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GRAINED CONTROL
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“Angry” & “A senior actor”

“Laugh” 

… how to gh! <mute> Ha! Ha! Something like this?lau-

coarse ctrlspeech render videofine ctrl language portrait label

Figure 1: Adding multimodal coarse- and fine-grained control enables more flexible animations:
Scenario: A senior actor is arguing with the director about how to smile. Action: The actor responds
with anger and concludes with a sudden sarcastic laugh.

ABSTRACT

Speech-driven 3D talking face method should offer both accurate lip synchroniza-
tion and controllable expressions. Previous methods solely adopt discrete emotion
labels to globally control expressions throughout sequences while limiting flexi-
ble fine-grained facial control within the spatiotemporal domain. We propose a
diffusion-transformer-based 3D talking face generation model, Cafe-Talk, which
simultaneously incorporates coarse- and fine-grained multimodal control condi-
tions. Nevertheless, the entanglement of multiple conditions challenges achiev-
ing satisfying performance. To disentangle speech audio and fine-grained condi-
tions, we employ a two-stage training pipeline. Specifically, Cafe-Talk is initially
trained using only speech audio and coarse-grained conditions. Then, a proposed
fine-grained control adapter gradually adds fine-grained instructions represented
by action units (AUs), preventing unfavorable speech-lip synchronization. To
disentangle coarse- and fine-grained conditions, we design a swap-label training
mechanism, which enables the dominance of the fine-grained conditions. We also
devise a mask-based CFG technique to regulate the occurrence and intensity of
fine-grained control. In addition, a text-based detector is introduced with text-AU
alignment to enable natural language user input and further support multimodal
control. Extensive experimental results prove that Cafe-Talk achieves state-of-
the-art lip synchronization and expressiveness performance and receives wide ac-
ceptance in fine-grained control in user studies.

1 INTRODUCTION

Generating realistic speech-driven 3D facial animation holds significant application value in the
traditional film industries and advanced AI applications. It is a challenging task that necessitates
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synchronized lip motions and the conveyance of vivid, compelling facial expressions. Moreover, an
animator-friendly and agent-driven application requires fine-grained and multimodal control capa-
bilities, as illustrated in Fig. 1. Although existing methods have achieved impressive progress in
facial expression control by using emotion labels (Daněček et al., 2023; Haque & Yumak, 2023) or
multimodal emotional references (Xu et al., 2023; Peng et al., 2023) for entire sequences, modeling
and flexibly controlling fine-grained facial expressions during speech is still unexplored.

Our motivation is to present a 3D talking face method with effective, precise, and flexible con-
trollability. To achieve this, the controlling condition is spatiotemporally modeled as coarse- and
fine-grained conditions, where the coarse-grained condition establishes a foundation for the pro-
duced facial movements and the fine-grained condition enriches the details. Spatially, the coarse-
grained conditions abstractly depict overall facial movements through talking style and emotion.
Conversely, the fine-grained condition emphasizes specific and localized muscle movements, such
as blinking and raising the eyebrows. Temporally, the coarse-grained condition remains constant
during speaking, while the fine-grained condition describes the instant facial expressions. Existing
methods (Daněček et al., 2023; Peng et al., 2023) focus on modeling the talking style and emotion
temporal-consistently, neglecting fine-grained facial movements in spatiotemporal domains, which
results in an inability to control intricate local motions and flexible expression changes.

To tackle the aforementioned challenge, in this paper, we present Cafe-Talk as the first 3D talking
face generation method with coarse- and fine-grained multimodal control. In order to achieve de-
tailed and flexible control within the current diffusion-based framework, an intuitive approach is to
directly implement additional fine-grained conditions and jointly train the network alongside speech
audio and coarse-grained conditions. However, the entanglement of the three conditions results in
unsynchronized lip movements and an inability to fine-grained control based on our preliminary
experimental findings. Specifically, (1) the entanglement of the audio and fine-grained condition
provides a shortcut to producing lip movements and weakening speech audio guidance, as the fine-
grained conditions can also describe local muscle motions around the mouth. To this end, Cafe-Talk
is designed as a coarse-to-fine structure with a two-stage pipeline. In the first stage, a diffusion-
based transformer (Ng et al., 2024; Zhao et al., 2024) generates the facial movements with encoded
speech audio and incorporates the multimodal coarse-grained condition following Peebles & Xie
(2023) to achieve efficient global control. In the second stage, the fine-grained conditions represent
a sequence of action units (AUs), which flexibly guide the corresponding muscles to stay excited.
Although existing methods (Ma et al., 2023; Wang et al., 2024; Sun et al., 2024) utilize AUs to
control facial motions, they merely refine the coarse-grained control instead of disentangle the detail
controllability. With the frozen base model, we design a fine-grained control adapter to gradually
add the fine-grained condition into the pipeline without jeopardizing lip movements benefiting from
a zero convolution layer (Zhang et al., 2023a). Moreover, (2) to achieve effective, precise, and flexi-
ble fine-grained control, we first build a swap-label training mechanism upon the two-stage pipeline
to introduce conflict coarse- and fine-grained conditions, enabling predominant fine-grained condi-
tional control. We then design a mask-based classifier-free guidance (CFG) technique for inference,
which ensures the occurrence of fine-grained conditions and allows for effective and accurate inten-
sity control. We finally introduce a text-based detector for language-based emotion and expression
description by aligning it with AUs on a projected CLIP space (Radford et al., 2021), extending
flexible multimodal fine-grained control.

