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Abstract
In this paper, we introduce a new task for code
completion that focuses on handling long code
input and propose a sparse Transformer model,
called LongCoder, to address this task. Long-
Coder employs a sliding window mechanism for
self-attention and introduces two types of glob-
ally accessible tokens — bridge tokens and mem-
ory tokens — to improve performance and ef-
ficiency. Bridge tokens are inserted throughout
the input sequence to aggregate local information
and facilitate global interaction, while memory
tokens are included to highlight important state-
ments that may be invoked later and need to be
memorized, such as package imports and defini-
tions of classes, functions, or structures. We con-
duct experiments on a newly constructed dataset
that contains longer code context and the publicly
available CodeXGLUE benchmark. Experimen-
tal results demonstrate that LongCoder achieves
superior performance on code completion tasks
compared to previous models while maintaining
comparable efficiency in terms of computational
resources during inference.

1. Introduction
Code completion is a crucial task in software development
that helps developers save time and effort by suggesting
and auto-completing code based on context. With the ad-
vancement of large language models, Transformer-based
models (Vaswani et al., 2017) have demonstrated impres-
sive results in code completion (Chen et al., 2021). However,
the computational cost of these models grows quadratically
with the length of input, making them less suitable for mod-
eling long code context. On the other hand, modeling long
code can potentially improve the accuracy of code comple-
tion and enable applications on a file and even project level.
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An efficient model that can scale to such long input can be
suitable for code completion that contains long context.

In this paper, we propose a new pre-trained language model,
named LongCoder, for long code modeling. As shown
in Figure 1, LongCoder features a sparse attention mech-
anism that reduces the computational complexity (to lin-
ear). LongCoder exploits a sliding window mechanism for
self-attention that attends only to local context. To allow
LongCoder to maintain an understanding of the entire code
file, we introduce bridge attention and global attention, with
the corresponding two types of globally accessible tokens,
bridge tokens and memory tokens. Bridge attention aggre-
gates the information of a code snippet and allows it to be
accessed from a long distance. Bridge tokens are inserted
throughout the input sequence and can attend to a fixed
length of context. Memory tokens provide global attention
to statements that include a package import, definitions of
classes, functions, or structures. The scope of these state-
ments is often global and invoked later, which means they
have a longer impact than other statements, making them
worth memorizing. By referring to these statements, the
model can exploit long context while maintaining linear
complexity.

To evaluate the effectiveness of LongCoder and encourage
future research on Long Code Completion, we construct a
new dataset called LCC by filtering code from GitHub based
on length, with the goal of focusing on longer code exam-
ples. On average, the examples in LCC are 5× longer than
those in existing datasets (Lu et al., 2021). We benchmark
several baselines, LongCoder and OpenAI Codex (Chen
et al., 2021) on LCC. Our experimental results demonstrate
that code completion can benefit from taking longer context
into consideration, and our LongCoder achieves superior
performance compared to existing models with comparable
computational costs.

Overall, our contributions are as follows:

• We construct a new dataset (LCC) for code completion
tasks that requires long code modeling to encourage
more research in such scenarios.

• We propose two types of sparse attention, motivated by
observations on attention patterns of existing models
and how human programmers write code.
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Out-of-Window Context

In-Window Context

import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
    """
    A block of convolutional and pooling layers
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(ConvBlock, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.pool = nn.MaxPool2d(kernel_size=2)
    def forward(self, x):
        x = self.pool(F.relu(self.conv(x)))
        return x
    …

class ConvNet(nn.Module):
    """
    A convolutional neural network
    """
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv_block1 = ConvBlock(3, 32, 3, 1, 1) #first block
        self.conv_block2 = ConvBlock(32, 64, 3, 1, 1) #second block
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(
            in_features=64 * 8 * 8, out_features=128)
        self.fc2 = nn.Linear(
            in_features=128, out_features=10)
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    def forward(self, x):
        x = self.conv_block1(x)
        x = self.conv_block2(x)
        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x 

Code to Complete

Aggregate

<bridge>Aggregate

Information Flow

\n Memory Token

<bridge> Bridge Token
Bridge Attention 
Global Attention
Random Attention
Window Attention

BigBird

Longformer
Autoregressive
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Figure 1. (Left) An example of how LongCoder facilitates completion with longer context. The memory tokens save potentially useful
information (including package imports, class and function definitions) for global access despite whether they are within the sliding
window. The bridge tokens aggregate local information by attending to a fixed length of tokens. The information flow within the window
is omitted for clarity. (Right) Attention patterns used in BigBird (Zaheer et al., 2020), Longformer (Beltagy et al., 2020) and LongCoder.
Best viewed in color.

