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ABSTRACT

Sequential learning in deep models often suffers from challenges such as catas-
trophic forgetting and loss of plasticity, largely due to the permutation dependence
of gradient-based algorithms, where the order of training data impacts the learning
outcome. In this work, we introduce a novel approximately permutation-invariant
learning framework based on high-dimensional particle filters. We theoretically
demonstrate that particle filters are invariant to the sequential ordering of train-
ing minibatches or tasks, offering a principled solution to mitigate catastrophic
forgetting and loss-of-plasticity. We develop an efficient particle filter for opti-
mizing high-dimensional models, combining the strengths of Bayesian methods
with gradient-based optimization. Through extensive experiments on continual
supervised and reinforcement learning benchmarks, including SplitMNIST, SplitCI-
FAR100, and ProcGen, we empirically show that our method consistently improves
performance, while reducing variance compared to standard baselines.

1 INTRODUCTION

What is the optimal order for training data? This question is fundamental to understanding how
the sequencing of training data impacts machine learning model performance. In sequential learning
settings, such as continual learning and lifelong learning, the sequencing of training data plays a
crucial role in determining model performance. When models are trained on ordered minibatches of
data, poor ordering—referred to as ”poor permutations”—can result in catastrophic forgetting and
loss of plasticity (Wang et al., 2024; Abel et al., 2023).

In continual learning, models process tasks in a specific sequence. Unlike conventional training,
where minibatch data is randomized, continual learning often relies on a strict sequence, making
models prone to overfitting on newer tasks while losing performance on older tasks. This is known
as catastrophic forgetting, where new information erases prior knowledge, severely degrading
performance on earlier tasks (Kim & Han, 2023; van de Ven et al., 2022).

Similarly, in lifelong reinforcement learning (LRL), agents must adapt to new tasks sequentially. The
order in which these tasks are presented can lead to loss of plasticity, limiting the agent’s ability to
adapt to new environments (Muppidi et al., 2024; Lyle et al., 2022; Abbas et al., 2023; Sokar et al.,
2023). This poor ordering can further manifest as negative transfer or primacy bias, where learning
earlier tasks biases the agent towards those tasks, impeding adaptation to new tasks (Nikishin et al.,
2022; Ahn et al., 2024).

To address these challenges, we propose a shift in perspective, viewing the problem through the lens
of permutation invariance. By developing learning algorithms that are invariant to the order of data
presentation, we can mitigate catastrophic forgetting and loss of plasticity. Our key insight is the use
of particle filters, a probabilistic tool widely used in state estimation, to achieve this goal.

Particle filters excel at dynamically estimating system states from noisy data and are grounded in
Bayesian inference (Thrun et al., 2005; Doucet et al., 2001b; Jonschkowski et al., 2018; Karkus et al.,
2021; Corenflos et al., 2021; Pulido & van Leeuwen, 2019; Maken et al., 2022; Boopathy et al., 2024).
However, their application to modern machine learning has been limited due to scalability issues
in high-dimensional settings. In contrast, gradient-based optimization techniques such as gradient
descent efficiently handle high-dimensional spaces but lack the probabilistic framework offered by
particle filters.
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In this work, we bridge this gap by proposing a novel particle filter designed specifically for high-
dimensional learning. We show that by adapting particle filters to high-dimensional learning problems,
we can achieve more robust permutation-invariant learning. Our approach provides a new perspective
on training in sequential settings and also addresses the core challenges of catastrophic forgetting and
loss of plasticity in a principled manner.

Our contributions are threefold:

• Theoretically, we demonstrate that particle filters enable permutation-invariant learning,
where the algorithm’s output remains consistent regardless of the training data order. We fur-
ther show that this property naturally mitigates catastrophic forgetting and loss of plasticity.

• We introduce a simple, gradient-based particle filter specifically tailored for high-
dimensional parameter spaces. This filter retains the essential features of traditional particle
filters while being computationally efficient and well-suited for typical machine-learning
optimization tasks.

• Through empirical evaluations on continual learning and lifelong reinforcement learning
benchmarks, including SplitMNIST, SplitCIFAR100, and ProcGen, we show that our
proposed particle filter achieves better performance and reduced variance compared to
standard baselines. Additionally, we demonstrate that integrating this particle filter with
continual learning and LRL methods increases overall performance and reduces performance
variance.

2 RELATED WORK

2.1 PARTICLE FILTERS

Particle filters, or sequential Monte Carlo methods, are widely used for state estimation in non-
linear and non-Gaussian settings. They represent probability distributions through a set of samples
(particles), providing flexibility in capturing complex dynamics (Doucet et al., 2001a). In fields such
as robotics, particle filters have been applied successfully to localization and mapping problems,
where they handle uncertainty and non-linearities effectively (Thrun, 2002). However, a key limitation
is their scalability: as the dimensionality of the problem increases, the number of particles needed
grows exponentially, making them less practical in high-dimensional spaces like those in machine
learning (Bengtsson et al., 2008). Recent efforts have focused on improving particle filter scalability
through adaptive resampling and dimensionality reduction techniques (Li et al., 2015), but these
approaches have not fully bridged the gap for large-scale machine learning applications. Our work
addresses this gap by proposing a high-dimensional particle filter that is computationally efficient
and well-suited for machine learning tasks.

