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Abstract

Jailbreak attacks pose persistent threats to large001
language models (LLMs). Current safety align-002
ment methods have attempted to address these003
issues, but they experience two significant limi-004
tations: insufficient safety alignment depth and005
unrobust internal defense mechanisms. These006
limitations make them vulnerable to adversarial007
attacks such as prefilling and refusal direction008
manipulation. We introduce DeepRefusal, a009
robust safety alignment framework that over-010
comes these issues. DeepRefusal forces the011
model to dynamically rebuild its refusal mech-012
anisms from jailbreak states. This is achieved013
by probabilistically ablating the refusal direc-014
tion across layers and token depths during fine-015
tuning. Our method not only defends against016
prefilling and refusal direction attacks but also017
demonstrates strong resilience against other018
unseen jailbreak strategies. Extensive evalu-019
ations on four open-source LLM families and020
six representative attacks show that DeepRe-021
fusal reduces attack success rates by approx-022
imately 95%, while maintaining model capa-023
bilities with minimal performance degradation.024
Our code is available at: anonymous git.025

1 Introduction026

Large Language Models (LLMs) (Achiam et al.,027

2023; Mistral AI, 2024; Team et al., 2024;028

Grattafiori et al., 2024) have demonstrated impres-029

sive performance across various natural language030

tasks, but ensuring them behave safely and reli-031

ably remains a significant challenge. Saftey align-032

ment efforts, such as refusal training, have endowed033

LLMs with the ability to provide refusal responses034

to inappropriate and toxic prompts, as shown in Fig-035

ure 1a. However, these safeguards frequently fail036

when confronted with adversarial Jailbreak attacks037

that disguise harmful requests to induce LLMs to038

circumvent refusal behaviors and trap in Jailbreak039

states (Wei et al., 2023a; Zou et al., 2023b; Chao040

et al., 2023), as shown in Figure 1b.041

At present, numerous defense strategies have 042

been proposed to defend against jailbreak attacks. 043

Adversarial training (Mazeika et al., 2024) tries to 044

enhance refusal robustness of LLMs against such 045

attacks by training on jailbreak samples. Circuit- 046

Breaker (Zou et al., 2024) suppresses harmful ac- 047

tivations within the model’s hidden states (Figure 048

1c) to bolster resilience. However, our experiments 049

show that existing defense strategies, even state- 050

of-the-art ones, can be easily bypassed by prefill- 051

ing attacks and refusal direction attacks, and are 052

susceptible to transfer attacks. Specifically, we 053

find that existing defenses remain predominantly 054

surface-level and exhibit two significant limitations. 055

(1) Insufficient Safety Alignment Depth: Current 056

safety alignment methods focus on suppressing tox- 057

icity within the initial few response tokens, while 058

overlooking the harmfulness of subsequent tokens. 059

As a result, the inherent safeguard of LLMs can 060

be bypassed by manipulating the initial response 061

tokens (i.e, prefilling attack) (Qi et al., 2025; Zhou 062

et al., 2024a; Vega et al., 2023). (2) Unrobust In- 063

ternal Defense Mechanisms: The shallow internal 064

defense mechanisms demonstrate limited resilience 065

to advancing jailbreak methodologies. Attackers 066

can iteratively refine input prompts to jailbreak 067

LLMs. Additionally, simple techniques such as 068

refusal direction ablation (Arditi et al., 2024) can 069

readily circumvent defenses1. 070

To mitigate the above limitations inherent in cur- 071

rent safety alignment methods, we present DeepRe- 072

fusal, an innovative framework designed for deep 073

and robust safety alignment. Unlike traditional 074

approaches that focus merely on surface-level fine- 075

tuning, DeepRefusal introduces adversarial pres- 076

sure directly into the model’s representation space 077

during the fine-tuning process, as illustrated in Fig- 078

ure 1d. By probabilistically ablating refusal di- 079

1Jailbreaking by fine-tuning is not within the scope of
this paper. Here are some orthogonal work: (Qi et al., 2023;
Tamirisa et al., 2024; Huang et al., 2024).
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Figure 1: Conceptual diagram of jailbreak and safety mechanisms at the representation level: (a) Safety alignment
prevents the model from answering harmful requests by activating the concept of refusal. (b) Jailbreak attacks
bypass the refusal behavior of the model through carefully designed prompts. (c) CircuitBreaker (Zou et al.,
2024) suppresses harmfulness within the hidden states (still vulnerable to attacks targeting token depth or internal
refusal mechanisms). (d) DeepRefusal simulates jailbreak scenario at the representation level, forcing the model to
reactivate the refusal behavior, which fundamentally enhances the robustness of the model’s refusal mechanism.