• We train and release LongCoder, a sparse and efficient
pre-trained Transformer model for long code model-
ing, which achieves superior performance on both long
and regular code completion with comparable compu-
tational resources.1

2. Related Work
Code Completion Code completion is an essential task
that helps programmers improve their efficiency by suggest-
ing and automatically completing code based on context and
previous inputs. Prior works have explored the use of statis-
tical learning for the code completion task, such as the use of

1All the codes and data are available at https://github.
com/microsoft/CodeBERT.

n-gram techniques (Tu et al., 2014; Hindle et al., 2016) and
probabilistic grammar-based methods (Allamanis & Sutton,
2014; Bielik et al., 2016; Raychev et al., 2016; Hellendoorn
& Devanbu, 2017). With the success of pre-training in natu-
ral language processing (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020), decoder-only pre-trained mod-
els based on Transformer have been proposed to promote
the development of code completion. Svyatkovskiy et al.
(2020) and Lu et al. (2021) respectively propose GPT-C and
CodeGPT, which are pre-trained by generating code from
left to right in an auto-regressive manner on large amounts
of code. Liu et al. (2020) and Guo et al. (2022) pre-train sim-
ilar models CugLM and UniXcoder with multi-task learning
by leveraging code structure for code completion. Codex
(Chen et al., 2021), PolyCoder (Xu et al., 2022), CodeGen
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(Nijkamp et al., 2022), InCoder (Fried et al., 2022), and
AlphaCode (Li et al., 2022) build large language models
with billions of parameters and achieve impressive perfor-
mance on code generation by training on a large-scale and
high-quality code corpus. For these pre-trained models, it is
impractical to simply expand the context window to model
long-range sequences, due to computational complexity of
the attention mechanism increasing quadratically with the
input length. Therefore, Clement et al. (2021) propose to ex-
tract the most important code fragments and integrate them
into a fixed-length context window. However, due to the
constraint of fixed window length, some high-priority code,
such as class and function definitions, may be omitted. Addi-
tionally, increasing the window length would also introduce
additional computational overhead. Different from these
works, LongCoder is a sparse Transformer that can take
advantage of the entire file-level code context while main-
taining comparable efficiency in terms of computational
resources during inference.

Long-Range Transformer Models The original Trans-
former (Vaswani et al., 2017) is inefficient for modeling long
sequences since its time and space complexity is O(n2),
where n is the length of the sequence. Prior studies focus
on optimizing the complexity to enable processing of longer
sequences. To name a few, Sparse Transformer (Child et al.,
2019) reduces the quadratic complexity of standard self-
attention by computing attention on sparse query-key pairs.
Sparse Transformer uses a dilated sliding window to capture
local context. Reformer (Kitaev et al., 2020) proposes local-
ity sensitive hashing (LSH) attention to reduce the complex-
ity and memory footprint. Longformer (Beltagy et al., 2020)
uses dilated sliding windows to model longer sequences
and adds global memory tokens to allow interaction with all
tokens. Performer (Choromanski et al., 2021) generalizes
attention calculation by introducing kernel functions. They
then propose a random kernel function, namely orthogonal
random features (ORF) to approximate the standard self-
attention. Linformer (Wang et al., 2020) applies low-rank
projection to the length dimension to reduce the complex-
ity of self-attention. Linear Transformers (Katharopoulos
et al., 2020) uses a kernel function that exploits the asso-
ciativity property of matrix products to reduce complexity.
BigBird (Zaheer et al., 2020) has an attention pattern com-
prised of random attention, window attention and global
attention. CosFormer (Qin et al., 2022) proposes a linear
operator and a cosine-based distance re-weighting mecha-
nism as the substitute for softmax attention. We recommend
Tay et al. (2022) as a more comprehensive survey on long-
range efficient Transformer models. Different from these
works, our LongCoder introduces code heuristics into the
dynamic construction of global attention to imitate how
human programmers code.