2.2 BAYESIAN MODEL AVERAGING

Bayesian model averaging (BMA) is a powerful technique for integrating uncertainty into model
predictions by averaging across multiple models (Hoeting et al., 1999; Wasserman, 2000). By
weighting model predictions based on their posterior probabilities, BMA can provide more robust
predictions and better capture model uncertainty compared to single-model approaches (Raftery
et al., 2005). In modern machine learning, BMA has been employed to enhance performance and
uncertainty estimation, notably in ensemble techniques (Lakshminarayanan et al., 2017; Wortsman
et al., 2022). In particular, some works consider ensembling in the context of continual learning
(Rypeść et al., 2024; Carta et al., 2023; Wen et al., 2020): they notice that ensembled models achieve
better performance and stability in continual learning. Nevertheless, the ensembling approach of these
methods lacks a Bayesian formalism, thereby losing both theoretical guarantees and applicability to
permutation-invariant learning. Overall, BMA has not been extensively explored in the context of
continual or permutation-invariant learning, where uncertainty over tasks and sequential data plays a
crucial role.

In this work, we demonstrate the benefits of particle filters in high-dimensional machine learning
settings. We then describe a particular particle filter that functions as a BMA technique, and
demonstrate its advantages empirically.
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3 PARTICLE FILTERS FOR LEARNING PROBLEMS

In this section, we first theoretically demonstrate two beneficial properties of particle filters generally
on learning problems, namely 1) permutation-invariance and 2) avoidance of catastrophic forgetting
and loss of plasticity. We then describe a particular particle filter suitable for high-dimensional
learning problems.

3.1 SETUP

Consider a learning problem that provides a sequence of loss functions of model parameters, and
the goal of learning is to minimize the sum of the loss functions. For instance, the loss function at
each time step might correspond to the cross-entropy loss on a minibatch of points for a classification
problem. We denote the model parameters at time t as xt ∈ Rd and the loss function at time t as
Lt ∈ Rd → R (a mapping from d dimensions to 1 dimension). The goal is to find an x minimizing∑T

t=1 Lt(x), where T is the total number of updates.

How can we apply particle filters to this learning problem? To do this, we suppose that instead of
learning a single model, we learn a distribution of models following a Bayesian approach. Specifically,
suppose that at time t = 0, we initially start with a prior distribution of candidate models; each Lt

corresponds to an observation that updates the likelihood of each model. Specifically, we suppose
that the likelihood of the model x is set as:

P (Lt|x) = e−Lt(x) (1)

This likelihood function increases the likelihood of models that achieve lower loss values. We denote
the prior distribution of models as p0 and the posterior distribution after having observed L1 through
Lt as pt. Then, pT is given by:

pT (x) = ZT p0(x)Π
T
t=1P (Lt|x) = ZT p0(x)e

−
∑T

t=1 Lt(x) (2)

where ZT is a normalization factor that ensures pT integrates to 1. Observe that this posterior places
high density in regions where the summed loss is low.

Particle filters enable the computation of pT (x) by incrementally computing estimates of pt(x).
Specifically, given pt(x), we may compute pt+1(x) as:

pt+1(x) =
pt(x)P (Lt+1|x)∫

pt(x′)P (Lt+1|x′)dx′ =
pt(x)e

−Lt+1(x)∫
pt(x′)e−Lt+1(x′)dx′ (3)

This Bayesian update equation may often be intractable to compute exactly, particularly when pt does
not have a known parametric form. Instead of tracking pt exactly, particle filters track an estimate p̂t
instead:

p̂t(x) =
∑
i

w
(i)
t δ(x− x

(i)
t ) (4)

where δ is a delta function, x(i)
t represents the ith particle at time t and w

(i)
t represents the weight

of the particle at time t. Each particle filter then has a different method of estimating the Bayesian
update of Equation 3. After all updates are complete, an ensemble of particles is available, each of
which is an estimate of the global minimizer of

∑T
t=1 Lt(x). We denote the output distribution of a

particle filter initialized at p̂0 trained on a sequence of loss functions L1, ...LT as p̂0[L1, ...LT ].

Since particle filters aim to approximate Bayesian updates, we suppose that each update outputs a
set of particles close to the true posterior. To formalize this, suppose that there exists a symmetric,
non-negative discrepancy measure D(p, q) that satisfies the triangle inequality:

D(p, q) ≤ D(p, r) +D(r, q) (5)

for all p, q, r. Furthermore, suppose D(p, p) = 0 for all p.

Now, suppose that the particle filter satisfies the following two conditions:

D(p̂[L], q̂[L]) ≤ CD(p̂, q̂) (6)

and

D(p̂[L],
p(·)e−L(·)∫
p(x)e−L(x)dx

) ≤ CD(p̂, p) + ϵ (7)
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for some constants C and ϵ where p̂[L] denotes p̂ after being updated on L. C can be interpreted as
the stability of the particle filter update, while ϵ can be viewed as error between each particle filter
update and the true Bayesian update. This allows the discrepancy at time T to be bounded as:

D(p̂0[L1, ...LT ],
p(·)e−

∑
t Lt(·)∫

p(x)e−
∑

t Lt(x)dx
) ≤ CTD(p̂0, p0) + ϵ

CT − 1

C − 1
(8)

This decomposes the discrepancy at time T as a term depending on the initial discrepancy D(p̂0, p0)
and a term depending on the incremental discrepancy ϵ.

3.2 PERMUTATION-INVARIANCE

Next, we demonstrate that particle filters are approximately permutation-invariant: they produce
an output that is nearly invariant to the ordering of loss functions Lt. We show that p̂0[L1, ...LT ] is
similar to p̂0[Lσ1

, ...LσT
] where σ1, σ2, ...σT is a permutation of 1, 2, ...T .