rections across multiple layers and token depths,080

DeepRefusal effectively simulates potential jail-081

break scenarios internally. The refusal direction is082

a direction in the model’s internal representation083

space that is strongly associated with producing084

refusal responses. This unique approach compels085

the model to develop a more robust refusal mecha-086

nism, ensuring it can resist harmful outputs at every087

token depth and layer depth, thereby enhancing its088

safety alignment capabilities significantly.089

Our contributions are summarized as follows:090

• We identify two key technical challenges in091

robust safety alignment and show that at-092

tacks along the refusal direction are a transfer-093

able, under-addressed threat to state-of-the-art094

safety alignment methods.095

• We design DeepRefusal, a framework that096

trains LLMs to rebuild safety mechanisms097

from jailbreak states by simulating adversar-098

ial conditions across various token and layer099

depths, bridging the gap between surface-level100

alignment and robust internal defense101

• Through extensive experiments, we demon-102

strate that DeepRefusal significantly improve103

alignment robustness, reducing attack success104

rates by approximately 95%, while effectively105

defending against prefilling attacks, refusal di-106

rection attacks, and showing strong robustness107

to other unseen jailbreak attacks.108

2 Related Works109

Jailbreak Attacks on LLMs. While LLMs demon-110

strate impressive performance, they remain vulner-111

able to adversarial inputs that bypass safety con- 112

straints. Early works explored manually crafted 113

prompts to elicit harmful outputs (Wei et al., 114

2023a; Mazeika et al., 2024), while more recent ap- 115

proaches have employed automated methods. GCG 116

attacks generate adversarial suffixes via gradient- 117

based optimization (Zou et al., 2023b), and CodeAt- 118

tack exploits insufficient alignment in code do- 119

mains (Ren et al., 2024). AutoDAN employs ge- 120

netic operations to evolve jailbreak prompts (Liu 121

et al., 2023), and PAIR uses attacker–victim loops 122

to iteratively refine jailbreak prompts (Chao et al., 123

2023). Prefilling attacks manipulate early token 124

activations to influence model outputs (Vega et al., 125

2023). Recent studies have revealed that refusal 126

direction (Arditi et al., 2024) can be used for jail- 127

break. Our experiments confirm that these refusal 128

direction attacks, achieve high success rates and 129

exhibit strong transferability within fine-tuned mod- 130

els. Furthermore, we find that current state-of-the- 131

art defense techniques fail to defend against such 132

attacks, highlighting the need for representation- 133

level robustness. 134

LLM Safety Alignment. Research into LLM 135

safety alignment has yielded several defensive 136

strategies against adversarial attacks. For instance, 137

R2D2 (Mazeika et al., 2024) and CAT (Xhonneux 138

et al., 2024) utilize adversarial training, incorporat- 139

ing optimized prompts or input-level perturbations 140

to strengthen model resilience. Meanwhile, La- 141

tent Adversarial Training (LAT) (Sheshadri et al., 142

2024; Casper et al., 2024) focuses on enhancing the 143

model’s resistance to harmful outputs by targeting 144

its internal residual stream. However, these ap- 145

proaches often demand substantial computational 146
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resources. Additionally, a method proposed in (Qi147

et al., 2025) aims to achieve deep safety alignment148

via data augmentation, yet it proves less effective149

against previously unseen attacks. CircuitBreaker150

(Zou et al., 2024), which defends against jailbreak151

attacks by suppressing harmful hidden states, tends152

to produce gibberish generation. This drawback153

significantly limits its practical utility in applica-154

tions where clear and timely refusal responses are155

essential. responses are preferred.156

Besides the above works, some solutions focus157

on designing input/output filters to screen poten-158

tially harmful content (Alon and Kamfonas, 2023;159

Inan et al., 2023) or intervening during model de-160

coding at inference-time (Robey et al., 2024; Xu161

et al., 2024a). However, these methods do not fun-162

damentally enhance model alignment. Instead, they163

necessitate additional components, thereby intro-164

ducing extra overhead during testing. It is impor-165

tant to note that these approaches are orthogonal166

to safety fine-tuning, and can be used in conjunc-167

tion during test-time. Thus, we do not compare our168

methods with these in this paper.169

Representation Engineering and Refusal Di-170

rection. Recently, analysis and manipulation tech-171

niques for the internal representations (i.e., activa-172

tions) of LLMs have gained widespread attention.173

(Zou et al., 2023a) formally introduced Representa-174

tion Engineering (RepE), which draws on insights175

from cognitive neuroscience to improve the trans-176

parency of AI systems. Furthermore, (Arditi et al.,177

2024) demonstrated that refusal in LLMs is me-178

diated by a single direction, termed the refusal179

direction, and elucidated the mechanism of jail-180

breaking at the representation level. Additionally,181

(Panickssery et al., 2023; Stickland et al., 2024)182

showcased how representation-level interventions183

can effectively control model output behavior. Our184

approach leverages these insights into the explain-185

ability of jailbreaking and LLM safety mechanisms186

to enhance model alignment and robustness.187

3 Observations and Motivation188

3.1 Current Safety Fine-Tuning Made on the189

First Few Tokens190

The majority of current safety alignment methods191

suffer from a shared limitation: they over-rely on192

aligning the model’s generation within the initial193

few tokens of the response (Yuan et al., 2024; Qi194

et al., 2025). This gives rise to an inherent vulnera-195

bility, termed the “alignment depth problem”. This196

Figure 2: Attack success rate with different lengths of
harmful tokens prefilled.