3. Long Code Completion
Code completion is a fundamental and important task for
code models, which can help programmers improve their
efficiency while coding. Previous public benchmarks pri-
marily focused on completion with short code context. For
instance, CodeXGLUE (Lu et al., 2021) offers two code
completion datasets from PY150 (Raychev et al., 2016) in
Python and Github Java Corpus Allamanis & Sutton (2013)
in Java, and also builds two test datasets to evaluate next-
line prediction. The average length of the code context in
the two test datasets is 478 tokens and 365 tokens, respec-
tively. However, according to our statistics, the average
length of a Python source file on GitHub is 1,305 tokens.
After tokenization, the average length becomes 2,090 to-
kens while 41%/24% of the files have a length longer than
1,024/2,048 tokens, which highlights the need for models
that can handle longer code sequences in order to be more
practical and useful in the real-world. Meanwhile, longer
code sequences contain more complex structures and require
models to consider more context and dependencies. This
can be challenging for previously proposed code completion
models that focus on short code and do not take into account
the long context of the code. By evaluating models on longer
code sequences, we can better understand their ability to
handle more complex and realistic scenarios. Meanwhile,
long code completion poses new challenges for efficiency
of code models, as in vanilla Transformers (Vaswani et al.,
2017), the computational resources grow quadratically with
the input length.

In this paper, we introduce the Long Code Completion
Benchmark (LCC), a new benchmark that focuses on code
completion with long code context for three programming
languages: Python, Java, and C#. Specifically, we construct
our datasets from the github-code2 dataset, which contains
a vast number of code files sourced from GitHub with an
open-source license that permits research use. The steps to
construct the datasets are as follows:

• We first follow Allamanis (2019) to deduplicate exam-
ples with high similarity (Jacobi similarity ≥ 0.9) in
order to eliminate forked files, and then remove code
files that can’t be parsed into an abstract syntax tree
using a standard compiler tool called tree-sitter.3

• Since the benchmark primarily focuses on the code
completion task with long code context, we remove
code files whose length of code tokens after tokeniza-
tion is shorter than 512. Additionally, we also eliminate
excessively long code files with a length greater than

2https://huggingface.co/datasets/
codeparrot/github-code

3https://github.com/tree-sitter/
tree-sitter
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Table 1. Data statistics of the code context length in LCC test set.
25%/50%/75% refer to the first/second/third quartile.

Language Average 25% 50% 75%

Python 1993.3 1056 1438 2211
Java 1841.4 1058 1307 2003
C# 1970.5 1023 1396 2143

10,000 tokens.

• For each programming language, we sample 100k ex-
amples for training, and 10k examples for development
and 10k for testing. For each sample on development
and test sets, we randomly sample an uncommented
line of code not shorted than 3 tokens and ensure that
there is sufficient context, i.e., a context larger than 512
code tokens. The data statistics of the context length
in the LCC test sets are listed in Table 1.

We follow Lu et al. (2021) to evaluate the performance of the
models in terms of Exact Match (EM) and Edit Similarity
(Edit Sim) on a per-line basis (Svyatkovskiy et al., 2020).

4. LongCoder
LongCoder is an attempt to tackle the efficiency problem of
modeling longer code. It applies sparse attention to reduce
quadratic time and space complexity of self-attention to
linear. There are three types of attention in LongCoder
— window attention, bridge attention, and global attention.
Each type is motivated by observations on previous models
and focuses on one important aspect in modeling long code.
The three types of attention are illustrated in Figure 1 and
we will describe them individually.

4.1. Window Attention

Code completion largely relies on local context while only
a few instances of long-distance dependencies are present.
For example, in Figure 1 (bottom left), generating assign-
ment operators and parentheses only depend on the cur-
rent statement, whereas to generate variables such as x and
conv block, the model needs to look at neighboring state-
ments. Intuitively, we can exploit such locality to sparsify
the attention to achieve better efficiency. We further ver-
ify this observation by counting the distribution of average
attention scores between two tokens within different dis-
tances. As shown in Figure 2, a large portion of attention is
concentrated within a narrow window. Notably, a fixed win-
dow of 256 covers more than 90% of the attention weights.
This sparsity enables us to apply a sliding window attention
mechanism (Beltagy et al., 2020; Zaheer et al., 2020).
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Figure 2. Distribution of average attention scores between two
tokens within different distances in CodeGPT (Lu et al., 2021).
The attention score is an average of 100 Python code examples
across all Transformer layers.

