
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

IMPLICIT LANGUAGE MODELS ARE RNNS:
BALANCING PARALLELIZATION AND EXPRESSIVITY

Mark Schöne∗,1,2, Babak Rahmani∗,2, Heiner Kremer2, Fabian Falck2, Hitesh Ballani2, Jannes Gladrow2

1TU Dresden, Germany, 2Microsoft Research, Cambridge, United Kingdom
jannes.gladrow@microsoft.com

ABSTRACT

State-space models (SSMs) and transformers dominate the language modeling
landscape. However, they are constrained to a lower computational complexity than
classical recurrent neural networks (RNNs), limiting their expressivity. In contrast,
RNNs lack parallelization during training, raising fundamental questions about the
trade off between parallelization and expressivity. We propose implicit SSMs, which
iterate a transformation until convergence to a fixed point. Theoretically, we show
that implicit SSMs implement the non-linear state-transitions of RNNs. Empirically,
we find that only approximate fixed-point convergence suffices, enabling the design
of a scalable training curriculum that largely retains parallelization, with full
convergence required only for a small subset of tokens. Our approach demonstrates
superior state-tracking capabilities on regular languages, surpassing transformers
and SSMs. We further scale implicit SSMs to natural language reasoning tasks
and pretraining of large-scale language models up to 1.3B parameters on 207B
tokens–representing, to our knowledge, the largest implicit model trained to date.
Notably, our implicit models outperform their explicit counterparts on standard
benchmarks.

1 INTRODUCTION

Transformers, despite their dominance on contemporary language benchmarks, exhibit fundamental
limitations in computational expressiveness. Both theoretically and empirically, they cannot fully
recognize regular languages Bhattamishra et al. (2020) or, equivalently, represent finite state machines
(FSMs) (Merrill et al., 2022). This limitation is significant because FSMs form the backbone of many
real-world state-tracking problems, including evaluating code, tracking object permutations (e.g., in
games like chess or structured narratives), and modeling sequential dependencies in logic Li et al.
(2021), location tracking Guan et al. (2023), games Li et al. (2023) and scientific applications such as
protein generation, genetics, and chemistry Briand et al. (2023); Chowdhury et al. (2022); Boiko et al.
(2023). This raises questions about the ability of transformers to maintain coherent world models
based on transitions between states Vafa et al. (2024) and hence, their suitability for tasks requiring
robust state-tracking. These shortcomings appear to stem from a fundamental trade-off between
parallelizability at training time and the ability to track state Merrill & Sabharwal (2023). Surprisingly,
recently emerging state-space models (SSM), a class of linear recurrent neural networks, are bound
by the same trade-off: despite their seemingly sequential nature they cannot express some inherently
sequential problems such as certain regular languages Merrill et al. (2024). In contrast, non-linear
recurrent neural networks (RNNs) are not bound by these restrictions on compute complexity and can
track state Siegelmann & Sontag (1992); Merrill (2019) but lack parallelizability at scale. This raises
the question: How much sequential processing does one have to accept to solve the state tracking
problem?

Previous attempts to address these limitations in transformers have leveraged non-linear transitions
through self-iteration in the depth dimension Dehghani et al. (2019); Banino et al. (2021). However,
backpropagation through unrolled networks is computationally prohibitive at scale. Deep equilibrium
(DEQ) models Bai et al. (2019), in contrast, define a function implicitly via the fixed-points of a
neural network; their output is the result of self-iteration until convergence. Training such networks

∗Equal contribution

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

8 32 128
Sequence length

1

4

16
M

in
 #

La
ye

rs

Layers Required for S5
Mamba2
Implicit Mamba2

16 32 64 128
Sequence length

0.0

0.5

1.0

A
cc

ur
ac

y

Length Extrapolation for S5
Mamba2 (16 layers)
Implicit Mamba2 (1 layer)

130M 370M 780M 1300M
Number of parameters

6

8

10

12

14

Pe
rp

le
xi

ty

Language Scaling Laws on the Pile

Mamba2 Llama Implicit Mamba2 Implicit Llama

Figure 1: Left: Minimum layers required to solve the S5 word problem, a theoretically hard
formalization of state tracking, for different sequence lengths. Center: Length generalization for
Mamba2 and our implicit Mamba2 trained on L = 32 and extrapolated up to L = 128. Right:
Scaling of language models pretrained on 207B tokens of the deduplicated PILE.

requires backpropagation solely at the fixed point, eliminating the need to traverse the iterative path
and thereby decoupling memory usage from the depth of iterations. Emerging hardware promising
rapid computation of fixed-points of neural networks Brunner et al. (2025) may tilt the hardware
lottery Hooker (2020) in favor of such implicit models, making this an opportune moment to explore
their potential.

Our approach to balancing state tracking and parallelization relies on two key observations. First, we
demonstrate that implicit models naturally adapt their compute load to the difficulty of the learning
problem (see Figure 3Left). At both training and test time, such models effectively interpolate
between their parallelizable form, when all tokens in the sequence are resolvable, and RNNs, when
there are no resolvable tokens. Further, we show theoretically that implicit models have indeed
non-linear token-to-token transitions similar to RNNs. Second, based on the success of transformers
on many practical language modeling problems, we hypothesize that natural language contains only
a sparse set of tokens that cannot be resolved by transformers (and SSMs). Such non-solvable
transitions are critical for state tracking but remain intractable for the class of circuits representable
by transformers and SSMs (Merrill et al., 2022; 2024). Exploiting these properties, we devise implicit
models that combine the expressive power of RNNs with the parallelizability of transformers and
SSMs (see Figure 2). In contrast to conventional transformers and SSMs, implicit models can track
state, even out-of-distribution (see Figure 1Center). In contrast to RNNs, these models permit a
much larger degree of parallelization as the depth of self-iteration is much smaller than the sequence
length (see Figure 3Center).

Contributions. (a) We propose implicit SSMs and show theoretically that they represent non-linear
and non-diagonal state-to-state transitions similar to RNNs. (b) We confirm empirically that implicit
SSMs can solve the S5 word problem, which conventional SSMs and transformers fail to solve.
(c) We show by constructing distributions with varying difficulty level over the word problem that
implicit SSMs as well as transformers require much fewer non-parallelizable transitions to learn word
problems than RNNs (d) We demonstrate scalability of implicit models through a carefully chosen
training curriculum that bounds the number of iterations, training implicit SSM and transformers
up to 1.3B parameters on 207B tokens of the deduplicated PILE (D-PILE) Gao et al. (2020)— see
Figure 1Right, the largest self-iterated model with dynamic halting condition to date, to the best of
our knowledge. (e) We highlight a set of properties of our pretrained implicit language models such
as favorable length generalization, and path-independent auto-regressive generation.

2 BACKGROUND

2.1 STATE-SPACE MODELS

SSMs are linear recurrent models which produce an output yt ∈ Rdout given an input xt ∈ Rdin and a
sequentially updated hidden state vector ht ∈ Rn via the recurrence

ht = Λ(xt)ht−1 + u(xt), yt = f(ht−1, xt) (1)

where u and f are possibly non-linear learned functions. The learned matrix Λ ∈ Rn×n is typically
diagonal and can be constant Gu et al. (2022); Smith et al. (2023) or an input-dependent matrix-

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

valued function (Qin et al., 2023; Gu & Dao, 2023; Dao & Gu, 2024). A SSM combines a number of
these blocks with non-linear feed-forward blocks. In contrast to non-linear RNNs, the linear state
recurrence equation 1 allows for training parallelism along the sequence dimension, and avoids the
quadratic scaling of self-attention.

2.2 LIMITATIONS OF TRANSFORMERS AND SSMS

Efficient parallelization is one of the central features enabling transformers and SSMs to scale to large
machine learning problems such as language modeling. Parallel circuits, however, face fundamental
trade-offs regarding the class of problems that they can address. In particular, transformers and SSMs
theoretically fail to recognize certain regular languages, or equivalently, to simulate FSMs (Merrill
et al., 2022; 2024). Empirical studies have confirmed that neither of the models are capable of learning
the algorithms constituting certain regular languages Bhattamishra et al. (2020); Sarrof et al. (2024).
By contrast, the sequential nature of RNNs allows them to express all regular languages (Merrill,
2019). A detailed discussion is given in Appendix A.1.

2.3 DEEP EQUILIBRIUM MODELS

Most deep learning architectures explicitly parametrize a function x 7→ y with a neural network.
Deep Equilibrium Models (DEQ), in contrast, define a function implicitly via the fixed-points
z∗ = Fθ(z

∗, x), of an input-conditional neural network Fθ, where z∗ is identified with the prediction
y. Naively differentiating a loss function L(z∗) with respect to the model parameters θ generally
requires a costly differentiation through the employed fixed-point solver. Instead, to allow for gradient
computations with a constant memory footprint, DEQs utilize the Implicit Function Theorem: Let
Gθ(z, x) = z − Fθ(z, x). If the Jacobian JG,z of G w.r.t. z is non-singular in z∗, then there
exists an open set U around (x, θ) and a unique function Φ on U such that Φ(x, θ) = z∗ and
G(Φ(x̃, θ̃), x̃, θ̃) = 0 for all (x̃, θ̃) ∈ U . Furthermore, the derivative of Φ w.r.t. θ is given by

∂Φ

∂θ
= −J−1

G,z∗
∂Fθ

∂θ
. (2)

A range of methods have been proposed to efficiently compute ∂L
∂θ = ∂Φ

∂θ
∂L
∂z∗ using Equation equa-

tion 2 (Bai et al., 2019; Geng et al., 2021). Here, we employ the Phantom Gradient approach of Geng
et al. (2021) (see in the Appendix Figure 5). The method is based on solving a smoothed version of
the fixed point equation equation 2.3 combined with a finite truncation of the von Neumann series of
the Jacobian-vector-product in equation 2 given as

∂̂Φ

∂θ
= λ

∂Fθ

∂θ

∣∣∣
z∗

k−1∑
i=0

(
λ
∂Fθ

∂z

∣∣∣
z∗

+ (1− λ)I

)i

, (3)

where a small smoothing parameter λ ∈ (0, 1] helps maintaining a small condition number at the
cost of increased fixed-point iterations and the truncation length k determines the accuracy of the
approximation.