We thoroughly validate the effectiveness of our proposed controllable talking face generation
method through extensive experiments. To the best of our knowledge, we are the first to address
the fine-grained 3D talking face control task. Thus, we compare the lip synchronization and coarse-
grained expression control capabilities with existing methods and achieve state-of-the-art perfor-
mances. Additionally, we conduct ablation experiments to demonstrate the importance of each pro-
posed module in achieving fine-grained control. Finally, we execute a user study and received wide
acceptance of the effectiveness of our control. The contributions of this paper can be summarized as
follows:

1. We propose Cafe-Talk, the first 3D talking face generation model enabling coarse- and
fine-grained multimodal conditional control in an effective, precise, and flexible manner.

2. We design a two-stage training pipeline that explicitly disentangles speech audio and fine-
grained conditions. Additionally, we devise a fine-grained control adapter that gradually
introduces fine-grained conditions without jeopardizing lip synchronization.
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3. We introduce a swap-label training mechanism and mask-based CFG technique in the infer-
ence process to disentangle coarse- and fine-grained conditions, which achieves dominant
and precise localized facial control.

4. We devise a text-based AU detector to efficiently extract AU fine-grained conditions from
natural language descriptions based on user intent, which enables our model to support
multimodal control.

2 RELATED WORK

Talking face animation has attracted considerable attention due to its significant application poten-
tial and market demand. This technology can be broadly divided into two categories based on the
output format: video-based and 3D-based methods. Video-based methods (Zhou et al., 2020; Wang
et al., 2020; Liu et al., 2023) focus on generating realistic portrait videos, particularly benefiting
from advanced neural rendering techniques (Guo et al., 2021; Shen et al., 2022; Tang et al., 2022;
Ye et al., 2023). In contrast, this paper focuses on 3D-based methods, which produce 3D meshes or
3DMM coefficients that are compatible with game engines, offering broader practical applications.
Within the domain of 3D-based methods, previous works (Cudeiro et al., 2019; Fan et al., 2022; Xing
et al., 2023; Yi et al., 2023) leveraging discriminative models have successfully achieved precise lip
movement regression from speech audio. These methods typically use a pretrained speech audio
encoder (e.g., from automatic speech recognition models such as (Hannun et al., 2014; Baevski
et al., 2020)) and a decoder to translate audio features into lip movements. While these methods ef-
fectively synchronize lip movements, the facial expressions generated are often lacking in diversity
and emotional expressiveness. With the advancement of generative models, recent methods (Aneja
et al., 2024; Ng et al., 2024) have constructed diffusion-based pipelines to achieve more diverse and
accurate facial movements. To improve expressiveness in talking face animation, some methods
extract emotion cues from the input speech. For example, EmoTalk (Peng et al., 2023) disentangles
content and emotion from the speech audio using cross-reconstruction techniques. However, emo-
tion cues derived from speech are often person-specific, which limits the generalization capability
of such methods. An alternative approach involves incorporating explicit emotion labels into the
talking face animation pipeline, as seen in (Karras et al., 2017; Haque & Yumak, 2023; Daněček
et al., 2023). These methods, trained on datasets with emotion annotations, enable better control
over expressiveness. Unlike previous methods that use one-hot encoding for emotion labels, Xu
et al. (2023) proposed encoding emotion annotations using CLIP, leveraging its semantic space to
model unseen emotions, thus enabling more flexible control.

Fine-grained control in body motion generation has been widely studied, evolving from generating
motions based on single actions (Petrovich et al., 2021) to more sophisticated control using natural
language (Tevet et al., 2022; 2023). Some works (Wang et al., 2023; Lu et al., 2024) have focused
on enhancing the spatial precision of motion described by text, while others (Zhang et al., 2023b;
Li et al., 2023; Zhang et al., 2024; Petrovich et al., 2024) model the temporal aspects of motion to
generate coherent sequences for motion control. Inspired by these advancements, recent methods
have extended emotion control in talking face animation from label-based approaches to fine-grained
control. Methods (Ma et al., 2023; Gan et al., 2023; Tan et al., 2024; Wang et al., 2024; Zhao et al.,
2024; Sun et al., 2024) have explored generating talking face animations using emotion or expres-
sion descriptions. In these works, AUs (Friesen & Ekman, 1978) have been frequently used to create
precise descriptions of facial movements — TalkCLIP (Ma et al., 2023) obtained rule-based expres-
sion descriptions by summarizing frequently activated AUs from ground truth videos, alongside the
corresponding emotion category and intensity from datasets (Wang et al., 2020). Style2Talker (Tan
et al., 2024) and InstructAvatar (Wang et al., 2024) further improved these descriptions with the
help of large language models (LLMs). However, due to the entanglement between emotion la-
bels and AUs, these methods only refine emotion labels using AUs rather than providing temporally
fine-grained control. To enable multimodal control, TalkCLIP aligned the modalities of text, video,
and audio with a CLIP adapter, while InstructAvatar utilized two separate adapters for emotion and
expression description. EAT (Gan et al., 2023), on the other hand, leverages CLIP’s text-image
alignment capabilities, minimizing the CLIP loss between generated images and text descriptions to
achieve zero-shot expression editing. Although AU-based text descriptions provide more detailed
control over facial movements, this approach is computationally inefficient compared to directly
encoding AUs. Additionally, the semantic space of AU-based text differs significantly from that of
natural language, limiting the controlling ability. In conclusion, even though the aforementioned
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methods model the fine-grained condition with AUs, there are still limitations: 1) Usage of AUs:
Previous methods primarily regarded AUs as a refinement of the emotion label, failing to achieve
spatiotemporal fine-grained control. 2) Language control: Previous methods that utilized CLIP to
encode AU-based text descriptions not only lost computational efficiency but also failed to ensure
control capability over natural language.

