liu, Wei Zhang,
James P. Lewis, James M. Tiedje, Qi Wang, Zhulin An, Fei Wang, Libo Zhang, Tao Huang, Chuan
Lu, Zhipeng Cai, Fang Wang, and Jiabao Zhang. Artificial intelligence: A powerful paradigm
for scientific research. The Innovation, 2(4):100179, November 2021. ISSN 2666-6758. doi:
https://doi.org/10.1016/j.xinn.2021.100179.

A APPENDIX

B MATHEMATICAL DERIVATIONS

This section provides the key mathematical derivations, theorems, and proofs underlying the pro-
posed method. These derivations are intended to illustrate the theoretical foundations of the ap-
proach and to support some of the discussions presented in the main text.

B.1 CLOSED-FORM NEURAL PROJECTION

We derive here the closed-form expression defining a neural projection layer in Def. 1 (Section 4.1).
Given the linearized projection problem in Eq. 3, we can define the Lagrangian function as:

L(x, y, λ) = 1

2
(y − ŷ)T (y − ŷ) + λT

(
c(x, ŷ) + Jyc|x,ŷ (y − ŷ)

)
(7)

Then, a local optimum can be found by solving the KKT conditions (i.e., primal and dual feasibility):

∇yL = (y − ŷ) + JT
y c

∣∣
x,ŷ

λ = 0

c(x, ŷ) + Jyc|x,ŷ (y − ŷ) = 0
(8)

To simplify the notation, we define the linear system as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(1) (y − ŷ) +BTλ = 0

(2) By − v = 0
(9)

where:
B = Jyc|x,ŷ ∈ RNC×NO

v = Jyc|x,ŷ ŷ − c(x, ŷ) ∈ RNC
(10)

Solving the system, we obtain a closed form for the neural projection layer:

ỹ = (I −BT (BBT)−1B)ŷ +BT (BBT)−1v (11)

B.2 DEVIATION FROM NEWTON’S METHOD

To support the discussion raised in Section 4.1, we show how our method deviates from standard
Newton’s method for solving nonlinear KKT conditions. Given a nonlinear program:

ỹ =argmin
y

1

2
||y − ŷ||2

s.t. c(x, y) = 0

(12)

With associated Lagrangian function:

L(x, y, λ) = 1

2
(y − ŷ)T (y − ŷ) + λT c(x, y) (13)

The primal and dual feasibility can be derived as:

∇yL = (y − ŷ) + JT
y c(x, y)λ = 0

c(x, y) = 0
(14)

Linearizing the system according to Newton’s iteration at y = y0 results in:

(y0 − ŷ) + JT
y c|y0,λ0

λ0 + (y − y0) + λT Hyc|y0,λ0
(y − y0) + JT

y c
∣∣
y0,λ0

(λ− λ0) = 0

c(x, y0) + Jyc|y0,λ0(y − y0) = 0
(15)

Thus, assuming to center the linearization in the neural network prediction, i.e., y0 = ŷ, and choos-
ing λ0 = 0:

(y − ŷ) + λT Hyc|ŷ,0 (y − ŷ) + JT
y c

∣∣
ŷ,0

λ = 0

c(x, ŷ) + Jyc|ŷ,0 (y − ŷ) = 0
(16)

We can conclude that, essentially, our NP layer solves a similar linear system (Eq. 8) which does
not comprise the term λT Hyc|ŷ,0 (y − ŷ), hence avoiding the computation of the Hessian tensor
Hyc. Here, we note some similarity with Gauss-Newton methods used to solve least square prob-
lems (Nocedal & Wright, 2006).

B.3 LOCAL CONVERGENCE RATE

The projection operator P solves an SQP subproblem of the form:

min
y

1

2
(y − ŷ)T H̄(y − ŷ)

s.t. Jyc (y − ŷ) + c(x, ŷ) = 0,
(17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

which approximates the original nonlinear program:

min
y

1

2
(y − ŷ)T I(y − ŷ)

s.t. c(x, y) = 0
(18)

The Hessian H̄ , as observed in the deviation from Newton’s method B.2, does not include the
second-order derivatives of the constraints that would appear in the full Lagrangian Hessian. The
resulting method is often called Gauss-Newton SQP step, since the way the constraints derivatives
are dropped reminds of the Gauss-Newton method for nonlinear least squares (Nocedal & Wright,
2006).
Supported by SQP theory (Nocedal & Wright, 2006), conditions for local convergence can be de-
rived. We assume y∗ to be a local solution to the original nonlinear program (Eq.1) at which the
following conditions hold (Nocedal & Wright, 2006):

H1 The objective function and the constraints are twice differentiable in a neighborhood of y∗
with Lipschitz continuous second derivatives.

H2 The linear independence constraint qualification (LICQ) holds at y∗. Then, the KKT con-
ditions are satisfied for a vector of Lagrangian multipliers λ∗.

H3 The second-order sufficient conditions (SOSC) hold at (y∗, λ∗).

The KKT conditions for the original nonlinear program are defined as:

F (z) =

[
∇yL(y, λ)

c(y)

]
, with z =

[
y
λ

]
, (19)

and are satisfied by a vector z∗ = [y∗ λ∗]
T .

We define the Jacobian of the KKT conditions of the original nonlinear program (Eq. 18) in a neigh-
borhood of the local solution as:

J (k) =

[
∇2

yyL(k) JT
c

Jc 0

]
(20)

We assume that LICQ and SOQC hold also in the neighborhood of z∗ (H2 and H3), hence the
Jacobian at iteration k, J (k), is non-singular and thus invertible.

The deviation of the projection operator P from the complete SQP step can be expressed through a
matrix E holding the second-order derivatives of the constraints:

E =

[∑
i λ

(k)
i ∇2ci(y

(k)) 0
0 0

]
, (21)

such that J (k) = J̄ + E, with J̄ being the Jacobian of the KKT conditions associated with the
problem in Eq 17.
At iteration k, we define the residual r(k) = F (z(k)), the error e(k) = z(k) − z∗ and solve for the
Newton’s step s(k):

J̄s(k) = −r(k) (QP solve, Newton step)

z(k+1) = z(k) + s(k)

e(k+1) = e(k) + s(k)

(22)

Since F (z) is twice continuously differentiable, using Taylor expansion:

F (z(k)) = J (k)e(k) + r(k), with r(k) = O(||e(k)||2) (23)

Thus, a QP step can be expressed as:

J̄s(k) = −r(k) = −F (z(k)) = −J (k)e(k) − r(k) (24)

From the definition of the Jacobian J̄ and given that J (k) is invertible:

(J (k) − E)s(k) = −J (k)e(k) − r(k) (25)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

((J (k))−1J (k) − (J (k))−1E)s(k) = −(J (k))−1J (k)e(k) − (J (k))−1r(k) (26)

(I −M)s(k) = −e(k) − (J (k))−1r(k), (27)

s(k) = −(I −M)−1(e(k) + (J (k))−1r(k)), (28)

with M = (J (k))−1E.
Thus, in the neighborhood of the solution, the error at iteration k + 1 can be expressed as:

e(k+1) = z(k+1) − z∗ = e(k) + s(k) = e(k) − (I −M)−1(e(k) + (J (k))−1r(k)) (29)