3 IMPLICIT SEQUENCE MODELS

3.1 IMPLICIT STATE-SPACE MODELS

The linear recurrence of SSMs shown in equation equation 1 cannot resolve elaborate sequential
problems Merrill et al. (2024). Here, we propose to exploit self-iterations along the depth of neural
networks to close the expressivity gap between SSMs and RNNs. Following the DEQ paradigm (see
Section 2.3), we implicitly define a model via the fixed points of a SSM. Introducing the iteration
variable z

(s)
t ∈ Rdout to equations equation 1 yields the fixed point iteration

h
(s)
t = Λ

(
z
(s−1)
t , xt

)
h
(s)
t−1 + u

(
z
(s−1)
t , xt

)
, z

(s)
t = fθ

(
z
(s−1)
t , h

(s)
t , xt

)
, (4)

where z
(0)
t = 0 for t = 0, . . . , T and h

(s)
0 = 0 for s = 0, . . . , S respectively. The output z(s)t of

fθ is fed back to the self-iteration until (approximate) convergence to a fixed-point. Note, how

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Simultaneous fixed-points Sequential fixed-points

A dog walked through the

A B

A dog walked through the

Phantom Gradient Computation

tokens
converged

tokens
did not converge

max unrolling steps
Legend A/B

Fixed-point iteration

Hidden-state carry

Simultaneous vs Sequential Language ModelC

Figure 2: A: The simultaneous mode self-iterates the entire sequence such that trajectories interact
during convergence. It exploits the parallelism of the backbone model. B: The sequential mode
iterates each token individually. Only converged hidden states or kv-caches are passed on. This mode
is used for generation. C: Difference in perplexity between the two modes for our 1.3B implicit
models.

this adds a new dependency to the functions Λ and u in equation equation 4 that is not present in
equation equation 1. Notably, this minor technical change leads to fundamental differences between
explicit SSMs and the implicit SSM defined above.

Computing the output, as well as the gradient, of our implicit SSM requires to iterate the two loops
defining Equation (4): A loop t = 1, . . . , T over the sequence dimension, and a loop s = 0, . . . , S
to find the fixed point. The two loops give rise to two modes of evaluation visualized in Figure 2.
The simultaneous mode simultaneously finds the fixed points for all t (see Figure 2A), and exploits
parallelization strategies for SSMs Dao & Gu (2024). The sequential mode resolves the s and t
loops in the transpose order, and processes sequences sequentially just like classical SSMs or RNNs
(see Figure 2B). While the simultaneous mode allows for highly parallel training, the sequential
mode enables efficient inference at constant memory, e.g. for language generation. For both modes,
Equation (4) in the limit s → ∞ reads

h∗
t = Λ(z∗t , xt)h

∗
t−1 + u (z∗t , xt) , (5)

where z∗t = lims→∞ z
(s)
t and h∗

t = lims→∞ h
(s)
t denote the fixed points. The fixed point z∗t depends

on h∗
t , and hence by equation equation 4 on h∗

t−1. Notably, our self-iteration introduces a non-linear
dependency to the originally linear recurrence equation 1 via the functions Λ and u. Thereby, our
implicit SSM inherits one of the crucial properties of RNNs, as formalized next.
Theorem 1. Consider an implicit SSM defined by Equation (4). Then the transition function
h∗
t−1 7→ h∗

t defined by equation equation 5 is non-linear and non-diagonal, i.e. each hidden state h∗
t

is a non-linear function of the previous hidden state h∗
t−1. Consequently, the state-to-state Jacobian

is a non-diagonal operator.

Proof: We refer the reader to Appendix B

As discussed in Section 2.2, non-linear RNNs surpass transformers and linear SSMs in terms of
circuit complexity. By the above construction, our implicit SSM appears to exhibit the favourable
computational properties of RNNs, lifting the illusion of state in linear SSMs Merrill et al. (2024).
Furthermore, the gradients of a fixed point iteration depend solely on the fixed point, and not on the
path to the fixed point, by the implicit function theorem. This suggests that both modes resolving the
two for loops yield functionally equivalent fixed points.

These properties raise the following hypotheses, which we will investigate empirically in this work.
Hypothesis 1 (Expressivity). Implicit SSMs can learn and express all regular languages.
Hypothesis 2 (Parallelization). Implicit SSMs can be trained in simultaneous mode and evaluated in
sequential mode without loss in performance.

3.2 IMPLICIT TRANSFORMERS

Conventional transformers, with their finite number of layers, cannot learn certain formal languages
outside of the TC0 circuit complexity class (Merrill et al., 2022; Strobl et al., 2024). However, chain of
thought (CoT) models (Wei et al., 2022) bypass this restriction by using an adaptive compute budget
through recursive generation of intermediate tokens Merrill & Sabharwal. Implicit transformers Bai

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

et al. (2019) utilize an adaptive compute budget differently, using fixed-point iterations that can be
interpreted as sequences of latent thoughts (Hao et al., 2024), undergoing non-linear updates similar
to a non-linear RNN’s hidden state.

4 IMPLICIT SSMS ADAPT TO HARD LANGUAGES

Implicit SSMs Lift the Illusion of State The Illusion of State Merrill et al. (2024) reveals that
SSMs cannot simulate arbitrary finite state machines. A hard state tracking problem in the sense
that all state tracking problems can be reduced to it is given by the word problem for the symmetric
group S5 Barrington (1989). The word problem for a monoid (M, ◦) is to resolve arbitrary length
products of the form m̂ = m1 ·m2 ◦ · · · ◦mk for m1,m2, . . . ,mk ∈ M,k ∈ N. A comprehensive
introduction to the word problem and our particular learning setting is provided in Appendix D.1.
We train a set of Mamba2 SSMs Dao & Gu (2024) to reproduce the results of Merrill et al. (2024).
Figure 1Left highlights that Mamba2 requires more layers as the sequences get longer. For example
resolving sequences of 32 elements from S5 requires a minimum of 16 layers. Extending the result
of Merrill et al. (2024), Figure 1Center shows that the same Mamba2 model with 16 layers does not
generalize beyond the training distribution when evaluated on sequences longer than 32 elements.
Our implicit Mamba2, however, can utilize additional self-iterations at test-time to resolve longer
sequences of up to 128 elements. This result establishes that implicit SSMs effectively learn to be
RNNs. However, with naive unrolling in implicit SSMs, parallelization would still be challenging. In
the following, we show a subtle yet important result: Implicit SSMs can adapt to word problems of
varying difficulty even when trained with bounded depth.

Languages with Sparse Non-Solvable Transitions SSMs excel in natural language processing
tasks despite being theoretically constrained to the simple class of star-free formal languages Sarrof
et al. (2024). We conject that natural language is mostly composed of simple to comprehend
tokens, while harder tokens appear only sparsely. To study implicit models in a controlled learning
environment closer to natural language than the S5 word problem, we construct a word problem that
mixes simple and hard examples. Let M = Ma × G be a direct product of an aperiodic monoid
Ma and a non-solvable group G. A sequence m0, . . . ,mT is sampled from M with replacement.
To control the number of hard examples and simple examples, we define a family of distributions
Dp over M as follows. An element ma

k ∈ Ma is sampled uniformly at each step k, representing
the presence of simple examples. On the other hand, we sample elements gk ∈ G \ {e} from G
without the identify transformation, each with probability p

|G|−1 . The identity element gk = e ∈ G is
sampled with probability 1− p. The resulting transformations (ma

k, gk) are aperiodic at least when
gk = e, i.e. with probability 1− p.

Interpolating between SSMs and RNNs We will identify minimally sequential models that
parallelize to a high degree and still capture all non-solvable transitions in a language. Therefore, we
apply our construction of a word problem above to mix tokens from simple languages with tokens
from non-solvable hard languages. This section studies a word problem over M = Ma ×A5, where
Ma is a simple aperiodic monoid with four elements and A5 ⊂ S5 is the alternating group over 5
elements, the smallest non-solvable subgroup of S5. For details on the learning problem, we refer
the reader to Appendix D.1. We train Mamba2 and implicit Mamba2 models on a range of mixtures
of simple and hard tokens between p = 0.0 and p = 0.25, and in the case of the implicit models
with varying self-iteration depths at training time between 2 and 128. All training sequences sample
L = 256 tokens, and evaluation is conducted on the distribution D0.5, where half of the tokens
is hard. The evaluation is hence an out-of-distribution (OOD) setting. We report averaged results
over 10 random seeds with boostrapped 95% confidence intervals as well as the best models per
configuration. None of the conventional models got OOD accuracies beyond random chance as
shown in the right panel of Figure 3, hence we will focus our discussion on the implicit models in the
following. The left panel of Figure 3 shows that implicit SSMs capture the underlying algorithm, as
measured by out-of-distribution evaluation with p = 0.5, even when trained on very few non-solvable
tokens. While a fraction of 2% hard tokens per sample (p = 0.02) suffices for some configurations,
reliable training can be observed from p = 0.1 on. We are left with the question of how many
self-iterations are required during training to learn the algorithm intrinsic to the word problem. To
answer this we trained a range of models with p = 0.1, setting a different upper bound on the number
of self-iterations at training time. The number of self-iterations at test time is unbounded and solely

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Impact of Training Distribution Impact of Self-iterations Comparison of Models