Theorem 1. Suppose σ1, σ2, ...σT is a permutation of 1, 2, ...T such that N swaps of adjacent
elements are required to convert σ1, σ2, ...σT to 1, 2, ...T . Denote the initialized particle filter as p̂0.
Then,

D(p̂0[L1, ...LT ], p̂0[Lσ1 , ...LσT
]) ≤ 2NϵCT−2C

2 − 1

C − 1
(9)

See Appendix A for a proof. This result demonstrates that, when C ≈ 1 and ϵ is sufficiently small,
particle filters are approximately permutation invariant. Note that the size of the bound grows
exponentially with T ; thus, permutation invariance can rapidly collapse when C >> 1. However,
recall that C represents the stability of the particle filter update (i.e. how much small variations in
particles propagate through updates). If C ≈ 1, then small fluctuations in the initialization of particles
do not significantly affect the outcome after updating. We expect this to be a reasonable assumption
for many practical particle filters.

Standard learning algorithms such as gradient descent are notably not permutation-invariant: they
tend to be highly dependent on the ordering of data points. Permutation-invariance enables learning
algorithms with less stochastic outputs: in a perfectly permutation-invariant particle filter, the only
potential sources of randomness are the initial selection of particles and the randomness in the particle
filter updates themselves.

3.3 AVOIDING CATASTROPHIC FORGETTING AND LOSS OF PLASTICITY

Now, we demonstrate that particle filters naturally avoid catastrophic forgetting and loss of plasticity.
Catastrophic forgetting can be formalized in our framework as the phenomenon where a learning
algorithm trained on a sequence of losses L1, ...LT performs poorly on the earlier losses it is trained
on. Similarly, loss of plasticity corresponds to performing poorly on later losses. We provide an
upper bound on the loss at any point in training:
Theorem 2. Suppose that all loss functions are bounded in range [0,M ]. Suppose that there exists a
constant k such that for all loss functions L and distributions p, q:

Ex∼p[L(x)]− Ex∼q[L(x)] ≤ kD(p, q) (10)

Also, suppose the particle filter guarantees:

Ex∼p̂[L][L(x)] ≤ βEx∼p̂[L(x)] (11)

for all L and p̂. Then,

Ex∼p̂0[L1,L2,...LT ][Li(x)] ≤ βM + 2kTϵCT−2C
2 − 1

C − 1
(12)

See Appendix B for a proof. We make two key assumptions in this theorem: the difference in average
loss under two different distributions can be bounded by D and that each step in the particle filter
reduces the loss on which it is trained by at least a fixed factor. We believe that the first assumption
may in many cases be reasonable if the loss function is sufficiently slow-changing: small changes
in the distribution over x should not change the average loss value. The second assumption may
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also be reasonable under many settings for effective particle filters as well as other standard learning
algorithms; with a fixed loss function, it corresponds to a linear convergence rate. Gradient descent,
for example, satisfies this assumption on loss functions satisfying the Polyak-Łojasiewicz inequality.
The resulting bound on the loss Li guarantees that the performance can be no worse than if there had
only been a single update Li (yielding loss at most βM ) plus an additional error term.

3.4 GRADIENT-BASED PARTICLE FILTER

Given the desirable properties of particle filters in learning problems, here, we describe a particular
particle filter well suited to the high-dimensional spaces found in most machine learning settings. We
derive this particle filter by taking the following steps: we assume that our particle filter represents a
mixture of Gaussians with each Gaussian centered at a particle. We then show that when the Gaussian
covariances are sufficiently small, the optimal Bayesian update on the mixture of Gaussians results
in (approximately) another mixture of Gaussians with updated means and mixture weights. Thus,
we are able to represent the optimal Bayesian update by simply updating the particle positions and
weights.

Now we walk through the steps: suppose that our particle filter’s particle distribution p̂t(x) =∑
i w

(i)
t δ(x− x

(i)
t ) represents another distribution p̃t(x) constructed as:

p̃t(x) = Z
∑
i

w
(i)
t e−

||x−x
(i)
t ||2

2σ2 (13)

where σ is a variance parameter and Z is a normalizing constant. Essentially, p̃t(x) replaces each
delta function in p̂t(x) with a isotropic Gaussian. We derive the particle filter’s update on p̂t(x) as an
approximation of the optimal Bayesian update applied to p̃t(x). Observe that given a prior of p̃t(x)
and the loss function Lt+1, the posterior is proportional to:

e−Lt+1(x)
∑
i

w
(i)
t e−

||x−x
(i)
t ||2

2σ2 (14)

We manipulate this expression until it can be expressed in the form of Equation 13. First, we make a
linear approximation of Lt+1 centered at each particle x

(i)
t :

Lt+1(x) ≈ Lt+1(x
(i)
t ) +∇Lt+1(x

(i)
t )T (x− x

(i)
t ) (15)

Note that the approximation error is on the order of σ2. Pulling e−Lt+1(x) into the summation and
applying this approximation:∑

i

w
(i)
t e−

||x−x
(i)
t ||2

2σ2 −Lt+1(x
(i)
t )−∇Lt+1(x

(i)
t )T (x−x

(i)
t ) (16)

Grouping terms:∑
i

w
(i)
t e−

||x||2

2σ2 +[
x
(i)
t
σ2 −∇Lt+1(x

(i)
t )]T xe−

||x(i)
t ||2

2σ2 −Lt+1(x
(i)
t )+∇Lt+1(x

(i)
t )T x

(i)
t (17)

Completing the square in the exponent:∑
i

w
(i)
t e−

||x−x
(i)
t+1

||2

2σ2 e
||x(i)

t+1
||2

2σ2 − ||x(i)
t ||2

2σ2 −Lt+1(x
(i)
t )+∇Lt+1(x

(i)
t )T x

(i)
t (18)

where x
(i)
t+1 = x

(i)
t − σ2∇Lt+1(x

(i)
t ). Simplifying the constant terms:∑

i

w
(i)
t e−

||x−x
(i)
t+1

||2

2σ2 e
σ2||∇Lt+1(x

(i)
t )||2

2 −Lt+1(x
(i)
t ) (19)

