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Abstract—In order to improve the performance of berthing
trajectory clustering in presence of wind resistances, mean-shift
is improved for clustering. Its convergence is then proven.
Finally, the feasibility of this method is proved by experiments
compared with other cluster algorithms. It is shown that this
method can improve the clustering effect to a certain extent. The
new algorithm is applied to the clustering of ship berthing
trajectories to mine the berthing trajectories under different
conditions, such as different navigable waters, heading, speed,
rudder angle, channel depth, ship size, ship type, safe distance
from the dock sideline, other ships in adjacent berths, traffic flow
density and special weather.
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I. INTRODUCTION

A. Research background
The wharf water area is a restricted water area, with heavy

traffic, complex situation and frequent collision between ships.
Many factors have a significant impact on berthing. With the
larger and larger ships, more and more super large container
ships are berthing at the wharf. If the prediction is insufficient
and the ship is manipulated improperly, it will easily lead to
the danger of grounding and collision. Therefore, under
different conditions, it is very important to choose the
appropriate berthing method and mode to ensure the smooth
implementation of berthing operations.

Ship berthing has important theoretical research and
engineering practical value because of its complexity. At
present, the berthing of ships is mostly completed manually.
The maneuverability of large ships is limited, the rudder effect
is weakened at low speed, easy to be affected by wind and
current. With data mining technology, cluster analysis is
carried out on the ship berthing track, and typical berthing
mode is constructed. This can help discover ship motion
characteristics and behavior patterns, and provide new
berthing modes. The data of automatic identification system
(AIS) contains a large number of marine traffic characteristics,
which can mine the effective and potential information about
ship motion law in AIS data. Mining relevant behavior
patterns from ship AIS data to assist water safety supervision
is of great significance to the increasingly complex maritime
traffic safety situation.

B. Related work
In the area of trajectory clustering, the shortcomings of

traditional clustering algorithm in parameter setting and noise
recognition was solved[1]. It solved the exclusivity problem of
traditional algorithms. By evaluating the historical ship
behavior in a given geographical area, Murray applied
machine learning technology to infer the commonness of
relevant trajectory segments[2]. These commonalities
represented the historical behavior patterns corresponding to
the possible future behavior of the selected ship. The selected
ships were classified into behavior patterns, the trajectories
related to the patterns are predicted, and the Gaussian mixture
model was used for clustering. Zhang used the noise based on
fuzzy adaptive density to cluster the turning points obtained in
the preprocessing stage by spatial clustering technology to
obtain the turning region[3]. Gao proposed a pattern
recognition method of ship maneuvering behavior[4]. T-
distributed random neighborhood embedding algorithm was
used to reduce the dimension of seven tuple data.

Among the area of ship berthing behavior, Chen
developed a berth information extraction system based on 3D
Lidar[5]. The principal component analysis method was used to
calculate the ship heading and normal vector, and determined
the characteristic points of the bow and stern. The segment
passing through the point was obtained by region growth.
Through visibility analysis, according to the position of the
ship relative to the berth, the bow and stern were identified by
the similarity between the normal vector of the leg and the
ship course. Lee predicted the risk of unsafe berthing speed[6].
Liao used the analysis of environmental constraints, berth
point constraints and USV dynamic constraints[7].

Mean shift algorithm was first proposed by Fukunaga and
others in 1975[8]. A point iteration updating equation was
proposed, which combined the updating equation of standard
mean shift and fuzzy mean shift. Robust Mean-Shift can be set
based on kernel and nearest neighbor[9]. Since the update rule
of root mean square is closer to ,Blurring Mean-Shift the
convergence of point iteration is inferred based on Blurring
Mean-Shift convergence theorem. Clustering based on density
estimation was used for trajectory correlation[10]. The point,
center and distance were redefined to extend the mean shift
clustering method, and the bandwidth helps to handle different
scenarios was adjusted. Mean shift clustering was applied to
data base technology to achieve efficient anti pattern
discovery in the shortest time[11]. A faster mean shift algorithm
was proposed, based on embedded clustering[12]. An attack
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detection method based on weighted Euclidean distance mean
shift clustering algorithm was proposed[13].