Figure 3: All models were trained and evaluated on sequences of length L = 256. The out-of-
distribution (OOD) evaluation is conducted with p = 50%. Left: Comparison of OOD accuracy for a
range of training distributions with hard token probabilities p. Mid: Comparison of OOD accuracy
for a range of self-iterations caps at training time, trained with p = 0.1. Right: Comparison of
implicit Mamba2, unrolled Mamba2, and Mamba2 trained with p = 0.1. Unrolled Mamba2 unrolls a
single layer with full backpropagation, while implicit Mamba2 receives only 4 Phantom Gradient
steps. All models have a training depth of 16 (layers for Mamba2, self-iterations for implicit and
unrolled).

defined by the fixed point iteration. The mid panel of Figure 3 shows that a small amount of down to
8 self-iterations at training time suffices to generalize from the distribution D0.1 at training time to
D0.5 at test time. Interestingly, the number of test time self-iterations is quite similar for the models
trained with different upper bounds on the training time self-iterations, hinting that the models learned
similar algorithms. Note that the self-iterations required during training are significantly lower than
the sequence length. For comparison, a conventional RNN conducts L = 256 non-parallelizable
steps to solve the same problem, a factor of 32 larger than the 8 self-iterations required by our implicit
Mamba2. This comes at a cost: we need to self-iterate over every token. However, each self-iteration
can be parallelized across the sequence dimension by the parallelization of the base model. In the
right panel of Figure 3, we demonstrate that the phantom gradient is, in most cases, a more effective
method for gradient computation than backpropagation through the entire sequence of unrolling
steps. To evaluate this, we train three variants of the Mamba2 model: (1) an implicit Mamba2, which
self-iterates and employs phantom gradients; (2) an unrolled Mamba2, which backpropagates through
all unrolling steps; and (3) an explicit Mamba2, a conventional model. All models are trained on
sequences of length L = 256 sampled from D0.1, with a depth constraint of 16 – corresponding to 16
self-iterations for the implicit and unrolled models and 16 layers for the explicit model. Our result
shows that a constant number of backpropagation steps using the phantom gradient method is enough
to learn complex non-solvable transitions and generalize to difficult distributions at test time. Since
phantom gradients require a constant memory that is independent of the number of self-iteration
steps, the training of larger language models appears feasible.

CatbAbi: A benchmark requiring state tracking. To evaluate the state-tracking capabilities of
SSMs on language tasks, we use the CATBABI dataset (Schlag et al., 2021), a modified version of the
BABI dataset (Weston et al., 2015), consisting of 20 tasks within a 5M token corpus. These tasks,
requiring various reasoning abilities like deduction, conference, or counting, involve short stories
with embedded questions (Schlag et al., 2021), and require state tracking in various degrees. We train
our implicit SSM model, using Mamba2 as the core architecture, alongside the baseline Mamba2
model, both with up to three layers. Our findings show that the implicit Mamba2 model with a single
layer outperforms its single-layer Mamba2 counterpart on most tasks. Additionally, more layers in
the implicit model’s backbone reduce the number of self-iteration steps needed to solve the tasks
(see Appendix Figure 10a, Figure 10b). We furthermore evaluate the performance of the models for
tasks sorted by increasing story length. We see how implicit models retain its performance as the
lengths increases in Figure 10c at a slight increase in the number of iterations of the implicit models
in Figure 10d.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

5 IMPLICIT LARGE LANGUAGE MODELS

We investigate whether implicit models can be effectively pretrained to function as language models.
Motivated by the results of Section 4, we implement a pretraining strategy for implicit models with
two stages of bounded and free self-iterations. Transformer (LLama) Touvron et al. (2023) and SSM
(Mamba2) (Dao & Gu, 2024) architectures serve as the core backbones for our implicit models. In
the bounded stage, we train with four self-iterations and a single step of phantom gradient, which
we refer to as the (4 + 1)-model. The (s + k)-notation refers to s gradient-tape-free self-iteration
steps and k phantom gradient steps. k refers to Equation (3), see also Figure 5. The free stage
starts from a checkpoint of the (4 + 1)-model and increases the number of self-iterations to 24/32
followed by four steps of phantom gradient. We refer to these models as (24 + 4)/(32 + 4)-models
for Mamba2/Llama, respectively. We employ four model sizes: 125M, 350M, 760M, and 1.3B.
These models are pretrained in an autoregressive manner for next-token prediction across all sizes on
the D-PILE (Gao et al., 2020) dataset, which consists of 207B tokens. For baselines, we use both
Mamba2 (Dao & Gu, 2024) and Llama (Beck et al., 2024) models previously trained on a corpus
of 300B tokens. Additionally, we reproduce Mamba2∗ and Llama† as baselines trained with the
same code and data as our implicit models. We evaluate the pretrained models on the test set of the
D-PILE, examine their length extrapolation capabilities, and assess their common sense reasoning
performance on downstream tasks. See Appendix D.3 for pretraining details.

Pretraining Results and Downstream Performance. We report in Table 1 the next-token perplex-
ity performance of all models trained on the entire 207B token corpus using a test split of the D-PILE1.
We observe our implicit models consistently achieve a lower perplexity compared to their explicit
counterparts—see also Figure 1Right. For details related to the dynamics of the implicit models
on D-PILE, refer to Table 2. Additionally, we evaluate the models’ performance on common sense
reasoning tasks using the LM Evaluation Harness (Gao et al., 2024). The results show that implicit
Mamba2 outperform the explicit Mamba2∗, which are pretrained on the same number of tokens, on
most tasks. This difference becomes more pronounced as the size of the models increases, specifically
with the 760M and 1.3B variants. Compared to the original Mamba2 baseline, trained on 1.5 times
more data, the implicit models do better on HELLASWAG, PIQA, ARC-E, and are competitive in
LAMBADA and ARC-C. Across all scales, the implicit Mamba2 models significantly outperform
Mamba2 in the HELLASWAG task, yet they underperform in WINOGRANDE and OPENBOOKQA.

It is also noteworthy that our implicit Llama models substantially outperform the baseline Llamas,
including both the results reported in (Beck et al., 2024) and the Llama†. This improvement is
consistent across all tasks and model sizes. Strikingly, we note that our implicit Llama (32+4) 760M
is competitive to the explicit Llama† 1.3B.

Model Average
ppl↓

Mamba2 25.37
Mamba2∗ 15.06
Mamba2(4+1)-ours 9.53
Mamba2(24+4)-ours 9.63

Figure 4: Length extrapolation performance on the the
test split of the D-PILE of the original 1.3B Mamba2,
our Mamba2∗, and our implicit Mamba2 with (4+1)
and (24+4) self-iterations. Shaded gray area shows the
in-distribution length. Left: Per token perplexities at
different lengths. Right: The average perplexity of
tokens for a context length of 16 384.

Implicit-SSMs Demonstrating Length
Extrapolation Capabilities All implicit
models in our study were trained on se-
quences of 2048 tokens. To assess their
capability for length extrapolation, we eval-
uated the implicit models on the test split of
the D-PILE, which was packed with longer
sequences consisting of 4096, 8192, and
16384 tokens. We compared these results
with the baseline Mamba2 and Mamba2∗

in Figure 4, where the per-token perplex-
ities are reported. For the average per-
plexity at 16384 and other lengths, re-
fer to the table in Figure 4 and Table 3
in the Appendix. The implicit Mamba2
models maintain their perplexity as se-
quence length increases, whereas the base-

1The test split represents a random selection of 0.1 percent of the entire dataset. This size is in line with the
proportion used for the PILE’s validation set (Gao et al., 2020).

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Comparison of test set perplexity and downstream performance. We compare our implicit
models, which have 4 self-iteration steps and 1 phantom gradient step (denoted as 4+1), and those
with 24/32 self-iteration steps and 4 phantom gradient steps (denoted as 24+4/32+4), with our baseline
models Mamba2∗ and Llama†. These baseline models as well as the implicit models are trained on
207B tokens from the D-PILE dataset and range in size from 130M to 1.3B parameters. For further
comparison, we include the original Mamba2 (Dao & Gu, 2024) (trained on 300B tokens of the
PILE) and the Llama (trained on 300B tokens of the SLIMPAJAMA) from (Beck et al., 2024). The
best performing model for each type is highlighted in bold, and the second-best is underlined.

Model Dataset/Tokens (B) D-Pile LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande OpenbookQA Average
ppl↓ ppl↓ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑

13
0M

Mamba2 Pile/300 13.72 16.83 0.4388 0.3525 0.6496 0.4739 0.2423 0.5233 0.306 0.4266
Mamba2∗ D-Pile/207 13.05 18.51 0.4116 0.3527 0.6572 0.4815 0.2372 0.5130 0.300 0.4219

Mamba2(4+1)-ours D-Pile/207 13.76 18.58 0.4118 0.3628 0.6485 0.4537 0.2287 0.5107 0.288 0.4149
Mamba2(24+4)-ours D-Pile/207 12.86 18.03 0.4174 0.3673 0.6496 0.4604 0.2372 0.5178 0.290 0.4200

Llama SlimPajama/300 - 39.21 0.3154 0.3409 0.6545 0.4533 0.2363 0.5067 - 0.4178
Llama† D-Pile/207 12.77 17.08 0.4297 0.3513 0.6540 0.4794 0.2440 0.5122 0.280 0.4215

Llama (4+1)-ours D-Pile/207 12.73 15.54 0.4518 0.3706 0.6447 0.4823 0.2372 0.5391 0.290 0.4308
Llama (32+4)-ours D-Pile/207 11.73 13.39 0.4801 0.3958 0.6676 0.4886 0.2355 0.5304 0.298 0.4423