Formally, given the linear projections Q, K, V , the self-
attention scores in Transformer are calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M)V (1)

where M is a mask matrix (to be completed in Equation 5)
to control the context a token can attend to when computing
its contextual representation. If the i-th token is allowed to
attend to the j-th token, then Mij is set to 0, otherwise −∞.

For window attention, the mask attention matrix Mwindow

is calculated as follows:

Mwindow
ij =

{
0 if i− j ≤ w

−∞ otherwise
(2)

where w is the window size. This window attention pattern
reduces the complexity of the self-attention mechanism by
limiting the receptive field size of each token to a small
window of size w at each layer. The computation complexity
of this pattern is O(n×w), which scales linearly with input
sequence length n. After applying N transformer layers
of such sliding window attention, the receptive field size
increases to N × w at the top layer. Since each token only
attends to w tokens to its left rather than the entire preceding
sequence, the model can achieve faster inference speed.

4.2. Bridge Attention

Window attention is good at handling local dependencies
and it also has a wide receptive field as discussed above.
However, if a token needs to access tokens from a distance
of L tokens away, it would require ⌈L

w ⌉ hops through win-
dow attention. This makes it challenging to access infor-
mation from distant context as the attention score between
them will be greatly reduced due to accumulation through
multiplication. Thus, we introduce a new type of special
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Figure 3. Visualization of the attention matrix (partially shown for
clarity) in CodeGPT (Lu et al., 2021). The attention matrix is
averaged across all Transformer layers.

token, namely bridge tokens, to aggregate local information
for global access. Bridge tokens can attend to a fixed length
of tokens and be attended from all subsequent tokens. From
the perspective of representation learning, a bridge token
can be seen as a learned representation for the corresponding
slice of code.

Specifically, we insert m bridge tokens Sb every ⌈ n
m⌉ tokens

and use a separate set of projections, Qb , Kb , Vb to compute
attention scores for the bridge attention. The bridge tokens
do not involve next token prediction but they are used to
aggregate information from the preceding ⌈ n

m⌉ tokens. The
use of additional projections allows for the ability to model
different types of attention. Finally, the mask matrix for
bridge attention is calculated as follows:

Mbridge
ij =


0 if j ∈ Sb and i ≥ j

0 if i ∈ Sb and i− j ≤ ⌈ n
m⌉

−∞ otherwise
(3)

The complexity of bridge attention is O(m × n) ≈ O(n)
where m ≪ n. Compared to stacked window attention,
bridge attention allows each token to attend to any preceding
token with at most 2 hops, which enables the model to
effectively access long-range context.

4.3. Global Attention

Identifiers with the global scope, for example, package im-
ports, global functions, classes and their member functions
(i.e., methods), can be called from any location within a
file. For long code, a local sliding window cannot cap-
ture such information that should be globally accessible.
This is especially outstanding for package imports, which
are usually located at the beginning of a file. For ex-
ample, in Figure 1, without knowing the user has im-
ported torch.nn.functional as a new identifier F,
the model cannot be sure whether to use F or the full

package name.4 Also, to call the forward function of
conv block1 and conv block2, the model needs ac-
cess to the original definition of the class ConvBlock,
which also falls outside the current sliding window. Directly
accessing these tokens is similar to how human program-
mers quickly refer to definitions in the code. This global
effect can also be observed in the visualization of the at-
tention matrix in CodeGPT (Lu et al., 2021). As shown in
Figure 3, some tokens seem to have a global impact while
others only matter locally.

Therefore, in addition to bridge tokens, where the model au-
tomatically learns to aggregate globally useful information,
we add another type of global token, namely memory tokens,
to inject code heuristics to the attention. Specifically, we
leverage the structure of code with tree-sitter to parse the
code into an abstract syntax tree (AST). Then, we find all
statements that include a package import, class or function
definition and grant the line feeds (LF, \n) of those state-
ments global access. We denote the set of positions of these
line feeds as G, where k = |G|. The mask matrix Mglobal

of global attention is calculated as follows:

Mglobal
ij =

{
0 if j ∈ G and i ≥ j

−∞ otherwise
(4)

The complexity of the global attention is O(kn) ≈ O(n),
as we have k ≪ n, where n is the length of the sequence.