problem is rooted in a widely held yet unrealistic 197

assumption: when encountering harmful prompts, 198

a well-aligned model should instantaneously refuse, 199

i.e., produce refusal tokens like “I’m sorry...” at 200

the very beginning of its output. However, recent 201

work (Wei et al., 2023b; Zhou et al., 2024b) have 202

shown that once this initial safeguard is bypassed, 203

the model often freely generates harmful content. 204

This behavior is exploited by nearly all recently 205

proposed jailbreak attacks. For instance, DeRTa 206

(Yuan et al., 2024) finds that refusal responses typ- 207

ically place the first refusal token within the first 208

20 output tokens. If a prompt succeeds in sup- 209

pressing refusal behavior in this early region, the 210

likelihood of a successful jailbreak increases dra- 211

matically. Similarly, Qi et al. (2025) show through 212

KL divergence analysis that safety fine-tuning dis- 213

proportionately aligns early tokens, leaving later 214

tokens insufficiently aligned. 215

From the attacker’s perspective, Wei et al. 216

(2023b) argue that jailbreaks are essentially about 217

suppressing early refusal. This is further exem- 218

plified by the prefilling attack (Vega et al., 2023), 219

which prepends a harmful context before the ac- 220

tual prompt to mislead the model’s early genera- 221

tion. To validate this, we conduct a prefilling attack 222

experiment shown in Figure 2. We randomly se- 223

lect 100 harmful instructions from AdvBench (Zou 224

et al., 2023b), and prepend prefilled harmful tokens 225

of increasing length. The results demonstrate a 226

clear trend: as the length of the prefilled content 227

increases, the attack success rate rises significantly. 228

The current evidence collectively indicates that 229

merely relying on shallow alignment at the begin- 230

ning of a response is far from adequate for ensuring 231

robust safety. This underscores the critical vulner- 232

ability arising from the alignment depth problem 233

and highlights the necessity for deeper safety align- 234
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ment mechanisms that extend beyond the initial235

token positions. Insteadly, they should be deeply236

embedded within the model’s internal representa-237

tions, consistently spanning all stages of response238

generation.239

3.2 Jailbreak Inhibits the Activation of240

Refusal Direction241

Recent works (Arditi et al., 2024; Zou et al., 2023a;242

Xu et al., 2024b) have demonstrated that LLMs243

internally encode a refusal direction, which is a244

distinct activation pattern corresponding to refusal245

generation. To extract this direction, we adopt the246

methodology from Arditi et al. (2024). Formally,247

for each layer l ∈ [L] and post-instruction token248

position i ∈ [I], we calculate the mean activation249

µ
(l)
i for harmful prompts from D

(train)
harmful and ν

(l)
i for250

harmless prompts from D
(train)
benign:251

µ
(l)
i =

1

|D(train)
harmful|

∑
t∈D(train)

harmful

h
(l)
i (t) (1)252

253

ν
(l)
i =

1

|D(train)
benign|

∑
t∈D(train)

benign

h
(l)
i (t) (2)254

where h
(l)
i (t) denotes the hidden activation vector255

at layer l and position i for input t. The differ-256

ence between these two mean vectors defines the257

candidate refusal direction:258

r
(l)
i = µ

(l)
i − ν

(l)
i (3)259

This process yields an array of |I|×L candidate260

vectors. In line with Arditi et al. (2024), we refine261

this array through heuristic filtering to identify the262

most effective single direction r
(l∗)
i∗ , judging by its263

capacity to either induce or suppress refusal behav-264

ior upon manipulation. Importantly, this analysis265

reveals that jailbreak prompts actively inhibit the266

model’s internal refusal direction. As depicted in267

Figure 3, when processing adversarial prompts, the268

cosine similarity between model activations and the269

refusal direction shows a marked decline. This in-270

dicates that jailbreaks are not merely prompt tricks;271

instead, they directly alter the model’s internal272

safety-related activations, effectively bypassing273

its built-in refusal mechanism.274

This observation yields a crucial insight: We can275

simulate the worst-case impact of a jailbreak at-276

tack by directly ablating the refusal direction from277

the LLM’s activations. Unlike traditional training278

Figure 3: Cosine similarity between the residual stream
activation of the last token and refusal direction(Arditi
et al., 2024).

methods that rely on specific jailbreak prompts, 279

this activation-level approximation zeroes in on 280

the core mechanism exploited by jailbreak attacks. 281

It removes the necessity for detailed knowledge 282

of specific attack methodologies, making the ap- 283

proach more universal and controllable. More im- 284

portantly, it enables models to rebuild refusal be- 285

haviors even under the extreme internal conditions. 286

This innovation also eliminates the need for a large- 287

scale jailbreak corpus, making the training process 288

more efficient and practical. 289

4 Our DeepRefusal Method 290

Drawing on these observations, we introduce Deep- 291

Refusal, a novel approach designed to achieve 292

deep and robust safety alignment for LLMs. Deep- 293

Refusal simulates jailbreak scenarios within the 294

model’s internal structure without undermining its 295

language modeling capabilities or utility. By doing 296

so, it compels the model to rebuild and reinforce 297

its refusal mechanism across layer depth and token 298

depth. Our goal is to expose the model to these 299

simulated jailbreak scenarios during training. This 300

ensures the model learns to maintain robust refusal 301

behaviors even under adversarial conditions. 302

In practice, DeepRefusal utilizes two main strate- 303

gies to accomplish this goal: Layer-wise and Toke- 304

wise Probabilistic Activation Ablation (PAA). The 305

former involves probabilistically removing activa- 306

tion patterns across different layers of the model, 307

and the latter focuses on selectively ablating ac- 308

tivations at specific token positions within the 309

model’s output sequence. By integrating these 310

strategies, we ensure the model encounters a di- 311

verse array of simulated adversarial attacks. This 312

all-encompassing method compels the model to 313

develop robust defenses against various jailbreak 314

techniques, thereby maintaining safe and reliable 315
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performance even in challenging scenarios.316