3 CAFE-TALK

Overview. The fine-grained condition encodes subtle facial muscle movements intertwined with
speech audio and the coarse-grained emotional label. Consequently, the lip movements could also
be influenced by the fine-grained guidance instead of speech audio if we directly train the generative
model conditioned on the three entangled conditions. Thus, we propose a coarse-to-fine pipeline
with a two-stage training strategy – a base model with coarse-grained conditional control is trained
in stage 1 with a similar structure validated in (Zhao et al., 2024; Ng et al., 2024), and the fine-
grained condition is added to the base model with an adapter in stage 2. We denote the speech
audio as A, coarse-grained condition C, and fine-grained condition as F . Concretely, the coarse-
grained condition consists of the talking style Cts, emotion label Cemo, and emotion intensity Cint.
Meanwhile, the fine-grained condition is formulated as n triplets with expression description Fd, the
start and end frame index timestamp Fs, Fe, as:

F =
{
(F 0

d , F
0
s , F

0
e ), (F

1
d , F

1
s , F

1
e ), · · · , (Fn

d , F
n
s , F

n
e )

}
, (1)

where the expression description Fd is represented by binary AUs, where activated AUs guide the
corresponding muscles engaged to generate local facial movements. The generator is G, while the
facial movement is noted as M0:T with T frames.

3.1 BASE MODEL WITH COARSE-GRAINED CONTROL

In stage 1, we intend to train a base model that generates accurate lip movement with multimodal
coarse-grained control, conditioning on the talking style and emotion status referred to facial images
or emotional text descriptions. The base model, illustrated in Fig. 2, consists of stacked diffusion
transformer blocks, integrating the encoded speech audio A and coarse-grained condition C with
attention layers.

FiLM Self Attn

AdaLN Self Attn

FiLM Cross AttnAudio

w2v2

D
iffusion Transform

er Block

CLIP encoder

Emo-exempt
ID portrait

Emotion label
(synonym)

Emotion intensity
{1, 2, 3}

intensity
emb

C"overjoyed"

scale

C concatenate

add

Figure 2: Stage 1 pipeline: a base model under transformer-diffusion structure is proposed to enable
coarse-grained conditional control of temporal-consistent talking style, emotion status, and intensity.

3.1.1 MODEL STRUCTURE

Coarse-grained condition. In this work, we define the talking style, emotional status, and inten-
sity as coarse-grained conditions that control the facial movement temporal-consistently in a multi-
modal fashion. Unlike existing methods (Fan et al., 2022; Daněček et al., 2023) utilized one-hot em-
bedding for talking styles and emotion labels, Cafe-Talk takes CLIP embeddings as coarse-grained
condition inputs. Inspired by Oh et al. (2019) inferring the speakers’ appearances from speech au-
dio, we obtain the talking style from the facial images of the speakers. Meanwhile, the emotion
label is encoded by the CLIP text encoder, which is augmented by generated synonyms (Xu et al.,
2023; Ma et al., 2023). We learn a trainable embedding for the emotion intensity, which is scaled by
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a numerical emotion intensity factor, guiding the model to learn the ordinal nature of the intensity.
The coarse-grained condition feature Cf is the linear mapping result of the concatenation of talking
style embedding, emotion embedding, and the emotion intensity on the feature dimension. Then,
we merge the coarse-grained condition into the transformer diffusion block (Peebles & Xie, 2023)
with a self-attention and feed-forward layer for efficient global conditional control.

Speech audio condition. We utilize a fixed pre-trained audio encoder (Conneau et al., 2020) to
encode the speech audio, and then the acoustic feature is interpolated to 25fps to match the face
movement. We merge the acoustic feature with FiLM-based cross-attention layer (Perez et al.,
2018), where a mask Zalign is introduced within the cross-attention layer for lip synchronization,
where the element Zi,j

align is defined as:

Zi,j
align =

{
0, if |i− j| ≤ 1,

−∞, otherwise.
(2)

Moreover, a self-attention layer with FiLM is also included, which is formed similarly to the speech
audio, and the diffusion transformer block is constructed as stacked aforementioned layers and re-
peated 8 times in the generator G. We list detailed hyperparameters in the App. C.

3.1.2 DENOISING PROCESS

Following the DDPM (Ho et al., 2020) definition, the forward noising process is defined as:

q
(
M0:T

τ | M0:T
τ−1

)
∼ N

(√
ατM

0:T
τ−1, (1− ατ )I

)
, (3)

where M0:T
0 denotes the predicted noise-free facial representation sequence, τ ∈ [1, · · · , Ṫ ] denotes

the forward diffusion step, and ατ ∈ (0, 1) follows a monotonically decreasing noise schedule such
that as τ approaches Ṫ , M0:T

τ is sampled from the normal distribution.

