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ABSTRACT

Next location prediction is a key task in human mobility modeling. Existing meth-
ods face two challenges: (1) they fail to capture the multi-faceted semantics of
real-world locations; and (2) they struggle to model diverse behavioral patterns
across user groups. To address these issues, we propose NextLocMoE, a large
language model (LLM)-based framework for next location prediction, which in-
tegrates a dual-level Mixture-of-Experts (MoE) architecture. It comprises two
complementary modules: a Location Semantics MoE at the embedding level
to model multi-functional location semantics, and a Personalized MoE within
LLM’s Transformer layers to adaptively capture user behavior patterns. To en-
hance routing stability and reliability, we introduce a historical-aware router that
integrates long-term historical trajectories into expert selection. Experiments on
multiple real-world datasets demonstrate that NextLocMoE outperforms existing
methods in accuracy, transferability, and interpretability. Code is available at:
https://anonymous.4open.science/r/NextLocMOE-BAC8.

1 INTRODUCTION

Predicting a user’s next location from past trajectory has become a critical task in domains like in-
telligent transportation (Liu et al., 2020), personalized service (Li et al., 2024b), and urban man-
agement (Yang et al., 2024b). The goal is to model user mobility patterns and moving inten-
tions to infer the most likely next destination. Early approaches relied on recurrent neural net-
works (Chung et al., 2014; Graves, 2012) to capture temporal dependencies. With the emergence of
Transformer (Vaswani et al., 2017), methods like MHSA (Hong et al., 2023b), CLLP (Zhou et al.,
2024), and GETNext (Yang et al., 2022) were developed to capture complex spatiotemporal inter-
actions. Recently, large language models have been applied to this task. Llama-Mob (Tang et al.,
2024), LLMMob (Wang et al., 2023b), and SILO Sun et al. (2025) leverage LLMs’ language under-
standing, reasoning ability, and pre-trained world knowledge to enhance predictive performance.

While existing methods have made notable progress, they still face two major challenges. First, most
models learn a single embedding for each location, which may not fully capture the multi-functional
semantics of real-world locations. For example, a location in city center may simultaneously serve
commercial, residential, and educational purposes. Compressing such diverse signals into a sin-
gle embedding can lead to semantic compression and even embedding collapse—a phenomenon
where the embedding space becomes low-rank and loses diversity (Guo et al., 2023). This limits
representation richness and weakens downstream prediction. Second, most methods adopt a shared
set of parameters for all users. Though this design captures user diversity to some extent, it lacks
structural mechanisms to disentangle heterogeneous mobility patterns. This often leads to entangled
representations that blend signals across user groups (e.g., students, office workers, tourists), making
it difficult to specialize or interpret distinct mobility behaviors. Recent studies echo this concern:
Su et al. (2023) argue that a single shared model overlooks key behavioral differences, and Zhang
et al. (2025) show that shared Transformers act as low-pass filters, suppressing informative high-
frequency signals. Some models try to introduce personalized modeling via user embeddings (Zhou
et al., 2024; Yang et al., 2022), but they face two shortcomings: (1) reliance on user IDs, which
poses challenges in cold-start scenarios with unseen users, and (2) limited interpretability, as user
embeddings provide little insight into learned behavioral patterns. To tackle these challenges, we
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propose NextLocMoE, a dual-level Mixture-of-Experts (MoE) based LLM framework for next lo-
cation prediction, which jointly models location semantics and user behavioral patterns.

To model location semantics, we design Location Semantics MoE, which enriches location represen-
tations by combining a shared spatial embedding with expert embeddings specialized for different
functional roles. The shared embedding encodes geographic coordinates to capture general spatial
features. The router of this MoE module activates the top-k most relevant location function-specific
experts, each encoding the same coordinates into a function-aware embedding. This results in mul-
tiple expert embeddings that reflect the diverse semantics a single location may exhibit. To inject
semantic priors and improve interpretability, each expert is initialized with LLM-encoded natural
language descriptions of predefined location function categories.

To capture user behavioral patterns, NextLocMoE integrates Personalized MoE into selected Trans-
former layers of the LLM backbone by replacing the feedforward networks (FFNs). This design
enables group-level personalization while preserving LLM’s semantic encoding capacity. We pre-
define a set of user groups and encode their natural language descriptions using LLM to obtain
group-specific embeddings. The router then combines these embeddings with user’s historical tra-
jectory representation to dynamically select the most relevant expert submodules. Unlike the top-k
routing strategy used in Location Semantics MoE, Personalized MoE employs a confidence thresh-
old based expert activation mechanism inspired by (Huang et al., 2024). This design is motivated by
two considerations: (1) users may exhibit varying degrees of behavioral ambiguity, making it prefer-
able to flexibly adjust the number of active experts; and (2) limiting expert activation reduces com-
putational overhead. As a result, Personalized MoE activates fewer experts for users with consistent
behavioral patterns, while allocating more capacity to users with uncertain or mixed behaviors.

To improve long-term behavior awareness and expert selection stability in both MoE modules, Next-
LocMoE introduces a historical-aware router that explicitly incorporates historical trajectories into
expert routing. In conclusion, our main contributions are summarized as follows:

• We propose NextLocMoE, a novel LLM-based framework that integrates Mixture-of-
Experts (MoE) into next location prediction. It comprises (i) a Location Semantics MoE
for modeling the multi-functional roles of locations, and (ii) a Personalized MoE to cap-
ture diverse user behavioral patterns. Each module is guided by expert-specific priors and
customized routing strategy.

• We introduce a historical-aware router that incorporates long-term historical trajectory into
expert selection, enhancing the contextual stability and reliability of expert routing.

• Extensive experiments on multiple real-world datasets demonstrate that NextLocMoE con-
sistently outperforms other baselines under both fully-supervised and zero-shot settings.
Case studies further highlight the model’s ability to provide interpretable predictions.

2 RELATED WORK

2.1 NEXT LOCATION PREDICTION

Next location prediction aims to forecast the most probable location a user will visit, based on
past trajectories. Early methods relied on recurrent neural networks like GRU (Chung et al., 2014)
and LSTM (Graves, 2012), to capture temporal dependencies. DeepMove (Feng et al., 2018) en-
hances trajectory representation by jointly modeling short-term interests and long-term preferences.
However, these methods struggle with long-range dependencies and suffer from limited parallelism,
which constrains their scalability. With the rise of Transformer (Vaswani et al., 2017), attention-
based methods have become the mainstream in next location prediction. MHSA (Hong et al., 2023b)
models transition relationships between locations via multi-head self-attention. CLLP (Zhou et al.,
2024) integrates local and global spatiotemporal contexts to better capture dynamic user interests.
GETNext (Yang et al., 2022) introduce global trajectory flow graphs and graph-enhanced Trans-
former models, leveraging collaborative mobility signals to improve predictive performance.

In recent years, breakthroughs in large language models (Achiam et al., 2023; Liu et al., 2024a;
Touvron et al., 2023) have inspired researchers to explore their potential in next location prediction.
Llama-Mob (Tang et al., 2024) and LLMMob (Wang et al., 2023b) design task-specific prompts,
while NextLocLLM (Liu et al., 2024c) leverages LLM as both a semantic enhancer and a predic-
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tor. These methods exploit pre-trained world knowledge and reasoning capabilities to improve the
semantic understanding of user mobility and enhance both prediction accuracy and generalization.

Despite these advances, two key limitations remain. First, most models assign a single embedding
to each location, which fails to capture the multifaceted semantics of real-world locations. Second,
most models use a shared set of parameters for all users, overlooking behavioral differences among
user groups. These limitations constrain both the accuracy and the adaptability of existing methods
in real-world settings. Therefore, we propose NextLocMoE, a novel framework that introduces
a dual-level Mixture-of-Experts architecture to model both location semantics and user behaviors.
For a more detailed discussion of related work on next location prediction, please refer to App. A.1.

2.2 MIXTURE OF EXPERTS

Mixture of Experts (MoE) is designed to enhance model expressiveness and computational effi-
ciency. It maintains a pool of expert networks and dynamically activates a subset of them for
each input, allowing MoE-based models to match the performance of larger architectures while
keeping computation cost low. MoE has achieved notable success in natural language processing,
with prominent examples like GShard (Lepikhin et al., 2020), Switch Transformer (Fedus et al.,
2022), and DeepSeekMoE (Dai et al., 2024). It has also been explored in sequence modeling
tasks, as demonstrated by Time-MoE (Shi et al., 2024), Moirai-MoE (Liu et al., 2024d), and Graph
MoE (Huang et al., 2025). However, MoE is still underexplored in next location prediction. To
bridge this gap, we introduce NextLocMoE, which incorporates dual-level MoE modules target-
ing location semantics and user behavioral patterns, paving the way for MoE architecture in next
location prediction. For a more detailed discussion of MoE related work, please refer to App. A.2.

3 PROBLEM FORMULATION

Let L = {loc1, loc2, . . . , locn} be the set of locations, where each loc is a triplet (id, x, y), with id
being the location identifier and (x, y) its spatial coordinates. We define the temporal context set as
T = {(w, d) | w ∈ [0, 6], d ∈ [0, 23]}, where w denotes day-of-week and d denotes time-of-day.
Let D∇ = {dur} be the set of stay durations, indicating how long a user stays at a given location.

Definition 1 (Record) A record is defined as a tuple s = (loc, (w, d), dur) ∈ L × T × D∇, which
indicates that a user visited location loc for dur hours at hour d on day-of-week w.