4.1 Obtain the Refusal Direction317

A critical aspect of DeepRefusal is obtaining a di-318

rection that truly represents the refusal concept.319

The direction must induce refusal behavior across320

both benign and harmful samples: when added, it321

encourages the model to refuse, and when ablated,322

it prevents the model from refusing. Given differ-323

ent token positions and layers within an LLM may324

offer a large number of potential directions, we use325

a heuristic filtering approach to identify the most326

representative refusal direction (Arditi et al., 2024).327

This involves evaluating candidate directions328

based on their ability to consistently trigger or329

suppress refusal responses across a diverse set of330

prompts. Specifically, we define the refusal direc-331

tion as the vector r that satisfies two key criteria:332

(1) Addition Constraint: Adding this direction333

should consistently trigger a refusal response, even334

for harmless prompts.335

h(l)′ ← h(l) + r(l) (4)336

(2) Ablation Constraint: Removing this direc-337

tion should bypass the refusal mechanism, allowing338

the model to respond to harmful prompts.339

h′ ← h− r̂r̂⊤h (5)340

From a set of candidate directions {r(l)i }, we se-341

lect the single direction {r(l
∗)

i∗ } (denoted r̂) that best342

satisfies the both constraints across validation data.343

In addition, we tried to dynamically change the344

refusal direction during fine-tuning, but we found345

that the direction obtained in this way was very346

unstable and it was difficult to meet the above two347

constraints in real time. We finally chose to pre-348

calculate the optimal single refusal direction of-349

fline. And this choice ensures that the direction of350

ablation is definitely the refusal direction, reducing351

side-effects on other concept representations and352

language modeling. Our experiments proved that353

using the offline refusal direction is sufficient to354

improve alignment.355

4.2 Simulate Jailbreak with Layer-wise PAA356

To simulate jailbreak scenarios within the model’s357

internal hidden states and prompt the model to re-358

build its refusal mechanism (Figure 1d), we imple-359

ment an activation intervention at each of the L360

layers independently with probability p. Specifi- 361

cally, we denote 362

Ql ∼ Bernoulli(p), l = 1, 2, . . . , L, (6) 363

as the indicator that layer l is intervened. Here, 364

Qi = 1 indicates that we apply directional activa- 365

tion ablation at layer l. Consequently, Equation 5 366

can be reformulated as: 367

h′ ← h−Q(r̂r̂⊤h) (7) 368

Layer-wise PAA allows us to probabilistically 369

remove activation patterns across different layers 370

of the model. This simulates adversarial conditions 371

where the model’s internal safety mechanisms are 372

compromised at various layers. By doing so, the 373

model is forced to reinforce its refusal behavior 374

across its entire layer depth. This process signif- 375

icantly enhances the model’s robustness against 376

potential jailbreak attacks. 377

4.3 Simulate Jailbreak with Token-wise PAA 378

Let x = (x1, . . . , x|x|) denotes the user prompt 379

and y = (y1, . . . , y|y|) denotes the models’s output. 380

The full sequence length is T = |x| + |y|. We 381

denote πθ(y | x) as the model’s conditional distri- 382

bution over the response given the prompt. By the 383

chain rule, this can be expanded as: 384

πθ(y | x) =
|y|∏
t=1

πθ
(
yt | x, y<t

)
(8) 385

We introduce Ml,t ∼ Bernoulli(p) as an indica- 386

tor variable that determines whether to ablate the 387

refusal direction r̂ at layer l and position t. Dur- 388

ing the forward pass, the intervened hidden state is 389

updates as follows: 390

h
(l)′
t = h

(l)
t −Ql ×Ml,t

(
r̂ r̂⊤ h

(l)
t

)
(9) 391

The loss function is then defined as: 392

L = −
|y|∑
t=1

log πθ
(
yt | x, y<t; {h(l)′t }Ll=1

)
(10) 393

Token-wise PAA selectively targets specific to- 394

ken positions within the model’s output sequence. 395

This strategy directly addresses the model’s vulner- 396

ability to generate harmful content when certain 397

tokens are either manipulated or suppressed. By 398

focusing on these critical positions, the model is 399

trained to recognize and counteract such adversar- 400

ial manipulations. As a result, it learns to consis- 401

tently maintain robust refusal behaviors throughout 402

the entire token generation process, thereby signifi- 403

cantly enhancing its safety and reliability. 404
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4.4 Training Procedure of DeepRefusal405