35
0M

Mamba2 Pile/300 10.55 8.00 0.5593 0.4692 0.7046 0.5476 0.2671 0.5564 0.324 0.4897
Mamba2∗ D-Pile/207 10.18 8.96 0.5333 0.4653 0.6942 0.5526 0.2696 0.5320 0.306 0.4790

Mamba2(4+1)-ours D-Pile/207 10.02 8.79 0.5457 0.4684 0.6899 0.5358 0.2696 0.5162 0.308 0.4762
Mamba2(24+4)-ours D-Pile/207 9.70 8.26 0.5575 0.4792 0.7040 0.5484 0.2688 0.5351 0.316 0.487

Llama SlimPajama/300 - 15.73 0.4419 0.4445 0.6915 0.5223 0.2628 0.5359 - 0.4832
Llama† D-Pile/207 10.30 8.37 0.5624 0.4537 0.6844 0.5476 0.2577 0.5541 0.318 0.4826

Llama (4+1)-ours D-Pile/207 9.66 7.03 0.5898 0.5030 0.7024 0.5539 0.2611 0.5572 0.314 0.4973
Llama (32+4)-ours D-Pile/207 9.43 7.04 0.5956 0.5114 0.7078 0.5244 0.2705 0.5722 0.320 0.5003

76
0M

Mamba2 Pile/300 9.23 5.86 0.6167 0.5492 0.7198 0.6103 0.2850 0.6030 0.362 0.5351
Mamba2∗ D-Pile/207 8.98 6.24 0.6125 0.5418 0.7231 0.6044 0.2858 0.5777 0.338 0.5262

Mamba2(4+1)-ours D-Pile/207 8.60 6.15 0.6117 0.5569 0.7296 0.6077 0.3140 0.5509 0.336 0.5295
Mamba2(24+4)-ours D-Pile/207 8.35 5.90 0.6191 0.5698 0.7334 0.6090 0.3131 0.5730 0.338 0.5365

Llama SlimPajama/300 - 9.90 0.5141 0.5216 0.7095 0.5648 0.2875 0.5667 - 0.5274
Llama† D-Pile/207 8.88 5.77 0.6375 0.5448 0.7171 0.5905 0.2816 0.6054 0.338 0.5307

Llama (4+1)-ours D-Pile/207 8.27 5.15 0.6524 0.5853 0.7312 0.6052 0.3097 0.5967 0.356 0.5481
Llama (32+4)-ours D-Pile/207 7.90 4.82 0.6703 0.5995 0.7416 0.6187 0.3012 0.5991 0.344 0.5535

1.
3B

Mamba2 Pile/300 8.40 5.02 0.6559 0.5995 0.7378 0.6418 0.3319 0.6117 0.378 0.5652
Mamba2∗ D-Pile/207 8.28 5.12 0.6456 0.5939 0.7416 0.6145 0.3123 0.6117 0.352 0.5531

Mamba2(4+1)-ours D-Pile/207 7.97 5.21 0.6383 0.6136 0.7437 0.6343 0.3302 0.5746 0.354 0.5555
Mamba2(24+4)-ours D-Pile/207 7.70 4.99 0.6489 0.6267 0.7416 0.6423 0.3336 0.5888 0.352 0.5620

Llama SlimPajama/300 - 7.23 0.5744 0.5781 0.7312 0.6279 0.3174 0.5904 - 0.5699
Llama† D-Pile/207 7.99 4.95 0.6569 0.5936 0.7432 0.6385 0.3217 0.6062 0.352 0.5589

Llama (4+1)-ours D-Pile/207 7.66 4.40 0.6852 0.6397 0.7448 0.6338 0.3396 0.6575 0.360 0.5801
Llama (32+4)-ours D-Pile/207 7.24 4.24 0.6901 0.6583 0.7465 0.6654 0.3601 0.6401 0.364 0.5892

line Mamba2 models exhibit an increase in
perplexity with longer sequences.

Effective Duality between Simultaneous Mode and Sequential Mode Autoregressive generation,
a core functionality of contemporary language models, for implicit models requires that the sequential
mode introduced in Section 3 and Figure 2 is functionally equivalent to the simultaneous mode used
for pretraining. Effectively, the loops over s and t in Equation (4) have to be interchangeable (also see
Figure 12), which we empirically demonstrate with our pretrained language models. Specifically, we
utilize our 1.3B implicit Mamba2 (24+4) and Llama (32+4) models to compute next-token predictions
on the D-PILE test split. The models are fed identical input tokens of length 2048 in batches of size
16 and predict outputs greedily in both simultaneous and sequential modes. We observe token match
rates of 97.6% (on 3M tokens) between the outputs of the two modes for the implicit Mamba2, and
97.7% (on 330K tokens) for the implicit Llama. Examples of these model predictions are provided
in Appendix Table 4. The per-token perplexity differences in the predictions of the models are
depicted in Figure 2. To our knowledge, this is the first demonstration of sequential evaluation with
self-iterated models at constant memory in the number of self-iterations, enabling auto-regressive
generation for this class of models.

6 RELATED WORK

Adaptive-Compute Time The idea of an adaptive compute budget goes back to Schmidhuber
(2012) who employ a halting neuron to delimit the computation on a particular input. Graves (2017)
generalized the idea and regularised the halting condition to encourage the network to stop early.
They implemented an adaptive-depth RNN and demonstrated the network adjusting the compute
budget based on the difficulty of instances in a parity-check task. This idea was later applied to
Transformers, resulting in ”Universal Transformers” (UT) Dehghani et al. (2019). UTs can either
be unrolled to a fixed depth or augmented with a dynamic halting condition (DHC) per token. UTs

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

were later shown to exhibit improved scaling laws compared to standard transformers Kaplan et al.
(2020). PonderNet Banino et al. (2021) introduced a principled probabilistic model for determining
the halting condition. This approach improved on the UT on the BABI benchmark. Recently, a
mixture-of-experts (MoE) variant of the UT (MoEUT) was presented Csordás et al. (2024) with 1B
parameters, seeking to improve the parameter-to-compute ratio of UTs. The MoEUT is an unrolled
model with fixed iterations and does not employ a DHC. While our models presented here are
dense, they could, in principle, be turned into MoE. Gatmiry et al. (2024) show that looped linear
transformers implement gradient-descent until convergence on the prediction loss defined by previous
input-output examples in the context window. Lim et al. (2024) take the opposite approach to our
work: Instead of augmenting SSMs or transformers, they propose an approach based on fixed-point
iterations to enable parallel training of RNNs. However, their method incurs cubic cost in terms of
state size, limiting the method to smaller models.

Reasoning and out-of-distribution generalization. The ability of looped models to generalize
better to input lengths not seen during training is empirically well established: For example Yang et al.
(2024a) show this for looped transformers, while Anil et al. (2022) demonstrate length generalization
for DEQs, particularly when they are path independent. Du et al. (2022) show that energy-based
models trained to map energy-gradient-descent steps to algorithmic steps, can length generalize in
summation, and complex algorithms such as shortest-path. On the theoretical side, The pioneering
work of Siegelmann & Sontag (1992) shows that iterated RNNs are Turing complete at infinite
numerical precision. More recently, Deletang et al. (2023) studied a number of sequence models
and report that grouping tasks by their rung in the Chomsky hierarchy is predictive of models
ability to length-generalize. While the works of Merrill et al Merrill (2019); Merrill et al. (2020);
Merrill & Sabharwal (2023); Merrill et al. (2024), which we discuss inSection 2.2, showed that both
transformers and SSMs are restricted to TC0; several studies sought to find more precise constraints.
Weiss et al. (2021) observe that programs written in a specific language (RASP) can be mapped to
transformer models of sufficient capacity. Zhou et al. (2023) then showed that transformers tend
to length-generalise if the underlying data-generating process can be expressed in RASP. Sarrof
et al. (2024) derived a similar refined constraint for SSMs and showed that they can precisely
express star-free regular languages. Grazzi et al. (2024) demonstrate that SSMs can track state in
simple problems, such as parity, when their (diagonal) recurrence matrix Λ in Equation equation 1
permits negative eigenvalues. Moreover, they illustrate that a variant of DeltaNet Yang et al. (2024b)
with (possibly) negative eigenvalues can solve the S5 problem when only swaps of two values are
considered in the transition. However, no variant of Mamba or DeltaNet was capable of learning S5
and achieving length generalization. To tackle the parallelization-expressiveness trade-off, Beck et al.
(2024) propose two new LSTM-inspired layer architectures: the sLSTM and mLSTM layers. While
the latter is parallelizable, the former is not and intended to enable the whole model to recognize
regular languages. Finally, Soulos et al. (2024) survey strategies for chunking input sequences with
transformers, maintaining parallelizability within each chunk and using RNN-like transitions between
chunks. They find these architectures recognize regular languages for small chunk sizes with scaling
remaining a challenge.

7 DISCUSSION AND CONCLUSION

This work demonstrates that models implicitly defined by a fixed point iteration can solve hard state
tracking problems that resist the capabilities of transformers and SSMs. We provide theoretical
insight how implicit SSMs can deviate from pure diagonal and linear token-to-token transitions and
effectively become an RNN in the limit. When trained with a relatively small number of self-iterations,
our models seamlessly generalize from simpler to harder word problems (see Figure 3). This property
is of special interest in language modeling where ’hard’ sequences are rare but might occur clustered
in applications requiring state tracking.

Our extensive study of synthetic state tracking problems informs a pretraining schedule for large
language models. The implicit Llama and Mamba2 models improve over the baselines in many
cases, and prove particularly beneficial on downstream tasks such as HELLASWAG (see Table 1).
Performance on language modeling is typically primarily determined by parameter count which
traditionally caused weight-shared models to underperform Tay et al. (2023). While implicit models
lift the limitations of state-of-the-art language models, self-iteration comes at a cost that only amortizes

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

over the long tail of natural language. However, emerging hardware that accelerates such self-iteration
would alleviate this overhead (Brunner et al., 2025). Furthermore, as LLMs make more progress on
reducing perplexity, they may eventually face tokens requiring RNN-like transitions.