In the study area of variational inference, a variational
inference framework was developed for kernel fried tensor,
which could associate prediction and prediction with
calibration uncertainty estimation on multiple data sets[14]. A
variational inference framework called energetic variational
inference was introduced[15]. A particle based energetic
variational inference scheme first performed particle based
density approximation, and then used approximate density in
the variational process, which was referred to as
"approximation before variation". A variable Bayesian method
was proposed to represent the Lévy adaptive regression kernel
model of functions with over complete systems[16]. The
variational Gaussian approximation was naturally embedded
into the EM framework, and the analytical expression of the
EM variational reasoning algorithm was derived[17]. A finite
inverse Dirichlet hybrid model using variational inference for
unsupervised learning was proposed[18]. An incremental
algorithm with component segmentation method for local
model selection mafe the clustering algorithm more efficient.
Variational inference was used to solve Bayesian problems,
and transformed Bayesian reasoning into optimization tasks[19].
A general variational inference algorithm automatic
differential variational inference was introduced into Bayesian
sliding inversion, and compared with the classical metropolis
Hastings sampling method. The problem of joint estimation
was solved by parallel variable Bayesian inference algorithm,
and an adaptive mesh pruning mechanism was designed[20].
The Laplace density function was expressed as the
superposition of infinite Gaussian distributions by introducing
new latent variables, and the variational expectation
maximization (EM) algorithm was used to learn the
parameters[21].

Like Maximum Likelihood Estimation, EM is easy to fall
into the local extreme value of the model, and EM needs to
manually determine the number of Gaussian components K
and select the initial value of the parameters of each Gaussian
component Improper parameter selection is prone to data over
fitting or slow model convergence At the same time, both EM
and MLE cannot use the existing prior information, and are
sensitive to the initial value of each Gaussian component in
the model.

C. Contributions
(1) A new clustering algorithm is designed.
(2) Different berthing methods in presence of wind

resistances are discussed, such as offshore wind in the bow
direction, offshore wind in the stern direction, onshore wind in
the bow direction and onshore wind in the stern direction.

(3) The new algorithm is applied to the clustering of ship
berthing trajectories to mine the berthing trajectories under
different conditions, such as different navigable waters,
heading, speed, rudder angle, channel depth, ship size, ship
type, safe distance from the dock sideline, other ships in
adjacent berths, traffic flow density, special weather, etc.
Different berthing methods include slowing down and

berthing, parallel berthing, turning round and berthing
manipulation, etc.

II. PRELIMINARIES

A. Ship berthing types
Under different circumstances, ships adopt different

berthing maneuvering methods. For example, the is direct
approaching berthing method shown in Fig. 1, and the turning
round berthing method is shown in Fig. 2.

Fig. 1. Direct approaching berthing method.

Fig. 2. Turning round berthing method.
Onshore wind is a kind of wind that forces a ship to

squeeze against the shoreline of a wharf. Blowing the wind
makes the ship approach the wharf with the wind, and the
speed is difficult to control. When leaving the wharf against
the wind, the direction of the ship is difficult to grasp. If there
is a slight negligence, it is very easy to cause an average
accident.

Offshore wind is a kind of wind that blows away, and
forces the ship to leave the wharf. The condition of wind
blowing from a wharf or berth to a channel. There are front
splay blowing wind, positive transverse blowing wind and rear
splay blowing wind. When the empty ship berths in the static
water port with the blowing wind of level 5 ~ 6, the closing
angle should be large because the closing component without
flow can offset the blowing force of the wind.

With offshore wind in the bow direction, when the bow is
2-3 times from the front end of the berth, the captain is the key
time to control the ship's position. Adjust the ship's position
and heading so that the bow points to the front end of the berth.
Select an appropriate berthing angle according to the wind
direction, and minimize the intersection angle between the
ship body and the wind direction, the smaller the better.

With offshore wind in the stern direction, if there is
enough circulating water in the outer barrier of the berth, the
course can be gradually adjusted when it is 2 times from the
bow position of the berth, so that the bow of the ship vertically
points to the middle position of the berth, so as to reduce the
wind side angle and weaken the impact of the wind on the ship.



With onshore wind in the bow direction, due to the wind
blowing, the cross distance before berthing should be
appropriately increased to not less than 3 times the ship width.
The greater the wind, the greater the corresponding span.