We follow Ng et al. (2024) that predict M0:T
0 directly from M0:T

τ , and the next step M0:T
τ−1 of the

reverse process can then be obtained by applying the forward process to the predicted M0:T
0 . The

prediction process can be mathematically formulated as Eq. 4:

M̂0:T
0 = G(M0:T

τ ; τ,A,C). (4)

For the training objective, we adopt the simple loss (Ho et al., 2020)(Eq. 5). The speech audio and
coarse-grained conditions are independently masked with a probability of 20% during training for
the CFG technique (Ho & Salimans, 2021), which enhances the controllability (shown in App. B).

Lsimple = ||M1:T
0 − M̂1:T

0 ||22. (5)

3.2 ADDING FINE-GRAINED CONDITIONAL CONTROL

Fine-grained control adapter. Automatic generation of natural facial expressions requires local-
ized muscle movement control rather than hand-crafted post-processing. Thus, we integrate the
fine-grained conditions into the base model to enable detailed facial control in the facial movement
generation process. We choose binary AU sequences as the fine-grained conditions due to their abil-
ity to describe spatiotemporal localized movements and multimodal scalability. In our design, the
activated AUs guide the excitation of the generated facial muscles rather than maintaining activation
within a controlled interval. In order to add fine-grained control to the base model, we devise an
adapter with the structure of FiLM self-attention layer (in Fig. 3) as extra network layers, which is
optimized only in stage 2 while keeping the base model fixed. Additionally, a zero convolution layer
(Zhang et al., 2023a; Wang et al., 2024) is added after the FiLM attention layer, which is initialized
with zeros and is gradually optimized during training, ensuring a stable training process.

Swap-label mechanism. The entanglement of the coarse- and fine-grained control cannot be com-
pletely eliminated only by network design because 1) entangled supervision: the model is only
trained on paired data (A,C, F,M0:T ), where coarse- and fine-grained conditions are entangled,
therefore failing to generate, for instance, an angry facial movement with a sudden smile since no
such data exists in the dataset; 2) Insuffcent training: since the adapter is trained on the same
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Figure 3: Stage 2 training pipeline: A fine-grained control adapter is inserted into the fixed base
model and optimized in stage 2 with shuffling regular paired data or swapped emotion label.

dataset as the base model, which generates a facial movement M̂0:T
0 that is similar to the ground

truth M0:T , the AU sequence may be treated as a condition for refinement rather than control; 3) Im-
practical modeling: users tend to apply fine-grained control over specific muscles within designated
time intervals in the practical application, instead of the AU sequence with complete spatiotemporal
movement information provided by the annotated training dataset. This inconsistency between train-
ing and inference can lead to suboptimal performance. To address the challenges above, we propose
a swap-label training mechanism to break the provided coarse- and fine-grained condition pair and
ensure the dominance of fine-grained control instead of the coarse-grained conditions. We visual-
ize the swap-label mechanism in Fig. 3. During training, we replace the coarse-grained emotion
label and obtain a swapped pair of data (A,C ′, F,M0:T ) while keeping the original AU sequence
as fine-grained condition F and the ground truth M0:T . At the beginning of the training process,
the generator initially produces M̂ ′,0:T

0 according to the swapped emotion label C ′. In order to
disentangle the paired coarse- and fine-grained conditions and emphasize the controllability of the
fine-grained condition, we optimize the adapter so that M̂ ′,0:T

0 is as close as possible to M0:T
0 when

F is given. The loss function is as follows:

Lswap = ||Z0:T
ctrl ⊙M0:T − Z0:T

ctrl ⊙ M̂ ′,0:T
0 ||, (6)

where Z0:T
ctrl is a spatiotemporal mask representing the activated AUs within the fine-grained con-

dition, and ⊙ denotes the element-wise product. The swap-label mechanism can disentangle the
coarse- and fine-grained conditions by sufficiently optimizing the adapter with swapped training
pairs. While keeping the base model fixed, the swap-label mechanism consistently supervises the
adapter to learn facial movement controlled by the AU sequences in the non-masked region. Mean-
while, the swap-label mechanism is randomly replaced with the regular simple loss (as Eq. 5),
preserving accurate facial movements in the non-fine-grained controlled region. To effectively sim-
ulate the fine-grained conditions users provide in practical applications, the AU sequence requires
sparsification in both temporal and spatial dimensions. Considering the temporal continuity of the
conditions, we randomly drop elements triplets (Fd, Fs, Fe) from the AU sequence F . Within a spe-
cific remaining triplet, each activated AU is discarded with probability, preventing the suppression
of the corresponding facial movements of non-activated AUs.

Mask-based classifier-free guidance technique. The influence of the fine-grained condition
could spill over to the neighbor non-conditional temporal intervals due to the continuity of facial
movements, as illustrated in the fourth row of Fig.4. This issue cannot be rectified through training
alone. Hence, we address it by employing a mask-based CFG technique based on Ho & Salimans
(2021) during inference, as:

M̂0:T
0 = GΦ + α(GA,C − GΦ) + βZ0:T

cfg ⊙ (GA,C,F − GΦ), (7)
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where we abbreviate the notation of G(M0:T
t ; t, ·) as G·. Z0:T

cfg is a temporal mask that marks the
frames with user-provided fine-grained conditions. This temporal guidance prevents the leaking
issue and performs seamless transitions under the denoising process. The α and β are the guidance
scale, and we leverage β as the intensity control of the fine-grained condition shown in App. B.