Rearranging:

e(k+1) = (I − (I −M)−1)e(k) − (I −M)−1(J (k))−1r(k)

= (I −M)−1((I −M)− I)e(k) − (I −M)−1(J (k))−1r(k)

= −(I −M)−1Me(k) − (I −M)−1(J (k))−1r(k)

(30)

Banach’s lemma then gives:

||(I −M)−1|| ≤ 1

1− ||M ||
=

1

1− ρ
= C0 (31)

Then we can estimate the error:

||e(k+1)|| ≤ C0(||M || ||e(k)||+ ||(J (k))−1|| ||r(k)||) (32)

Since r(k) = O(||e(k)||2), ∃ C1 > 0 : ||r(k)|| ≤ C1||e(k)||2, then:

||e(k+1)|| ≤ C0||M || ||e(k)||+ C0||(J (k))−1|| C1||e(k)||2) (33)

We can conclude that, in the neighborhood of the solution:

• If M = 0, the linear term vanishes and yields quadratic convergence, i.e., when the con-
straints are affine and thus the second order derivative of the constraints vanish (∇2ci = 0).

• If M ̸= 0 but ||M || < 1, it is guaranteed strictly linear convergence with rate ||M ||, plus a
higher-order correction.

• If ||M || ≥ 1, the Gauss–Newton step alone may not converge. Second-order corrections
(or using the full Lagrangian Hessian) are then required.

Among state-of-the-art methods for constrained learning, we recognize that Newton-based com-
pletion approaches exhibit a quadratic convergence rate. However, as will be shown below (Ap-
pendix B.6), they can suffer from training instabilities.

B.4 UNIQUENESS OF THE PROJECTION

Given a set of constraints c(y) = 0, sufficiently smooth and with full rank matrix Jyc when
c(y) = 0, we define the (NO −NC)-dimensional submanifoldM = {y ∈ RNO : c(y) = 0} in the
ambient-space manifold N ∈ RNO . Then, we can prove that in the neighborhood of the manifold,
the orthogonal projection is unique despite the nonlinearity of the constraints.

Definition 3 (Tubular neighbourhood). Let M be a smooth embedded submanifold of a smooth
manifold N and let ν(M) →M be its normal bundle. A tubular neighbourhood ofM in N is an
open set U ⊆ N for which there exists an open neighbourhood V of the zero section in ν(M) and
a diffeomorphism Φ:

Φ : V −→ U

that restricts to the identity on the zero section. In other words, U is obtained by smoothly “thicken-
ing”M along its normal directions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Definition 4 (Reach of a manifold (Federer, 1959, Def. 4.1)). The reach of a closed subsetM (in
particular, an embedded submanifold), reach(M), is the largest radius ρ > 0 for which ∀ŷ such
that dist(ŷ,M) there is a unique nearest point ỹ ∈M. Formally:

Uρ :=
{
y ∈ RNO : dist(y,M) < ρ

}
.

For every ρ > 0 define the nearest–point (metric) projection:

Pρ : Uρ −→ M, Pρ(y) = argmin
y∈M

∥y − ŷ∥.

SinceM is closed, the minimum exists, but it may fail to be unique.

The reach ofM is the supremum ρ such that there is a single minimum to the projection above:

reach(M) := sup
{
ρ > 0 : Pρ is well-defined (single-valued)

}
.

For instance, reach(M) =∞ exactly when the projection Pρ is single-valued for every ρ > 0, e.g.
whenM is an affine subspace.

Hence, we can derive conditions for the uniqueness of the projection.

Theorem 1 (Uniqueness of the projection). Given a prediction ŷ ∈ RNO and a smooth constraints
c(y) : RNO → RN

C with full rank Jacobian Jyc when the constraints are satisfied, defining a
submanifold M = {y ∈ RNO : c(y) = 0}, if dist(ŷ,M) < reach(M), then the minimizer ỹ
defined as:

ỹ = argmin
y∈M

1

2
∥y − ŷ∥.

exists and is unique.

Proof: The proof follows easily from Definition 3 and Definition 4.

The reach depends on the geometry of the constraint set (e.g., the reach is infinite for linear con-
straints and approaches zero near sharp corners or singularities). Therefore, for the projection to be
well-defined, ŷ must lie within a sufficiently small tubular neighborhood ofM.

B.5 NO-WORSE PREDICTION

We prove that when a unique projection exists on a convex constraint manifold with positive reach, if
y∗ is the ground-truth, then the projected prediction ỹ is always a better prediction than the original
prediction ŷ.

Proposition 2 (No-worse property). LetM ⊂ RNO be a smooth, convex, embedded submanifold
defined by equality constraints c(y) = 0, with c : RNO → RNC smooth and Jyc full rank and
Lipschitzian onM (hence,M has positive reach (Federer, 1959)). Let reach(M) > 0.

Suppose:

• y∗ ∈M is the (unknown) ground truth,

• ŷ ∈ RNO is a model prediction such that dist(ŷ,M) < reach(M),

• ỹ := P(ŷ) is the unique orthogonal projection of ŷ ontoM.

Then:
∥ỹ − y∗∥ ≤ ∥ŷ − y∗∥,

with equality if and only if ŷ ∈ M. That is, projecting onto the constraint manifold never increases
the Euclidean error with respect to the ground truth, and strictly reduces it when the constraints are
violated.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof: Since ŷ ∈ Uρ := {y ∈ RNO : dist(y,M) < reach(M)}, the orthogonal projection P(ŷ) is
well-defined and unique. Denote ỹ := P(ŷ) and recall that ỹ is the closest point to ŷ onM.

By the normality property of projections onto manifolds with positive reach (cf. (Federer, 1959,
Def. 4.1)), we have:

⟨ŷ − ỹ, y∗ − ỹ⟩ ≥ 0 for all y∗ ∈M. (34)

Expanding the squared distance yields:

∥ŷ − y∗∥2 = ∥ỹ − y∗ + ŷ − ỹ∥2

= ∥ỹ − y∗∥2 + ∥ŷ − ỹ∥2 + 2⟨ŷ − ỹ, ỹ − y∗⟩.

Using the projection property ⟨ŷ − ỹ, y∗ − ỹ⟩ ≥ 0, we get:

∥ŷ − y∗∥2 ≥ ∥ỹ − y∗∥2 + ∥ŷ − ỹ∥2, (35)

and hence:
∥ỹ − y∗∥2 ≤ ∥ỹ − y∗∥2 − ∥ŷ − ỹ∥2

∥ỹ − y∗∥2 ≤ ∥ỹ − y∗∥2

∥ỹ − y∗∥ ≤ ∥ŷ − y∗∥
(36)

Equality holds if and only if ∥ŷ − ỹ∥ = 0, i.e., ŷ = ỹ ∈M.