Definition 2 (Historical and Current Trajectory) A user’s mobility sequence can be partitioned
into two disjoint segments: historical trajectory and current trajectory. The former is denoted as
Sh = {st1 , st1+1, . . . , st1+M−1}, which contains M records used to model the user’s long-term
behavioral preferences. The latter is denoted as Sc = {st2 , st2+1, . . . , st2+N−1}, (t2 ≥ t1 + M),
which includes the most recent N records and is used to capture the user’s short-term intent. Typi-
cally, M > N , ensuring that the historical trajectory spans a longer behavioral window.

Definition 3 (Next Location Prediction) Given a user’s historical trajectory Sh and current trajectory
Sc, next location prediction aims to infer the identifier id of the most likely next location loct2+N .

4 METHODOLOGY

4.1 OVERALL ARCHITECTURE

Fig. 1 depicts the overall architecture of NextLocMoE. It takes user’s historical and current trajectory
as input. Each record is mapped into spatial-temporal embedding (Sec. 4.2) by encoding spatial
coordinates (x, y), temporal context (w and d), and stay duration dur, which are then concatenated.
For current trajectory, we employ Location Semantics MoE (Sec. 4.3) to enrich spatial embedding
with location function semantics. The function-aware spatial embedding is then combined with
temporal embeddings to form the enhanced current trajectory embedding.

Next, we concatenate historical trajectory embedding, enhanced current trajectory embedding, and
a task-specific prompt (See App. D) to construct the full input embedding for LLM backbone
(Sec. 4.6). Inspired by (Huang et al., 2024), NextLocMoE employs only the first L1 + L2 lay-
ers of LLM: L1 standard LLM layers and subsequent L2 layers augmented with Personalized MoE
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Figure 1: Overall architecture of NextLocMoE, a Mixture-of-Experts enhanced LLM framework for
next location prediction. It introduces a Location Semantics MoE to capture multi-functional spatial
semantics (see Fig. 2(a), a Personalized MoE to model behavioral differences across user groups (see
Fig. 2(a)), and a historical-aware router that incorporates long-term trajectory into expert routing.

(Sec. 4.4) to model user behavioral patterns. To improve expert routing robustness and reliability,
NextLocMoE introduces a historical-aware router (Sec. 4.5) that incorporates long-term historical
trajectories into expert selection. To reduce parameter overhead, we fine-tune only the FFN sub-
networks within MoE experts and all LayerNorm layers, freezing the remaining backbone layers.

The final output of NextLocMoE is the predicted spatial coordinate of next location, obtained via
an output MLP head. During inference, a post-prediction retrieval module (Sec. 4.7) maps these
coordinates to the nearest discrete location ID . This output design is motivated by two considera-
tions: (1) predicting continuous coordinates enables city-agnostic modeling and supports cross-city
generalization, whereas direct classification over location IDs is city-specific and does not transfer;
(2) the post-prediction retrieval module ensures fair comparison with prior ID-based baselines while
adding negligible inference overhead and no intervention on predictive accuracy.

4.2 SPATIAL-TEMPORAL EMBEDDING

In NextLocMoE, each component of a record is embedded through linear projection or embedding
lookup. Specifically, spatial coordinates (x, y) and stay duration dur are normalized and projected
via linear layers to produce general spatial embedding exy and duration embedding edur. For tem-
poral context, w and d are encoded via lookup tables, yielding temporal embeddings ew and ed.

For Sh, we concatenate the above four vectors along feature dimension to obtain historical trajectory
embedding zh, which is used in two ways: as input to the LLM backbone and, after TCN encoding,
as input to expert routers of both Location Semantics MoE and Personalized MoE. For each record
in Sc, we adopt the same procedure to generate initial embedding e

(0)
c . This embedding is used

as input to Location Semantics MoE, where it is combined with TCN-encoded historical trajectory
representation to guide expert selection and generate function-aware spatial embedding.

4.3 LOCATION SEMANTICS MOE

In urban settings, a single location often serves multiple functions (e.g., shopping malls, schools,
public services). Encoding such locations with a single vector limits model expressiveness. To

4
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Figure 2: The two expert modules. (a) Location Semantics MoE, (b) Personalized MoE.

address this, NextLocMoE introduces Location Semantics MoE into current trajectory encoding
(Fig. 2(a)), enabling fine-grained, function-aware location representations.

This module takes as input the historical trajectory representation hhist and the initial embedding of
each record in the current trajectory, e(0)c . The former is obtained by encoding historical trajectory
embedding zh using a Temporal Convolutional Network (TCN) (Lea et al., 2017):

hhist = TCN(zh). (1)

e
(0)
c and hhist are fed into expert router to generate a scoring vector over Kf function experts:

rfunc = MLP([e(0)c ;hhist]) ∈ RKf . (2)

rfunc is normalized via softmax to obtain expert selection probabilities pfunc
i . The router then selects

top-k experts with highest probabilities to enhance the semantic representation of the current record.

Each function expert fi(·) is a linear projection that maps spatial coordinates (x, y) to a function-
specific embedding. Its structure is identical to the mapping used for general spatial embedding exy .
To promote interpretability and specialization, we predefine a set of location function categories (see
App. B) and encode their natural language descriptions using LLM. The resulting LLM-encoded em-
beddings are used to initialize the parameters of experts, and these experts are then fine-tuned. This
semantic initialization serves as a soft prior, introducing meaningful inductive biases that encour-
age experts to specialize toward distinct functional roles. Previous studies (Kang et al., 2025; Min
et al., 2025) demonstrate that such initialization stabilizes optimization, and guides experts to remain
aligned with intended semantic roles rather than collapsing into undifferentiated roles throughout
training. Consequently, this initialization design ensures that function experts in Location Seman-
tics MoE remain interpretable, facilitating semantic disentanglement and fast convergence.

Given the selected top-k function experts and their routing probabilities pfunc
i , we compute the

summed location function specialized expert embedding as:

efunc
xy =

∑
i∈topk(pfunc)

pfunc
i · fi(x, y). (3)

Motivated by Deepseek-MoE(Dai et al., 2024), we treat general spatial embedding exy as a shared
expert and combine it with efunc

xy to obtain the function-aware spatial embedding eenhanced
xy :

eenhanced
xy = exy + efunc

xy . (4)

It is worth noting that Location Semantics MoE is applied only to current trajectory records, not to
the historical ones. This is based on several considerations: (1) historical trajectories are used to
model long-term behavioral patterns, where temporal dynamics outweigh fine-grained semantics;
(2) applying MoE to all records incurs high computational and memory costs; (3) function disam-
biguation is more important for current locations, whose semantics are directly tied to prediction.

5
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4.4 PERSONALIZED MOE

To capture behavioral variations across user groups, NextLocMoE integrate Personalized MoE into
the upper layers of LLM backbone (Fig. 2(b)). We predefine Kp prototypical user groups (see
App. C), each linked to an expert module. For each group, its natural language description is encoded
by LLM and transformed into a user group prior euser

i (i = 1, · · · ,Kp) through a mean-pooling
layer and a linear transformation. These priors provide semantic guidance and distinguish experts
by behavioral identity. Although explicit user group labels are not involved, the router leverages
historical trajectories and LLM-encoded user group descriptions to dynamically activate relevant
experts, enabling the model to capture heterogeneous behavioral patterns without supervision.

Personalized MoE receives the hidden state x from previous LLM layer, along with historical tra-
jectory representation hhist. For each expert i, it concatenates these with its user group prior:

zuser
i = [x; hhist; euser

i ]. (5)

zuser
i is first transformed by a multi-layer perceptron Fusion(·), and then projected by a linear gating

function Gate(·) to compute the relevance score ruser
i :

ruser
i = Gate(Fusion(zuser

i )). (6)

Stacking the scores across all experts yields the complete relevance vector:

ruser = {ruser
1 , ruser

2 , · · · , ruser
Kp

} ∈ RKp . (7)

We apply softmax over ruser to obtain the selection probability for each user group expert, puser
i .

Unlike top-k routing used in Location Semantics MoE, Personalized MoE adopts a confidence
threshold-based expert routing strategy (Huang et al., 2024). We sort experts by their selection
probabilities puser

i and activate them until the cumulative probability exceeds threshold τ :

E = {i1, i2, . . . , im}, where
m∑

k=1

puser
ik

≥ τ. (8)

This allows adaptive expert activation: users with stable mobility patterns activate fewer experts,
while those with diverse or ambiguous behaviors activate more. Activated experts perform feedfor-
ward transformations on hidden state x and their outputs hi are aggregated via weighted sum:

hout =
∑
i∈E

puser
i · hi. (9)

4.5 HISTORICAL-AWARE ROUTER

Standard MoEs typically relies solely on current input for expert selection (Fedus et al., 2022),
However, users with similar short-term routines may diverge in destination due to long-term behav-
ior differences. For instance, after the same morning routine from home to a metro station, a student
may go to university, while an office worker may head to a business district. Ignoring such historical
context in expert routing would compromise both semantic and personalized behavior modeling.

To address this, NextLocMoE introduces historical-aware router, which incorporates historical tra-
jectories into expert selection. Specifically, we employ a TCN (Lea et al., 2017) to encode historical
embeddings zh, yielding historical trajectory representation hhist, which is subsequently integrated
into expert routing for both MoE modules. We choose TCN for its ability to efficiently capture
long-range temporal dependencies and enable strong parallelization. By incorporating historical tra-
jectory representation, historical-aware router mitigates the over-reliance on local context, stabilizes
expert selection, and ultimately improves predictive accuracy and generalization.

4.6 STREAMLINED LLM BACKBONE AND EFFICIENT EXPERT ADAPTATION

To reduce computational overhead while maintaining predictive accuracy, NextLocMoE adopts a
streamlined design. It retains only the first L1 + L2 layers of LLM. The lower L1 layers remain
LLM layers, while the upper L2 layers replace their original feedforward networks (FFNs) with Per-
sonalized MoE. This design is inspired by (Skean et al., 2025), which shows that intermediate LLM
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representations are more stable and transferable than top-layer outputs, effectively filtering out high-
entropy noise in downstream tasks. By truncating the model at intermediate layers, NextLocMoE
preserves semantic encoding capacity while reducing architectural complexity.