Text-based AU detector. The choice of using AUs as the fine-grained condition facilitates multi-
modal control, including facial image and text-based descriptions. Although we can employ off-the-
shelf AU detectors (Baltrušaitis et al., 2016) from the facial portraits as the fine-grained condition,
detecting AUs from textual descriptions of emotions or expressions remains an unexplored and
challenging endeavor due to insufficient application. In order to train a text-based AU detector, we
collect a dataset comprising text description-AU pairs from two data sources: on the one hand, we
utilized the knowledge of LLM to obtain a limited number of high-quality emotions and expressions,
along with their corresponding activated AUs. On the other hand, we supplement the dataset with
a substantial number of emotion-AU pairs sourced from an image-based expression dataset (Mol-
lahosseini et al., 2017). The lightweight detector employs CLIP-Adapter (Gao et al., 2024) as the
backbone, considering CLIP’s sensitivity to emotions and expressions when aligning textual and vi-
sual modalities. After passing through the adapter, the textual CLIP features are fed into the detector
head to predict the activated AUs. Additionally, we use AU-based text descriptions for alignment
to enhance generalization capabilities. We train our detector with a binary cross-entropy loss, while
an InfoNCE loss is also included to mitigate the gap between AU and natural language descriptions.
More technical details are listed in App. F.

4 EXPERIMENTS

4.1 DATASETS

We use the public-available emotional talking face dataset MEAD (Wang et al., 2020) and
RAVDESS (Livingstone & Russo, 2018) to train our model. MEAD captures approximately 40
hours of 48 participants’ talking face clips in RGB video. It covers neutral and seven expres-
sion categories (angry, contempt, disgusted, fear, happy, sad, and surprised) in 3 intensity levels.
Each participant is required to record 30 selected sentences for each expression type and intensity.
RAVDESS contains 24 speakers and features over 6.5 hours of data, including 8 emotion categories
(neutral, calm, happy, sad, angry, fearful, disgusted, and surprised). We split two participants from
MEAD for validation and test set each and split RAVDESS following Peng et al. (2023). Moreover,
to enhance the generalization of lips synchronization, we collect approximately 252 hours of multi-
lingual speaking videos from the internet to obtain a diverse range of speaking motions and obtain
the ready-to-go dataset with a total duration of 157 hours after manually removing the segments with
unsynchronized audio or occluded faces. We represent facial movements with a sequence of Apple
ARKit blendshape coefficients1, as each frame is a 51-dimension vector, and each dimension has
specific facial muscle movements corresponding to it. An in-the-house video-based motion-capture
model is utilized to obtain the facial movement. For semantic consistency, the AU sequence for each
clip is obtained from the facial movements with a handcrafted rule (App. D).

4.2 EVALUATIONS

4.2.1 METRICS

In our experiment, we adopt several metrics for comparison considering the following factors: 1)
lip synchronicity, 2) emotion expressiveness and expression diversity, and 3) fine-grained condition
control ability. Hence, we adopt lips vertices error (LVE↓, Richard et al. (2021)) and SyncNet score
(SyncD↓ and SyncC↑, Chung & Zisserman (2017)) for lip synchronicity, and Acc ↑ and Div ↑ for
expression. The calculation method for the metrics is detailed in the App. E. Notably, to evaluate
the fine-grained control ability, we propose Control Rate (CR ↑), which is defined as giving a fine-
grained condition (F i

d, F
i
s , F

i
e) and the guided facial movement M̂0:T

0 , the control rate is computed
as the gap between the maximum coefficients in the controlled slot and the average of its non-
controlled neighbors (5 frames, for 0.2s is the minimum duration of a noticeable expression (Ekman

1https://arkit-face-blendshapes.com/
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& Friesen, 1969)). The larger CR value indicates more obvious and intense controlling effects.

CR = max(M̂
F i

s :F
i
e

0 )− avg(M̂F i
s−5:F i

s
0 , M̂

F i
e :F

i
e+5

0 ). (8)

4.2.2 COMPARISON WITH EXISTING METHODS

Since no previous methods exist on 3D talking faces with fine-grained spacial-temporal expression
control, we compare these methods on MEAD and RAVDESS benchmarks for lip synchronicity.
We undertake further comparisons with the methods that utilize ARKit as the output. We report the
emotion accuracy and diversity on the MEAD test set and the SyncNet score on an in-the-wild test
subset due to the render expense on the MEAD or RAVDESS testing set. As shown in Tab. 1, our
method outperforms the existing methods on both lip synchronization and expression generation.

Table 1: Comparison with SOTA methods: our method outperforms the existing SOTA methods
on both lip synchronization and expression generation.

Rep Emo MEAD 3D-ETF In-the-wild

LVE ↓ Acc ↑ Div ↑ LVE ↓ SyncD ↓ SyncC ↑
FaceFormer Disp é 16.36 - - 9.24 - -
TalkSHOW Coeff é 13.21 - - 12.54 - -
EMOTE Coeff Ë 9.37 - - 14.67 - -
EmoTalk ARKit Ë 7.90 9.97% 62.02 4.31 11.09 3.30
UniTalker ARKit é 10.14 12.44% 12.64 4.93 9.70 4.72
Ours ARKit Ë 7.21 59.48% 119.36 3.93 9.76 5.55

4.2.3 ABLATION STUDY

Coarse-grained condition modeling. To justify our choice of network design in coarse-grained
condition modeling, we replace the AdaLN self-attention layer with a FiLM cross-attention layer
used to incorporate fine-grained and speech audio conditions. As reported in Tab. 2, the base model
with the AdaLN self-attention layer generates more appropriate and diverse expressions, indicating
that our design is more efficient in modeling global conditions.