B.6 CONDITIONING OF THE PROJECTION OPERATION

The training stability and robustness can potentially be influenced by layers appended on top of a
neural network (e.g., projection operation or null-space completion). We demonstrate that, in the
neighborhood of the constraints manifold, and under mild assumptions, the projection operation is a
non-expansive mapping in the Banach sense, i.e., its Lipschitz constant L ≤ 1. This implies stability
and adversarial robustness during the forward pass and well-conditioned gradient-flow dynamics
during the backward pass. On the other hand, null-space completion methods (i.e., in DC3 and
other methods (Donti et al., 2021; Beucler et al., 2019)) are characterized by a Lipschitz constant
dependent on the Jacobian of the constraints. This can lead to training instabilities, vanishing or
exploding gradients, whenever the Jacobian is ill-conditioned.
Theorem 2 (Non-expansiveness of the projection operator). Given the nonlinear program:

ỹ = argmin
y

1

2
||y − ŷ||2 s.t. c(y) = 0, (37)

with ŷ ∈ RNO , ỹ ∈ RNO , and c(y) : RNO → RNC smooth, continuous constraints with a full-rank
Jacobian Jyc and being the set C = {y ∈ RNO : c(y) = 0} convex in the vector space of the neural
network output RNO (i.e., c(y) is affine), the projection operatorP : ỹ = P(ŷ) solving the nonlinear
program (Eq. 37) is a non-expansive mapping in the neighborhood of the constraints manifold:

∀ŷi, ŷj ∈ RNO , dist(ŷi,M) < reach(M) ∧ dist(ŷj ,M) < reach(M)

⇒ ∥P(ŷi)− P(ŷj)∥ ≤ ∥ŷi − ŷj∥
(38)

Proof: The proof begins by formally proving that P is an orthogonal projection operator, by study-
ing its dynamics with respect to ŷ.
The Lagrangian of the problem 12 can be expressed as:

L(y, λ) = 1

2
||y − ŷ||2 + λT c(y) (39)

At the optimal point ỹ = P(ŷ):

{
y − ŷ + Jyc

Tλ = 0

c(y) = 0
(40)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We now consider y and λ as implicit functions of ŷ:

y = y(ŷ), λ = λ(ŷ) ⇒ F (y(ŷ), λ(ŷ), ŷ) =

{
y(ŷ)− ŷ + Jy(ŷ)c

Tλ(ŷ) = 0

c(y(ŷ)) = 0
(41)

The total derivative of F can be derived as:

d

dŷ
(F) =

dF

dy

∣∣∣∣
ŷ,λ

dy

dŷ
+

∂F

∂λ

∣∣∣∣
ŷ,y

dλ

dŷ
+

dF

dŷ

∣∣∣∣
y,λ

, (42)

where:

dF

dy

∣∣∣∣
ŷ,λ

=

[
I + d

dy

(
Jy(ŷ)c

Tλ(ŷ)
)

Jyc

]
=

[
I +H
Jyc

]
(43)

∂F

∂λ

∣∣∣∣
ŷ,y

=

[
Jyc

T

0

]
(44)

dF

dŷ

∣∣∣∣
y,λ

=

[
−I
0

]
(45)

Rearranging in (block) matrix form:

[
dF
dy

∣∣∣
ŷ,λ

∂F
∂λ

∣∣
ŷ,y

] [dy
dŷ
dλ
dŷ

]
= −

[
dF
dŷ

∣∣∣
y,λ

]
(46)

[
I +H Jyc

T

Jyc 0

][dy
dŷ
dλ
dŷ

]
=

[
I
0

]
(47)

We simplify the notation to solve the linear system by defining:

Z :=
dy

dŷ
∈ RNO×NO

L :=
dλ

dŷ
∈ RNC×NO

J := Jyc ∈ RNC×NO

(48)

Note that the row space of J is the normal space to the constraints, while its kernel (column space)
is the tangent space.
Then:

{
(I +H)Z + JTL = I

JZ = 0
(49)

The second equation means that every column of Z lives in ker(J), i.e., the tangent space. Then,
since ŷ is in the reach of the constraint manifold, let P := I−JT (JJT)−1J be the unique projector
onto the subspace ker(J). P satisfies the following properties:

• P 2 = P ⇒ idempotent

• PT = P ⇒ symmetric

• JP = 0⇒ Im(P) = ker(J) (Im(·) is the image and ker(·) is the kernel)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then, any solution to the system in Eq. 49 must satisfy Z = PZ.
Sub-proof: Jz = 0⇒ each column z(k) lies in ker(J). Then:

PZ = (I − JT (JJT)−1J)Z = Z − JT (JJT)−1JZ
JZ=0
= Z (50)

Now, assuming convexity for the set C = {y ∈ RNO : c(y) = 0}, we can guess the simplest
representative of Z of the form of PZ, such as Z = P . Then, from the first equation and using the
definition of the projector matrix:

(I +H)P + JTL = I = P + JT (JJT)−1J = P +Q, (51)

where Q = JT (JJT)−1J is the normal component of the identity matrix. Developing the algebra:

IP +HP + JTL = P +Q (52)

JTL = Q−HP (53)

Since J has full rank, there exists a left-inverse (Moore-Penrose pseudoinverse) J+ such that J+J =
I and J+ = (JJT)−1J . Hence, solving for L and using the definition of Q:

L = J+(Q−HP)

= (JJT)−1JQ− (JJT)−1JHP

= (JJT)−1JJT (JJT)−1J − (JJT)−1JHP

= (JJT)−1J(I −HP)

(54)

We can conclude:

Z =
dy

dŷ
= I − JT (JJT)−1J

L =
dλ

dŷ
= (JJT)−1J(I −HP)

(55)

Considering now the projection operator P such that y = P(ŷ), we found that the Jacobian of such
operator is the orthogonal projector:

dy

dŷ
= JŷP = I − JT (JJT)−1J (56)

Hence, JŷP is idempotent, symmetric, and does not depend on the second-order derivatives of the
constraints in H . We can easily prove that all the eigenvalues of a symmetric and idempotent matrix
are either 0 or 1. Thus, the spectral norm of the Jacobian is 1:

||JŷP|| = max{|λp|} = 1, (57)

with λi being the p-th eigenvalue (to be not confused with the Lagrangian multipliers). Being the
Jacobian bounded to 1, the projection operator P is a non-expansive mapping in RNO . In other
words, the mapping operated by P is 1-Lipschitz:

∥P(ŷi)− P(ŷj)∥ ≤ ∥ŷi − ŷj∥ , (58)

which concludes the proof of the theorem.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Practical implications The bounding of the projection operator leads to important practical con-
sequences in training a neural network, such as:

• Adversarial robustness (or forward sensitivity): Small input perturbation cannot be magni-
fied by the projection operation, which follows directly from Eq. 58.

• Stability of gradient flow dynamics (or backward sensitivity): During backpropagation, the
pre-projection gradient is multiplied by a factor JŷPT = JŷP , which is bounded.

∇ŷℓ = JŷPT∇ỹℓ with ||∇ŷℓ|| ≤ ||JŷPT || ||∇ỹℓ||, (59)

with ℓ being the loss term. Hence, the gradient flow is well conditioned (no exploding gra-
dients can originate from the projection step, the scale of pre-projection and post-projection
gradients is comparable), which leads to smoother and faster training convergence.