Unlike previous work (Clement et al., 2021) which extracts
the most significant statements and encode them in a fixed-
length context window, our global attention requires less
memory and can reuse previously encoded hidden states.

Finally, considering all three types of attention together, M
in Equation 1 becomes:

M = max(Mwindow,M bridge,M global) (5)

where max is the element-wise maximum function.

5. Experiments
5.1. Experimental Settings

Baselines We evaluate LongCoder against several pub-
licly available pre-trained code generation models, includ-
ing GPT-2 (Radford et al., 2019), CodeGPT (Lu et al., 2021),
and UniXcoder (Guo et al., 2022). GPT-2 is pre-trained on a
text corpus and CodeGPT is pre-trained on the CodeSearch-
Net dataset (Husain et al., 2019) using next token prediction
as the objective. UniXcoder based on UniLM (Dong et al.,
2019) is pre-trained on a cross-modal dataset that includes
code, text, and abstract syntax trees. Additionally, we also
compare LongCoder with sparse Transformer models, such

4Both are common code styles in PyTorch.
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Table 2. Experimental results on the Long Code Completion (LCC) dataset.

Model #Param. Memory Runtime Python Java C#

EM Edit Sim EM Edit Sim EM Edit Sim

OpenAI Codex 12B - - 39.65 68.97 43.15 72.05 53.89 77.93

Transformer 124M 191M 750ms 10.64 43.64 15.32 47.52 19.16 48.87
GPT-2 124M 191M 750ms 11.20 42.62 17.09 47.18 20.27 48.27
CodeGPT 124M 191M 750ms 12.24 43.81 19.20 49.50 22.58 51.03
UniXcoder 126M 191M 750ms 16.55 50.22 23.93 55.38 27.97 57.29

LongFormer 150M 381M 781ms 16.79 51.07 24.80 56.03 29.75 58.23
BigBird 128M 205M 804ms 17.03 51.14 25.19 56.91 30.27 58.66

LongCoder 150M 211M 812ms 17.88 55.07 26.42 61.21 31.34 64.37
- w/o pretrain 150M 211M 812ms 17.61 54.82 25.96 60.81 31.22 64.18

Table 3. Data statistics about the context length of CodeXGLUE
test dataset. 25%/50%/75% refer to the first/second/third quartile.

Language Average 25% 50% 75%

Python 477.8 83 197 502
Java 365.0 74 171 397

as LongFormer (Beltagy et al., 2020) and BigBird (Zaheer
et al., 2020). LongFormer uses a dilated sliding window to
model long sequences in the generation task, while BigBird
has an attention pattern that includes random, window, and
global attention. In addition to these comparable baselines,
we also report the performance of OpenAI Codex on LCC
for reference. Note that Codex is 100× larger than other
models and is likely to have seen the test set of LCC in its
pretraining thus is not directly comparable.

Benchmarks We evaluate the performance of LongCoder
and the baselines on two benchmarks: LCC (introduced
in Section 3), and the code completion task benchmark
in CodeXGLUE (Lu et al., 2021). CodeXGLUE provides
PY150 (Raychev et al., 2016) and JavaCorpus (Allamanis
& Sutton, 2013) datasets in Python and Java for line-level
code completion. The statistics for the context length of
the CodeXGLUE test datasets are listed in Table 3. We
can see that the context length of the input sequence is 5
times shorter than LCC, and only a small portion of the
samples require modeling for long code sequences. The
objective of evaluating the performance of sparse models on
the CodeXGLUE dataset is to examine their effectiveness
in scenarios where the code context is relatively short.

Moreover, longer context can benefit applications including
cross-file code completion (Liu et al., 2023). We test the
performance of LongCoder on the cross-file-random (XF-

Table 4. Results on CodeXGLUE code completion benchmark.

Model PY150 JavaCorpus

EM Edit Sim EM Edit Sim

Transformer 38.51 69.01 17.00 50.23
GPT-2 41.73 70.60 27.50 60.36
CodeGPT 42.37 71.59 30.60 63.45
UniXcoder 43.12 72.00 32.90 65.78

LongCoder 43.77 73.37 33.13 67.32

Table 5. Cross-file code completion results on RepoBench XF-
R (Liu et al., 2023).