Finally, given the recent rise of test-time compute (Snell et al., 2024) and latent-space reasoning (Hao
et al., 2024), models with adaptive depth per token deserve careful consideration as potential bridge-
heads for such techniques as they natively offer adaptive depth and latent-space iteration.

ACKNOWLEDGMENTS

The authors of the paper would like to thank colleagues from the Analog Optical Computer (AOC)
team at Microsoft Research Cambridge for their discussions and feedback during the project. Addi-
tionally, we acknowledge support from the Microsoft GCR team for providing the GPUs and prompt
assistance in resolving issues faced during the training of large language models. MS was partially
supported with funds from Bosch-Forschungsstiftung im Stifterverband.

REFERENCES

Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J Zico Kolter,
and Roger B Grosse. Path independent equilibrium models can better exploit test-time computation.
Advances in Neural Information Processing Systems, 35:7796–7809, 2022.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder.
(arXiv:2107.05407), September 2021. doi: 10.48550/arXiv.2107.05407. URL http://arxiv.
org/abs/2107.05407. arXiv:2107.05407 [cs].

David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. Journal of Computer and System Sciences, 38(1):150–164, 1989.
ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(89)90037-8. URL https://www.
sciencedirect.com/science/article/pii/0022000089900378.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM:
Extended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAhq.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang
Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7096–7116, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL https://aclanthology.org/
2020.emnlp-main.576/.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabriel N. Gomes. Autonomous chemical re-
search with large language models. Nature, 620:547–552, 2023. URL https://www.nature.
com/articles/s41586-023-06792-0.

Thomas Briand, Clemens Rombach, Michael P. Menden, Oliver Stegle, and Malte D. Luecken. Dna
language models are powerful predictors of genome-wide variant effects. Proceedings of the
National Academy of Sciences, 120(43):e2311219120, 2023. URL https://www.pnas.org/
doi/10.1073/pnas.2311219120.

Daniel Brunner, Bhavin J. Shastri, Mohammed A. Al Qadasi, H. Ballani, Sylvain Barbay, Stefano
Biasi, Peter Bienstman, Simon Bilodeau, Wim Bogaerts, Fabian Böhm, G. Brennan, Sonia Buckley,
Xinlun Cai, Marcello Calvanese Strinati, B. Canakci, Benoit Charbonnier, Mario Chemnitz,

10

http://arxiv.org/abs/2107.05407
http://arxiv.org/abs/2107.05407
https://www.sciencedirect.com/science/article/pii/0022000089900378
https://www.sciencedirect.com/science/article/pii/0022000089900378
https://openreview.net/forum?id=ARAxPPIAhq
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.emnlp-main.576/
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://www.pnas.org/doi/10.1073/pnas.2311219120
https://www.pnas.org/doi/10.1073/pnas.2311219120

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Yitong Chen, Stanley Cheung, Jeff Chiles, Suyeon Choi, Demetrios N. Christodoulides, Lukas
Chrostowski, J. Chu, J. H. Clegg, D. Cletheroe, Claudio Conti, Qionghai Dai, Luigi Di Lauro,
Nikolaos Panteleimon Diamantopoulos, Niyazi Ulas Dinc, Jacob Ewaniuk, Shanhui Fan, Lu Fang,
Riccardo Franchi, Pedro Freire, Silvia Gentilini, Sylvain Gigan, Gian Luca Giorgi, C. Gkantsidis,
J. Gladrow, Elena Goi, M. Goldmann, A. Grabulosa, Min Gu, Xianxin Guo, Matěj Hejda, F. Horst,
Jih Liang Hsieh, Jianqi Hu, Juejun Hu, Chaoran Huang, Antonio Hurtado, Lina Jaurigue, K. P.
Kalinin, Morteza Kamalian Kopae, D. J. Kelly, Mercedeh Khajavikhan, H. Kremer, Jeremie
Laydevant, Joshua C. Lederman, Jongheon Lee, Daan Lenstra, Gordon H. Y. Li, Mo Li, Yuhang
Li, Xing Lin, Zhongjin Lin, Mieszko Lis, Kathy Lüdge, Alessio Lugnan, Alessandro Lupo, A. I.
Lvovsky, Egor Manuylovich, Alireza Marandi, Federico Marchesin, Serge Massar, Adam N.
McCaughan, Peter L. McMahon, Miltiadis Moralis Pegios, Roberto Morandotti, Christophe Moser,
David J. Moss, Avilash Mukherjee, Mahdi Nikdast, B. J. Offrein, Ilker Oguz, Bakhrom Oripov,
G. O’Shea, Aydogan Ozcan, F. Parmigiani, Sudeep Pasricha, Fabio Pavanello, Lorenzo Pavesi,
Nicola Peserico, L. Pickup, Davide Pierangeli, Nikos Pleros, Xavier Porte, Bryce A. Primavera,
Paul Prucnal, Demetri Psaltis, Lukas Puts, Fei Qiao, B. Rahmani, Fabrice Raineri, Carlos A. Rı́os
Ocampo, Joshua Robertson, Bruno Romeira, Charles Roques Carmes, Nir Rotenberg, A. Rowstron,
Steffen Schoenhardt, Russell L . T. Schwartz, Jeffrey M. Shainline, Sudip Shekhar, Anas Skalli,
Mandar M. Sohoni, Volker J. Sorger, Miguel C. Soriano, James Spall, Ripalta Stabile, Birgit Stiller,
Satoshi Sunada, Anastasios Tefas, Bassem Tossoun, Apostolos Tsakyridis, Sergei K. Turitsyn,
Guy Van der Sande, Thomas Van Vaerenbergh, Daniele Veraldi, Guy Verschaffelt, E. A. Vlieg,
Hao Wang, Tianyu Wang, Gordon Wetzstein, Logan G. Wright, Changming Wu, Chu Wu, Jiamin
Wu, Fei Xia, Xingyuan Xu, Hangbo Yang, Weiming Yao, Mustafa Yildirim, S. J. Ben Yoo, Nathan
Youngblood, Roberta Zambrini, Haiou Zhang, and Weipeng Zhang. Roadmap on neuromorphic
photonics, 2025. URL https://arxiv.org/abs/2501.07917.

Ratul Chowdhury, Nazim Bouatta, Surojit Biswas, Alexandru Floristean, Arjun Kharkar, Ron Roy,
Claire Rochereau, Jian Zhang, George M Church, Peter K Sorger, and Mohammed AlQuraishi.
Single-sequence protein structure prediction using a language model and deep learning. Na-
ture Biotechnology, 40:1617–1623, 2022. URL https://www.nature.com/articles/
s41587-022-01432-w.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D Manning.
MoEUT: Mixture-of-experts universal transformers. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=ZxVrkm7Bjl.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=ztn8FCR1td.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Learning iterative reasoning through
energy minimization. In International Conference on Machine Learning, pp. 5570–5582. PMLR,
2022.

Jeffrey L Elman. Distributed representations, simple recurrent networks, and grammatical structure.
Machine learning, 7:195–225, 1991.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

11

https://arxiv.org/abs/2501.07917
https://www.nature.com/articles/s41587-022-01432-w
https://www.nature.com/articles/s41587-022-01432-w
https://openreview.net/forum?id=ZxVrkm7Bjl
https://openreview.net/forum?id=ZxVrkm7Bjl
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=WbxHAzkeQcn

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=o8AaRKbP9K.

Zhengyang Geng and J. Zico Kolter. Torchdeq: A library for deep equilibrium models. https:
//github.com/locuslab/torchdeq, 2023.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

Alex Graves. Adaptive computation time for recurrent neural networks. (arXiv:1603.08983), February
2017. doi: 10.48550/arXiv.1603.08983. URL http://arxiv.org/abs/1603.08983.
arXiv:1603.08983 [cs].

Riccardo Grazzi, Julien Siems, Jörg K. H. Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. (arXiv:2411.12537),
December 2024. doi: 10.48550/arXiv.2411.12537. URL http://arxiv.org/abs/2411.
12537. arXiv:2411.12537 [cs].

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In Advances in Neural Information Processing Systems, 2023. URL https://arxiv.org/
abs/2305.14909.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Sara Hooker. The hardware lottery. (arXiv:2009.06489), September 2020. doi: 10.48550/arXiv.2009.
06489. URL http://arxiv.org/abs/2009.06489. arXiv:2009.06489 [cs].

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. (arXiv:2001.08361), January 2020. doi: 10.48550/arXiv.2001.08361. URL http:
//arxiv.org/abs/2001.08361. arXiv:2001.08361 [cs].

SC Kleene. Representation of events in nerve nets and finite automata. CE Shannon and J. McCarthy,
1951.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural lan-
guage models. In Proceedings of the Association for Computational Linguistics and International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4744–4756. As-
sociation for Computational Linguistics, 2021. URL https://aclanthology.org/2021.
acl-long.143/.

12

https://zenodo.org/records/12608602
https://openreview.net/forum?id=o8AaRKbP9K
https://openreview.net/forum?id=o8AaRKbP9K
https://github.com/locuslab/torchdeq
https://github.com/locuslab/torchdeq
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/2411.12537
http://arxiv.org/abs/2411.12537
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2305.14909
https://arxiv.org/abs/2305.14909
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
http://arxiv.org/abs/2009.06489
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://aclanthology.org/2021.acl-long.143/
https://aclanthology.org/2021.acl-long.143/

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a syn-
thetic task. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=DeG07_TcZvT.

Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing non-linear
sequential models over the sequence length. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=E34AlVLN0v.