Observe that under our linear approximation, Lt+1(x
(i)
t+1) ≈ Lt+1(x

(i)
t )− σ2||∇Lt+1(x

(i)
t )||2 (with

approximation error on the order of σ4). Thus, we may write the expression as:∑
i

w
(i)
t e−

||x−x
(i)
t+1

||2

2σ2 e−
Lt+1(x

(i)
t+1

)+Lt+1(x
(i)
t )

2 (20)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, we define w
(i)
t+1 = w

(i)
t e−

Lt+1(x
(i)
t+1

)+Lt+1(x
(i)
t )

2 to arrive at our final approximation of the
posterior: ∑

i

w
(i)
t+1e

−
||x−x

(i)
t+1

||2

2σ2 (21)

Due to our approximations, we may expect a proportional error up to roughly eσ
2

, which approaches
1 as σ2 → 0. We represent this posterior with particles x(i)

t+1 and respective weights w(i)
t+1.

We summarize the update equations of this particle filter below:

x
(i)
t+1 = x

(i)
t − σ2∇Lt+1(x

(i)
t ) (22)

w
(i)
t+1 = w

(i)
t e−

Lt+1(x
(i)
t+1

)+Lt+1(x
(i)
t )

2 (23)
Algorithm 1 shows the full pseudocode of the filter. For simplicity, we do not normalize the weights
of the particles at each iteration; this can be done once at the end of training. Intuitively, this filter
updates the positions of the particles with gradient descent, but reweights the particles based on their
performance at the old and new points, with lower-loss particles weighted higher. We highlight that
the particle filter operates independently on all points except for the final step of weight normalization.
Practically, this means the filter can be run in parallel, making the computation time independent of
the number of particles. Like gradient descent and other gradient-based optimization procedures,
this particle filter is well suited for optimization on high-dimensional spaces, while retaining the
properties of particle filters outlined in the prior sections such as permutation-invariance and avoidance
of catastrophic forgetting. Figure 1 illustrates how our method converges to well-performing regions
of the parameter space over time.

Algorithm 1 Gradient-based particle filter

Input: Initial particles {x(i)
0 }Ni=1, Loss functions L1, ...LT , Variance σ2

Output: Updated particles {x(i)
T , w

(i)
T }Ni=1

for t = 0 to T − 1 do
w

(i)
0 = 1

for i = 1 to N do
x
(i)
t+1 = x

(i)
t − σ2∇Lt+1(x

(i)
t )

w
(i)
t+1 = w

(i)
t e−

Lt+1(x
(i)
t+1

)+Lt+1(x
(i)
t )

2

end for
end for
S = 0
for i = 1 to N do
S = S + w

(i)
T

end for
for i = 1 to N do
w

(i)
T = w

(i)
T /S

end for

Theoretical guarantees Observe that this particle filter is built on gradient descent; thus it inherits
the theoretical convergence guarantees of gradient descent. In particular, unlike gradient-free particle
filters, this approach is suited for high-dimensional spaces just as gradient-based optimization methods
require many fewer iterations relative to gradient-free methods in high-dimensions. What separates
this particle filter from simply a model average of N models independently trained with gradient
descent? Unlike a simple model average, this approach retains the Bayesian estimation properties
of a traditional particle filter; namely, its output is an approximation of the Bayesian posterior. This
allows it to maintain the desirable properties of particle filters described earlier. In particular, we
can verify that it satisfies the assumptions of Theorem 1: namely, Equations 6 and 7. Equation 6
holds (for some constant C) when the particle filter update is Lipschitz continuous with respect to the
discrepancy measure D. For our particle filter, this is true as long as the Lt have bounded first and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of how our particle filter converges to well-performing regions of the parameter
space over the course of training on SplitMNIST. The plot is constructed by using tSNE to map the
particles into two dimensions, then representing each particle with a unimodal Gaussian of fixed
variance.

second derivatives. Equation 7 holds when the particle filter approximates a Bayesian update, which
is true for ours by design.

Next, we demonstrate theoretically that the particle filter indeed maintains fidelity to the Bayesian
updates it is based on. Specifically, we show in a simplified setting that the given two particles with
the same prior probability at initialization, the particle filter produces an output exactly matching the
probability ratios of the true posterior at the final particle locations:

Theorem 3. Suppose particles x(i) and x(j) are initialized with the same prior probability:

p0(x
(i)
0 ) = p0(x

(j)
0 ) (24)

Furthermore, suppose that all loss functions are linear:

Lt(x) = gTt x+ bt (25)

Then,
pT (x

(i)
T )

pT (x
(j)
T )

=
w

(i)
T

w
(j)
T

(26)

See Appendix C for a proof. This theorem guarantees that the particle filter indeed maintains
weights in proportion to the true posterior distribution (pT (x

(i)
T ) ∝ w

(i)
T ). This, in fact, implies that,

in the limit of infinitely many particles, the posterior over x will equal the density over particles
pT (x) =

∑
i w

(i)δ(x− x
(i)
t ) (Doucet et al., 2001a). Thus, our particle filter achieves the best of both

worlds: it can perform optimization in high-dimensions while also approximating Bayes optimal
solutions.