To further limit trainable parameters and avoid overfitting, we freeze all multi-head attention mod-
ules and non-MoE FFNs in LLM backbone, keeping only LayerNorm layers and Personalized MoE
experts trainable. Each user group expert is initialized from the FFN it replaces, ensuring repre-
sentational continuity. To enhance training efficiency, we apply Low-Rank Adaptation (LoRA) to
each user group expert. LoRA introduces a small set of trainable parameters in low-rank subspaces,
allowing expert specialization and efficient personalization at minimal computational cost.

4.7 TRAINING OBJECTIVE AND POST-PREDICTION RETRIEVAL

The training objective of NextLocMoE combines a regression loss and an expert entropy regulariza-
tion term. Given a batch of B samples, NextLocMoE predicts the spatial coordinates (x̂, ŷ) of next
location. The regression loss is defined as the mean Euclidean distance to the ground truth (x, y):

Ldist =
1

B

B∑
i=1

∥(x̂i, ŷi)− (xi, yi)∥2 . (10)

To encourage confident expert routing in Personalized MoE and reduce unnecessary expert activa-
tion, we introduce an entropy regularization term:

Lentropy = −Ei

∑
j

puser
i,j log puser

i,j . (11)

The final training objective is a weighted combination of the two:

Ltotal = Ldist + λ× Lentropy, (12)

where λ balances the influence of the entropy regularization term. Unlike some MoE frameworks
that impose explicit load-balancing losses (Dai et al., 2024; Huang et al., 2024), we avoid such
regularization. Imbalance in expert utilization naturally reflects the heterogeneous distribution of
location functions and user behaviors in urban data. Enforcing uniform expert usage would suppress
meaningful specialization and force rare but semantically important experts to be underutilized.

During inference, NextLocMoE maps predicted continuous coordinates to discrete location IDs via
a KD-Tree nearest neighbor search. This KD-Tree is constructed from candidate location coordi-
nates of target city, and predicted coordinates are queried to retrieve the IDs of the top-k nearest
candidates. This mapping serves only as a post-processing step and does not depend on the current
location, ensuring that NextLocMoE remains free to predict both nearby and distant transitions.

5 EXPERIMENT

To evaluate the effectiveness of NextLocMoE, we conduct comprehensive experiments across sev-
eral key dimensions: prediction accuracy, cross-city transferability, interpretability, and broader
analyses on robustness and model design.

5.1 EXPERIMENTAL SETUP

We evaluate NextLocMoE on three human mobility datasets: Kumamoto, Shanghai, Singapore (de-
tails in App. F). User-level dataset partitioning (Sun et al., 2021) splits users into training, valida-
tion, and test sets in a 7:1:2 ratio. Following (Luo et al., 2021) and (Feng et al., 2018), we adopt
Hit@1/5/10 for evaluation. Historical and current trajectory lengths are set to M = 40 and N = 5.
LLM backbone is LLaMA-3.2-3B, with L1 = 8 and L2 = 4. NextLocMoE is trained using Adam
optimizer with ReduceLROnPlateau scheduler, on four 32GB Tesla V100 GPUs.

We compare NextLocMoE with a wide range of baselines, including RNN-based models (GRU,
LSTM, DeepMove); Transformer-based methods (MHSA, CLLP, LoTNext,GETNext, SEAGET,
ROTAN), and LLM-based approaches (LLM4POI, NextLocLLM,Mobility-LLM,AgentMove,
SILO,Llama-Mob, LLMMob, ZSNL). Details are available in App. G
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Table 1: Fully-supervised next location prediction results.
Method Kumamoto Shanghai Sinapore

Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

GRU 3.213% 6.720% 8.735% 19.69% 25.90% 29.04% 2.682% 6.051% 7.784%
LSTM 3.192% 6.483% 8.514% 22.03% 28.81% 31.33% 3.197% 8.698% 10.46%
MHSA 2.982% 9.203% 11.77% 48.40% 56.62% 62.21% 4.874% 13.54% 19.38%
DeepMove 11.11% 20.71% 24.46% 53.48% 62.13% 67.70% 6.650% 20.00% 31.08%
GetNext 12.68% 24.57% 29.80% 55.18% 64.17% 71.17% 6.498% 25.80% 32.04%
CLLP 10.69% 17.79% 21.96% 56.24% 65.39% 72.08% 7.712% 26.98% 34.99%
SEAGET 12.79% 24.66% 29.99% 55.39% 65.12% 70.93% 6.512% 25.94% 32.56%
NextLocLLM 13.57% 24.78% 31.16% 59.62% 66.93% 72.81% 7.823% 30.64% 36.15%
ROTAN 13.01% 26.19% 32.37% 57.92% 66.83% 72.06% 6.892% 27.71% 35.56%
LoTNext 13.58% 24.96% 31.22% 56.48% 66.56% 72.59% 7.398% 26.19% 33.46%
Mobility-LLM 13.55% 24.44% 31.69% 56.06% 64.04% 73.06% 7.376% 25.67% 32.87%
AgentMove 13.12% 22.87% 30.63% 55.62% 62.47% 72.00% 6.939% 24.10% 33.93%
SILO 15.63% 33.41% 45.59% 61.44% 67.71% 73.06% 8.692% 32.59% 42.63%
LLM4POI 13.17% 26.88% 30.11% 58.83% 67.72% 72.47% 7.952% 31.69% 38.88%
SoloPath 13.75% 27.80% 34.61% 60.21% 67.92% 69.24% 8.102% 30.00% 37.51%
Llama-Mob 15.78% 33.55% 43.42% 61.81% 69.36% 73.45% 8.577% 32.17% 41.21%
LLMMob 10.95% 25.54% 35.77% 51.17% 60.93% 63.31% 6.933% 21.07% 30.70%
ZS-NL 8.811% 22.97% 31.76% 39.92% 47.71% 50.98% 4.199% 14.68% 20.11%

NextLocMoE 17.77% 39.19% 50.28% 64.93% 75.88% 77.43% 9.733% 34.34% 40.71%

Table 2: Zero-shot Prediction Result (Kumamoto).
Method Hit@1 Hit@5 Hit@10

LLMMob 10.95% 25.54% 35.77%
ZS-NL 8.811% 22.97% 31.76%
Llama-Mob(Shanghai→) 15.78% 33.55% 43.42%
Llama-Mob(Singapore→) 14.96% 31.27% 40.32%
NextlocLLM(Shanghai→) 13.14% 28.68% 39.26%
NextlocLLM(Singapore→) 11.73% 26.95% 37.53%

NextLocMoE(Shanghai→) 16.02% 36.06% 48.42%
NextLocMoE(Singapore→) 15.81% 34.66% 47.41%

Table 3: Inference Time (Kumamoto).
Method Time (s)

Llama-Mob 158688
LLMMob 33408
NextLocMoE 268

5.2 EXPERIMENTAL RESULT

We present key results here, while additional findings are in the Appendix, including ablation studies
(App J), robustness of post-prediction retrieval (App K), user group-expert activation consistency
(App L), routing strategy evaluation (App M), historical trajectory modeling evaluation (App N),
LLM backbone comparison (App O), hyperparameter sensitivity (App I) and personalized expert
activation (App Q. They further validate the effectiveness, robustness, and generality.

5.2.1 FULLY-SUPERVISED PREDICTION COMPARISON

Table. 1 presents the fully-supervised next location prediction results on all three datasets. RNN-
based models perform poorly, indicating that local temporal modeling is insufficient to capture the
complex spatiotemporal mobility patterns. Methods like CLLP, GETNext, SEAGET, ROTAN, and
LLM4POI rely on user IDs or user embeddings, which fail to generalize under user-level partition-
ing where test users are unseen during training. Llama-Mob, the winner of 2024 HuMob Challenge,
performs better but remains limited in modeling multi-functional location semantics and user be-
havioral patterns. In contrast, NextLocMoE introduces two innovations: Location Semantics MoE
for fine-grained semantic modeling of locations, and Personalized MoE for user behavioral patterns.
These designs lead to consistent state-of-the-art performance across all datasets and metrics.

5.2.2 ZERO-SHOT PREDICTION COMPARISON

To evaluate cross-city generalization, we conduct zero-shot experiments on Kumamoto dataset,
where models are evaluated after trained on other cities without any fine-tuning. Since location
IDs differ across cities, ID-based non-LLM models cannot be transferred in this setting. Thus, we
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compare only transferable methods: Llama-Mob, LLMMob, ZS-NL, NextLocLLM, and our pro-
posed NextLocMoE. As shown in Table 2, NextLocMoE achieves the best across all metrics. We
attribute this to its explicit modelling of location semantics and user behavior: the Location Seman-
tics MoE encodes functional semantics agnostic to location IDs, while Personalized MoE adapts to
user behavior through role-based experts—enabling robust transfer to unseen cities.

5.2.3 INFERENCE TIME

We report the total inference time of the transferable LLM-based models on Kumamoto test set in Ta-
ble 3. Llama-Mob relies on locally deployed LLM with separate prompt construction per trajectory,
resulting in highly sequential and time-consuming inference. LLMMob, offloading computation via
external APIs, still suffers from serialized generation. NextLocMoE adopts a unified architecture
that supports batch inference and GPU parallelism. It completes inference in 268 seconds—a 600×
speedup over Llama-Mob and 120× faster than LLMMob.