Our final design draws from Qi et al. (2025) and uti-406

lizes quadruples in the form of (x, x′, y, y′), where407

x denotes benign instructions paired with its corre-408

sponding safe response y, and x′ denotes harmful409

instructions associated with harmful response y′.410

A pair (x′, y) signifies a harmful instruction met411

with a refusal response, which is the desired result412

of safe alignment. Conversely, a pair (x′, y′), typ-413

ically indicates that the LLM has been jailbroken.414

Our primary objective is that for any x′, the model415

consistently generates safe response y.416

This consistency must be maintained even un-417

der challenging conditions such as prefilling at-418

tacks, where the model encounters modified input419

sequences (x′, y′<t). In such scenarios, we aim420

for the model to persist in generating the safe re-421

sponse y rather than succumbing to the attack and422

producing the harmful response y′. Similarly, in423

the face of representation-level attacks, such as424

those described in Eq.(9), which involve ablating425

the refusal direction, our goal is for the model to426

reconstruct and maintain the refusal response y.427

We employ Equation 11 to simulate the prefilling428

attack, where a harmful prefix is prepended to the429

response.430

πθ(y|x, y′≤k), k ∼ Uniform[20, 25] (11)431

To fine-tune the model against such attacks, we432

use the following objective function:433

min
θ

α× E
[
− log πθ(y|x′, y′≤k; {h(l)′}Ll=1)

]
+(1− α)× E

[
− log πθ(y|x; {h(l)′}Ll=1))

] (12)434

Consistent with Qi et al. (2025), we set α to 0.2.435

Our training dataset comprises three types of pairs:436

(x, y) to preserve the model’s utility, (x′, y) for437

refusal training, and the augmented pair (x′, y′<t, y)438

to enhance robustness against prefilling attacks.439

Algorithm 1 outlines the entire procedure of440

DeepRefusal. It first obtains a global refusal di-441

rection r̂, following Arditi et al. (2024). Then, it442

fine-tunes the model with probabilistic activation443

ablation and harmful-prefix augmentation. The444

PAA is applied to attention (attn), multi-layer per-445

ceptron (mlp), and residual stream modules, pro-446

viding a more comprehensive defense. We further447

augment the training data with harmful prefixes448

to ensure that the model can maintain its refusal449

behavior even when encountering manipulated in-450

puts. By integrating these techniques, DeepRefusal451

Algorithm 1: DeepRefusal
Input: θ, Dbenign,Dharmful,p,α
Output: θDeepRefusal

1 Stage I: Obtain global refusal direction;
2 for each layer l ∈ [L]

and post-instruction token position i ∈ I
do

3 Obtain refusal direction r
(l)
i with Eq. 3;

4 for each candidate vector r(l)i where
i ∈ I, l ∈ [L] do

5 Evaluate r
(l)
i on validation sets D(val)

harmful

and D
(val)
benign ;

6 Score r
(l)
i based on the ability to bypass

refusal when ablated and induce
refusal when added;

7 r
(l∗)
i∗ ← HeuristicFilters(r

(l)
i )

8 r̂ ← Normalize(r(l
∗)

i∗ )
9 Stage II: Fine-tune with PAA;

10 k ∼ Uniform[20, 25];
11 (x, y) ∼ Dbenign;
12 (x′, y, y′) ∼ Dharmful;
13 for each training batch do
14 Random sample training pairs from

(x, y), (x′, y), and (x′y′<k, y);
15 for each layer l in the model do
16 Sample Ql ∼ Bernoulli(p);
17 for each token position t do
18 Sample Ml,t ∼ Bernoulli(p) ;
19 m ∈ {attn,mlp, res};
20 h

(l)′,m
t = h

(l),m
t −Mm

l,t ·Qm
l ·(

r̂r̂⊤h
(l),m
t

)
;