With onshore wind in the stern direction， select the
appropriate berthing angle according to the wind direction.
Try to make the angle between the hull and the wind direction
as small as possible. As the intersection angle between the
wind direction and the wharf trend gradually increases, the
bow direction gradually moves backward from the front end
of the berth. When the wind direction is perpendicular to the
wharf trend, the bow points to the position slightly forward in
the middle of the berth.

3. MAIN RESULTS

A. Architecture of the new algorithm
This paper uses the variational inference based

expectation maximum algorithm (VIEM) , as given in
Algorithm 1.
Algorithm 1 VIEM-Mean-shift.

Input: Problem description and algorithm parameters.

Output: The optimal clusters.

1: for m=1, 2, …,M do

2: for s=1, 2, …, C do

3: Computer the distance between each sample and each cluster center.

4: end for

5:end for

6:for t=1,2,…,T do

7: Update q(x,θt)

8: Calculate ELOB(q,x,θt)

9: if |ELOB(q,x,θt)-ELOB(q,x,θt)|<ε, goto step 11.

10:end for

11:Take the largest qms and assign the m sample to the s-th cluster.
12:Select a sample in each cluster and draw a circle with this sample as the
center and bandwidth as the radius.
13:Calculate the average mean shift value of the vector from this sample to
other samples in the same cluster.
14:The center of the circle is moved along the mean shift value of the vector,
and is the new center of the circle.

15: Repeat steps 14-15 until the termination condition is satisfied.
The process of the algorithm is shown in Fig. 3.

Fig. 3. Architecture of algorithm.

III. EXPERIMENTS AND ANALYSIS

A. Instance introduction
Three datasets are used. One is Xiagu Ferry in Dongdu

Port. Dongdu port 0-4# berth is planned to be a cruise berth
area. The length of berth 0# of the international cruise center
wharf is 419m and the berthing capacity is 150000. The length
of Berth 1# of the international cruise center wharf is 324m
and the berthing capacity is 80000. The length of berth 2# of
the international cruise center wharf is 346m and the berthing
capacity is 80000. The length of Berth 3# of the international
cruise center wharf is 241.3m, Berthing capacity 3000.

Under the influence of typhoons in summer and autumn,
the maximum wind speed reaches level 12, and the cold and
strong wind in winter can reach level 7-8. The nautical chart in
Xiagu Ferry is shown in Fig. 4.

Fig. 4. Nautical chart in Xiagu Ferry.
The wharf of Houshi Power Plant located at 24 °18'30"n,

118 °07'50" E. It is 1.2km away from the coast. The whole
wharf is arranged as a jetty, starting from the Cape of
xiaoaotou, and its axis extends 38° north by east to the sea.
The wharf has a total length of 590m and a width of 24.0m,
and can dock one 100000 ton bulk carrier or two 75000 ton
bulk carriers. The ship turning area in the port area is located
at the wharf apron. The turning area is 650m x 600m, and the
design bottom elevation is - 14m.



In Houshi port area, southwest wind prevails in summer,
and will be attacked by typhoon from July to September every
year. The wind in the port area before and after the typhoon
can reach level 6-7. Northeast wind prevails in winter and has
a great impact. The nautical chart in Houshi Power plant
wharf is shown in Fig. 5.

Fig. 5. Nautical chart in Houshi Power plant wharf.
Houshi No. 3 Wharf locates at 24°21'30 "N, 118°05'54"

E, in the southwest of Xiamen Island, north of Taiwu
mountain, west of Lantau waterway, across the sea from
Lantau, Wuyu and Jinmen Islands. The total length of the
wharf coastline is 422m. The wharf trend is 126 ° / 306 °. The
turning water area is arranged in an oval shape. The long axis
is 867m .The short axis is 578m, and the design bottom
elevation is - 16m. The construction scale of Houshi No. 3
wharf is 150000 t, and the structure is designed as 200000 t
with a total area of about 360000 m2.