Comparison with null-space methods (predict-and-complete) In null-space methods, a neural
network fθ outputs a vector z ∈ RNO−NC : z = fθ(x). Then, a mapping φx uses the constraints
c(x, y) to complete the output vector with φx(z) ∈ RNC such that y = [z φx(z)]

T .
The Jacobian of the constraints can be factored into two blocks:

Jc =
[
Jc[0:m] Jc[m:NO]

]
, with m = NO −NC (60)

The mapping φx represents the solution of a (non)linear system of equations, either explicitly or by
using a root-finding solver (e.g., Newton method). According to Donti et al. (2021), the differential
of such mapping can be computed leveraging the implicit function theorem (as in OptNet (Amos &
Kolter, 2017):

∂φx

∂z
= Jzφ = −(Jc[m:NO])

−1Jc[0:m] (61)

Hence, the operator-norm bound leads to:

||Jzφ|| ≤ ||(Jc[m:NO])
−1|| ||Jc[0:m]|| (62)

∥φx1 − φx2∥ ≤ ||Jzφ|| ∥z1 − z2∥ , (63)

We observe that the Jacobian of the mapping (completion step) is not bounded, as it depends directly
on the constraints. Indeed, while the second term ||Jc[0:m]|| can be tuned by re-scaling the variables
in the neural network, there is no simple trick to condition the term ||(Jc[m:NO])

−1||. The spectral
norm of the inverse matrix can be approximated by the smallest singular value σmin(Jc[m:NO]).
Then, if the constraints Jacobian matrix block Jc[m:NO] is not well-conditioned:

||(Jc[m:NO])
−1|| ∼ 1

σmin

σmin → 0 , ||Jzφ|| → ∞
(64)

Thus, we conclude that the completion step is in general not 1-Lipschitz, with Lipschitz constant
κ = ||(Jc[m:NO])

−1||. This can potentially lead to instabilities during training and result in sub-
accurate NNs, with respect to unconstrained counterparts (e.g., as in (Beucler et al., 2019)):

• Adversarial robustness (or forward sensitivity): Small input perturbation can be amplified
by a factor κ.

• Stability of gradient flow dynamics (or backward sensitivity): During backpropagation,
according to (Donti et al., 2021), the upstream gradient can be computed as:

dℓ

dz
=

∂ℓ

∂z
− ∂ℓ

∂φx
· ∂φx

∂z
(65)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We can bound the upstream loss as:∥∥∥∥∥∥∥∥ ∂ℓ∂z
∥∥∥∥− ∥∥∥∥ ∂ℓ

∂φx

∥∥∥∥∥∥∥∥∂φx

∂z

∥∥∥∥∥∥∥∥ ≤ ∥∥∥∥ dℓdz
∥∥∥∥ ≤ ∥∥∥∥ ∂ℓ∂z

∥∥∥∥+

∥∥∥∥ ∂ℓ

∂φx

∥∥∥∥ ∥∥∥∥∂φx

∂z

∥∥∥∥ (66)

And considering the derived Lipschitz constant κ:∥∥∥∥∥∥∥∥ ∂ℓ∂z
∥∥∥∥− κ

∥∥∥∥ ∂ℓ

∂φx

∥∥∥∥∥∥∥∥ ≤ ∥∥∥∥ dℓdz
∥∥∥∥ ≤ ∥∥∥∥ ∂ℓ∂z

∥∥∥∥+ κ

∥∥∥∥ ∂ℓ

∂φx

∥∥∥∥ (67)

Hence, the gradients expand or shrink by a factor κ, potentially leading to undesired phe-
nomena such as vanishing or exploding gradients.

C IMPLEMENTATION DETAILS

C.1 ADANP ALGORITHM

Algorithm 1 provides a high-level overview of the procedure underlying the AdaNP module. The
depth of AdaNP (i.e., the number of projection iterations) adapts to satisfy the constraints require-
ments according to a specified tolerance.

Algorithm 1 AdaNP: Adaptive-depth Neural Projection

1: Input: input x, preliminary prediction ŷ, constraints c, tolerance εt, maximum depth dmax
2: Initialize: depth counter i← 0
3: while m(c(x, ŷ)) > εt and i < dmax do
4: Compute constraints Jacobian: Jyc
5: Compute: B = Jyc|x,ŷ
6: Compute: v = Bŷ − c(x, ŷ)
7: Compute: B∗ = I −BT (BBT)−1B
8: Compute: v∗ = BT (BBT)−1v
9: Project: ỹ = B∗ŷ + v∗

10: Update: ŷ = ỹ
11: Increment: i← i+ 1
12: end while
13: return ỹ

Here, m(c(x, ŷ)) represents some measure of the constraint residual, where m(·) can be the max or
the mean operator.

C.2 ADANP ACTIVATION ALGORITHM

In Section 4.4, we introduced a strategy for constrained learning during the early stages of training.
The algorithm we propose (Algorithm 2) assesses the effectiveness of the projection operation by
quantifying and comparing a task-specific loss measure (mℓ) computed on both the preliminary and
the projected predictions. This loss measure is different from the complete training loss function. In
the presented experiments, denoting by ȳ either ŷ or ỹ, depending on the context, we define:

• Function fitting: For regression tasks, mℓ = 1
N

∑N
i=1 ||yi − ȳi||2 is the standard mean

squared error loss.
• Constrained optimization problem: In the context of unsupervised learning for para-

metric optimization problems, we define the loss measure as mℓ = 1
N

∑N
i=1 fi(x, ȳ) +

λC

N

∑N
i=1 ||c(xi, ȳ)||. It is essential to include a penalty term for constraint violations, as

strictly enforcing the constraints may inherently lead to larger values of the objective func-
tion.

The algorithm is applied at each forward pass during training. Specifically, it is executed after the
raw backbone output (preliminary prediction ŷ) and the adaptive projection step (projected predic-
tion ỹ).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

To provide an intuitive analogy, this mechanism is reminiscent of trust-region methods in constrained
optimization (Nocedal & Wright, 2006), where a candidate step is only accepted if it leads to a suf-
ficient improvement in the objective. In our case, a task-specific cost function is used to assess
whether the projection improves the prediction.

Algorithm 2 AdaNP activation algorithm during training

1: Input: neural network fθ, input x, loss measure mℓ

2: Predict: ŷ = fθ(x)
3: Project: ỹ = P(ŷ)
4: if mℓ(ỹ) > mℓ(ŷ) then
5: ỹ = ŷ ▷ Discard the projection and use original prediction
6: else
7: ỹn = AdaNP(ỹ) ▷ Activate AdaNP
8: end if
9: return ỹn

C.3 BATCH LOCAL PROJECTION

The computationally most expensive operation in the neural projection layer is the matrix inversion
(BBT)−1 (Def. 1 in Section 4.1), which has a complexity of O(N3). At inference time, N = NC ,
since B ∈ RNC×NO and BBT ∈ RNC×NC . Hence, considering a number of constraints NC < 103,
the matrix inversion is performed in less than 1 million FLOPs, which is an affordable amount
for most modern CPUs and GPUs. During training, assuming the use of batch gradient descent
and defining the batch size (BS) as the number of data points processed in a single iteration, an
equivalent number of matrix inversions must be performed. Thus, the computational cost for a
single batch is apparently O(BS ×N3

C). To address this, we leverage parallel computing on GPUs
by constructing a rank-3 tensor B ∈ RBS×NC×NO to hold BS local matrices B. Similarly, a rank-2
tensor V ∈ RBS×NC is built to store BS local vectors v. Modern deep learning libraries enable
batch operations, such as matrix inversion, which reduce the effective complexity to O(N3

C) (i.e.,
scaling only with the number of constraints). To invert the batch of matrices, we use the Cholesky
factorization algorithm (Burden & Faires, 2005).
Given these conditions and the capabilities of current hardware, the neural projection operation
remains computationally efficient even during training when the number of constraints is in the
order of a few hundred. Moreover, the complexity of this method is equivalent to other state-of-the-
art methods such as DC3 (Donti et al., 2021), where each Newton’s step in the completion algorithm
requires the inversion of a batch of (NC ×NC) matrices.