5.2.4 CASE STUDY

We analyze two representative trajectories from Singapore dataset (Fig. 3). Though their current
trajectory exhibit similar spatial patterns, their historical trajectories differ: the first is centered
around academic zones, while the second frequently appears in commercial and tourist areas. In
Location Semantics MoE, the first case assigns higher weights to Education and Entertainment,
while the second favors Entertainment and Commercial. In Personalized MoE, the first user is routed
to student and teacher experts, whereas the second strongly activates the tourist expert. These expert
assignments align with the corresponding demographic attributes (the first user being a student and
the second being a tourist), confirming the semantic validity of our expert modules. Ultimately,
NextLocMoE produces distinct and correct next location predictions for the two cases—highlighting
its ability to make interpretable and effective forecasts.

Figure 3: Case study for NextLocMoE.

6 CONCLUSION

We propose NextLocMoE, a dual-level Mixture-of-Experts (MoE) enhanced large language model
for next location prediction. It incorporates two complementary modules: Location MoE, which
captures fine-grained location functional semantics using a fixed top-k expert routing, and Person-
alized MoE, which models user behavioral patterns diversity via confidence-thresholded dynamic
routing. To improve contextual awareness and reliability in expert selection, NextLocMoE intro-
duces a historical-aware router, which explicitly incorporates long-term historical trajectories during
expert routing. Empirical results show that NextLocMoE outperforms existing baselines in accuracy,
generalization, and inference speed. Case study also shows its interpretability. Nonetheless, Next-
LocMoE incurs notable training-time memory costs due to maintaining full FFN sub-networks per
user group expert. Future work will explore expert compression techniques, such as weight-splitting
from Llama-MoE (Zhu et al., 2024a), to reduce this overhead.

9
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7 ETHICS STATEMENT

This work uses three human mobility datasets: Kumamoto, Shanghai and Singapore. All datasets
are either publicly released or obtained under formal research agreements that ensure compliance
with privacy protection policies, and all datasets are fully anonymized, indexed by non-traceable
user IDs. The user group categories used in the Personalized MoE are coarse-grained semantic
labels that do not contain any personally identifiable information (e.g., name, age, gender). Our
model leverages only these abstract group priors for routing and cannot be used to identify, track,
or surveil specific individuals. Therefore, the proposed approach does not pose additional risks of
discriminatory profiling or privacy leakage beyond those inherent in anonymized mobility data.

8 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. For code, we provide
an anonymized repository containing the full implementation of NextLocMoE, including model ar-
chitecture, training scripts, and evaluation pipelines. For data, detailed descriptions of the three
datasets are included, along with preprocessing procedures and data partition strategies. For hy-
perparameters, complete hyperparameter settings are listed in Appendix, covering training epochs,
learning rates, embedding dimensions, and MoE routing thresholds. Together, these resources allow
researchers to fully reproduce our experiments.
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A DETAILED RELATED WORK

A.1 NEXT LOCATION PREDICTION

Next Location prediction aims to forecast the most probable place a user will visit in the near fu-
ture, based on his/her past mobility trajectory. This task has attracted increasing research interest.
Over time, models have evolved significantly to better capture the complex temporal dynamics, spa-
tial semantics, and behavioral diversity inherent in human mobility (Chekol & Fufa, 2022; Rajule
et al., 2023; Zhang & Dai, 2018). Broadly, existing methods can be categorized into three major
paradigms: RNN-based models that emphasize sequential learning (Sherstinsky, 2020), attention-
based models that enhance long-range context integration (Vaswani et al., 2017), and LLM-based
models that leverage pretrained knowledge and reasoning capabilities (Achiam et al., 2023; Zhu
et al., 2024a). Below, we provide a detailed review of representative methods within each category.

A.1.1 RNN-BASED NEXT LOCATION

Early approaches to next-location prediction primarily relied on recurrent neural networks, such as
GRU (Chung et al., 2014) and LSTM (Graves, 2012), to model sequential dependencies. Deep-
Move (Feng et al., 2018) jointly models short-term interests and long-term preferences, capturing
user mobility patterns over multiple timescales. SASRM (Zhang et al., 2020) introduces a semantic-
and attention-enhanced spatio-temporal recurrent model, which better captures location semantics
and contextual dependencies. MCN4Rec (Li et al., 2024b) takes a multi-perspective approach, col-
laboratively learning from both local and global views to model heterogeneous relationships among
users, POIs, temporal factors, and activity types. (Zhang et al., 2022) extend the theoretical founda-
tion of mobility prediction by introducing a new upper bound that incorporates not only sequential
patterns but also contextual features such as time and location categories.

In parallel, several models address practical challenges like data privacy and label scarcity. Se-
cureDeepMove (Liu et al., 2024b) integrates secret sharing and secure two-party computation to
perform inference without compromising user privacy. SelfMove (Hong et al., 2023a) adopts a
self-supervised learning strategy to disentangle time-invariant and time-varying factors, enabling
training without labeled next-POI data. (Hasan & Jeong, 2022) design an LSTM-based system that
effectively leverages sequential and temporal cues from device-level mobility logs.

Hybrid architectures also emerge. SAB-GNN (Xue et al., 2022) fuses LSTM with a Graph Neural
Network to jointly capture spatial dependencies across urban regions and temporal dynamics from
user mobility and web search activity. Notably, it incorporates decaying public awareness signals to
forecast multiwave patterns in mobility—demonstrating the flexibility of RNN-based frameworks
in complex real-world scenarios.

A.1.2 ATTENTION-BASED NEXT LOCATION PREDICTION

With the rise of the Transformer architecture (Vaswani et al., 2017), attention-based methods have
rapidly become the mainstream in next-location prediction due to their superior ability to model
long-range dependencies and capture complex spatial-temporal interactions. These models often
extend attention mechanisms with auxiliary data, personalized encodings, or graph structures to
enhance predictive performance and generalization.

Several works enhance spatial-temporal reasoning via graph-augmented attention. TrajGraph (Zhao
et al., 2024) employs a graph Transformer to efficiently encode spatiotemporal context under re-
duced computational complexity. GETNext (Yang et al., 2022) and SEAGET (Al Hasan & Anwar,
2025) construct trajectory flow graphs to incorporate collaborative mobility signals into attention-
based models. AGCL (Rao et al., 2024) introduces a multi-graph learning framework with adaptive
POI graphs, spatial-temporal attention, and bias correction. iPCM (Song et al., 2025) combines
global trajectory data with personalized user embeddings using a Transformer encoder and proba-
bilistic correction module.

Another line of work explores behavior modeling and user preference learning. MHSA (Hong et al.,
2023b) models transition relations among locations using multi-head self-attention. CLLP (Zhou
et al., 2024) fuses local and global spatiotemporal contexts to track evolving user interests.
CTLE (Lin et al., 2021) maps contextual encodings into a target location embedding, followed
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by bidirectional Transformer modeling. MCLP (Sun et al., 2024) leverages topic models to extract
latent user preferences and enhances arrival time estimation via attention. FHCRec (Chen et al.,
2025) captures both long- and short-term patterns through hierarchical contrastive learning over
subsequences. STMGCL (Jia et al., 2023) introduces temporal group contrastive learning within a
self-attention encoder to uncover user preference groups.

Auxiliary signals are widely integrated. PRPPA (Liang et al., 2019) combines static user profiles,
recent check-in behavior, and temporal point processes into a unified attention framework. San-
Move (Wang et al., 2023a) proposes a non-invasive self-attention module that utilizes auxiliary tra-
jectory signals to learn short-term preferences. TCSA-Net (Sun et al., 2022) jointly captures long-
and short-term mobility patterns from sparse and irregular trajectories. LoTNext (Xu et al., 2024)
addresses the long-tail challenge via graph and loss adjustments that rebalance POI interaction dis-
tributions.

Domain-specific and event-aware attention models have also emerged. Physics-ST (Gao et al., 2024)
infuses physics priors into human mobility modeling by formulating movement as governed by
potential energy dynamics, combined with graph-based attention and temporal correction. (Wang
et al., 2023c) incorporates event embeddings to represent both routine behaviors and disruptions.
The BERT-based method of (Terashima et al., 2023) repurposes pretrained language encoders for
trajectory modeling. (Shukla & Shukla, 2024) uses an encoder–decoder attention structure for
coordinate-level prediction.

A.1.3 LLM-BASED NEXT LOCATION PREDCTION

In recent years, breakthroughs in large language models (LLMs)(Achiam et al., 2023; Liu et al.,
2024a; Touvron et al., 2023) have sparked growing interest in their application to next-location
prediction. These models offer strong reasoning abilities, contextual understanding, and pre-trained
world knowledge that can complement traditional mobility modeling frameworks. Llama-Mob(Tang
et al., 2024) and LLMMob (Wang et al., 2023b) incorporate task-specific prompting strategies to
adapt LLMs for spatial prediction tasks. Going further, NextLocLLM (Liu et al., 2024c) introduces
a dual-role usage of LLMs, functioning as both semantic enhancer and next-location predictor,
thereby improving both accuracy and generalization across mobility datasets. AgentMove (Feng
et al., 2025) decomposes the next-location prediction task into three specialized components: a
spatial-temporal memory module that captures individual behavioral patterns, a world knowledge
generator that infers structural and urban influences, and a collective knowledge extractor that mod-
els shared mobility patterns across populations. Meanwhile, CausalMob (Yang et al., 2024a) intro-
duces a causality-inspired framework that leverages LLMs to extract latent intention signals tied to
external events. It then estimates their causal effects on user mobility while controlling for spatial
and temporal confounders—highlighting the potential of LLMs to go beyond pattern recognition
and engage in causal reasoning within human mobility modeling.