William Merrill. Sequential neural networks as automata. In Jason Eisner, Matthias Gallé, Jeffrey
Heinz, Ariadna Quattoni, and Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges, pp. 1–13, Florence, August 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-3901. URL https://aclanthology.
org/W19-3901/.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, June
2023. ISSN 2307-387X. doi: 10.1162/tacl a 00562.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A Smith, and Eran Yahav. A
formal hierarchy of rnn architectures. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 443–459, 2020.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 35492–35506. PMLR, 21–
27 Jul 2024. URL https://proceedings.mlr.press/v235/merrill24a.html.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Christian W. Omlin and C.Lee Giles. Extraction of rules from discrete-time recurrent neu-
ral networks. Neural Networks, 9(1):41–52, 1996. ISSN 0893-6080. doi: https://doi.org/
10.1016/0893-6080(95)00086-0. URL https://www.sciencedirect.com/science/
article/pii/0893608095000860.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for
sequence modeling. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=P1TCHxJwLB.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models:
A formal language perspective. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=eV5YIrJPdy.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=TuK6agbdt27.

13

https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=E34AlVLN0v
https://aclanthology.org/W19-3901/
https://aclanthology.org/W19-3901/
https://proceedings.mlr.press/v235/merrill24a.html
https://www.sciencedirect.com/science/article/pii/0893608095000860
https://www.sciencedirect.com/science/article/pii/0893608095000860
https://openreview.net/forum?id=P1TCHxJwLB
https://openreview.net/forum?id=eV5YIrJPdy
https://openreview.net/forum?id=TuK6agbdt27

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Juergen Schmidhuber. Self-delimiting neural networks. (arXiv:1210.0118), September 2012. doi:
10.48550/arXiv.1210.0118. URL http://arxiv.org/abs/1210.0118. arXiv:1210.0118
[cs].

M.P. Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, 1965. ISSN 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(65)90108-7. URL https://www.sciencedirect.com/science/
article/pii/S0019995865901087.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pp.
440–449, New York, NY, USA, 1992. Association for Computing Machinery. ISBN 089791497X.
doi: 10.1145/130385.130432. URL https://doi.org/10.1145/130385.130432.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. (arXiv:2408.03314), August 2024. doi: 10.
48550/arXiv.2408.03314. URL http://arxiv.org/abs/2408.03314. arXiv:2408.03314
[cs].

Paul Soulos, Aleksandar Terzic, Michael Hersche, and Abbas Rahimi. Recurrent transformers
trade-off parallelism for length generalization on regular languages. In The First Workshop on
System-2 Reasoning at Scale, NeurIPS’24, 2024. URL https://openreview.net/forum?
id=6PjZA4Jvge.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics,
12:543–561, 2024.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q. Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
E9dH0BP5VW.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Keyon Vafa, Justin Y. Chen, Ashesh Rambachan, Jon Kleinberg, and Sendhil Mullainathan. Evaluat-
ing the world model implicit in a generative model. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=aVK4JFpegy.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. (arXiv:2106.06981),
July 2021. doi: 10.48550/arXiv.2106.06981. URL http://arxiv.org/abs/2106.06981.
arXiv:2106.06981 [cs].

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=HHbRxoDTxE.

14

http://arxiv.org/abs/1210.0118
https://www.sciencedirect.com/science/article/pii/S0019995865901087
https://www.sciencedirect.com/science/article/pii/S0019995865901087
https://doi.org/10.1145/130385.130432
https://openreview.net/forum?id=Ai8Hw3AXqks
http://arxiv.org/abs/2408.03314
https://openreview.net/forum?id=6PjZA4Jvge
https://openreview.net/forum?id=6PjZA4Jvge
https://openreview.net/forum?id=E9dH0BP5VW
https://openreview.net/forum?id=E9dH0BP5VW
https://openreview.net/forum?id=aVK4JFpegy
https://openreview.net/forum?id=aVK4JFpegy
http://arxiv.org/abs/2106.06981
https://openreview.net/forum?id=HHbRxoDTxE

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b. URL https://openreview.net/forum?id=
y8Rm4VNRPH.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

15

https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=y8Rm4VNRPH

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A ALGEBRAIC STRUCTURE OF FINITE STATE MACHINES

This section provides a basic introduction to the word problem and it’s relation to simulating finite
state machines (FSMs). We start with some results in the circuit complexity and then relate them to
the properties of FSMs.

A.1 CIRCUIT COMPLEXITY

Efficient parallelization is one of the central features enabling transformers and SSMs to scale to large
machine learning problems such as language modeling. Parallel circuits, however, face fundamental
trade-offs regarding the class of problems that they can address. Circuit complexity theory provides
a framework to characterize the types of problems that parallel circuits can solve. TC0 is the class
of circuits with constant depth and polynomial width composed of unbounded fan-in AND-gates,
OR-gates, NOT-gates and MAJORITY-gates. The second class of interest, NC1, is represented by
logarithmic depth circuits with a polynomial number of bounded fan-in gates. From the perspective
of formal languages, NC1 is equivalent to the class of circuits recognizing the regular languages.
Since the unbounded fan-in gates allowed in TC0 circuits can be constructed from log-depth circuits
with bounded fan-in, it follows that TC0 ⊂ NC1. It is open if TC0 is a proper subset of NC1, and we
will discuss a regular language for which no TC0 circuit construction is known.

Both transformers and SSMs can be simulated by TC0 circuit families under mild assumptions Merrill
et al. (2022; 2024). If TC0 is a proper subset of NC1, the leading sequence models today cannot even
recognize all regular languages. Consequentially, they cannot execute arbitrary finite state machines
(FSMs), a fundamental skill to execute tasks, or to form world models Vafa et al. (2024). Many
empirical studies confirm these theoretical limitations of transformers and SSMs to learn regular
languages Deletang et al. (2023); Sarrof et al. (2024); Strobl et al. (2024). At the same time, recurrent
neural networks are known to recognize regular languages Kleene (1951); Elman (1991); Merrill
et al. (2020), and to effectively implement internal FSMs to solve language problems Omlin & Giles
(1996).

A.2 ALGEBRAIC CONCEPTS OF FINITE STATE MACHINES

Monoids and Groups There is a tight relationship between finite state machines and algebraic
concepts such as monoid and groups. We define the relevant concepts for our state tracking problem
described in Section 4

Definition 2 (Monoid). A set M and a binary operation ◦ : M ×M −→ M are called a monoid
(M, ◦) if

1. there exists an identity element e ∈ M with e ◦m = m ◦ e = m for all m ∈ M

2. the operation ◦ is associative, i.e. (m1 ◦m2) ◦m3 = m1 ◦ (m2 ◦m3) for all m1,m2,m3 ∈
M .

Straight forward examples for monoids are natural, rational or real numbers with multiplication, or
strings with string concatenation. Since monoid are associative, we can simplify notation and write
m ◦m = m2, and so on for all powers k ∈ N.

Definition 3 (Aperiodic Monoid). A monoid (M, ◦) is called aperiodic if for all m ∈ M there is a
k ∈ N s.t. mk = mk+1.

Monoid whose elements can be inverted have a particularly right structure.

Definition 4 (Group). A group (G, ◦) is a monoid with the additional property that for every g ∈ G
there is g−1 ∈ G s.t. g ◦ g−1 = g−1 ◦ g = e.

Examples for groups are rational numbers with multiplication, or the orthogonal matrices with matrix
multiplication. Notably, permutations on a set of k elements for k ∈ N form a group, called the
symmetric group Sk.

Our synthetic learning problem discussed in Section 4 will be constructed based on a classical
problem in computer science.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Definition 5 (Word Problem). Let M∗ denote the set of all sequences over elements of M . The Word
Problem on a monoid (M, ◦) is defined by the function

WP : M∗ −→ M

WP (m0,m1 . . . ,mk) 7→ m0 ◦m1 ◦ · · · ◦mk , (6)

i.e. a word over M is resolved by composition to a single element in M .

The central question for our experiment will be which kinds of circuits can solve the word problem
for arbitrary sequence lengths.

Theorem 6 (Barrington (1989)). The word problem for any fixed non-solvable group G is complete
for NC1 under AC0 reductions.

Algebra of FSMs Tracking the state of a system can be formalized as executing a finite state
machine Merrill et al. (2024). To characterize the limits of certain FSMs, we define a few formal
concepts.

Definition 7 (FSM). A finite state machine (FSM) consists of a finite set of states Q, a finite set of
input symbols Σ called the alphabet, and a transition function δ : Q× Σ −→ Q.

Given an initial state q0 ∈ Q and a sequence of symbols w = a1a2 . . . ak ∈ Σ∗, a FSM transitions
from the initial state into a final state.

Finite state machines naturally define a monoid.

Definition 8 (Syntactic Monoid). For each symbol a ∈ Σ, define the function δa : Q −→ Q. The
transformation monoid M generated by δa, a ∈ Σ and the composition of functions ◦, is called the
syntactic monoid (M, ◦) of the finite state machine.

The algebraic structure of M is tightly coupled to the programs that the original FSM can execute.
Our investigation is based on the classical result stated in Theorem 6. The simplest example of a
non-solvable group is the permutation group of five elements S5. A corollary from theorem 6 is
that the FSM whose syntactic monoid is S5 is complete in NC1 and hence in the class of regular
languages. We have thus identified a hard state tracking problem: Permutations of five elements.

Another classical result tightly related to state-space models is

Theorem 9 (Schützenberger (1965)). Let L be the regular language defined by a FSM, and let M be
the syntactic monoid of the same FSM. Then L is a star-free language if an only if M is aperiodic.