C.4 MEMORY FOOTPRINT

For each neural projection layer, the AdaNP module creates four 3D tensors:

• Tensor B of shape (BS,NC , NO)

• Tensor b of shape (BS,NC , 1)

• Tensor B∗ of shape (BS,NO, NO)

• Tensor b∗ of shape (BS,NO, 1)

Assuming 32-bit floating-point representation (i.e., 4 bytes per element), the memory required to
store these tensors for a single projection step is:

MP = 4 ·BS · (NO + 1) · (NC +NO) (bytes) (68)

Figures 2 and 3 illustrate how the memory requirement for a single projection layer is affected by
variations in batch size, the number of predicted variables, and the number of constraints.

The total memory usage of the unrolled AdaNP depends on the mode of operation:

• During training, tensors are retained at each of the n projection steps (i.e., for gradient
computation), resulting in:

Mtrain = 4 · n ·BS · (NO + 1) · (NC +NO) (69)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 2: Memory footprint of a single projection layer P . NC is the number of constraints, and
NO is the dimension of the neural network output. The memory usage scales linearly with the batch
size, with the growth rate determined by the number of predicted variables and constraints. For a
batch size of 200, the memory requirement is on the order of tens of megabytes.

Figure 3: Memory footprint for a fixed batch size of 200 samples. NC is the number of constraints,
and NO is the dimension of the neural network output. For large-scale tasks involving thousands of
variables and constraints, the AdaNP module can become memory-intensive, with each projection
layer requiring more than 1 GB of memory.

• During inference, tensors are not retained across steps, and the peak memory usage is:

Minfer = 4 ·BS · (NO + 1) ·NO (70)

D ADDITIONAL EXPERIMENTS

D.1 HEURISTIC ANALYSIS OF CONSTRAINED LEARNING AND HYPERPARAMETERS

Illustrative function fitting We aim to fit the illustrative oscillating function y : R→ R2, defined
by y1(x) = 2 sin(fx) and y2(x) = − sin2(fx) − x2, where x ∈ R is the unidimensional indepen-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 4: Memory usage during training and inference as a function of the number of projection
layers n, for two problem scales. NC is the number of constraints, and NO is the dimension of the
neural network output. Results are shown for a fixed batch size BS = 200. Smaller-scale setup:
NC = 50, NO = 100; larger-scale setup: NC = 150, NO = 200. Training memory increases
linearly with n, with significantly higher usage in larger-scale problems. Inference memory remains
nearly constant across all configurations.

dent variable (input) and the scalar f is the frequency. Notably, the system is implicitly linked by a
nonlinear constraint c(x, y1, y2) = (0.5y1)

2 + x2 + y2, involving both input and output variables.
We train an ENFORCE model consisting of a 64-neuron 1-hidden-layer fully connected ReLU neu-
ral network as a backbone and an AdaNP module to force the predictions to satisfy the constraint.
The supervised task loss is the mean squared error (ℓT = 1

N

∑N
i=1 ||yi − ỹi||2), while λC is set to

zero (i.e., the constraint is addressed exclusively by AdaNP and no soft constraint term is used). To
verify the regression capabilities, we sample 100 training data points from a uniform distribution
in x = [−2, 2] and 100,000 test points in the same domain. Every run is repeated 5 times using
different initialization seeds. We compare the method with a traditional (unconstrained) multilayer
perceptron (MLP) and a soft-constrained neural network sharing the same architecture. We train all
the NNs for 50,000 epochs, using Adam optimizer and a learning rate of 10−3.

Table 4: Regression accuracy and constraint guarantee of ENFORCE on 100,000 test samples when
compared with a multilayer perceptron (MLP) and a soft-constrained neural network (Soft). Results
for λD = 0.5, ϵT = 10−4, and ϵI = 10−6 are reported. We report the inference time for a batch of
1,000 samples, with f = 5. (Note that MAPE = 100%

N

∑N
i=1

∣∣∣y∗
i −ỹi

y∗
i

∣∣∣).
Method MAPE [%] R2 Mean eq. [%] Max eq. [%] Inference [s]
MLP 0.339 ± 0.083 0.994 ± 0.003 1.47 ± 0.33 17.13 ± 3.94 0.002 ± 0.000
Soft (λC = 1) 0.944 ± 0.143 0.972 ± 0.002 1.55 ± 0.16 7.77 ± 0.40 0.002 ± 0.000
ENFORCE 0.060 ± 0.028 0.999 ± 0.000 0.00 ± 0.00 0.00 ± 0.00 0.008 ± 0.003

The main results are summarized in Table 4. ENFORCE outperforms the soft-constrained neural
network and the MLP by effectively minimizing the nonlinear constraint residual, guaranteeing
arbitrary satisfaction with minor computational costs (Fig. 5c, Appendix D). The inference time for
a batch of 1,000 samples is 6 ms longer when using ENFORCE compared to an MLP. This amount
should be regarded as additive (+6 ms), not multiplicative (e.g., 4x relative to the MLP). Indeed, the
computational complexity is entirely attributed to the AdaNP module, meaning that the backbone
architecture has no impact. Therefore, if applied to larger backbones (e.g., transformers), the relative
computational impact may become negligible.
We report in the following additional heuristic observations and implications of our constrained

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2

1

0

1

2

y 1

True
MLP
Constrained

(a) y1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

4

3

2

1

0

y 2

True
MLP
Constrained

(b) y2

2 1 0 1 2
y1

4

3

2

1

0

y 2

True
MLP
ENFORCE

(c) Constraint Satisfaction

20 40 60 80 100
Fraction of the Dataset (%)

100

101

102

103

(M
SE

y 1
+

M
SE

y 2
)

1

MLP
ENFORCE

(d) Data Scarcity

Figure 5: Prediction comparison between ENFORCE (λD = 0.5, ϵT = 10−4, ϵI = 10−6) and
a multilayer perceptron (MLP). ENFORCE enhances the overall accuracy and guarantees satisfac-
tion for highly nonlinear constraints. ENFORCE consistently performs better than a standard MLP
even when trained on uniformly sampled fractions of the training dataset. Interestingly, ENFORCE
outperforms the MLP in data-scarce regions of the domain, which in this dataset correspond to the
domain extremities (as shown in Fig. 5b). More generally, ENFORCE also performs better under
data-scarcity conditions when the models are trained on uniformly sampled fractions of the dataset
(Fig. 5d). This observation suggests that constrained learning may enhance data efficiency.

learning routine on the simple function fitting case study. Specifically, we observe (i) the positive
influence of our approach on the training dynamics and loss convergence, and (ii) we study the
impact of constrained learning hyperparameters such as ϵT and λD.