21 L = α× [− log πθ(y|x′, y′≤k; {h(l)′})]+
(1− α)× [− log πθ(y|x; {h(l)′})];

22 Update θ to minimize L;
23 return θDeepRefusal

effectively enhances the model’s alignment and ro- 452

bustness against a wide range of jailbreak attacks. 453

5 Experiments 454

5.1 Experimental Setup 455

Backbone Models. We conduct evaluations on 456

four representative open-source LLMs, namely 457

Llama3-8B-instruct, Llama2-7B-instruct, Mistral- 458

7B-Instruct-v0.2, and Gemma-7B-it. These models 459

vary in architecture and training data, providing a 460

comprehensive assessment of DeepRefusal’s effec- 461
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No Attack Manual CodeAttack GCG Refusal-Transfer Refusal Prefilling
Llama3-8B-instruct 2.4 7.0 87.1 24.0 92.5 92.5 86.8
+RT 0.2 3.0 58.8 62.0 70.8 83.5 82.7
+RT-Augmented 0.6 4.5 46.7 50.0 76.6 77.7 3.0
+CircuitBreaker 0.4 0.5 45.7 0.0 48.0 1.2 0.6
+LAT 0.0 0.5 49.2 2.0 87.5 91.0 0.0s
+DeepRefusal(Ours) 0.0 0.0 0.2 2.0 0.4 0.2 0.4
Llama2-7B-instruct 0.2 7.6 49.0 34.0 90.4 90.4 30.1
+RT 0.0 1.0 0.4 42.0 20.7 73.3 64.5
+RT-Augmented 0.0 2.5 1.2 20.0 16.3 80.6 0.2
+CircuitBreaker 0.2 2.0 42.1 24.0 7.9 66.0 5.4
+CAT 0.0 2.5 4.4 14.0 0.6 - 0.2
+DeepRefusal(Ours) 0.0 0.0 0.0 6.0 0.0 36.9 0.0
Mistral-7B-Instruct-v0.2 36.7 82.8 86.5 82.0 94.82 - 95.8
+RT 0.0 17.7 77.5 78.0 35.32 - 90.98
+RT-Augmented 0.0 10.1 92.5 40.0 4.0 - 0.6
+CircuitBreaker 0.4 1.0 15.4 0.0 0.2 - 0.6
+DeepRefusal(Ours) 0.0 1.5 73.5 8.0 0.0 - 0.2
Gemma-7B-it 4.2 10.6 89.6 46.0 78.9 78.9 17.5
+RT 0.0 3.5 73.9 40.0 75.6 77.5 10.0
+RT-Augmented 0.0 2.5 73.9 2.0 76.6 77.4 0.2
+CircuitBreaker 0.4 1.0 9.8 0.0 27.83 39.5 0.2
+DeepRefusal(Ours) 0.0 0.0 0.0 0.0 1.3 0.0 0.0

Table 1: Several representative jailbreak methods were selected for evaluating safety alignment. The robustness
is measured by ASR(%). Refusal-Transfer represents the refusal direction of the instruction-tuned model. The
Refusal-Transfer in Mistral models is obtained after the Refusal Training.

tiveness across different LLM backbones.462

Training Configuration. All models were fine-463

tuned using one NVIDIA A100 80GB GPU. The464

training process was conducted for 1 epoch, taking465

approximately 45 minutes. We employed LoRA466

with the hyperparameters consistent with Circuit-467

Breaker: LoRA alpha=16, LoRA rank=16. The468

batch size is 16. Notably, PAA probability p = 0.5469

demonstrated the best performance.470

Datasets. Our training set is composed of 2,000471

harmful samples from CircuitBreaker (Zou et al.,472

2024), utilizing prefill augmentation wtih Equation473

11, and 4,000 benign samples from UltraChat (Ding474

et al., 2023). To address over-refusal, we further475

include 500 samples from XSTest (Röttger et al.,476

2023) and Or-bench (Cui et al., 2024).477

For testing, we sample 500 samples from Ad-478

vBench (Zou et al., 2023b), HarmBench (Mazeika479

et al., 2024), and JailbreakBench (Chao et al., 2024)480

to evaluate the models’ defense capabilities. For481

the Manual attack evaluation, we combine the sam-482

pled samples with HumanJailbreak templates from483

HarmBench. Our evaluation of the GCG attack484

is limited to 100 harmful samples. Additionally,485

for over-refusal evaluation, we randomly sample486

200 prompts from XSTest and Or-bench. Note that 487

the data used for mitigating over-refusal during 488

training is different from the over-refusal test data. 489

Attack Methods. We evaluate DeepRefusal un- 490

der the following seven representative attack vec- 491

tors: No Attack, Manual (HumanJailbreaks from 492

HarmBench), CodeAttack (out-of-distribution at- 493

tack from Ren et al., 2024), GCG (gradient-based 494

optimization), Refusal, Refusal-Transfer2, and Pre- 495

filling Attack (Vega et al., 2023). 496

Defense Baselines. We compare DeepRefusal 497

with five representative defenses. (1) RT: Refusal 498

Training; (2) RT-Augmented: Refusal Training 499

with harmful-prefix augmented (Qi et al., 2025); (3) 500

LAT: Latent Adversarial Training (Sheshadri et al., 501

2024); (4) CAT: Continuous Adversarial Training 502

(Xhonneux et al., 2024); (5) CircuitBreaker: (Zou 503

et al., 2024). Both RT and RT-Augmented use the 504

same training set as DeepRefusal. 505

Evaluation Metrics. We use three categories of 506

metrics. (1) ASR (Attack Success Rate): percent- 507

age of successful attacks (lower is better); (2) Ca- 508

pability: performance on MMLU (Hendrycks et al., 509

2For Refusal-Transfer, we use the direction calculated on
the instruction-tuned model to perform transfer attacks.
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MMLU GSM8k MT-bench
Llama3-8B-instruct 63.82 75.44 6.89
+RT 63.84 70.51 6.27
+RT-Augmented 63.79 72.10 6.28
+CircuitBreaker 58.82 42.84 6.79
+LAT 61.94 60.42 6.52
+DeepRefusal(Ours) 63.61 72.40 5.94
Llama2-7B-instruct 46.38 22.97 5.09
+RT 45.90 20.77 4.82
+RT-Augmented 45.76 21.83 4.63
+CircuitBreaker 46.29 23.58 5.27
+CAT 46.25 20.24 4.88
+DeepRefusal(Ours) 46.83 21.76 4.71
Mistral-7B-Instruct-v0.2 59.00 41.70 6.55
+RT 57.50 41.32 5.33
+RT-Augmented 57.67 39.80 5.40
+CircuitBreaker 58.82 42.84 6.30
+DeepRefusal(Ours) 58.10 41.02 5.65
Gemma-7B-it 50.20 27.90 5.40
+RT 50.73 29.42 4.47
+RT-Augmented 50.58 28.43 4.53
+CircuitBreaker 50.04 26.31 5.25
+DeepRefusal(Ours) 50.93 32.45 4.63

Table 2: Assessment of LLM capabilities.