4 EXPERIMENTS AND RESULTS

In this section, we empirically validate the permutation-invariance of our gradient-based weighted
particle filter (hereafter referred to as the weighted particle filter or WPF) and demonstrate its
effectiveness in mitigating catastrophic forgetting and loss of plasticity across continual and lifelong
learning benchmarks.

Continual Learning Experiments: We evaluate our weighted particle filter on continual learning
benchmarks SplitMNIST (LeCun & Cortes, 2010), SplitCIFAR100 (Krizhevsky, 2009), and ProcGen
(Cobbe et al., 2020). SplitMNIST is divided into 5 ”super class” splits, and SplitCIFAR100 into
20, both for class-incremental learning. For ProcGen, we use image-action trajectory datasets from
the games Starpilot, Fruitbot, and Dodgeball, partitioned into 15 levels sampled using the hard
distribution shift mode, similar to Mediratta et al. (2024).

We compare our weighted particle filter against established continual learning methods: Synaptic
Intelligence (SI), Elastic Weight Consolidation (EWC), and Learning Without Forgetting (LWF)
(Zenke et al., 2017; Kirkpatrick et al., 2016; Li & Hoiem, 2016). Since our particle filter is architecture-
agnostic, we also combine it with SI, EWC, and LWF to evaluate their joint effectiveness.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average accuracy and normalized variance across classes over 10 permutations for the
weighted particle filter, standard particle filter methods, continual learning baselines, and continual
learning baselines combined with the weighted particle filter on SplitMINST and SplitCIFAR100.
Best results in bold.

Method Average Accuracy % (SplitMNIST) Average Accuracy % (CIFAR100) Normalized Variance (SplitMNIST / SplitCIFAR100)

Particle Methods

Weighted Particle Filter 72.0 23.9 0.002 / 0.001
Averaging Particles 53.4 21.3 0.012 / 0.020
Baseline Particle Filter 50.1 19.8 0.001 / 0.006
Gradient Descent 48.7 20.1 0.032 / 0.001

Continual Learning Baselines

EWC 66.3 23.2 0.186 / 0.010
LWF 67.3 26.4 0.097 / 0.050
SI 58.6 22.9 0.168 / 0.005

Continual Learning Baselines with Weighted Particle Filter

EWC + PF 76.8 25.8 0.004 / 0.004
LWF + PF 79.2 29.0 0.012 / 0.007
SI + PF 67.6 24.6 0.025 / 0.001

In the ProcGen continual learning experiments, we use a supervised behavior cloning policy as
our base model and compare it against other baseline particle filters also using supervised behavior
cloning. All methods are implemented with identical architectures and learning parameters to ensure
a fair comparison.

After training, we measure the average accuracy/return of both the weighted particle filter and the
baseline models across all splits/levels using 10 different shuffled permutations of epoch splits.
To assess permutation invariance, we calculate the task-specific variance in accuracy/return across
these 10 permutations. These experiments are designed to evaluate the particle filter’s resistance to
catastrophic forgetting.

Our weighted particle filter uses 100 particles, with test accuracy evaluated as a weighted average
across particles. We compare this approach with three additional particle filter baselines: (1) a
standard particle filter, (2) a gradient-based particle filter without weighting, and (3) traditional
gradient descent (single particle). This allows us to assess the impact of particle weighting and
the benefits of the Bayesian framework. The standard particle filter serves as a benchmark to
evaluate performance on high-dimensional problems, and it operates by resampling particles based
on their training loss performance. The gradient-based particle filter without weighting (referred to
as averaging particles) is included as a baseline to determine the effectiveness of particle weighting.
Full implementation details can be found in the appendix.
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Figure 2: Average accuracy versus normalized task variance plots for both SplitCIFAR100 and
SplitMNIST. The bottom right region of each plot represents the ideal scenario of high accuracy and
low task-specific variance.

LRL Experiments: In the lifelong reinforcement learning setting, we adopt the setup from Muppidi
et al. (2024) and conduct experiments on the ProcGen games Starpilot, Fruitbot, and Dodgeball.
Distribution shifts are introduced by sampling new procedurally generated levels every 2 million time
steps. The agent’s performance is evaluated based on the average normalized return over the course
of the lifelong experiment. Additionally, we measure the normalized variance across each level for
10 different permutations of the lifelong level sequences.
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We evaluate proximal policy optimization (PPO) (Schulman et al., 2017), along with other LRL
methods designed to prevent loss of plasticity—specifically, PPO combined with TRAC (Muppidi
et al., 2024) and PPO combined with EWC (Kessler et al., 2022)—each tested both with and without
our weighted particle filter.

4.1 AVOIDING CATASTROPHIC FORGETTING AND LOSS OF PLASTICITY

Performance Against Other Filters: Tables 1 and 2 provide a summary of the performance
comparison between our weighted particle filter and the baseline particle filters in both continual
learning and lifelong RL experiments. Our weighted particle filter consistently achieves higher mean
accuracy (averaged over classes and permutations) on SplitMNIST, SplitCIFAR100, and ProcGen
Behavior Cloning datasets compared to the baseline particle filter, averaging particles, and traditional
gradient descent (single particle).

Furthermore, Figure 3 demonstrates that our weighted particle filter is more resistant to loss of
plasticity in LRL experiments compared to PPO using gradient descent. This underscores the
advantage of incorporating particle weighting into the training process. This effect may align with
the conclusions of Lyle et al. (2023); Sokar et al. (2023); Muppidi et al. (2024); Kumar et al. (2023),
suggesting that when a model is not overly specialized to a specific task is better able to adapt to new
tasks. In our approach, maintaining multiple particles—some tuned to domain-specific tasks and
others oriented towards different sequential tasks—enables the agent to switch to well-performing
particles when adapting to new environments, thereby preserving plasticity. While theoretically, the
baseline particle filter has the advantages of a Bayesian approach, because of the lack of gradient-
based optimization, it fails. This lack of gradient-based optimization in high dimensions means it is
essentially making random guesses, leading to performances that are close to what would be expected
by chance. While gradient descent might show improved results in the latest epoch, it typically does
so at the expense of previous epochs’ performance. Therefore, when the performance is averaged
across all epochs, the result is diminished, approaching close to random chance levels.