Effects of constrained learning Notably, ENFORCE outperforms the MLP even before the pro-
jection steps, demonstrating superior performance using only the neural network backbone (Fig. 6a,
dashed-pink line). This can be attributed to the structure of the hard-constrained learning process,
where the predictions are adjusted via projection to satisfy underlying constraints. Unlike soft-
constrained methods, which only penalize constraint violations in the loss function, hard-constrained
optimization incorporates projection-based adjustments that transform predictions to adhere strictly
to the constraints. Consequently, after a few training steps, the model benefits from constrained
learning, aligning its predictions more closely with valid regions of the solution space, resulting
in improved predictions even before projection. Similar insights are also provided by Chen et al.
(2021). Therefore, the constrained learning approach is likely to yield improved results even when
AdaNP is omitted during inference to enhance computational efficiency. However, it should be noted
that in this scenario, constraint satisfaction cannot be guaranteed.

Training dynamics To understand the training dynamics of ENFORCE, we analyze the loss
curves shown in Fig. 6a, where the training data loss of ENFORCE is compared to the MLP. Being
interested in the effect of hard-constrained learning and to ease the visualization, we do not report
here the loss curve of the soft-constrained neural network. In this case study, AdaNP contributes
to the learning process from the very early iterations (Fig. 6b, orange line), suggesting that the
projection operations positively guide the optimization process. The combination of approximated
feasible predictions and minimization of projection displacement drives the learning process toward
more optimal outcomes.
The modified loss function effectively guides the training process toward smaller projection dis-
placements (Fig. 6b, green dashed line). The displacement loss decreases consistently during train-
ing due to the influence of the penalty term in the loss function. Moreover, the depth of AdaNP
progressively diminishes over training iterations down to ∼1 layer (Fig.6b, orange line), due to (1)
improved overall regression accuracy and (2) smaller projection displacement (i.e., a better linear
approximation of the constraints). This adaptive behavior optimizes computational resources by
adjusting to the required tolerance at each iteration. Furthermore, this decay in AdaNP depth is
consistently observed across different training tolerance values, as illustrated in Fig.8a.

Constrained learning hyperparameters (training) We systematically analyze the influence
of hyperparameters, such as the displacement weighting factor λD and the tolerance ϵT , on the
constrained learning process. Fig. 7 shows the influence of the hyperparameters on the accuracy of
trained ENFORCE models evaluated on the test set.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Epoch

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

 D
at

a

Loss (MLP)
Loss Before Projection (ENFORCE)
Loss After Projection (ENFORCE)

(a) Loss neural network vs. ENFORCE

0 10000 20000 30000 40000 50000
Epoch

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

Loss After Projection
Loss Displacement

0

1

2

3

4

5

6

7

8

9

10

NP

 L
ay

er
s (

T
=

10
4)

AdaNP Depth

(b) ENFORCE Losses and AdaNP

Figure 6: ENFORCE demonstrates significantly improved convergence, achieving lower loss com-
pared to an unconstrained MLP. Enhanced training performances are reported for the backbone
network of ENFORCE even before the action of AdaNP. This effect is enabled by the simultane-
ous minimization of the projection displacement (in green) and the action of the AdaNP module (in
yellow). Note that we report average values across multiple runs, which explains why the depth of
AdaNP appears as a step function with non-integer values.

The impact of the training tolerance ϵT on the model accuracy does not exhibit a clear trend, as its
effect varies unpredictably with the weighting factors. Moreover, its influence is generally small
compared to the variance of different training runs (Fig. 7). Intuitively, a smaller tolerance ϵT
necessitates deeper AdaNP modules, resulting in higher computational costs due to the increased
number of neural projection layers. This effect is visible in Fig. 8a, where the depth of AdaNP
during training is reported (i.e., number of projection layers). The average depth of AdaNP
increases to accommodate stricter tolerances. For example, it expands from one to three layers as
the tolerance ϵT is tightened from 1 to 10−5. Notably, in this case study, AdaNP operates with a
minimum of one projection layer (i.e., when the tolerance is set to 1) and a maximum of 100. More
importantly, the required depth tends to have a slower decay during training, if compared to using
less strict tolerances (as visible in Fig. 8a). Larger tolerances result, on average, in shallow AdaNP
layers (approximately one layer). This significantly reduces the training time associated with the
projection operations. Along with the minor impact on overall accuracy, this observation suggests
setting the training tolerance ϵT to less stringent requirements.
The regression accuracy is evidently affected by the choice of the displacement loss weighting factor
λD (Fig. 7). Remarkably, unlike the challenging task of tuning weighting factors in soft-constrained
methods (Wang et al., 2020a), the constrained learning approach proposed here positively impacts
accuracy regardless of the specific weighting factor chosen (as shown in Fig. 7, the accuracy of
ENFORCE is consistently greater than that of a standard MLP). However, an inappropriate choice
of this parameter can result in suboptimal outcomes (e.g., when λD = 2 in Fig. 7). Therefore,
careful tuning of this hyperparameter is warranted.

Constrained learning hyperparameters (inference) During inference, ENFORCE dynamically
adapts the depth of AdaNP to ensure an average tolerance below ϵI = 10−6 in this case study. The
required depth, however, also depends on the training parameters. Fig. 8b illustrates the number of
NP layers needed to satisfy the constraint under varying λD and ϵT . The weighting factor is shown
to reduce the required number of NP layers by half, with no additional cost during training. This
phenomenon can be attributed to the fact that, in the absence of a penalty for projection displace-
ment, the neural network is free to learn a function that, although potentially far from the actual
one, results in projections that fall within the vicinity of the ground truth. This approach, however,
necessitates multiple projections. In contrast, the penalty term drives the model to learn a function
that is sufficiently close to the ground truth, thereby reducing the number of neural projections re-
quired. Increasing the value of ϵT impacts (positively) the depth of AdaNP at inference time when
the displacement penalty factor is set to be small during training. This finding further supports the
recommendation of employing shallow AdaNP modules during training, by relaxing the value of
ϵT .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Weighting Factor Displacement Loss ()

0

200

400

600

800

(M
SE

y 1
+

M
SE

y 2
)

1

MLP

Training
Tolerance (T)

T: 1e-05
T: 0.0001
T: 0.001
T: 0.01
T: 0.1
T: 1.0

Figure 7: Influence of constrained learning hyperparameters on the accuracy of ENFORCE on the
test set (note that here we plot the inverse of the mean squared error (MSE)). The weighting factor
λD favors the learning process if appropriately tuned. Conversely, the training tolerance ϵT exhibits
a small impact on performance, suggesting it can be set based on available resources. Overall,
despite the choice of hyperparameters, ENFORCE is more accurate than an MLP with the same
complexity, while also satisfying the underlying nonlinear constraint.

0 10000 20000 30000 40000 50000
Epoch

1.0

1.5

2.0

2.5

3.0

NP

 L
ay

er
s -

 Tr
ai

ni
ng

Training
Tolerance (T)

T: 1e-05
T: 0.0001
T: 0.001
T: 0.01
T: 0.1
T: 1.0

(a) Depth of AdaNP (number of neural projection
layers) during training.