Fine-grained design. We conduct ablation studies on fine-grained controlling from the perspec-
tives of model structure, training, and inference, as 1) removing the two-stage pipeline as the coarse-
and fine-grained control are trained jointly, 2) removing the swap-label mechanism with only regular
diffusion loss and 3) replacing the mask-based CFG technique with the traditional one. We collect
a test set with in-the-wild speech audios with single or multiple AUs activated and keep the random
seed fixed. As shown in Tab. 3 and Fig. 4, we conclude that 1) Without the two-stage pipeline,
the jointly trained model exhibits fine-grained control, but its lip movements are significantly unsyn-
chronized. 2) Without the swap-label mechanism, the adapter trained with paired conditions fails
to generalize on conflict conditions, resulting in invalid fine-grained control and unsynchronized
lip movements. 3) Without the mask-based CFG technique, the generation encounters issues of
temporal leakage, making the fine-grained control difficult to observe within the control interval.
We observe that the SyncNet scores degrade when fine-grained control is incorporated, compared
to the counterpart without fine-grained control (in Tab. 1). To further investigate this, we analyze
the contribution of each AU to the SyncNet score, as presented in Tab. 4. The analysis reveals that
inappropriate activations of lower-face AUs disproportionately influence facial movements, result-
ing in suboptimal lip synchronization. This explains why the SyncNet score degrades more without
the mask-based CFG technique, as the inappropriate fine-grained condition leaks and contaminates
facial movements.
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Table 2: Carse-grained design ablation.

LVE ↓ Acc ↑ Div ↑
Ours (FiLM) 7.64 48.19% 114.26
Ours (AdaLN) 7.21 59.48% 119.36

Table 3: Fine-grained design ablation.

Method CR ↑ SyncD ↓ SyncC ↑
Ours 0.51 10.14 5.38
w/o two-stage 0.35 11.94 2.78
w/o swap-label 0.12 11.02 4.07
w/o masked CFG 0.27 10.66 4.74

Table 4: SyncNet scores on single-AU fine-grained control: with fixed speech audio and coarse-
grained conditions, the results controlled by upper-face AUs do not suffer from lip-sync issues
(+0.156 on average), whereas those with lower-face AUs exhibit unsynced lips (+0.693).

upper AU Null AU01 AU02 AU04 AU05 AU06 AU07 AU45
SyncD 9.667 9.967 10.365 9.784 9.735 9.982 9.613 9.615

lower AU AU09 AU10 AU12 AU14 AU15 AU17 AU20 AU26 AU28
SyncD 10.251 10.465 10.788 10.194 10.354 10.614 10.090 10.423 10.066
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Figure 4: Ablation on fine-grained design: we illustrate the ablation by generating facial fine-
grained condition Brow Lowerer within a neutral talking animation.

We visualize the training loss in Fig. 5, and conclude that 1) Incorporating the fine-grained condition
specifies the generation target, and simplifies the training objective (base vs. w/o two-stage and
base vs. w/o swap), and 2) Swap-label mechanism complicates the training objective with conflict
conditions, as the larger loss is observed, enabling the adapter to dominate fine-grained control.

4.2.4 USER STUDY

We conduct a user study involving 38 participants who are first required to select from EmoTalk,
UniTalker, and our method the animation they deem most natural, expressive, and exhibiting the
best lip-syncing. Our model achieves the highest performance across metrics as shown in Fig. 6.
Then, the participants are invited to evaluate the fine-grained control ability by comparing it with the
animation without the fine-grained control. In this evaluation, the fine-grained control capability, as
well as the overall performance is widely accepted performance by participants. We present coarse-
and fine-grained control in Fig. 7.
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Figure 5: Training losses.
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Figure 6: User study results.
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Figure 7: Cafe-Talk generates natural movements with conflict coarse- and fine-grained conditions.

5 CONCLUSION

We present Cafe-Talk, the first diffusion-based 3D talking face model featuring both coarse- and
fine-grained multimodal conditional control. The fine-grained condition is represented with AUs,
enabling localized and flexible control. Cafe-Talk is designed to add a fine-grained control adapter
into a diffusion-based talking face model with coarse-grained control. Provided with conflict condi-
tions during training and masked temporally during inference, the fine-grained condition dominates
the generation precisely. We extend the natural language control by a detector aligned with AUs.
Cafe-Talk has achieved superior performance across all evaluations, and fine-grained control has
received wide acceptance in user studies, validating the efficacy of the design.