A.2 MIXTURE OF EXPERTS

Mixture-of-Experts (MoE) has become a foundational approach for scaling large models while
maintaining computational efficiency. Unlike dense models that activate all parameters for every in-
put, MoE architectures route each token or input to a small subset of specialized experts, drastically
reducing the per-example computation (Lo et al., 2024). Early works such as GShard (Lepikhin
et al., 2020) and Switch Transformer (Fedus et al., 2022) pioneered this direction. GShard intro-
duced a scalable training framework with automatic sharding support, enabling a 600B-parameter
Transformer to be trained on 2048 TPUs. Switch Transformer further simplified the routing mecha-
nism by activating only one expert per token, leading to better training stability and communication
efficiency, and achieving 7× speedups during pretraining. These foundational designs demonstrate
the practicality of scaling models to the trillion-parameter regime without linearly increasing com-
putational cost.

Subsequent works have focused on improving expert specialization, routing flexibility, and deploy-
ment efficiency. DeepSeekMoE (Dai et al., 2024) introduces fine-grained expert segmentation and
shared experts to encourage non-overlapping expertise and reduce redundancy. PMoE (Jung & Kim,
2024) adopts an asymmetric transformer layout, with shallow layers handling general knowledge
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and deep layers using progressively added experts for continual learning, mitigating catastrophic
forgetting.

Beyond training from scratch, several methods propose transforming existing dense models into
MoE architectures. LLaMA-MoE (Zhu et al., 2024a) partitions feed-forward layers of LLaMA-
2 and uses continual pretraining to preserve language capability while introducing sparse expert
routing. MoE Jetpack (Zhu et al., 2024b) repurposes dense model checkpoints and introducing a
hyperspherical adaptive MoE layer for efficient fine-tuning.

Efficiency during inference and dynamic routing has also been actively explored. (Huang et al.,
2024) adjusts the number of active experts per input based on difficulty, dispatching more experts for
complex reasoning tasks. (Lu et al., 2024) propose post-training strategies to reduce active parame-
ters per task, improving MoE deployability without retraining. MixLoRA (Shen et al., 2024) adapts
MoE to multimodal instruction tuning by constructing instance-specific low-rank LoRA adapters to
reduce task interference.

B LOCATION FUNCTION NATURAL LANGUAGE DESCRIPTION

We select five location function categories—Entertainment, Commercial, Education, Public Service,
and Residential—based on their prevalence and interpretability in urban computing, region repre-
sentation, POI classification, and trajectory analysis literature. While the granularity and naming
may vary across studies, these five categories appear frequently and exhibit strong generalizability.
For example, Chen et al. (2023) uses the same five-class scheme as our NextLocMoE for building
function classification: residential, commercial, entertainment, public service, and education. Luo
et al. (2023) segments the city into residential, commercial, logistics and storage, transportation,
green areas and squares (entertainment), and public service. Hong et al. (2023b) categorizes POIs
for trajectory prediction as entertainment, residential, schools (education), services and transporta-
tion (public service), and shopping (commercial). Ma et al. (2019) clusters areas into entertainment,
public service, hotel (residential), education, and food (commercial). (Xiong & Li, 2025) conducts
functional clustering of urban spaces, identifying common classes like commercial, tourism (enter-
tainment), residential, public service, and transportation. Table 4 provides natural language descrip-
tions of these predefined semantic categories. Each category reflects a distinct aspect of urban space
usage and is used to initialize corresponding experts with LLM-encoded semantic priors.

C USER GROUP NATURAL LANGUAGE DESCRIPTION

We define a set of representative user groups based on common mobility behaviors, following the
design principle of (JIAWEI et al., 2024), which introduces ten distinct user personas. They ar-
gue that while increasing the number of groups improves behavioral diversity, it also compromises
efficiency; ten categories strike a balance between representativeness and computational cost. Mo-
tivated by this, we adopt the same ten user group categories as expert classes for our Personalized
MoE module. Table 5 provides natural language descriptions for the predefined user groups.

D PROMPT PREFIX

Fig.4 outlines the specific task and data prompt prefix used in NextLocMoE. The prompt prefix
begins by defining the task and providing a detailed description of the dataset structure. Additionally,
the Additional Description section emphasizes how to think about this task using the provided data.

E DETAILED EXPLANATION OF CROSS-CITY SEMANTIC GENERALIZATION

In this section, we explain the mechanism of NextLocMoE’s cross-city semantic generalization.
First, NextLocMoE does not treat coordinates themselves as the carriers of urban functional se-
mantics. Normalized coordinates are used purely to provide a unified and comparable spatial scale,
enabling the model to process locations from different cities within a consistent spatial range. Se-
mantic meaning is not determined by coordinate values, but by the Location Semantics MoE, whose
five function experts correspond to “Commercial”, “Residential”, “Education”, “Entertainment”,
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Table 4: Location Function Natural Language Description.
Location Function Description

Entertainment This category includes scenic spots, sports venues, and recreational facilities,
offering activities for leisure, entertainment, and social interactions.Typical ex-
amples include amusement parks, cinemas, stadiums, and bars. Users often
visit for relaxation, nightlife, sports, and cultural experiences, with peak times
in evenings and weekends.

Commercial This category encompasses businesses, financial institutions, automotive ser-
vices, shopping centers, and dining establishments, supporting daily consumer
and professional needs. Typical examples include malls, banks, car dealer-
ships, and restaurants. Users often visit during working hours or weekends for
shopping, financial transactions, or dining.

Education This category covers institutions focused on academic, cultural, and scientific
learning. Typical examples include schools, universities, libraries, and research
centers. Users often visit on weekdays for study, teaching, research, and cul-
tural enrichment.

Public Service This category includes government offices, healthcare facilities, transportation
hubs, and other essential public infrastructure. Typical examples include city
halls, hospitals, bus stations, and utility centers. Users often visit for adminis-
trative tasks, medical needs, commuting, or essential services, with varied peak
hours depending on the service type.

Residential This category comprises housing areas, mixed-use developments, and tempo-
rary accommodations. Typical examples include apartment complexes, resi-
dential neighborhoods, and hotels. Users often visit for long stays, typically
peaking in the evenings, weekends, and holidays.

Figure 4: Prompt prefix used in NextLocMoE.

and “Public Service”. Each category has its own independent natural-language description, which
is encoded using an LLM to initialize the parameters of its corresponding expert. These experts are
shared across all cities, ensuring that their semantic directions remain stable and aligned regardless
of a city’s coordinate system.

Second, NextlocMoE does not infer location semantics directly from coordinates. Instead, semantic
assignment is determined by the MoE router, which dynamically selects experts based on the tra-
jectory context. The router takes as input both the initial embedding of the current location and the
user’s historical behavioral representation, and learns which function experts should be activated for
a given mobility pattern. Therefore, even if two locations in different cities share similar normal-
ized coordinates, their routing patterns—and thus location semantics—will differ if their historical
trajectory contexts differ. In other words, semantics arise from the combination of location function
experts and MoE routing, not from coordinate similarity.

Under this mechanism, cross-city transfer does not rely on aligning coordinate spaces across cities.
Instead, it relies on shared and semantically aligned location semantics expert spaces. During train-
ing on the source city, the router learns mappings from historical trajectory patterns to function-
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Table 5: User Group Natural Language Description.
User Group Description

Student This persona represents individuals who typically travel to and from educa-
tional institutions at regular times, such as morning arrivals and afternoon de-
partures. Their mobility is highly time-structured and centered around cam-
puses, libraries, and nearby service areas.

Teacher This persona regularly commutes to educational institutions during weekday
mornings and returns home in the late afternoon or early evening. Their travel
patterns align closely with school schedules, often involving brief visits to
nearby commercial or service areas.

Office Worker This persona has a fixed daily commute, traveling to office districts or commer-
cial centers in the morning and returning home in the evening. Their mobility
follows a consistent weekday routine with limited variation.

Visitor This persona tends to travel throughout the day with less predictable patterns.
They frequently visit tourist attractions, cultural landmarks, dining areas, and
shopping districts, especially in central urban zones.

Night Shift Worker This persona often travels outside of standard business hours, especially during
late evenings or at night. Common destinations include hospitals, factories, 24-
hour service locations, and late-night dining spots.

Remote Worker This persona has non-standard travel patterns. They frequently visit coworking
spaces, cafÃ©s, or quiet public environments at various hours of the day, with
flexible scheduling that may shift across weekdays.

Service Industry Worker This persona has irregular travel times throughout the day. They frequently
move between restaurants, shopping areas, entertainment venues, and other
customer-facing POIs, reflecting shift-based work in dynamic urban zones.

Public Service Official This persona often works in rotating shifts, leading to variable travel patterns
across different times of the day and night. Common destinations include gov-
ernment offices, transport hubs, hospitals, and administrative centers.

Fitness Enthusiast This persona is active during early mornings, evenings, or weekends. Their
mobility revolves around gyms, sports facilities, parks, and wellness-related
POIs. Visit durations tend to be regular and intentional.

Retail Employee This persona typically begins travel in the late morning and returns in the
evening. Their destination patterns focus on malls, retail stores, and service
clusters, reflecting the opening and closing hours of retail operations.

Undefined Persona This persona does not clearly belong to any predefined behavioral category.
Their travel patterns may be irregular, spontaneous, or inconsistent across time
and location.

expert combinations. When transferred to a target city, these location semantics experts remain
valid and consistent, while the router automatically allocates activation weights based on the given
historical trajectories, enabling to produce reasonable semantic interpretations without requiring any
labels from the new city.