10 5 10 4 10 3 10 2 10 1 100

Constraint tolerance training (T)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

NP
 L

ay
er

s -
 In

fe
re

nc
e

(
I=

10
6)

Weight Displacement Loss
: 0.0
: 0.001
: 0.1, 0.25, 0.5, 0.75, 1, 2

(b) Depth of AdaNP (number of neural projection
layers) during inference.

Figure 8: Dynamic evolution of AdaNP during training and inference when different training hy-
perparameters are chosen. At training time, AdaNP is deeper as a smaller constraint tolerance ϵT is
chosen.

We conclude that the displacement loss weighting factor λD plays an important role by balancing
the contribution of the projection displacement error. On the other hand, enforcing strict satisfac-
tion during training with an arbitrary small tolerance ϵT does not necessarily improve the overall
outcome.

D.2 ZERO-SET NOT LOCALLY C1,1

We provide an experiment involving a simple regression task with a constraint whose zero set is not

locally C1,1. Specifically, we consider regressing the functions y1 = sin(x) and y2 = 3

√
sin2(x),

subject to the cusp constraint c(y1, y2) = y21 − y32 . This constraint has a singular point at the origin,
where the gradient is non-Lipschitz. We train the model on 100 data points sampled in [−2, 2]
and test on 100,000 points. ENFORCE achieves constraint violations below 10−6 across all test
samples, including near the singularity. This result suggests that ENFORCE can handle constraints

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

that are not locally C1,1.

D.3 SCALING ANALYSIS FOR NONCONVEX PROBLEMS WITH LINEAR AND NONLINEAR
CONSTRAINTS

In this section, we present detailed results from the scaling analysis conducted on the two classes of
optimization problems presented in Section 5.1: (i) nonconvex problems with linear equality con-
straints, and (ii) nonconvex problems with nonlinear equality constraints. The following tables report
key performance metrics of ENFORCE across varying problem sizes, including different numbers
of constraints and optimization variables, and compare them with alternative deep learning-based
methods and a traditional large-scale nonlinear programming solver such as IPOPT. Table 5, Table 6
and 7 report the resulting metrics for the linearly constrained case and the nonlinearly constrained
case, respectively.

D.4 DESCRIPTION OF REAL-WORLD CASE STUDY

We adopt a process simulation benchmark reported in prior work (Iftakher et al., 2025), which mod-
els the separation of an azeotropic refrigerant using extractive distillation with an ionic liquid. The
underlying simulation environment incorporates equilibrium calculations with strong nonlinearities,
making the problem computationally demanding and representative of real-world scientific model-
ing challenges.

The system is governed by mass and energy balance relationships that combine both linear and
nonlinear dependencies across inputs and outputs, expressed as physical constraints. The setup
defines three controllable input variables. The input space is sampled uniformly over predefined
ranges, and for each configuration, steady-state outputs are generated from a simulator. The outputs
include multiple flow rates and component fractions, forming a structured multivariate response. For
additional details, the reader is referred to Iftakher et al. (2025), Section 3.4.

The study aims to develop a neural network serving as a computationally cheaper surrogate model,
while strictly respecting the underlying nonlinear physics of the system.

E OUTLOOK AND LIMITATIONS

This work opens several research avenues toward developing robust NNs that strictly adhere to un-
derlying system knowledge. First, the current method can be extended to handle piecewise-defined
constraints and nonlinear inequality constraints. Additionally, the requirement for the constraint to
be a C1 function could be relaxed by leveraging sub-gradients (Boyd et al., 2003). Finally, alterna-
tive (e.g., weighted) projection approaches could be explored to better account for the morphology
and scaling of the constraints.
The method has the potential to address specific challenges or complement existing approaches,
including those based on NNs and other machine learning models (e.g., Gaussian processes and
support vector machines). For instance, hard constraints can be combined with soft-constraint tech-
niques, such as PINNs, to reliably solve PDEs (Lu et al., 2021). Additionally, the method could en-
hance learning performance in partially annotated datasets by inferring missing information through
available constraints. Finally, an interesting future direction could involve applying the AdaNP mod-
ule to GenAI models, guiding the generation process toward domain-compliant samples, such as for
synthetic data or image/video generation.

Limitations In this paragraph, we highlight the main limitation of the proposed method. Firstly,
the effectiveness of ENFORCE is highly dependent on the regression capabilities of the neural net-
work backbone. When the model lacks sufficient complexity to achieve accurate predictions, EN-
FORCE provides limited benefit. This is supported by the theoretical implications of the orthogonal
projections on the constraints manifold discussed in this study. Furthermore, the method becomes
computationally and memory-intensive when applied to systems with a large number of constraints
(e.g., more than a few hundred). This is due to the computational cost of each neural projection
layer, which scales as O(N3

C) because of the matrix inversion operation, where NC is the number
of constraints. Further details are provided in Appendix C.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 5: Scaling experiments on a nonconvex optimization problem with linear equality constraints
(Eq. 5) evaluating performance across varying numbers of constraints (NC) and variables (NO).
ENFORCE consistently predicts feasible and near-optimal solutions, outperforming alternative deep
learning-based methods. DC3 is trained for a greater number of epochs than the other methods, until
convergence is reached.

Constraints (NC) 50 70 150
Variables (NO) 100 100 200

Method Metric

IPOPT Obj. value −11.11± 0.00 −4.84± 0.00 −10.64± 0.00
Max eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mean eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Inference [s] 0.095± 0.033 0.13± 0.04 0.379± 0.060
Training [min] – – –
Epochs – – –

MLP Obj. value −27.43± 0.00 −27.43± 0.00 −52.99± 0.01
Max eq. 24.65± 0.08 24.89± 0.12 45.38± 0.56
Mean eq. 7.32± 0.00 7.19± 0.00 9.14± 0.02
Inference [s] 0.001± 0.000 0.001± 0.001 0.001± 0.001
Training [min] 8.87± 0.18 8.89± 0.11 9.01± 0.25
Epochs 1000 1000 1000

Soft Obj. value −10.10± 0.31 −1.86± 0.17 1.28± 0.32
(λc = 5) Max eq. 0.53± 0.04 0.79± 0.08 1.45± 0.43

Mean eq. 0.03± 0.00 0.06± 0.00 0.08± 0.00
Inference [s] 0.002± 0.000 0.001± 0.000 0.001± 0.000
Training [min] 10.69± 0.51 10.72± 0.43 10.91± 0.46
Epochs 1000 1000 1000

Soft Obj. value −10.69± 0.01 −4.18± 0.03 −8.18± 0.18
(λc = 1) Max eq. 0.54± 0.05 0.86± 0.05 1.47± 0.41

Mean eq. 0.05± 0.00 0.08± 0.00 0.09± 0.00
Inference [s] 0.001± 0.000 0.001± 0.000 0.001± 0.001
Training [min] 10.69± 0.52 10.70± 0.46 10.85± 0.49
Epochs 1000 1000 1000

Soft Obj. value −12.05± 0.00 −6.82± 0.01 −13.55± 0.02
(λc = 0.1) Max eq. 2.09± 0.03 2.51± 0.08 2.17± 0.12