Model Python Java

EM Edit Sim EM Edit Sim

Transformer 7.0 38.3 5.8 34.4
GPT-2 15.5 48.2 11.6 41.4
CodeGPT 16.6 49.1 13.3 44.2
UniXcoder 18.0 53.4 16.5 50.0

LongCoder 21.4 59.7 19.7 60.1

R) setting of RepoBench (Liu et al., 2023). The task is to
predict the next line of code based on a given in-file context,
consisting of import statements and preceding lines before
the target line, as well as a cross-file context, comprising
snippets from other files in the code repository, parsed by
import statements.

Evaluation Metrics We report the number of parame-
ters, inference memory consumption, runtime, Exact Match
(EM) and Edit Similarity (Edit Sim) of the baselines. The
inference memory consumption and runtime per example
are calculated using a beam search with beam size of 5 and
maximum generation length of 64 on a single V100 GPU.
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Table 6. Ablation study on LongCoder without pre-training.

Model Python Java C#

EM Edit Sim EM Edit Sim EM Edit Sim

LongCoder 17.61 54.82 25.96 60.81 31.22 64.18
w/o memory tokens 16.80 53.90 24.87 60.35 30.16 63.61
w/o bridge tokens 17.54 51.92 25.88 57.48 30.80 59.09
w/o out-of-window context 16.66 50.63 24.17 55.97 28.81 57.79
w/ equidistant memory tokens 17.16 54.25 24.96 60.42 30.31 63.65

5.2. Training Details

We set the maximum length of code context to 512 and
4096 for non-sparse and sparse models, respectively. In
order to make a fair comparison between sparse models and
non-sparse models, we set the window size w to 512 so that
both types of models maintain the same local context length
during inference. Note that this setting is different from the
original setting of RepoBench (Liu et al., 2023), thus the
results are not directly comparable to those reported in Liu
et al. (2023). For sparse models, we use the parameters of
UniXcoder released by Guo et al. (2022) to initialize the
models. For LongCoder, we set the maximum size of bridge
tokens n and global tokens k as 16 and 64, respectively.
To ensure fair comparison with other models, we pre-train
LongCoder on the CodeSearchNet dataset using the same
next token prediction objective and pre-training setting as
baselines (Lu et al., 2021; Guo et al., 2022). During fine-
tuning, we use the Adam optimizer with a batch size of 16
and a learning rate of 2e-4. We fine-tune the model for 10
epochs and perform early stopping on the development set.
Note that although the maximum context sequence length
is 4096, during inference, we only retain a cache of at most
592 tokens for past key and value hidden states to maintain
efficiency in terms of computational resources.

5.3. Experimental Results

Table 2 illustrates the comparison results of LongCoder with
other models on the LCC dataset. The results reveal that
the sparse models (i.e., the last two groups) have superior
performance compared to the non-sparse models (i.e., the
second group) on both EM and Edit Sim metrics, and they
also maintain a similar inference speed. LongFormer is
initialized using the parameters of UniXcoder, with the sole
difference being the use of a sliding window attention mech-
anism. This mechanism allows the model to maintain a
consistent inference speed while having a larger receptive
field, resulting in improved performance. This demonstrates
the effectiveness of the sliding window attention mechanism
in code completion tasks. Compared to other sparse mod-
els, LongCoder achieves an improvement of 0.8%–1.3%
in Exact Match score and 4.0%–6.0% in Edit Similarity,

which reveal the effectiveness of our proposed bridge and
global attention mechanisms. Table 4 shows the result of
LongCoder on CodeXGLUE code completion benchmarks.
It can be observed that LongCoder achieves state-of-the-art
performance, which illustrates its effectiveness in scenarios
where the code context is short. As shown in Table 5, Long-
Coder has an even larger advantage compared to UniXcoder,
indicating its potential in more complex scenarios.