However, our model still has limitations that need to be overcome. The failure cases show that
there could be inaccurate lip movements when the fine-grained conditions of the lower-face AUs
explicitly conflict with speech audio. Our near-term research efforts are geared towards immediate
improvement with a better solution to harmonize the fine-grained control of the lower face with
speech audio. Meanwhile, other aspects of 3D talking faces and applications could be researched in
the long term. For example, it would be of interest to researchers to explore more real-life AI agents
with LLMs and flexible control offered by our Cafe Talk.
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A OVERVIEW

We form the appendix as follows: in App. B we present more visualization results with coarse-
and fine-grained control. In App. C, we depict the implementation details of our model. Then we
illustrate the rule-based Au detection algorithm used in annotating the AU sequence in App. D. We
provide more details for evaluation in App. E. Finally, the text-based AU detector is described in
App. F.

B MORE RESULTS

We demonstrate emotion control by the coarse-grained condition in Fig. 8. Since the emotion is
encoded into the CLIP embedding space, our model has the capability of not only the in-domain
emotion labels (i.e. angry, fear, happy, sad and surprised), but also the unseen emotion words (e.g.
shocked). In addition, even though not adopted during training, the coarse-grained condition also
supports facial portraits as condition input, thanks to the multimodality alignment of the CLIP.

Ca

Fe

Tal

k

angry fear happy sad surprised “shocked”

Figure 8: Rusults with coarse-grained control

However, the emotion perceived by CLIP does not fully ensure that the generated facial movements
precisely match the intended expression. This underscores the importance of fine-grained condi-
tional control. In Fig. 9, we present the results of our model generated with multimodal detected
AUs.

smile yell eyes open

Figure 9: Rusults with fine-grained control

We visualize the facial movement coefficients generated with different CFG scale β in Fig. 10, where
the fine-grained condition precisely occurs in its slot due to our mask-based CFG technique. Due to
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the intensity modeled by the CFG technique, the generated results exhibit different rhythms, which
cannot be achieved by post-processing e.g., linear multiplication or summation of the coefficients.

Figure 10: Controlling intensity with CFG scale: the eyebrows are raised higher with bigger β

C DIFFUSION TRANSFORMER

In the diffusion transformer block, the attention layers take 512-dimensional features as input and
are equipped with 8 heads. We utilize an AdamW optimizer with a learning rate of 0.0001, and both
stages are trained with a batch size of 16 on 8 Nvidia V100 GPUs for 400k and 300k iterations (∼ 4
days each). More information are listed in Tab. 5

Table 5: Parameters and training strategies for modules in the diffusion transformer

Module Parameters (M) Training strategy

Wav2Vec2-xslr-300m 315.43 Fixed
Base model 25.09 Opt. in stage 1, fixed in stage 2
Adapter 5.39 Opt. in stage 2 w/ swap-label
Total 345.91 —-

D RULE-BASED AU DETECTION

Unlike existing methods utilizing an off-the-shelf detector to obtain AUs, we devise a rule-based
algorithm (Alg. 1) to binarize from the coefficient sequence for multi-fold reasons: 1) Semantical
mismatches exist between the AU detector prediction and the ground-truth facial movements, mak-
ing it fail to learn the co-relationship (Fig. 11). Previous methods may not run into such difficulty
since only salient AUs within a sequence are selected. 2) Our algorithm provides flexibility: if
only binarizing the facial movements with a threshold, the fine-grained condition will activate cor-
responding muscles for the entire interval while we encourage that the corresponding muscles can
fluctuate between activation and deactivation under fine-grained control.

E EVALUATION

E.1 METRICS

Lips vertices error We utilize lips vertices error (LVE) (Richard et al., 2021) to evaluate the lips
motion synchronization to the ground truth, which is defined as the maximal L2 error of all lip
vertices on the frame level and reports the average over all frames in the testing set.
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Algorithm 1 Binarization Algorithm Process

Input: Expression sequence M0:T

Output: AU condition sequence F

Step 1: Binarize M0:T by a threshold
Step 2: Apply max pooling with a random kernel size to the binarized sequence
Step 3: Merge adjacent active sequences randomly if the gap between them is less than a spacing
threshold

Figure 11: The AU sequence obtained by off-the-shelf detector (Baltrušaitis et al., 2016) (left) and
our binarize algorithm (right). The rule-based algorithm produces fine-grained conditions with se-
mantic consistency.

SyncNet score To evaluate the lips synchronization without ground truth, we adopt the SyncNet
(Chung & Zisserman, 2017) minimum distance (SyncD) and confidence score (SyncC), which is
commonly adopted for evaluating lips synchronization on video-based talking-head and the videos
are rendered by Unreal Engine MetaHuman 2 in our case.

Emotion accuracy and diversity We test the expression of the generated facial movements with
a transformer-based emotion classifier. The classifier first encodes the facial movement M0:T into
feature M0:T

f and classifies it to the emotion class with a classifier head. We report the accuracy of
the prediction and the feature-level standard deviation as diversity.

E.2 METRICS OF ACC

Transformer-based classifier We introduce a Transformer-based classifier to classify the emotion
category. As the model structure is shown in Fig. 12, the classifier takes the facial movements
with an additional <cls> token as the input and maps them into latent space with an MLP. Then,
with positional embedding, it is fed into the Transformer block, which consists of one layer of
the Transformer encoder layer with 8 heads. Finally, a classifier head takes the first token from the
encoder and outputs the prediction. The classifier is trained on the MEAD dataset with cross-entropy
loss. The training process lasts for 200 epochs, where the learning rate is set to 1e-4 and the batch
size is set to 128. Notably, we randomly split the dataset into the training set, validation set, and
testing set, with quantities of 70%, 15%, and 15%, to ensure the in-domain classifying ability. The
classifier achieves accuracies of 88.28% on emotion classification.