Mean eq. 0.36± 0.00 0.43± 0.00 0.35± 0.00
Inference [s] 0.001± 0.001 0.001± 0.000 0.001± 0.001
Training [min] 10.62± 0.61 10.73± 0.52 10.88± 0.54
Epochs 1000 1000 1000

DC3 Obj. value −10.31± 10.07 −2.76± 0.06 −6.27± 0.07
Max eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mean eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Inference [s] 0.003± 0.000 0.002± 0.000 0.004± 0.000
Training [min] 22.96± 3.73 20.57± 8.30 25.18± 8.63
Epochs 3500 3500 3500

ENFORCE Obj. value −11.50± 0.01 −4.86± 0.00 −10.59± 0.00
Max eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mean eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Inference [s] 0.008± 0.001 0.010± 0.001 0.016± 0.002
Training [min] 12.79± 0.03 12.72± 0.04 13.91± 0.07
Epochs 1000 1000 1000

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Scaling experiments on a nonconvex optimization problem with nonlinear equality con-
straints (Eq. 6) evaluating performance across varying numbers of constraints (NC = [10, 30, 50])
and variables (NO = 100). ENFORCE consistently predicts feasible and near-optimal solutions. In
the simplest setting, it outperforms the nonlinear programming solver IPOPT in terms of solution
quality.

Constraints (NC) 10 30 50
Variables (NO) 100 100 100

Method Metric

IPOPT Obj. value −26.27± 0.00 −21.81± 0.00 −18.05± 0.00
Max Eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mean Eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Inference [s] 0.094± 0.032 0.244± 0.132 0.268± 0.125
Training [min] – – –
Epochs – – –

MLP Obj. value −27.43± 0.00 −27.43± 0.00 −27.43± 0.00
Max eq. 214.95± 0.10 317.76± 0.06 317.14± 0.01
Mean eq. 59.49± 0.03 72.10± 0.01 69.63± 0.00
Inference [s] 0.001± 0.001 0.001± 0.001 0.001± 0.001
Training [min] 7.1± 0.3 7.8± 0.0 10.1± 3.1
Epochs 1000 1000 1000

Soft Obj. value 462.93± 29.91 > 103 > 105

(λc = 5) Max eq. 16.31± 1.00 71.27± 3.58 72.97± 0.74
Mean eq. 2.31± 0.10 16.19± 0.12 16.81± 0.03
Inference [s] 0.001± 0.000 0.001± 0.000 0.001± 0.001
Training [min] 12.4± 0.1 12.6± 0.3 12.8± 0.6
Epochs 1000 1000 1000

Soft Obj. value 61.93± 3.31 > 104 > 104

(λc = 1) Max eq. 15.67± 1.43 70.39± 3.46 72.18± 2.21
Mean eq. 2.16± 0.06 16.21± 0.14 16.81± 0.01
Inference [s] 0.001± 0.000 0.002± 0.000 0.002± 0.001
Training [min] 12.5± 0.1 12.6± 0.3 11.0± 0.6
Epochs 1000 1000 1000

Soft Obj. value −18.29± 1.21 > 103 > 103

(λc = 0.1) Max eq. 16.18± 0.55 70.37± 5.08 76.56± 2.35
Mean eq. 2.05± 0.17 16.35± 0.08 16.86± 0.05
Inference [s] 0.001± 0.000 0.001± 0.000 0.002± 0.001
Training [min] 11.5± 0.1 12.5± 0.4 11.9± 0.1
Epochs 1000 1000 1000

ENFORCE Obj. value −26.37± 0.00 −21.48± 0.01 −16.68± 0.01
Max eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mean eq. 0.00± 0.00 0.00± 0.00 0.00± 0.00
Inference [s] 0.013± 0.002 0.023± 0.002 0.030± 0.005
Training [min] 25.3± 0.1 29.4± 0.1 35.8± 0.4
Epochs 1000 1000 1000

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 7: Scaling experiments on a nonconvex optimization problem with nonlinear equality con-
straints (Eq. 6) evaluating performance across varying numbers of constraints (NC = [70, 100]) and
variables (NO = [100, 200]). ENFORCE consistently predicts feasible and near-optimal solutions.
In the simplest setting, it outperforms the nonlinear programming solver IPOPT in terms of solution
quality.

Constraints (NC) 70 150
Variables (NO) 100 200

Method Metric

IPOPT Obj. value −11.69± 0.00 −29.45± 0.00
Max Eq. 0.00± 0.00 0.00± 0.00
Mean Eq. 0.00± 0.00 0.00± 0.00
Inference [s] 0.401± 0.167 3.40± 1.40
Training [min] – –
Epochs – –

MLP Obj. value −27.43± 0.00 −53.07± 0.00
Max eq. 317.97± 0.73 497.38± 4.64
Mean eq. 70.57± 0.01 118.39± 0.07
Inference [s] 0.001± 0.001 0.002± 0.001
Training [min] 9.4± 0.3 10.6± 0.3
Epochs 1000 1000

Soft Obj. value > 105 > 105

(λc = 5) Max eq. 73.63± 4.56 79.23± 3.81
Mean eq. 16.71± 0.03 16.72± 0.07
Inference [s] 0.002± 0.001 0.001± 0.001
Training [min] 14.0± 0.6 15.1± 0.7
Epochs 1000 1000

Soft Obj. value > 104 > 104

(λc = 1) Max eq. 73.80± 5.78 79.30± 3.70
Mean eq. 16.71± 0.04 16.68± 0.06
Inference [s] 0.001± 0.001 0.001± 0.000
Training [min] 13.9± 0.6 15.0± 0.6
Epochs 1000 1000

Soft Obj. value > 103 > 103

(λc = 0.1) Max eq. 75.36± 2.70 78.35± 1.95
Mean eq. 16.77± 0.07 16.63± 0.01
Inference [s] 0.001± 0.001 0.002± 0.001
Training [min] 13.9± 0.7 14.9± 0.8
Epochs 1000 1000

ENFORCE Obj. value −7.75± 0.03 −27.77± 0.02
Max eq. 0.00± 0.00 0.00± 0.00
Mean eq. 0.00± 0.00 0.00± 0.00
Inference [s] 0.049± 0.009 0.14± 0.08
Training [min] 49.0± 0.9 69.4± 23.1
Epochs 1000 1000

33

	Introduction
	Related work
	Soft-constrained neural networks
	Hard-constrained neural networks

	Preliminaries
	Nonlinear constrained learning
	AdaNP: Adaptive-depth neural projection
	Conditioning analysis
	Architecture
	Training ENFORCE

	Experiments and discussion
	Constrained optimization problem
	Nonconvex problem with linear constraints
	Nonconvex problem with nonlinear constraints

	Real-world case study

	Conclusions
	Appendix
	Mathematical derivations
	Closed-form neural projection
	Deviation from Newton's method
	Local convergence rate
	Uniqueness of the projection
	No-Worse prediction
	Conditioning of the projection operation

	Implementation details
	AdaNP algorithm
	AdaNP activation algorithm
	Batch local projection
	Memory footprint

	Additional experiments
	Heuristic analysis of constrained learning and hyperparameters
	Zero-set not locally C1,1
	Scaling analysis for nonconvex problems with linear and nonlinear constraints
	Description of real-world case study

	Outlook and limitations