It is intuitive that the word problem for finite aperiodic monoids is in TC0. The maximal depth of
the circuit is driven by the number of elements of the monoid and it’s maximal k for the aperiodicity
condition. Empirical studies have shown that transformers and SSMs can simulate a range of regular
languages Deletang et al. (2023); Strobl et al. (2024), but they struggle to learn the S5 word problem
in line with their characterization as TC0 circuits Merrill et al. (2024). SSMs can be further restricted
to the star-free languages Sarrof et al. (2024), i.e. those with aperiodic syntactic monoid.

B PROOF OF THEOREM 1

Theorem 1. Consider an implicit SSM given by Equation (4). Then the transition function h∗
t−1 7→ h∗

t
is non-linear and non-diagonal, i.e. each hidden state h∗

t is a non-linear function of the previous
hidden state h∗

t−1. Consequently, the state-to-state Jacobian is a non-diagonal operator.

Proof. We will apply the implicit function theorem for the function

g (z, h, x, θ) = z − fθ (z, h, x) . (7)

If g
(
z∗t , h

∗
t−1, xt, θ0

)
= 0 and Jg,z is non-singular, then there exists an open set U with(

h∗
t−1, x, θ0

)
∈ U and a differentiable function φ on U s.t.

g (φ (h, x, θ) , h, x, θ) = 0 ∀ (h, x, θ) ∈ U . (8)

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Shared Weights

Forward pass

Backward pass

Fixed-point search

Phantom gradients

Figure 5: Fixed-point iteration and phantom gradients: A neural network is iterated until convergence
in the forward pass. When employing the phantom gradient principle, only a fraction of the forward
steps is however considered for the backward pass.

The derivative of φ at the fixed point is given by

∂φ

∂h

∣∣∣∣
h∗
t−1,xt,θ0

= −

(
I − ∂fθ

∂z

∣∣∣∣
z∗
t ,h

∗
t−1,θ0

)−1
∂fθ
∂h

∣∣∣∣
z∗
t ,h

∗
t−1,θ0

(9)

Clearly, φ is a non-linear function if fθ is a non-linear function.

Now, consider Equation (4) at the fixed point

h∗
t = Λ(z∗t , xt)h

∗
t−1 + u (z∗t , xt) , (10)

where z∗t = φ
(
h∗
t−1, xt, θ

)
. If φ is a non-linear function of h∗

t−1, then h∗
t−1 7→ h∗

t is a non-linear
function as well. Equipped with the derivative of φ, we can derive the state-to-state Jacobian of the
implicit SSM as

∂h∗
t

∂h∗
t−1

∣∣∣∣
h∗
t−1,xt,θ

= Λ(z∗t , xt)

+
∂Λ

∂z∗t

∂φ

∂h∗
t−1

diag
(
h∗
t−1

)
+

∂u

∂z∗t

∂φ

∂h∗
t−1

. (11)

This equation highlights the non-diagonal corrections to the diagonal Jacobian Λ of the explicit
state-space Equation equation 1.

C ADDITIONAL RESULTS

C.1 INFERENCE DYNAMICS AND CONVERGENCE OF IMPLICIT LANGUAGE MODELS

In Table Table 2, we present the average number of steps that the implicit language models require
to process a sequence length of 2048 from the test split of the D-PILE dataset during inference in
simultaneous mode. Moreover, the table also shows the relative error difference of the solutions
found by the language models. Notably, the (4+1) configurations achieve a fixed point, despite not
being explicitly constrained to do so. Our observations further reveal that the implicit models trained
with a full DEQ setup—(24+4) for Mamba2 and (32+4) for Llama—consistently reach fixed points
within their training stop thresholds, which are < 0.05 and below the inference step threshold of four
times 24 and 32, respectively.

C.2 LENGTH EXTRAPOLATION CAPABILITIES IN PRETRAINED MODELS

We evaluated the ability of our models to extrapolate to longer sequence lengths and compared
their performance with baseline models. All our in-house trained models, including the Mamba2
and Llama baselines, were initially trained on sequences of 2048 tokens and subsequently tested

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 2: Inference dynamics and convergence characteristics of implicit language models across
different scales. We show the performance of Mamba2 and Llama models at various parameter
scales—130M, 350M, 760M, and 1.3B—when processing sequences of length 2048 from the test
split of the Pile dataset. The average number of steps required for convergence during inference in
simultaneous mode is detailed alongside the relative error difference of the solutions obtained by
the models. Remarkably, the (4+1) configurations reach a fixed point organically, without explicit
constraints enforcing this behavior. The table further highlights that implicit models employing a
full DEQ setup—(24+4) for Mamba2 and (32+4) for Llama—demonstrate consistent convergence
within their predefined stop thresholds, which are less than 0.05. These thresholds are also below the
designated inference step threshold of four times 24 and 32 for the respective models.

Model D-Pile Perplexity Inference Steps Rel. Diff.
13

0M
Mamba2(4+1) 13.76 14 0.035
Mamba2(24+4) 12.86 62 0.036

Llama(4+1) 12.73 13 0.014
Llama(32+4) 11.73 53 0.033

35
0M

Mamba2(4+1) 10.02 10 0.012
Mamba2(24+4) 9.70 49 0.024

Llama(4+1) 9.66 12 0.015
Llama(32+4) 9.43 57 0.037

76
0M

Mamba2(4+1) 8.60 10 0.013
Mamba2(24+4) 8.35 45 0.025

Llama(4+1) 8.27 12 0.014
Llama(32+4) 7.90 77 0.044

1.
3B

Mamba2(4+1) 7.97 10 0.013
Mamba2(24+4) 7.70 47 0.029

Llama(4+1) 7.66 13 0.015
Llama(32+4) 7.24 69 0.048

on sequences of 4096, 8192, and up to 16384 tokens. Table 3 presents the average perplexities
across different model scales. We note that the original Mamba2 models, denoted as Mamba2∗, were
trained on sequence lengths of 8192. Our observations indicate that in all instances, our implicit
models, including the Mamba2 (4+1), and Mamba2 (24+4) as well as the Llama(32+4) configuration,
maintain lower perplexities compared to the explicit Mamba2 and Llama respectively. We also found
that the difference in perplexity between the longer and shorter sequences becomes more pronounced
as the size of the models increases.

Table 3: Length extrapolation performance of pretrained models on varying sequence lengths. We
demonstrate the average Pile test perplexity results for Mamba2 (300B tokens) and our in-house
trained Mamba2∗ (207B tokens) baseline models, as well as our Mamba2(4+1) and Mamba2(24+4)
configurations, across a range of sequence lengths—2048, 4096, 8192, and 16384 tokens. Each
model was originally trained on sequences of 2048 tokens, while the original Mamba2 was trained on
8192 tokens. The results highlight that our implicit models consistently achieve lower perplexities
than their explicit counterparts across all tested sequence lengths. Notably, as model sizes increase,
the discrepancy in perplexity between longer and shorter sequences grows more evident.

Model 2048 4096 8192 16384
ppl↓ ppl↓ ppl↓ ppl↓

13
0M

Mamba2 13.72 13.44 13.92 14.91
Mamba2∗ 13.05 12.72 12.76 12.94

Mamba2(4+1)-ours 13.76 13.04 13.06 13.25
Mamba2(24+4)-ours 12.86 12.53 12.55 12.78

35
0M

Mamba2 10.55 10.28 11.20 13.89
Mamba2∗ 10.18 9.94 10.07 10.34

Mamba2(4+1)-ours 10.02 9.74 9.73 9.86
Mamba2(24+4)-ours 9.70 9.45 9.44 9.59

76
0M

Mamba2 9.23 9.45 34.99 231.25
Mamba2∗ 8.98 8.94 10.38 12.56

Mamba2(4+1)-ours 8.60 8.38 8.40 8.55
Mamba2(24+4)-ours 8.35 8.16 8.18 8.33

1.
3B

Mamba2 8.40 8.47 12.69 25.37
Mamba2∗ 8.28 8.24 9.96 15.06

Mamba2(4+1)-ours 7.97 7.81 8.36 9.53
Mamba2(24+4)-ours 7.70 7.59 8.19 9.63

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

C.3 EFFECTIVE DUALITY BETWEEN SIMULTANEOUS MODE AND SEQUENTIAL MODE IN
SSMS

Empirically, we demonstrate that once implicit state-space models (SSMs) are trained in a sequential
mode (parallelizable in token dimension), these trained models can be utilized in simultaneous mode.
In simultaneous mode, self-iteration occurs for each token, thereby affirming the duality of the two
modes. We employ the 1.3B Mamba2 (24+4) model and 1.3B Llama (32+4) model, trained on 207B
tokens from the D-PILE, to evaluate the duality between the two modes using examples from the test
split of the D-PILE. Table 4 presents some detokenized outputs of the model in both modes.

D EXPERIMENTAL DETAILS

Our implementation is based on TorchDEQ Geng & Kolter (2023) and Mamba2 Dao & Gu (2024).

D.1 THE WORD PROBLEM

Details of the Learning Problem To construct a learning problem for sequence models, we
represent each element of the monoid M as a token, and present a sequence m0, . . . ,mL of tokens
to the model. The ground truth at each position k = 1, . . . , L is the token representing the element
m0 ◦ · · · ◦mk. We then calculate the mean cross entropy loss over the entire sequence, providing a
learning signal at each step k = 1, . . . , L.

State-space models can learn the word problem for aperiodic monoids Sarrof et al. (2024), but fail
so solve it for non-solvable groups such as S5 Merrill et al. (2024). We confirm in Figure 1 that
implicit state-space models can in fact learn the word problem for S5. We now want to interpolate
between word problems for aperiodic and non-solvable monoids to test how much signal our implicit
state-space model defined in Section 3 needs from the hard non-solvable group word problem to
learn it.