Performance Compared to and Combined with Continual Learning and LRL Methods: The
results presented in Table 1 indicate that our weighted particle filter not only successfully avoids
catastrophic forgetting but also outperforms all other methods in the SplitMNIST setting. In the
SplitCIFAR100 dataset, our model closely competes with the top-performing continual learning
model, LWF.

The greatest benefit is observed when we combine continual learning methods with our weighted
particle filter. In all cases, the addition of the weighted particle filter increases accuracy.

In the lifelong RL experiments, our weighted particle filter consistently outperforms PPO + EWC
across all games. Similar to the continual learning experiments, we observe that combining the
weighted particle filter with PPO + EWC or PPO + TRAC results in an increase in average normalized
return, demonstrating the effectiveness of these combined approaches.
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Figure 3: Mean episode reward curves for the lifelong setups of Starpilot, Fruitbot, and Dodgeball,
comparing PPO and PPO with the weighted particle filter. Margins indicate standard errors over 10
runs. The results indicate that PPO with the weighted particle filter has greater resistance to the loss
of plasticity observed in standard PPO.
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Table 2: Comparison of Average Normalized Return and Variance of Normalized Return for Particle
Methods and LRL baselines with Supervised BC and PPO on both continual and lifelong setups of
Dodgeball, Starpilot, Fruitbot. Higher return and lower variance is better.

Method Average Normalized Return Variance of Normalized Return

Dodgeball Starpilot Fruitbot Dodgeball Starpilot Fruitbot

Particle Methods CL

Supervised BC 0.28 0.35 0.33 0.16 0.11 0.13
Supervised BC + Weighted Particle Filter 0.63 0.52 0.48 0.08 0.04 0.05
Supervised BC + Averaging Particles 0.31 0.41 0.36 0.11 0.08 0.07
Supervised BC + Baseline Particle Filter 0.37 0.33 0.39 0.09 0.10 0.07

Particle Methods LRL

PPO (Gradient Descent) 0.31 0.38 0.47 0.09 0.05 0.05
PPO + Weighted Particle Filter 0.40 0.55 0.63 0.04 0.03 0.03
PPO + Averaging Particles 0.34 0.40 0.44 0.09 0.03 0.04
PPO + Baseline Particle Filter 0.33 0.35 0.48 0.11 0.06 0.06

LRL Baselines

PPO + TRAC 0.69 0.62 0.76 0.16 0.16 0.16
PPO + TRAC + Weighted Particle Filter 0.74 0.68 0.80 0.04 0.01 0.04

PPO + EWC 0.37 0.40 0.60 0.11 0.02 0.04
PPO + EWC + Weighted Particle Filter 0.42 0.48 0.64 0.06 0.01 0.01

Permutation Invariance A distinctive feature of our gradient-based weighted particle filter is its
approximate permutation invariance. To validate this property, we evaluated the average normalized
variances over classes or levels across 10 permutation runs for each experiment and each method in
both the continual learning and lifelong reinforcement learning setups. Each run involved training
on a different order of class datasets for SplitMNIST and SplitCIFAR100, or on a different order of
levels for the ProcGen games.

Tables 1 and 2 show that, in all experiments, our Weighted Particle Filter exhibited lower variance
compared to gradient descent. Additionally, when comparing continual learning or lifelong RL
methods with and without the particle filter, we observe that the Weighted Particle Filter consistently
increased performance/return and reduced variance. Figure 2 effectively illustrates this relationship
in the SplitMNIST and SplitCIFAR100 experiments. The bottom right region of each plot represents
the ideal scenario of high accuracy and low task variance. It is evident from both plots that this
optimal region is dominated by either the Weighted Particle Filter alone or continual learning methods
combined with the Weighted Particle Filter, demonstrating the advantages of our approach.

5 DISCUSSION

Poor permutations of training data, such as strictly ordered minibatches, can lead to catastrophic
forgetting and loss of plasticity. To overcome this challenge, we theoretically demonstrated that
particle filters can be permutation-invariant, allowing them to mitigate the issues associated with
poor ordering of training data. This permutation invariance offers a principled solution to avoiding
catastrophic forgetting and preserving plasticity throughout learning.

We proposed a simple, gradient-based weighted particle filter that was effective in continual, lifelong,
and permutation-invariant learning. While effective, our particle filter requires memory scaling with
the number of particles, which can be computationally costly. Moreover, our particle filter alone
is often not as effective as in combination with other approaches, limiting its use as a stand-alone
algorithm. Nevertheless, our approach has a number of advantages: it is highly parallelizable,
requiring minimal interaction between particles. It is also domain-agnostic: our approach resists
catastrophic forgetting and loss of plasticity in both lifelong reinforcement learning and supervised
continual learning settings. Finally, it is easily combined with existing algorithms. These advantages
suggest that particle filter methods may offer many other benefits to modern machine learning.
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A PROOF OF THEOREM 1

Proof. We first show that p̂[L1, L2] is similar to p̂[L2, L1]. Observe that applying true Bayesian
updates L1 and L2 to p̂ following Equation 3 yields:

Zp̂(x)e−L1(x)−L2(x) (27)

for some normalizing constant Z, which is invariant to the ordering of the loss functions. By
Equation 8, we have:

D(p̂[L1, L2], Zp̂(·)e−L1(·)−L2(·)) ≤ C2D(p̂, p̂) + ϵ
C2 − 1

C − 1
= ϵ

C2 − 1

C − 1
(28)

since D(p̂, p̂) = 0. Similarly, we have:

D(p̂[L2, L1], Zp̂(·)e−L1(·)−L2(·)) ≤ ϵ
C2 − 1

C − 1
(29)

By the triangle inequality, we have:

D(p̂[L1, L2], p̂[L2, L1]) ≤ 2ϵ
C2 − 1

C − 1
(30)

Now, we bound the discrepancy between p̂[L1, L2] and p̂[L2, L1] when we apply k additional updates
L3 through L2+k. By Equation 6, we have:

D(p̂[L1, L2, L3, ...L2+k], p̂[L2, L1, L3, ...L2+k]) ≤ 2ϵCkC
2 − 1

C − 1
(31)

We may apply this inequality to bound the discrepancy between particle filter outputs when any two
adjacent losses are swapped:

D(p̂[L1, L2, ...Li−1, Li, Li+1, Li+2, ...LT ], p̂[L1, L2, ...Li−1, Li+1, Li, Li+2, ...LT ]) ≤ 2ϵCT−2C
2 − 1

C − 1
(32)

Thus, with N swaps, using the triangle inequality, the discrepancy may be bounded as:

D(p̂0[L1, ...LT ], p̂0[Lσ1
, ...LσT

]) ≤ 2NϵCT−2C
2 − 1

C − 1
(33)

B PROOF OF THEOREM 2

Proof. We first bound the difference in loss between p̂0[L1, L2, ...Li−1, Li, Li+1, Li+2, ...LT ] and
p̂0[L1, L2, ...Li−1, Li+1, Li+2, ...LT , Li]. By Theorem 1, we have:

D(p̂0[L1, L2, ...Li−1, Li, Li+1, Li+2, ...LT ], p̂0[L1, L2, ...Li−1, Li+1, Li+2, ...LT , Li]) ≤ 2TϵCT−2C
2 − 1

C − 1
(34)

Applying the bound on the difference of L under different distributions:

Ex∼p̂0[L1,L2,...Li−1,Li,Li+1,Li+2,...LT ][Li(x)]−Ex∼p̂0[L1,L2,...Li−1,Li+1,Li+2,...LT ,Li][Li(x)] ≤ 2kTϵCT−2C
2 − 1

C − 1
(35)

Now, applying the reduction in loss by training on Li:

Ex∼p̂0[L1,L2,...Li−1,Li,Li+1,Li+2,...LT ][Li(x)] ≤ βEx∼p̂0[L1,L2,...Li−1,Li+1,Li+2,...LT ][Li(x)]+2kTϵCT−2C
2 − 1

C − 1
(36)

Finally, applying the absolute bound on the loss:

Ex∼p̂0[L1,L2,...LT ][Li(x)] ≤ βM + 2kTϵCT−2C
2 − 1

C − 1
(37)
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C PROOF OF THEOREM 3

Proof. First, observe that since the losses are linear, particle i at time t has position:

x
(i)
t = x

(i)
0 − σ2

t∑
τ=1

gτ (38)

Next, observe that the weight of particle i at the end of training may simply be expressed as the
product of all weight updates:

w
(i)
T = e−

1
2

∑T
t=1 Lt(x

(i)
t )+Lt(x

(i)
t−1) (39)

We omit the normalizing constant for notational convenience. Using the linearity of Lt and the update
equation x

(i)
t = x

(i)
t−1 − σ2gt:

w
(i)
T = e−

∑T
t=1 gT

t (x
(i)
t−1−

1
2σ

2gt)+bt (40)

Now, expanding x
(i)
t−1 in terms of gt:

w
(i)
T = e−

∑T
t=1 gT

t (x
(i)
0 −σ2 ∑t−1

τ=1 gτ− 1
2σ

2gt)+bt (41)

Rearranging terms:

w
(i)
T = e−

∑T
t=1 gT

t x
(i)
0 +σ2 ∑T

t=1(
∑t−1

τ=1 gT
t gτ+

1
2 g

T
t gt)−

∑T
t=1 bt (42)

Rewriting the double summation:

w
(i)
T = e−

∑T
t=1 gT

t x
(i)
0 + 1

2σ
2 ∑T

t=1

∑T
τ=1 gT

t gτ−
∑T

t=1 bt (43)

Rearranging terms again:

w
(i)
T = e−

∑T
t=1 gT

t [x
(i)
0 − 1

2σ
2 ∑T

τ=1 gτ ]−bt (44)

Observe that x(i)
T = x

(i)
0 − 1

2σ
2
∑T

τ=1 gτ ; thus, x(i)
0 − 1

2σ
2
∑T

τ=1 gτ = 1
2 (x

(i)
T + x

(i)
0 ). Using this

and the linearity of Lt:

w
(i)
T = e−

1
2

∑T
t=1 Lt(x

(i)
0 )+Lt(x

(i)
T ) = e−

∑T
t=1 Lt(x

(i)
T )−σ2 1

2

∑T
t=1 Lt(

∑T
τ=1 gτ ) (45)

Next, note that pT (x
(i)
T ) is given by:

pT (x
(i)
T ) = p0(x

(i)
T )e−

∑T
t=1 Lt(x

(i)
T ) (46)

where we again omit normalizing constants for convenience. Finally, applying the same equations for
particle j

w
(i)
T

w
(j)
T

=
e−

∑T
t=1 Lt(x

(i)
T )−σ2 1

2

∑T
t=1 Lt(

∑T
τ=1 gτ )

e−
∑T

t=1 Lt(x
(i)
T )−σ2 1

2

∑T
t=1 Lt(

∑T
τ=1 gτ )