5.4. Ablation Study

To better understand the impact of different components
on overall performance, we conduct an ablation study on
LongCoder, and the results are shown in Table 6. We can
see that the average score of Exact Match drops by approxi-
mately 1% when memory tokens are removed (w/o memory
tokens), which demonstrates the importance of these tokens.
On the other hand, when bridge tokens are removed (w/o
bridge tokens), the average score drops by about 3% in
terms of Edit Similarity. This is likely because bridge to-
kens assist LongCoder in understanding the semantics of the
code context and generating more accurate patterns, while
memory tokens enable it to access concrete identifiers with
global scope, thus improving accuracy on libraries, classes,
and functions invoked. Additionally, we observe that select-
ing one as a memory token every 64 tokens (equidistant
memory tokens) results in worse performance than Long-
Coder, indicating that the advantage of the memory tokens
is not solely due to increased context length. We also eval-
uate the performance of LongCoder by only using code
context within the window size during inference to verify if
the improvement is solely attributed to the use of long code
context or whether other factors such as fine-tuning settings
also contribute. By only keeping the last 512 tokens as code
context (w/o out-of-window context), we can see that the
performance is nearly the same as UniXcoder in Table 2,
which shows the importance of modeling long code context.

5.5. Case Study

We also conduct a case study to demonstrate the effective-
ness of LongCoder, as shown in Figure 4. We provide two
examples in the Python and Java programming languages
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Out-of-Window Context In-Window Context

timestamp = timestamp_now()

return (status_headers, stream) 
timestamp = time.time() 

timestamp = int(time.time()) 

Ground Truth

Transformer
GPT-2
CodeGPT
UniXcoder
Longformer
BigBird
LongCoder

Codex-2048
Codex-512

timestamp = time.time() 

timestamp = int(time.time()) 
timestamp = time.time() 

timestamp = timestamp_now() 

timestamp = timestamp_now() 
timestamp = time.time() 

✅

Predictions

        ... (22 lines omitted)
    def fetch_request(self, url, urlrewriter,
                      head_insert_func=None,
                      urlkey=None,
                      env=None,
                      req_headers={},
                      timestamp=None,
                      follow_redirects=False,
                      ignore_proxies=False,
                      verify=True,
                      remote_only=True):
        ... (28 lines omitted)
        if timestamp is None:

"""
Fetch a url from live web and apply rewriting rules
"""
import requests
... (8 lines omitted)
from pywb.utils.timeutils import timestamp_now
... (5 lines omitted)
class LiveRewriter(object):
    ... (94 lines omitted)
    def fetch_http(self, url,
                   urlkey=None,
                   env=None,
                   req_headers=None,
                   follow_redirects=False,
                   ignore_proxies=False,
                   verify=True):
        ... (18 lines omitted)

✅

public String fieldsToXMLString(java.util.HashMap domMap){
  StringBuffer sb = new StringBuffer();
  if (this.getClinicalContact() != null){
    sb.append("<clinicalContact>");
    sb.append(this.getClinicalContact().toXMLString(domMap));
    sb.append("</clinicalContact>");
  }
  if (this.getAuthoringDateTime() != null){
    sb.append("<authoringDateTime>");
    sb.append(new ims.framework.utils.DateTime(
      this.getAuthoringDateTime()).toString(
      ims.framework.utils.DateTimeFormat.MILLI));
      sb.append("</authoringDateTime>");
  }
  if (this.getAuthoringCP() != null){}
    sb.append("<authoringCP>");
    sb.append(this.getAuthoringCP().toXMLString(domMap));
    sb.append("</authoringCP>");
  }
  if (this.getGaitAspect() != null){
    if (this.getGaitAspect().size() > 0){
      sb.append("<gaitAspect>");
      sb.append(ims.domain.lookups.LookupInstance.toXMLString(
        this.getGaitAspect()));
      sb.append("</gaitAspect>");
    }

  } 

package ims.therapies.treatment.domain.objects;
public class GaitReEducation extends ... implements ... {
  public static final int CLASSID = 1044100009;
  ... (20 lines omitted)
  (Methods omitted)
  public GaitReEducation (Integer id, int ver){...}
  public GaitReEducation (){...}
  public GaitReEducation (...){...}
  public Class getRealDomainClass(){...}
  public ...ClinicalContact getClinicalContact() {...}
  public void setClinicalContact(...ClinicalContact clinicalContact) {...}
  public java.util.Date getAuthoringDateTime() {...}
  public void setAuthoringDateTime(java.util.Date authoringDateTime) {...}
  public ims.core.resource.people.domain.objects.Hcp getAuthoringCP() {...}
  public void setAuthoringCP(...Hcp authoringCP) {...}
  public java.util.List getGaitAspect() {...}
  public void setGaitAspect(java.util.List paramValue) {...}
  public String getDetails() {
    return details;
  }
  public void setDetails(String details) {...}
  public ims.domain.SystemInformation getSystemInformation() {...}
  public static boolean isConfigurationObject(){...}
  public int getClassId() {...}
  public String getClassVersion(){...}
  public String toAuditString(){...}
  public String toXMLString(){...}
  public String toXMLString(java.util.HashMap domMap){...}