Finally, our choice of predicting normalized coordinates rather than raw coordinates or location IDs
follows naturally from this mechanism. Raw coordinates differ greatly in scale and range across
cities, making it difficult for shared experts to learn consistent transformations; location IDs are
city-specific and cannot generalize to unseen cities. Normalized coordinates provide a unified geo-
metric scale, allowing the shared experts to apply consistent mappings across cities, while regional
semantics are dynamically determined by the MoE router based on mobility behavioral patterns.
Therefore, the key to cross-city transfer lies not in coordinate similarity, but in the cross-city consis-
tent semantics encoded by location semantics experts and the router’s adaptive expert.
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Table 6: Dataset Description.
Dataset Num of Records Time Span (day) Num of Users Avg Interval (min) Num of Locations

Kumamoto 6696506 60 17965 68.4 40000
Shanghai 1337256 8 30421 94.8 10085
Singapore 2714672 31 17098 61.4 4720

F DATASET DESCRIPTION

We use three real-world mobility datasets to validate the effectiveness of NextLocLoE, and the
detailed descriptions of these datasets are as follows:

Kumamoto 1 This is an open-source and anonymized dataset of human mobility trajectories from
mobile phone location data. The raw dataset was released by Yahoo Japan Corporation and con-
tains four anonymized mobility trajectory sets. Based on spatial distribution and heatmap analysis,
these datasets are estimated to correspond to Kobe, Hiroshima, Sapporo, and Kumamoto. We use
the Kumamoto dataset as the representative one of the four Yahoo trajectory datasets in our main
experiments because it has moderate trajectory density, a clear spatial layout, and well-separated
functional zones. The location pings are discretized into 500meters × 500meters grid cells and the
timestamps are rounded up into 30-minute bins.

Shanghai 2 This dataset contains mobility records that cover the metropolitan area of Shanghai from
April 19 to April 26 in 2016. We selected the core areas of Puxi and the neighborhoods within the
Middle Ring Road of Pudong. The location pings are discretized into 200meters × 200meters grid
cells.

Singapore This data is collected by one mobile SIM card company in Singapore. It is proprietary
and provided under a restricted research agreement with the data owner. We choose the locations
in central Singapore. The location pings are discretized into 200meters × 200meters grid cells.
In addition to mobility trajectories, the dataset includes corresponding anonymized demographic
attributes (e.g., age, gender, and occupation), which enable us to construct user group labels for
validating the interpretability and reliability of our Personalized MoE module.

G BASELINE DESCRIPTION

The details of baseline methods are briefly summarized as follows.

• LSTM (Graves, 2012) A type of recurrent neural network capable of learning order depen-
dence in sequence prediction problems.

• GRU (Chung et al., 2014) Similar to LSTMs, GRUs are a streamlined version that use gat-
ing mechanisms to control the flow of information and are effective in sequence modeling
tasks.

• DeepMove (Feng et al., 2018) This model uses the attention mechanism to combine histor-
ical trajectories with current trajectories for prediction.

• SoloPath Anda et al. (2024) It incorporates Time2Vec to capture both periodic and trend-
based temporal features and utilizes CatBoost to handle structured, non-sequential trajec-
tory data.

• MHSA (Hong et al., 2023b) An attention-based model that integrates various contextual
information from raw location visit sequences.

• CLLP (Zhou et al., 2024) It integrates both local and global spatiotemporal contexts to
better capture dynamic user interests.

• GETNext (Yang et al., 2022) It introduces global trajectory flow graphs and graph-
enhanced Transformer models.

1https://zenodo.org/records/13237029
2https://github.com/vonfeng/DPLink
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• SEAGET (Al Hasan & Anwar, 2025) It uses graph Transformer to leverage collaborative
mobility signals to improve predictive performance.

• ROTAN (Feng et al., 2024) It proposes a brand new Time2Rotation technique to capture
the temporal information.

• LoTNext (Xu et al., 2024) It addresses data sparsity by enhancing modeling of rare long-tail
locations to improve prediction on infrequent places.

• Mobility-LLM (Gong et al., 2024) It explicitly models user visiting intentions and travel
preferences, extracting semantic signals from mobility data to boost prediction.

• AgentMove (Feng et al., 2025) A large language model–based agentic framework that
leverages reasoning and tool use for zero-shot next location prediction.

• SILO Sun et al. (2025) A semantic integration framework that combines LLMs with multi-
source contextual features to strengthen semantic understanding in location prediction.

• LLM4POI (Li et al., 2024a) It effectively uses the abundant contextual information present
in LBSN data.

• Llama-Mob (Tang et al., 2024) It instruction tuned Llama for mobility prediction. For
alignment, we replace its backbone to Llama3.2-3B, as NextLocMoE uses.

• NextLocLLM (Liu et al., 2024c) It leverages LLM as both a semantic enhancer and a
predictor.

• LLmMob (Wang et al., 2023b) It introduces concepts of historical and contextual stays to
capture the long-term and short-term dependencies in human mobility.

• ZSNL (Beneduce et al., 2025) It is a purely prompt based model designed for zero-shot
next location prediction.

H ZERO-SHOT EXPERIMENT SETTING

Here we describe the experiment setting used in our zero-shot experiments. For cross-city models
that require training (NextLocMoE, Llama-Mob, and NextLocLLM), we adopt a unified zero-shot
setting: the model is trained only on the training set of the source city, and once training is completed,
it is evaluated directly on the test set of the target city. No training or validation data from the target
city are used, and no fine-tuning or adaptation is performed at any stage. For example, in the
Shanghai→Kumamoto setting, all models are trained merely on the Shanghai training set and then
evaluated on the Kumamoto test set, ensuring that the comparison reflects strict zero-shot cross-city
transferability. For prompt-based methods that do not require training (ZS-NL and LLMMob), we
strictly follow their original formulations: since these methods do not involve a training phase, we
directly run inference on the target city’s test set using their corresponding prompt templates.

I FURTHER HYPERPARAMETER SETTINGS

We provide the full hyperparameter list for Kumamoto dataset in Table 7.

J ABLATION STUDY

J.1 ABLATION STUDY ON MOE

To evaluate the contributions of the Location Semantics MoE and Personalized MoE in NextLoc-
MoE, we perform ablation studies on Singapore dataset (fully-supervised) and further assess their
transferability in Singapore → Kumamoto zero-shot scenario. The results are shown in Table 8. In
the fully-supervised setting, removing either module leads to noticeable performance drops. Specifi-
cally, discarding the Location Semantics MoE reduces the model’s ability to encode multi-functional
spatial semantics, while removing the Personalized MoE has an even larger negative effect, confirm-
ing the necessity of explicit user persona modeling. In the zero-shot transfer setting, the performance
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Table 7: Hyperparameter list for Kumamoto dataset.
epoch 100
beginning learning rate 0.0001
L1 8
L2 4
spatial vector dimension 128
day embedding dimension 16
hour embedding dimension 16
duration vector dimension 16
M 40
N 5
τ 0.8
λ 300

Table 8: Ablation Study on MoE.
Method Fully-supervised (Singapore) Zero-shot (Singapore → Kumamoto)

Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

NextLocMoE 9.733% 34.34% 40.71% 15.81% 34.66% 47.41%
No Location Semantics MoE 8.827% 31.54% 39.27% 12.03% 29.47% 40.09%
No Personalized MoE 8.639% 30.82% 38.51% 11.82% 18.46% 38.69%

Table 9: Ablation Study on History-Aware Router.
Method Fully-supervised (Shanghai) Zero-shot (Shanghai → Kumamoto)

Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

with hhist 64.92% 75.88% 77.43% 16.02% 36.06% 48.42%
without hhist 60.14% 70.62% 72.21% 13.03% 27.71% 41.69%

gaps widen further. Without the Location Semantics MoE, the model struggles to generalize func-
tional semantics across cities, and without the Personalized MoE, the model becomes highly fragile
to unseen user behaviors in new environments. These results validate that both modules are indis-
pensable for achieving robust prediction and effective cross-city generalization.

J.2 ABLATION ON HISTORY-AWARE ROUTER.

To assess the effectiveness of the history-aware router, we compare model performance with and
without incorporating the long-term trajectory representation hhist. As shown in Table 9, incorporat-
ing the history-aware router consistently improves both fully-supervised and zero-shot performance.
With long-term trajectories guiding expert selection, NextLocMoE better captures user preferences
and avoids over-reliance on short-term context. This effect is particularly evident in cross-city trans-
fer, where the absence of historical signals leads to unstable routing and weaker generalization.

K ROBUSTNESS ANALYSIS OF POST-PREDICTION RETRIEVAL

During inference, NextLocMoE employs a KD-Tree as a post-processing retrieval step to map the
predicted continuous coordinates to the nearest discrete location IDs within the candidate set of the
evaluation city. Since these candidate locations are derived from a regular grid partition, their spatial
distribution is uniform and well-structured. As a result, the KD-Tree mapping is deterministic,
consistently returning the same nearest location for a given predicted coordinate, which ensures
stability and reproducibility. Importantly, the KD-Tree is not involved during training, and thus does
not impose any constraint that the next location must be geographically close to the current one.
Instead, it simply serves as a practical bridge between continuous outputs and discrete location IDs.
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Table 10: Robustness analysis of KD-tree post-processing (in meters)
Model Shanghai Kumamoto Singapore Singapore → Kumamoto Shanghai → Kumamoto

Llama-Mob 1146 3849 2189 3446 3356
NextLocLLM 505 3070 1441 2824 2791
NextLocMoE 423 2359 1021 2785 2542

The robustness of this mapping depends on the distance between the predicted coordinate and the
ground-truth location. If the model prediction is close to the ground-truth, the KD-Tree will almost
always return the correct discrete ID; if the prediction deviates significantly, the risk of mismatched
mapping increases. To quantify this effect, we measure the average Euclidean distance (in meters)
between predicted and ground-truth coordinates across multiple datasets and transfer settings. A
smaller average distance implies higher robustness, since it reduces the likelihood of mismatched
KD-Tree projection. As shown in Table 10, NextLocMoE consistently achieves significantly lower
prediction errors compared to Llama-Mob and NextLocLLM across all datasets and transfer settings.
This demonstrates that our model outputs are closer to the true positions, thereby reducing the like-
lihood of mismatched mappings and ultimately enhancing the accuracy, robustness and deployment
reliability of our framework.