2https://www.unrealengine.com/en-US/metahuman
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Figure 12: Model structure: the transformer-based classifier

Confusion matrix. We illustrate the emotion accuracy with the confusion matrix in Fig. 13, cor-
responding to Tab. 2. We also notice that the major mispredicted pairs are “disgusted-angry” and
“surprised-fear”, which is acceptable since the definition boundary is ambiguous.

Ours w/o AdaLN

Figure 13: Confusion matrix: coarse-grained design with AdaLN achieves efficient control.

F TEXT-BASED AU DETECTOR

Model structure We construct a text-based AU detector based on CLIP (Radford et al., 2021) for
its multimodal alignment ability. As shown in Fig. 14, the text input is first encoded by the fixed
CLIP encoder, then fed into an adapter (Gao et al., 2024) with normalization. Finally, a classification
head is utilized to detect the activated AUs. Concretely, the CLIP adapter (Gao et al., 2024) is
a bottleneck 2-layer MLP ([512 → 128 → 512]) with residual connection, activated by ReLU
activation function, and the parameters are counted in Tab. 6.

Table 6: Parameters and training strategies for textual AU detector

Module Paramters (M) Training strategy

CLIP text encoder (ViT-B/32) 37.82 Fixed
CLIP adapter + head 0.13 Opt with InfoNCE and BCE loss
Total 37.95 —-
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AU 45

AU 12

A person is <AU12> <AU 45>

CLIP
Text
Enc

shared weights

A person is <AU12> <AU 45>

A person is <AU12> <AU 45>A smiling person
Person acts<AU45> <AU 12>

Adapter CLS head Pred AUs GT AUs

Figure 14: Textual AU detector pipeline

Dataset We leverage the powerful language analysis capabilities of GPT to enhance our model’s
ability to perform expression analysis on an open vocabulary. The prompt used is as follows:

Please generate a series of complex and abstract facial expressions, each involv-
ing specific Action Units (AUs) from the following list: [AU key-value pair, ab-
breviated, e.g. AU01:InnerBrowRaiser]. Expressions should be a mix of
both simple (e.g., frown, raised eyebrows, kiss, wink) and complex combinations
(e.g., skeptical with one eyebrow raised, incredulous with raised brows and open
mouth). Additionally, include mixed emotions (e.g., happy-surprise, sad-relief)
with the corresponding AUs. Provide at least 50 different expressions, ensuring a
wide variety of emotional and physical expressions. Output the results as a Python
dictionary with each expression labeled as either an emotion or an expression,
along with the corresponding AUs.

We obtained 228 text-AU pairs in total, which cover both emotion and expression, examples are
demonstrated in Tab. 7. Then we formulate the generated corpus with the template shown in Tab. 8,
and obtain the natural facial descriptions, e.g. “A shocked person.” Meanwhile, we enrich the dataset
by collecting the emotion-AU pairs from AffectNet (Mollahosseini et al., 2017), where the emotion
is manually annotated and augmented with synonyms, and the AUs are detected by an off-the-shelf
detector (Baltrušaitis et al., 2016).

Table 7: Examples of text-AU pair generated by GPT

Description Type AUs

Annoyed Emotion AU04, AU07, AU23
Shocked Emotion AU01, AU02, AU05, AU26
Anger-Disgust Emotion AU04, AU09, AU10, AU17
Pain with Squinting Expression AU04, AU07, AU10, AU23
Happiness with Broad Smile Expression AU06, AU12, AU25
Frowning Expression AU04, AU15

Table 8: The templates designed to formulate the natural language descriptions

Description templates

A [desc] person A woman acts like [desc]
A person looks [desc] A person is [desc]
A person seems [desc] A person behaves [desc]
A man acts like [desc] A person is talking with [desc]

Training The model is trained with 200 epochs, where the batch size is set to 128. We utilize the
Adam optimizer with default settings and the learning rate is set to 0.0001.

Evaluation The CLIP adapter and the classification head are evaluated on the textual AU detection
task and achieve an F1-score of 0.92 and 0.98 on the testing set (in-domain template), with and

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

without the InfoNCE loss, respectively. Moreover, we visualize the CLIP embeddings fclip and the
adapted embeddings fadaptive with and without the InfoNCE loss in Fig. 15 to evaluate the adapter.
In conclusion, with a contrastive learning strategy, the adapter erases the domain gap between AU
and natural language descriptions, while preserving the AU information. Meanwhile, in Tab. 9, we
ablate the importance of the alignment and knowledge of GPT, with which the detector shows better
generalization.

Figure 15: The T-SNE visualization of the CLIP and adapted features.

Description ours w/o alignment w/o GPT pairs

A person is smiling AU12 AU12 AU05 AU10 AU12
A person is crying AU04 AU15 AU04 AU15 AU04 AU07
A person is blinking AU45 AU45 AU45
A yawning person AU26 AU26 AU04 AU10
A person closes his eyes AU45 AU20 AU05 AU10 AU04
A not happy person AU04 AU15 AU04 AU01

Table 9: Ablation study: we ablate the detector by 1) removing the contrastive learning (as w/o
alignment), and 2) training without the GPT generated pairs. (as w/o GPT pairs). AUs in red denote
incorrect predictions.
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