=
e−

∑T
t=1 Lt(x

(i)
T )

e−
∑T

t=1 Lt(x
(j)
T )

=
pT (x

(i)
T )

pT (x
(j)
T )

(47)

D EXPERIMENTAL SETUP AND DETAILS

SplitMNIST task: In this task, our objective is to sequentially address a series of five binary
classification tasks derived from the MNIST dataset. These tasks are designed to distinguish between
pairs of digits, presenting a unique challenge in each case. The specific pairings are as follows:

• Digits 0 and 1 ({0v1})
• Digits 2 and 3 ({2v3})
• Digits 4 and 5 ({4v5})
• Digits 6 and 7 ({6v7})
• Digits 8 and 9 ({8v9})
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Split CIFAR100 Task: This task involves the sequential solution of 20 different 5-class classifica-
tion tasks. Each task is associated with a distinct category comprising a specific group of objects or
entities. The categories, along with their corresponding class labels, are listed below:

• Aquatic mammals: {beaver, dolphin, otter, seal, whale}
• Fish: {aquarium fish, flatfish, ray, shark, trout}
• Flowers: {orchid, poppy, rose, sunflower, tulip}
• Food containers: {bottle, bowl, can, cup, plate}
• Fruit and vegetables: {apple, mushroom, orange, pear, sweet pepper}
• Household electrical devices: {clock, computer keyboard, lamp, telephone, television}
• Household furniture: {bed, chair, couch, table, wardrobe}
• Insects: {bee, beetle, butterfly, caterpillar, cockroach}
• Large carnivores: {bear, leopard, lion, tiger, wolf}
• Large man-made outdoor things: {bridge, castle, house, road, skyscraper}
• Large natural outdoor scenes: {cloud, forest, mountain, plain, sea}
• Large omnivores and herbivores: {camel, cattle, chimpanzee, elephant, kangaroo}
• Medium-sized mammals: {fox, porcupine, possum, raccoon, skunk}
• Non-insect invertebrates: {crab, lobster, snail, spider, worm}
• People: {baby, boy, girl, man, woman}
• Reptiles: {crocodile, dinosaur, lizard, snake, turtle}
• Small mammals: {hamster, mouse, rabbit, shrew, squirrel}
• Trees: {maple tree, oak tree, palm tree, pine tree, willow tree}
• Vehicles 1: {bicycle, bus, motorcycle, pickup truck, train}
• Vehicles 2: {lawn mower, rocket, streetcar, tank, tractor}

ProcGen Environment: We use the ProcGen games Starpilot, Dodgeball, and Fruitbot, which
employ procedural content generation to create new levels (corresponding to specific seeds) upon
episode reset. We specifically use the hard mode to introduce distribution shifts and ensure the tasks
are sufficiently challenging for both lifelong reinforcement learning and continual behavioral cloning.

Level Characteristics:

• Observation: The observation space consists of an RGB image of shape 64x64x3, repre-
senting the state of the environment at each time step.

• Action Space: The action space is discrete, with up to 15 possible actions depending on the
game.

• Reward: Rewards are provided in either dense or sparse formats, depending on the specific
game.

• Termination Condition: A boolean value indicates whether the episode has ended.

Offline Data Collection:

• Levels Used:
– Levels [0, 15): These levels are used for collecting trajectories, specifically for the

lifelong RL setup. The agent in our BC experiments is trained sequentially, observing
level 0 for 2 million steps, followed by level 1, and so on.

• Expert Policies Training:
– We follow a similar setup to Mediratta et al. (2024). A strong and well-trained PPO

policy is used, which was trained for 20 million steps on 200 levels of each game. This
approach ensures that the policy generalizes well and acts as a proficient expert agent
for collecting trajectories.
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• Dataset Generation:
– Expert Dataset: To generate the expert dataset, we rolled out the final checkpoint of

the pretrained PPO model (i.e., the expert policy) across the 15 training levels (splits),
collecting 100,000 transitions per level.

Lifelong RL Setup: For the lifelong reinforcement learning setup, we followed the same experi-
mental protocol as Muppidi et al. (2024). In the ProcGen experiments, individual game levels were
generated using a seed value as the start level parameter, which was incremented sequentially to
create new levels. Every 2 million steps, a new level was introduced to the agent using the hard
distribution mode. To assess permutation invariance, the sequence of start-level seeds was permuted
10 times, providing a diverse set of training orders for evaluation.

Model details: Our Gradient-based particle filter uses 100 particles. Particles are initialized
randomly from PyTorch’s nn.module network parameters. A small amount of noise is injected into
these parameters in the beginning of training to increase exploration of the solution space. Our
Gradient-descent implementation uses the same code, except we initialize the particle filter with only
one particle. The averaging particle filter simply takes the average of the accuracies of all of the
particles. The baseline particle filter does the following:

1. Resamples particles from the existing pool with probabilities proportional to the exponential
of the negative loss associated with each particle. .

2. Applies perturbations to particles, enabling the exploration of the solution space.
3. Updates the weights of the particles based on the new loss.

We have also incorporated three continual learning methods: SI, EWC, and LWF (van de Ven et al.,
2022). Each of these methods has been implemented following the default, method-specific settings
as prescribed in the (van de Ven et al., 2022) code implementation. These three models used a
”pure-domain” setting.

For a detailed implementation of our particle filter, please refer to our code submission.
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