L USER GROUP-EXPERT ACTIVATION CONSISTENCY

To evaluate whether the Personalized MoE module can reliably activate experts consistent with true
user groups, we measure the user group-expert activation consistency rate on the Singapore dataset.
Specifically, for each test user we check whether the ground-truth user group expert is included in
the activated expert set. Figure 5 reports the activation consistency rates across the ten predefined
user groups. Overall, the module achieves relatively high consistency. Distinctive user groups such
as Student and Teacher obtain higher alignment, whereas more heterogeneous groups such as Night
Shift Worker and Service Worker are lower. This indicates that the router, guided by both semantic
priors and historical trajectory representations, can generally select experts that match user-level
behavioral patterns.

Nevertheless, it is important to note that strong user group-expert activation consistency rate does
not automatically translate into high next-location prediction accuracy. Alignment ensures that the
model activates semantically meaningful experts, but accurate prediction further depends on the
quality of trajectory signals. In the Singapore dataset, the long sampling intervals yield sparse
trajectories, where large temporal gaps obscure intermediate movements. This makes it uneasy
for the model to fully capture short-term transitions, even when the ground-truth persona expert is
correctly activated.

Figure 5: Expert Activation Alignment Rate Across typical user groups
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Table 11: Comparison of routing strategies in the Personalized MoE on Singapore dataset.
Routing Strategy Hit@1 Hit@5 Hit@10 Inference Time

Confidence-threshold 9.73% 34.34% 40.71% 255s
Top-2 9.21% 33.73% 38.54% 287s
Entropy-based 9.62% 34.07% 40.27% 256s

Table 12: Comparison of different history modeling strategies in the router.

Encoder Fully-supervised (Kumamoto) Zero-shot (Singapore → Kumamoto)

Hit@1 Hit@5 Hit@10 Inference Time Hit@1 Hit@5 Hit@10

LSTM 17.01% 38.45% 49.58% 278s (+10s) 15.02% 32.06% 45.14%
Attention 17.57% 38.91% 49.82% 281s (+14s) 15.67% 34.23% 47.05%
TCN 17.77% 39.19% 50.28% 268s 15.81% 34.66% 47.41%

M ROUTING STRATEGY COMPARISON

To further validate the design of the confidence threshold-based expert routing strategy in Person-
alized MoE, we compare it against two widely-used alternatives: Top-k routing and Entropy-based
routing. For a fair comparison, the entropy threshold is tuned so that the average number of activated
experts matches that of the confidence-threshold router, while we set k in Top-k to 2. As shown in
Table 11, Top-2 routing, which activates two experts for every input, lacks adaptiveness. It intro-
duces irrelevant low-confidence experts for many inputs, injecting noise and incurring unnecessary
computation. This leads to performance degradation and increased inference time. Entropy-based
routing is adaptive, but its stopping condition is based on entropy rather than confidence. For some
inputs with sharp confidence peaks, it may prematurely stop and miss useful experts; for some flat-
ter distributions, it may over-activate noisy experts. This makes it slightly less precise than our
confidence-based method.

N COMPARISON OF DIFFERENT HISTORY MODELING STRATEGIES

To assess the robustness and suitability of our historical-aware router, we conduct a comparative
study of different historical encoding strategies, including LSTM, Self-Attention, and our TCN. As
shown in Table 12, TCN achieves higher accuracy and better inference efficiency. We attribute this
to the following factors: TCN is well-suited for modeling long-range dependencies in sequential
data while avoiding vanishing gradient issues that commonly affect LSTM. While Self-Attention
offers high flexibility, its global receptive field may dilute important signals—especially in sparse
and noisy mobility sequences. This leads to suboptimal expert routing in practice.

O EVALUATION WITH ALTERNATIVE LLM BACKBONES

To further assess the generality and robustness of our framework, we conduct additional experi-
ments with different backbone LLMs. Specifically, we compare Qwen-2.5–3B and LLaMA-3.1–8B
against the backbone used in our main experiments (LLaMA-3.2–3B). Table 13 reports results on
the Singapore dataset (fully supervised) and the Singapore → Kumamoto zero-shot transfer set-
ting. The results show that performance across backbones is largely comparable, with NextLocMoE
maintaining strong effectiveness regardless of the choice of LLM. LLaMA-3.1–8B achieves slightly
better accuracy, suggesting that larger backbones can offer marginal accuracy gains. However, these
improvements come at the cost of substantially higher inference time, which increases to about 800s
when using LLaMA-3.1–8B compared to around 268s with LLaMA-3.2–3B. This efficiency gap
highlights the trade-off between accuracy and computational overhead. Considering this balance,
we select LLaMA-3.2–3B as the backbone for our main experiments, since it offers the best compro-
mise between predictive accuracy, efficiency, and deployment feasibility. Importantly, the consistent
performance across backbones demonstrates that the benefits of NextLocMoE do not depend on a
particular LLM, underscoring the robustness and adaptability of our framework.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 13: Evaluation with alternative LLM backbones.

Backbone Singapore Zero-shot (Singapore → Kumamoto)
Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

Qwen-2.5-3B 9.65% 34.12% 38.94% 15.72% 34.47% 46.91%
LLaMA-3.1-8B 9.94% 35.33% 42.63% 15.94% 35.02% 48.77%
LLaMA-3.2-3B 9.73% 34.34% 40.71% 15.81% 34.66% 47.41%

P HYPERPARAMETER SENSITIVITY

We examine how freezing different numbers of LLM layers affects performance, while keeping
the 4 layers integrated with Personalized MoE. As shown in Fig. 6(a), freezing 8 layers yields the
best results. Fewer frozen layers lead to poorer generalization, while freezing more than 8 layers
degrades performance. This supports prior findings (Skean et al., 2025) that intermediate layers
in decoder-only LLMs offer stronger adaptability. Based on this trade-off, we adopt the 8-layer
freezing configuration as default.

In addition, we assess NextLocMoE’s performance among different history length M. As shown
in Fig. 7, increasing M consistently improves performance in both fully-supervised and zero-shot
settings, with improvement being steady when M reaches about 40. Following this observation, we
set M = 40 as the default, which offers both strong performance and computational efficiency.

Figure 6: (a) Hyperparameter sensitivity; (b) Personalized expert activation analysis

Figure 7: Hyperparameter sensitivity for M

Q PERSONALIZED EXPERT ACTIVATION ANALYSIS

We analyze the average number of activated experts in Personalized MoE (Fig. 6(b)). NextLocMoE
activates 1.37 experts on Shanghai, 1.78 on Singapore, and 1.64 on Kumamoto—consistently fewer
than 2. This shows NextLocMoE’s ability to adaptively engage a minimal set of user group experts
based on user behavior complexity, ensuring personalized modeling with low inference cost.
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(a) (b)

Figure 8: Influence of load balancing in Sinapore dataset (a) Expert activation distribution of Lo-
cation Semantics MoE with and without load-balancing loss. (b) Expert activation distribution of
Personalized MoE with and without load-balancing loss.

Table 14: Performance with and without load-balancing loss on Location Semantics MoE (Singa-
pore dataset)

Hit@1 Hit@5 Hit@10

w.o load balancing 9.733% 34.34% 40.71%
w load balancing 9.104% 32.31% 38.56%

R INFLUENCE OF LOAD BALANCING IN MOE MODULES

To further examine the impact of load-balancing regularization on the two MoE modules in Next-
LocMoE, we conducted experiments comparing model variants with and without the auxiliary load-
balancing loss. Following (Fedus et al., 2022; Huang et al., 2024), we adopt the standard auxiliary
load-balancing loss that penalizes uneven expert utilization, and we apply it separately to the Loca-
tion Semantics MoE and the Personalized MoE. Except for the inclusion of load-balancing loss, all
other configurations remain identical to ensure fair comparison.

As shown in Table 14 and Table 15, introducing load-balancing loss consistently degrades prediction
accuracy on Singapore dataset. Since the only change is the addition of load-balancing loss, this
decline indicates that enforcing uniform expert activation disrupts the natural specialization learned
by the MoE modules and limits their expressive capacity.

Fig. 8(a) visualizes the expert activation frequencies in the Location Semantics MoE and compares
them with the ground-truth land-use distribution in Singapore 3. Without load-balancing loss, the
model naturally learns an imbalanced activation pattern: commercial, entertainment, and residen-
tial experts dominate, while education and public service experts are activated less frequently. This
pattern aligns with the real-world proportions of the corresponding functional regions, demonstrat-
ing that MoE can autonomously capture inherent spatial semantic imbalance. When load-balancing
loss is introduced, expert activation becomes significantly more uniform, deviating from the real
land-use distribution. This artificial equalization dilutes strong semantic signals associated with
high-frequency functional roles and exaggerates low-frequency ones, thereby weakening semantic
disambiguation and explaining the observed performance degradation.

We further analyze the activation frequencies of user-behavior experts in the Personalized MoE.
NextLocMoE without load-balancing develops a stable and structured pattern of expert utilization:
certain experts are activated much more frequently across users, while others remain less active.
With load-balancing loss, these activation differences collapse toward uniformity. The behavior-
specific expert specialization becomes blurred, reducing the module’s ability to disentangle diverse
user behavior patterns. This homogenization directly diminishes the representational power of the
Personalized MoE and contributes to the decline in predictive accuracy.