In Houshi Port, the annual wind is east-north-east with a
frequency of 22.97%, followed by northeast with a frequency
of 11.7%. The seasonal variation of wind direction is obvious:
in autumn, winter and spring, it is dominated by east-north-
east with the frequency of 29.5%, 33.8% and 21.3%
respectively. In summer, it is dominated by south-south-west
with the frequency of 16.9%. Generally speaking, the wind
direction of this port area is mainly NE and east-north-east,
with an annual occurrence frequency of 35.48%, while the
wind direction of SW and SSW mainly occurs in summer, and
the cumulative annual occurrence frequency is only 12.46%.
According to the number of days with wind speed ≥ 10.8m/s
(Level 6 wind), the cumulative number of days with strong
wind in the year is 19 days, and the cumulative number of
days with wind force greater than level 6 is 2.8 days. The axis
orientation of the approach channel in Houshi Port is 327 ° ~
147 °. The intersection angle between NE and SW winds and
the channel axis is 78 °. The wind pressure difference angle is
large and close to the cross wind. The influence of wind
direction and wind speed on ship handling must be fully
considered when entering and leaving the waters near the
wharf. The nautical chart in Houshi No. 3 wharf is shown in
Fig .6.

Fig. 6. Nautical chart in Houshi No. 3 wharf.
The wind information on Dec. 31 is listed in Table 1.

TABLE I. WIND INFORMATION ON DEC. 31.

Time Wind speed (m/s) Maximal wind speed (m/s) Wind-force
06.20 PM 13.70 17.10 6.00
06.30 PM 14.00 16.80 7.00
06.40 PM 13.40 16.10 6.00
06.50 PM 13.90 17.40 7.00
07.00 PM 14.70 18.70 7.00
07.10 PM 13.90 17.10 7.00
07.20 PM 13.90 16.70 7.00
07.30 PM 13.50 16.10 6.00
07.40 PM 14.10 17.20 7.00
07.50 PM 14.10 17.60 7.00
08.00 PM 13.70 16.60 6.00
08.10 PM 14.10 18.50 7.00
08.20 PM 13.60 17.00 6.00
08.30 PM 13.80 16.70 6.00
08.40 PM 13.60 16.30 6.00
08.50 PM 13.60 17.20 6.00
09.00 PM 13.50 16.70 6.00
09.10 PM 13.80 16.60 6.00
09.20 PM 13.70 17.20 6.00
09.30 PM 13.00 15.70 6.00

The wind field is shown in Fig .7.

Fig. 7. Wind field.



The ship berthing trajectory in Xiamen, including
(MMSI), time, longitude, latitude, course over ground (COG),
speed over ground (SOG) is listed in Table 2.

TABLE II. SHIP BERTHING TRAJECTORY ON AUG. 14, 2021.

MMSI Time Longitude/o Latitude/o COG/o SOG/knot
412751910 19:16:22 117.981252 24.406588 330.0 0.2
412751910 19:17:22 117.98124 24.406607 125.9 0.1
412751910 19:17:37 117.981253 24.406593 139.8 0.2
412751910 19:18:35 117.981303 24.406537 175.9 0.1
412751910 19:19:36 117.981265 24.40655 333.4 0.2
412751910 19:20:21 117.981242 24.406582 353.9 0.2
412751910 19:20:50 117.981248 24.406595 34.4 0.1
412751910 19:21:05 117.981257 24.406597 65.9 0.1
412751910 19:22:06 117.981257 24.406587 197.2 0.1
412751910 19:22:21 117.98126 24.406585 134.7 0.0
412751910 19:22:36 117.981258 24.406588 346.3 0.0
412751910 19:23:35 117.981255 24.406607 107.3 0.0
412751910 19:24:51 117.981262 24.406605 299.3 0.1
412751910 19:25:19 117.98124 24.406618 305.0 0.2
412751910 19:25:21 117.98124 24.406618 304.8 0.2
412751910 19:26:52 117.981243 24.406635 87.2 0.2

B. Results of different datasets
The ship berthing trajectory clustering result in Xiagu

Ferry is shown in Fig. 8.

Fig. 8. Berthing trajectory clustering in Xiagu Ferry.
The berthing trajectory clustering in Xiagu Ferry plotted in

nautical chart is shown in Fig. 9.

Fig. 9. Berthing trajectory clustering in Xiagu Ferry plotted in nautical chart.
The ship berthing trajectory clustering result in

Houshi Power plant wharf is shown in Fig. 10.

Fig. 10. Berthing trajectory clustering in Houshi Power plant wharf.
The ship berthing trajectory clustering result in Houshi

Power plant wharf plotted in nautical chart is shown in Fig. 11.