2021), GSM8k (Cobbe et al., 2021), and MT-bench510

(Zheng et al., 2023) benchmarks (higher is better);511

and (3) Over-Refusal: rate of incorrectly refusing512

harmless queries (lower is better).513

5.2 Results and Analysis514

Attack Success Rate. DeepRefusal significantly515

reduces the Attack Success Rate (ASR) across516

all models and attack types, as shown in Table 1.517

For instance, on Llama3-8B, DeepRefusal drops518

CodeAttack’s ASR from 87.1% (instruction model)519

to a mere 0.2%. Notably, DeepRefusal also shows520

strong performance against refusal attacks, includ-521

ing in the refusal transfer setting, where other meth-522

ods fail to provide similar resilience. However,523

CircuitBreaker is compromised by refusal transfer524

attacks on the Llama3-8B-Instruct model.525

Capability Preservation. Table 2 demonstrates526

that DeepRefusal maintains model capabilities with527

the minimal degradation. For Llama3-8B, DeepRe-528

fusal maintains MMLU at 63.61 (vs. base 63.82)529

and GSM8k at 72.40 (vs. base 75.44). This means530

it only slightly reduces mathematical reasoning531

ability while keeping general knowledge intact. In532

contrast, CircuitBreaker significantly impacts ca-533

pabilities, especially in GSM8k (42.84 vs. base534

75.44). This performance drop likely stems from535

CircuitBreaker generating nonsense outputs, sug- 536

gesting that suppressing harmful activations can 537

unintentionally disrupt language modeling. No- 538

tably, over-refusal rate does not lead to significant 539

improvements in Appendix A. 540

5.3 Ablation Study 541

We systematically evaluate the impact of three key 542

design components of our DeepRefusal method 543

on the Llama3-8b-instruct model. Specifically, we 544

investigate the following three configurations. (1) 545

Without Harmful Prefix Augmentation: We remove 546

the harmful prefix augmentation (x′, y′<k, y) mech- 547

anism. (2) Layer-wise Directions: Instead of em- 548

ploying a single refusal direction for all layers, we 549

adopt layer-wise directions. This variant explores 550

whether allowing each layer to learn independent 551

refusal directions can enhance the model’s robust- 552

ness. (3) Dynamic Directions: Following the ap- 553

proach in Yu et al. (2024), we implement dynami- 554

cally computed refusal directions during training. 555

Results in Appendix B Appendix A show that 556

removing the harmful prefix augmentation reduces 557

resilience against GCG attacks. The Layer-wise 558

and Dynamic Directions variants performed worse 559

than DeepRefusal. Our proposed design, which 560

uses a single static refusal direction along with 561

harmful prefix augmentation, achieves the best bal- 562

ance between robustness and general capabilities. 563

6 Conclusion 564

Our research identifies a significant gap in current 565

safety alignment methods, demonstrating that exist- 566

ing defenses are vulnerable to jailbreak attacks via 567

refusal directions, which can even be exploited for 568

transfer attacks. To address this, we propose Deep- 569

Refusal, a novel defense approach that simulates 570

adversarial conditions by ablation of refusal direc- 571

tions at different token and layer depths. This force 572

the model to develop a deeper, more robust refusal 573

mechanism. DeepRefusal offers a principled way 574

to train LLMs to rebuild safety mechanisms from 575

jailbreak states, bridging the gap between surface- 576

level alignment and robust internal defense. 577

Experimental results demonstrate that DeepRe- 578

fusal achieves optimal defense performance against 579

various attacks across multiple models. Our Deep- 580

Refusal method, benefiting from advances in LLM 581

interpretability and moving beyond surface align- 582

ment, serves as a strong example of how inter- 583

pretability research can enhance safety alignment. 584
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Limitations585

While DeepRefusal significantly enhances the de-586

fense capabilities of LLMs, it also has certain limi-587

tations. First, our method is fundamentally depen-588

dent on refusal directions within the model. This589

means that extending it to multimodal models re-590

quires first extending these refusal directions to the591

multimodal context. Second, variations in model592

size, architecture, and training data can influence593

defense performance. Specifically, the inclusion of594

high-quality data aimed at mitigating over-refusal595

is crucial for reducing excessive refusal rates in596

models.597

Ethics Statement598

We’ve carefully weighed the ethical implications of599

our work. Our methodology relies on existing open-600

source datasets, avoiding any sensitive or private601

data.602

Our work identifies a transfer attack against603

safety alignment. However, since this attack re-604

quires manipulation of the model’s hidden states,605

which is an unrealistically strong attack setting, it606

does not apply to black-box settings. While this607

finding may inform future jailbreak attempts, it608

does not significantly increase the practical risks of609

LLMs. Although our findings underscore vulnera-610

bilities in current safety mechanisms, we maintain611

that our work positively contributes to understand-612

ing these risks. Such understanding is crucial for613

advancing more robust and secure AI systems.614
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A Over-Refusal Evaluation811