3https://data.gov.sg/datasets?query=land+use&resultId=d_
90d86daa5bfaa371668b84fa5f01424f
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Table 15: Performance with and without load-balancing loss on Personalized MoE (Singapore
dataset)

Hit@1 Hit@5 Hit@10

w.o load balancing 9.733% 34.34% 40.71%
w load balancing 8.807% 31.57% 39.04%

S LOCATION SEMANTICS MOE ACTIVATIONS FOR DIFFERENT USER GROUPS

Figure 9: Location Semantics MoE Activations for different user groups
To provide a qualitative understanding of how the Location Semantics MoE specializes across dif-
ferent patterns human mobility, we visualize the activation frequencies of the five location semantic
experts for different user groups. We conduct this analysis on the Singapore dataset for four repre-
sentative user groups: Student, Visitor, Office Worker, and Public Service Official. Fig. 9 reveals
clear and interpretable differences across user groups. Students show the highest activation on the
Education expert, Visitors predominantly activate the Entertainment expert, Office Workers rely
more heavily on the Commercial expert, and Public Service Officials frequently activate the Public
Service expert. These patterns are consistent with the expected functional semantics of each group
and demonstrate that the experts capture meaningful behavioral regularities. Overall, the observed
activation patterns indicate that the Location Semantics MoE does not assign experts arbitrarily. In-
stead, its routing behavior reflects coherent semantic specialization aligned with real-world mobility
patterns, confirming that the module learns an interpretable and functionally grounded decomposi-
tion of location semantics.

T SENSITIVITY OF NEXTLOCMOE TO THE QUALITY OF LLM SEMANTIC
PRIORS

To assess how much the model depends on the quality of the natural-language semantic priors used
in the Location Semantics MoE and the Personalized MoE, we conduct several experiments which
changes the semantic priors of the two experts on Singapore dataset.

We first replace the full natural-language descriptions with extremely simplified labels (“This lo-
cation belongs to Entertainment.” / “This user group is student.”), while keeping all other training
settings identical. Under this setting, the performance decreases slightly, but is still effective (as
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Table 16: Comparesion between rich labels and simple lables in MoE prior (Singapore dataset)
Hit@1 Hit@5 Hit@10

NextLocMoE 9.733% 34.34% 40.71%
Simple label (Location Semantics MoE) 9.511% 33.78% 40.42%
Simple label (Personalized MoE) 9.347% 33.60% 40.25%

Table 17: Ablation study for Location Semantics MoE prior sentences (Singapore dataset)
Hit@1 Hit@5 Hit@10

NextLocMoE 9.733% 34.34% 40.71%
w.o S1 9.709% 34.28% 40.66%
w.o S2 9.677% 34.23% 40.64%
w.o S3 9.638% 34.16% 40.58%

shown in Table 16). This indicates that richer descriptions provide beneficial semantic structure, yet
the overall performance does not rely soly on detailed prompting.

We also conduct a structured ablation of different parts of the textual priors. For Location Semantics
MoE, we decompose each description into three components:

• S1, functional definition (e.g., “This category includes scenic spots, sports venues, and
recreational facilities. . . ”)

• S2, typical examples (e.g., “Typical examples include amusement parks, cinemas, stadi-
ums, and bars.”)

• S3, behavior patterns (e.g., “Users often visit for relaxation, nightlife, sports, and cultural
experiences. . . ”).

For Personalized MoE, we split the persona descriptions into two components:

• S1, identity + primary destination types (e.g., “This persona represents individuals who
travel to and from educational institutions at regular times. . . ”)

• S2, temporal and behavioral patterns (e.g., “Their mobility is highly time-structured and
centered around campuses, libraries, and nearby service areas.”)

We remove one component at a time while keeping all other settings unchanged. Across all settings,
the removal of any individual semantic component leads to a small decrease in performance. These
results indicate that the different parts of the natural-language prior are indeed used by both the rout-
ing network and the experts; at the same time, the model remains robust to moderate perturbations
of the priors, and does not rely on any single sentence or formulation.

U TRAINABLE PARAMETER COUNT

To make the computational overhead of NextLocMoE transparent, we explicitly enumerate and
calculate the number of trainable parameters contributed by each component.

U.1 TRAINABLE PARAMETER COUNT FOR SPATIAL-TEMPORAL EMBEDDING

We first consider the spatial-temporal embeddings. There are four such components:

• A mer2vec embedding matrix of shape 128× 2, contributing 256 parameters.

• A day-of-week embedding of shape 7× 16, contributing 112 parameters.

• An hour-of-day embedding of shape 24× 16, contributing 384 parameters.

• A linear projection for duration with shape 1× 16, contributing 16 parameters.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 18: Ablation study for Personalized MoE prior sentences (Singapore dataset)
Hit@1 Hit@5 Hit@10

NextLocMoE 9.733% 34.34% 40.71%
w.o S1 9.611% 34.17% 40.59%
w.o S2 9.573% 34.09% 40.52%

Summing these terms gives
256 + 112 + 384 + 16 = 768

trainable parameters for the embedding block.

U.2 TRAINABLE PARAMETER COUNT FOR TEMPORAL CONVOLUTIONAL NETWORK

The historical encoder is a 5-layer 1D Temporal Convolutional Network. Each TCN layer contains
two convolutional blocks (conv1 and conv2) with WeightNorm parameterization and bias.

For each convolution, the weight tensor has shape 176 × 176 × 4, which yields 123,904 weight
parameters. In addition, WeightNorm introduces two extra vectors of size 176, and the convolution
has a bias term of size 176. Approximating these together as 352 additional parameters, the total
parameters per convolutional kernel is 124,256.

Each TCN layer has two such convolutions, so one layer contributes 248,512 parameters. With 5
layers in total, the TCN block contributes

5× 248, 512 = 1, 242, 560

trainable parameters.

U.3 TRAINABLE PARAMETER COUNT FOR COMPONENTS INSIDE LLAMA-3B

We then account for the trainable parameters inside the Llama-3B backbone. We retain 12 decoder
layers, and freeze all attention and FFN weights. Only the LayerNorm parameters and two Person-
alized MoE layers (inserted among the top four layers in an interleaved manner) remain trainable.

U.3.1 TRAINABLE PARAMETER COUNT FOR LAYERNORM LAYER

Each decoder layer contains two LayerNorms of size 3072. Thus, each layer contributes 6144
LayerNorm parameters. Across 12 layers, this yields

12× 6144 = 73, 728

trainable LayerNorm parameters.

U.3.2 TRAINABLE PARAMETER COUNT FOR TWO PERSONALIZED MOE LAYERS WITH
LORA

Among the 12 decoder layers, two are replaced by Personalized MoE layers. Each MoE layer
contains 11 experts, and in each expert we apply LoRA to three linear projections: gate proj, up proj,
and down proj. All three projections have input dimension 3072 and output dimension 8192, and
we use a LoRA rank r = 8.

For one such linear projection with LoRA, the LoRA weights consist of:

• A matrix A ∈ R3072×8, contributing 3072× 8 = 24, 576 parameters.

• A matrix B ∈ R8×8192, contributing 8192× 8 = 65, 536 parameters.

Thus, each LoRA-augmented linear layer contributes

24, 576 + 65, 536 = 90, 112
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parameters. Since each expert has three such linear layers, gate proj, up proj, and down proj, the
total for one expert is

3× 90, 112 = 270, 336.

There are 11 experts per MoE layer, so all LoRA weights in one MoE layer contribute

11× 270, 336 = 2, 973, 696

parameters.

In addition to the expert-wise LoRA weights, each MoE layer contains a fusion layer and gating
components. The fusion layer is a linear projection from 6320 to 3072 dimensions, whose weight
matrix has shape 3072× 6320, contributing 19,406,400 parameters, and a bias vector of size 3072,
contributing an additional 3072 parameters. Furthermore, a LayerNorm of size 3072 adds weight
and bias vectors of size 3072 each, contributing 3072+3072 = 6144 parameters. Finally, the gating
head is a linear layer from 3072 to 1, with 3072 weights and 1 bias. Together, these non-expert
components in a single MoE layer contribute

19, 406, 400 + 3072 + 6144 + 3073 = 19, 418, 689

parameters. Therefore, the total number of trainable parameters in one Personalized MoE layer is

2, 973, 696 + 19, 418, 689 = 22, 392, 385.

Since there are two such MoE layers in the model, the overall contribution from MoE + LoRA
components is

2× 22, 392, 385 = 44, 784, 770.

U.4 TRAINABLE PARAMETER COUNT FOR OUTPUT AND PROJECTION LAYERS

We also train several lightweight MLP layers used for mapping location functions, user group fea-
tures and trajectory embedding into the LLM representation space and for producing prediction
heads. These output-side components gives 1,529,733 trainable parameters.

U.5 TOTAL TRAINABLE PARAMETERS

The overall number of trainable parameters in NextLocMoE is therefore

768 + 1, 242, 560 + 44, 858, 498 + 1, 529, 733 = 47, 631, 559,

which we round to 47.6M trainable parameters. This corresponds to roughly 1.5% of the 3B param-
eters of the frozen Llama backbone, confirming that NextLocMoE is a lightweight adaptation rather
than a full-scale fine-tuning of the underlying LLM.

V LLM USAGE STATEMENT

Apart from the fact that our proposed NextLocMoE itself leverages large language models (LLMs)
as its core framework, we merely used LLMs in a limited way to polish the writing style and improve
the clarity of exposition. No new research content, results, or scientific insights were generated by
LLMs; all conceptual contributions, experimental designs, and analyses are solely attributable to the
authors.
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