Fig. 11. Berthing trajectory clustering in Houshi Power plant wharf.



The ship berthing trajectory clustering result in Houshi No.
3 wharf is shown in Fig. 12.

Fig. 12. Berthing trajectory clustering in Houshi No. 3 wharf.
The ship berthing trajectory clustering result in Houshi

No. 3 wharf plotted in nautical chart is shown in Fig. 13.

Fig. 13. Berthing trajectory clustering in Houshi No. 3 wharf.
The ship berthing trajectory clustering result in Xiagu Ferry

is shown in Fig. 14.

Fig. 14. Berthing trajectory clustering in Xiagu Ferry.
The ship berthing trajectory clustering result near modern

wharf is shown in Fig. 15.

Fig. 15. Berthing trajectory clustering in modern wharf.
The experimental results show that the ship trajectory

clustering model constructed in this paper are suitable for ship
trajectory mining. It can classify the ship berthing traffic flow
in the wharf area, and can obtain a better trajectory clustering
effect.

C. Comparison of different algorithms
The proposed algorithm is compared with differential

evolution clustering algorithm, such as differential evolution
clustering algorithm[22] and mean shift algorithm. The
clustering results near Guanhaiyuan wharf are shown in Fig. 16.



(a)VIEM-Mean-shift

(b) differential evolution clustering algorithm

(c)Mean-shift
Fig. 16. Clustering results near Guanhaiyuan wharf.

Fig. 16 shows that compared with K-means algorithm and
differential evolution clustering algorithm, the new algorithm
has higher calculation accuracy.

Table 3 lists the comparison of best costs.

TABLE III. BEST COST COMPARISON OF DIFFERENT ALGORITHMS.

Dataset Xiagu Ferry Houshi Power
plant wharf

Houshi No. 3
wharf

Algorithms Best Wo
rst

Ave
rage

Be
st

W
ors
t

Ave
rag
e

Be
st

W
ors
t

Ave
rag
e

Mean-shift 1.18
75

1.2
360

1.19
04

1.3
45
0

1.3
90
7

1.3
670

0.9
04
5

1.0
65
4

0.9
296

VIEM-
Mean-shift

0.95
46

0.9
962

0.97
45

1.1
16
6

1.1
57
0

1.1
296

0.7
64
1

0.8
03
4

0.7
907

D. Discussion
Houshi Post has southwest wind in summer and northeast

wind in winter. The wharf of Houshi Power Plant has little
room for maneuver and is greatly affected by wind and waves.
When the southwest wind superimposes the rising water, if the
ship is close to the upper line of buoy 105, it is very easy to be
pressed by the wind on buoy 105 or the shoal outside the
channel.. Since the heavy-duty ship operates slowly, the effects
of wind-induced drift should be fully considered. Houshi wharf
and channel are located in open waters, basically without
shelter, and there are often strong winds and waves.

According to the rose chart of wind, when the ship enters
the port, strong wind and strong wave happen to be on the
starboard side. In order to reduce the risk of berthing, it is
usually to dock on the port side.Turn around when the ship is
crossing the wharf angle, adjust the rotation speed of the large
ship and the transverse distance from the wharf according to
the wind and current pressure in the harbor basin.

As long as the water depth of the harbor basin is sufficient,
it can enter the berth during the ebb tide period. During spring
tide, the flow velocity is large, and a slight angle in berthing
can form a large flow pressure, which is difficult to control the
ship. It is necessary to choose a period with slow flow velocity
to ensure berthing safety. Under general wind flow conditions,
parallel berthing mode is adopted. During berthing, the ship
moves laterally. When it is 1 times the ship width from the
berth, a ship enters the berth slowly at a small berthing angle.
When it is half the ship width from the berth, it enters the berth
in parallel.

IV. CONCLUSION AND FUTURE WORK

Based on the improved clustering algorithm with new
bandwidth selection mechanism and convergence analysis, the
clustering method of ship berthing trajectory is studied, and
verified by taking the AIS data of Xiamen port in August 2021
as an example. The results show that the algorithm can greatly
improve the efficiency of trajectory clustering, and provide
technical support for further research on ship motion
characteristics, behavior patterns and real-time anomaly
detection of ship trajectory.

In future, the influence of surrounding dynamic ships will
be also taken into account for better ship berthing trajectory
clustering.
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