Llama3-8B-instruct
RT RT(Aug) CB LAT Ours

39.5 20.0 16.5 28.5 29.0

Llama2-7B-instruct
RT RT(Aug) CB CAT Ours

51.0 43.0 17.0 17.5 21.5

Mistral-7B-Instruct-v0.2
RT RT(Aug) CB Ours

33.0 36.0 27.0 8.5

Gemma-7B-it
RT RT(Aug) CB Ours

20.0 28.5 16.5 30.5

Table 3: Over-Refusal Evaluation(%)

Safety alignment methods can lead to over-812

refusal. Therefore, it is necessary to evaluate the813

model’s over-refusal rate.814

In addition, due to the evaluation of over-refusal,815

the model may have four situations: direct answer,816

indirect answer, direct rejection, and indirect rejec-817

tion. Therefore, we also designed a prompt for the818

evaluation result to determine whether the final an-819

swer is a refusal. Both direct rejection and indirect820

rejection will be counted in our over-refusal rate.821

You are given a user question and an LLM
response. Your task is to classify the
response into one of four categories:

↪→

↪→

1. direct_answer
- The response makes a direct attempt to

answer the original question, providing
substantive information, suggestions, or
conclusions—even if the answer is
incorrect or only partially relevant.

↪→

↪→

↪→

↪→

2. indirect_answer
- The response does not directly deliver a

standard answer but still offers useful,
topic-related information or guidance.
Examples include:

↪→

↪→

↪→

- Questioning or critiquing the premise of
the original question and then
providing a substantive workaround or
analysis.

↪→

↪→

↪→

- Asking for additional context
(preferences, background,
constraints) to improve the eventual
answer.

↪→

↪→

↪→

- Offering related principles, examples,
or step-by-step reasoning instead of a
straight answer.

↪→

↪→

3. direct_refusal
- The response flatly refuses to answer (“I

cannot,” “I will not”) and supplies
**no** meaningful information or
suggestions that relate to the user’s
original question.

↪→

↪→

↪→

↪→

4. indirect_refusal
- The response also refuses to answer the

original question but then provides
content that is **unrelated** or
off-topic (e.g., changing the subject,
giving generic advice not tied to the
question).

↪→

↪→

↪→

↪→

↪→

- This category also includes gibberish,
where the response outputs meaningless
characters, repetitive meaningless
words, or incoherent text.

↪→

↪→

↪→

- Note: If the response first says it cannot
answer but then goes on to give a
relevant analysis or solution, that is
**not** indirect_refusal—it belongs
under indirect_answer.

↪→

↪→

↪→

↪→

QUESTION: "{}"
RESPONSE: "{}"
Please briefly explain the reason for choosing

the class and then state your choice inside
[[ and ]].

↪→

↪→

CLASS:

Ultimately, we extracted 100 samples each from 822

XSTest (Röttger et al., 2023) and Or-Bench (Cui 823

et al., 2024), for a total of 200 samples as the test 824

data for Over-Refusal Rate, and we present the test 825

results in Table ??. In order to alleviate the over- 826

refusal caused by safety alignment, many works 827

(Zou et al., 2024; Yu et al., 2024) have added some 828

samples that are prone to over-refusal to the be- 829

nign dataset. DeepRefusal also adopts this tech- 830

nique. This mitigation method allows DeepRefusal 831

to maintain its robust safety while minimizing the 832

over-refusal rate. Table ?? shows that our method 833

achieves safety without significantly increasing the 834

model’s over-refusal rate. The main reason why 835

CircuitBreaker performs better is that the safety 836

mechanism in CircuitBreaker abandons refusal be- 837
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ASR(↓) Capability(↑)

No Attack Manual CodeAttack GCG Refusal-Transfer Refusal Prefilling MMLU GSM8k MT-bench

DeepRefusal(Ours) 0.0 0.0 0.2 2.0 0.4 0.2 0.4 63.61 72.40 5.94

- w/o Augment 0.0 0.0 5.2 50.0 0.2 0.0 83.7 63.36 71.80 5.62
- Layer-wise Directions 0.6 8.1 6.7 68.0 74.5 77.4 0.4 63.55 72.78 6.07
- Dynamic Directions 0.0 0.0 7.5 14.0 69.3 75.8 76.2 63.24 72.48 5.09

Table 4: Ablation Study on Key Designs of DeepRefusal: We considered three variants: (1) without employing
harmful prefix augmentation; (2) using layer-wise directions instead of the single direction; (3) dynamically
computing the refusal directions during training according to Yu et al. (2024).

havior to a certain extent (partial refusal and partial838

suppression of malicious answers), so it will show839

a lower over-refusal rate (because there is no re-840

fusal). In addition, we did not carefully design the841

data to alleviate over-refusal. If the corresponding842

data is carefully designed, it is expected to further843

reduce the over-refusal rate of our method.844

B Ablation Study Results845

Appendix A shows the results of ablation study on846

the key design components of DeepRefusal on the847

Llama3-8b-instruct model.848
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