Ground Truth

Transformer
GPT-2
CodeGPT
UniXcoder
Longformer
BigBird
LongCoder

Codex-2048
Codex-512

✅✅

if (this.getDetails() != null)

return sb.toString();
return sb.toString();
return sb.toString();
return sb.toString();
return sb.toString();
return sb.toString();
if (this.getDetails() != null)

if (this.getDetails() != null)
if (this.getGaitPlan() != null)

\n

\n

Figure 4. Two LCC examples of Python (top) and Java (bottom) code and predictions of different models. Codex-2048 refers to the
original Codex model with the maximum context length of 2,048 while Codex-512 is the same model with a maximum context length set
to 512. Key information is highlighted with arrows.

and output predictions from different models. (1) From the
Python example, we can see that all models infer the correct
intended outcome, which is to assign the current timestamp
to the timestamp variable. However, only LongCoder
and Codex-2048 produce the correct result. This is pri-
marily because these two models are able to refer to the
import statement at the beginning of the file, which imports
the timestamp now function. Codex-2048 uses a long
context window to cover the entire file, but this approach
increases memory consumption and decreases inference
speed as discussed above. Additionally, as the failure of
Codex-512 shows, even a large powerful model can struggle
to identify the correct function from other candidates if the
required information exceeds the window size. In contrast,
LongCoder utilizes a more efficient memory attention mech-
anism, storing information based on the scope of different
statements. This method is more effective, allowing access
to statements from the global scope while remaining effi-
cient. (2) In the Java example, the function to be completed
aims to convert a HashMap variable into an XML string.
The function sequentially calls the getter functions of the
GaitReEducation class and has already completed call-
ing the getGaitAspect function. From the out-window
context, it is clear that the next call should be made to the
getDetails function. In order to correctly complete the

function, it is essential to keep track of all function defini-
tions. As seen in the output results, only LongCoder and
Codex-2048, which both make use of long code context, can
predict the correct results. Additionally, it can be observed
that Codex-512, due to its limited context, can only make a
guess for a member function. We can see that LongCoder
leverages the structure of the code to analyze the scope of
statements and stores those that have potential long-term
dependencies. This not only improves performance but also
achieves comparable efficiency in terms of computational
resources during inference.

6. Discussion
Limitations One limitation of LongCoder is its small size.
Due to resource constraints, we are not able to train a large
model that is comparable to Codex. Besides, to compare
fairly with other baselines, we only pre-train LongCoder on
a small-scale corpus (CodeSearchNet). It would be interest-
ing to see how the idea of sparse attention scales with more
data.

Another limitation of our work is the evaluation datasets.
Many existing code datasets and LCC share the same source
of data from GitHub. The same data can appear in the
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pretraining data, making the evaluation less reliable. Ad-
ditionally, models with larger-scale pretraining are even
more likely to have seen the test data before. For example,
OpenAI Codex is trained on all GitHub repositories, that
undoubtedly, include most (if not all) test data in PY150,
JavaCorpus, and LCC. As the code completion models have
seen wider adoption in software development, future evalua-
tion can be “self-fulfilling”. For example, GitHub CoPilot5

is a popular commercial code completion tool powered by
OpenAI Codex. A lot of code generated by Codex may
have already been submitted to GitHub. This could give
widely-used models like Codex an advantage if it is eval-
uated on a dataset with a data source of the latest GitHub
repositories, as we could be evaluating Codex on its own
input. To address these problems, we need the community
to contribute new, clean, and high-quality datasets with code
from private projects to support future research.

Future Work LongCoder opens up new research oppor-
tunities in code generation not only within a large file, but
also across multiple files. For example, we could allow the
model to look at other files in the project for even more
accurate code completion. It could enable new applications
including automatically extracting package requirements,
generating build files, refactoring the project, etc.
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