Let M = Ma × G be a direct product of an aperiodic monoid Ma and a non-solvable group G.
A sequence m0, . . . ,mT is sampled from M with replacement. To control the number of hard
examples and simple examples, we define a family of distributions Dp over M as follows. An
element ma

k ∈ Ma is sampled uniformly at each step k, representing the presence of simple examples.
On the other hand, we sample elements gk ∈ G \ {e} from G without the identify transformation,
each with probability p

|G|−1 . The identity element gk = e ∈ G is sampled with probability 1 − p.
The resulting transformations (ma

k, gk) are aperiodic at least when gk = e, i.e. with probability 1− p.

We’ll call the tokens representing (m, e) simple tokens and the tokens representing (m, g) with g ̸= e
are called hard tokens. The names derive from the fact that SSMs can resolve the word problem if it
is only composed from simple tokens. Any non-zero probability p of sampling hard tokens renders
the word problem unsolvable for fixed depth SSMs on arbitrarily long sequences.

Our construction of a distribution over a monoid allows us to test out-of-distribution generalization
not only in terms of length generalization, the most common setting in the literature. By changing p
between training time and test time, we construct training tasks and evaluation tasks with varying
difficulty. This effectively offers OOD evaluation with the same number of tokens, but different
mixtures of easy and hard tokens. While this property allows us to distil expressivity questions from
length generalization properties, our construction is not limited to the same sequence length and
could as well be used in the length generalization setup (see Figure 6).

Experimental Details Each data point in Figure 3 and Figure 6 is based on 10 runs with different
random seeds. We report the best run, mean accuracy and a 95% confidence interval for each data
point. All word problem models were trained on sequences of length L = 256, and a batch size
of 512 on 32GB V100s. The explicit models and self-iterated models with full backpropagation
trace required gradient accumulation over two steps. The learning rate is set to 0.001. We disable
dropout and weight decay, which appears to harm learning on the word problem. The self-iterations
are stopped upon convergence, which we define as a relative difference between two consecutive
states of 0.01 for Figure 3 or 0.05 for Figure 6. We trained a number of standard Mamba2 models
with the same number of runs for multiple numbers of layers. These models struggle to capture the

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Train p=0.95 L=256

Test p
=0.5 L=256

Test p
=0.9 L=256

Test p
=0.5 L=1024

Test p
=0.9 L=1024

0

25

50

75

100

A
cc

ur
ac

y
in

 %

Model Comparison

explicit implicit unrolled

Figure 6: Comparison of implicit Mamba2, unrolled Mamba2, and Mamba2 for p = 0.05. All models
were trained and evaluated on sequences of length L = 256. Unrolled Mamba2 refers to a single
layer being unrolled multiple times with a full backpropagation trace, while the implicit Mamba2
receives only 4 steps of Phantom Gradient. The training time depth of all models is limited to 16, i.e.
16 layers for Mamba2, and 16 self-iterations for the implicit and weight tied models. Implicit and
unrolled models use unbounded test-time computation to converge to a fixed point. The comparison
shows that the implicit model with 4 steps of Phantom Gradient succeeds over the unrolled model.

training distribution compared to self-iterated models, and none of them was able to generalize to a
harder distribution or to longer sequences.

D.2 CATBABI

The models, both implicit and explicit, comprise up to three layers of the Mamba2 architecture with
an embedding dimension of 256, a state dimension of 16 (expansion factor 2), and a head dimension
of 32. We trained the models using batch sizes of 128 and 256, and learning rates of 0.0001, 0.0005,
0.001, and 0.005. The models were trained for 15,000 steps, with the implicit model specifically
trained for 5,000 steps in unrolling mode, utilizing 32 steps with normal gradient checkpointing,
followed by 10,000 steps of self-iteration fixed-point search. The self-iteration included a stop
threshold of 0.03 and a training and testing maximum number of steps 50 and 200 , respectively, and
phantom gradient parameters of 6 steps with (λ = 0.5). Data were packed in sequences of length 200
tokens as per Schlag et al. (2021). Figures 7 and 8 illustrate the validation accuracy of the explicit
and implicit Mamba2 models on the CATBABI dataset, respectively. Additionally, Figure 9 plots the
number of iterations required for the implicit model to reach a fixed point on the validation set of the
CATBABI dataset.

D.3 LANGUAGE MODELING

Pretraining Details We have trained a suite of Implicit SSM models with the core architecture of
Mamba2 and Implicit Transformer models with the core of Llama3. For each implicit model, we
have a corresponding weight-tied model that is also trained on the entire D-PILE dataset. We use
the checkpoint from 80 percent of the way through training the weight-tied model to train the fully
implicit model. We use four scales for the training of the models: 1.3B, 760M, 360M, and 130M. In
all models, the LLM head weights are tied to the embedding weights. The implicit and weight-tied
models have the same architecture as those of the Mamba2 and Llama models, except for an injection
module, consisting of an MLP, which transforms the input into the domain of the mixer latent space.
This module has a constant size equivalent to 2× demb + 2× dstate + nheads in Mamba2, matching
with dinproj , and 3 × demb in Llama models, corresponding to the key, value, and queries, and is
shared across all layers of the model. Details for each model is provided in Table 5.

We followed the training recipe of Mamba2 and Llama models. In particular, we used a weight decay
of 0.1, no bias for the LLM head, AdamW hyperparameters β = (0.9, 0.95), RMSNorm instead of
LayerNorm, and a linear warm-up step to the peak learning value, which is chosen as 5 times the

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 7: Hyperparameter sweeps for explicit Mamba2 models over batch sizes 128, 256, layers 1,2,3
and various learning rates for training on the CATBABI dataset.

Figure 8: Hyperparameter sweeps for implicit Mamba2 models over batch sizes 128, 256, layers
1,2,3 and various learning rates for training on the CATBABI dataset.

value of the GPT-3 model. For the learning rate scheduler, we used a constant learning rate followed
by a square root decay to a minimum value of 10−5 Hägele et al. (2024). While this scheduling
has also been shown to be compute-optimal Hägele et al. (2024) alongside the cosine scheduling,
it allows us to use intermediate checkpoints during training more conveniently without considering
how the new learning rate affects the training of implicit models. All models were trained with an
effective batch size of 1M tokens and a training sequence length of 2048 tokens.

Downstream Task Details We evaluated our models as well as the baseline models on seven tasks:
LAMBADA OPENAI Paperno et al. (2016), HELLASWAG Zellers et al. (2019), PIQA Bisk et al. (2020),
ARC-EASY and ARC-CHALLENGE Clark et al. (2018), WINOGRANDE Sakaguchi et al. (2021), and
OPENBOOKQA Mihaylov et al. (2018). We used the model checkpoints on the 207B tokens of the
D-PILE. For the evaluation of the downstream tasks, we utilized the LM Evaluation Harness package
(Gao et al., 2024) with the default specifications, i.e., a batch size of 256 and a sequence length of
2048. All models were evaluated using one H100 80GB GPU.

22

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 9: Hyperparameter sweeps for implicit Mamba2 models over batch sizes 128, 256, layers
1,2,3 and various learning rates for training on the CATBABI dataset.

Curriculum-Based Training of Language Models The training of implicit models is achieved
through a curriculum training framework that is divided into two main phases: bounded phase and
the free phase. In the bounded phase, the models are subjected to four steps of self-iteration, followed
by a singular phantom gradient step to store the activations necessary for backpropagation. This
phase of training involves 80 percent of the dataset (the choice of this proportion and its influence on
model performance are discussed below). Training then progresses to the free phase, wherein the
model undergoes additional fixed point searches, capped at 24 self-iterations for SSMs and 32 for
Transformers, and is followed by four phantom gradient iterations. A stopping criterion of ϵ = 0.05 is
implemented during this second phase, allowing models to terminate the fixed point search once this
threshold is met. For validation and testing on the D-PILE dataset, the limit on fixed-point iterations
is set to four times the number used in the free phase of training. The learning rate reduction starts
in phase two; for Transformers, this reduction begins immediately to prevent instability caused by
their high spectral norm. Conversely, for SSMs, the learning rate cooldown starts after 90 percent of
the overall training period has elapsed, due to their spectral norm being approximately one, which
permits more substantial weight adjustments at a higher learning rate.

Duration of Bounded and Free Phases in Training Language Models In our exploration of
the optimal duration for bounded and free phases of training, we aimed to find a balance between
computational efficiency and the necessary nonlinear transitions each token must undergo through
self-iteration. We tested models trained with 70, 80, and 90 percent of the bounded phase duration
before starting the full fixed-point search in the free phase—refer to Fig. 11a. For this evaluation,
we used a 130M Mamba2 model. Based on the model’s perplexity on the validation split of D-PILE
(2M examples of length 2048), we observed that beyond a certain extent of free phase training, the
model’s performance plateaus or overfits. We determined that 20 to 10 percent of free phase training
is optimal. Consequently, we applied 20 percent free phase training for the training of larger models.
It is crucial to note that the 130M model, when trained with an effective batch size of 0.5M tokens,
experienced overfitting. This overfitting was not present when we increased the batch size to 1M
tokens, —see Fig. 11b. Thus, we adopted a 1M token batch size for the training of models across all
scales.

Specification of Fixed Point Solver for Language Model Training Our experimentation with
the fixed point solver in the free phase involved adjusting various parameters, including the max-
imum number of self-iterations for the fixed point search (16, 24, 32) and the number of gradient
accumulation steps (2, 4). The 32 iterations have a smaller stop threshold of 0.02, whereas the 16
and 24 iterations have a stop threshold of 0.05—–see Fig. 11b. We used a 130M Mamba2 model
for this evaluation with an effective batch size of 1M tokens. We measured the validation split
perplexity during training. For the training of the implicit Transformer models, we used a maximum

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A B

C D

Figure 10: Small-scale reasoning advantages of implicit SSMs compared to explicit
SSMs on the CATBABI dataset. (a) Task-specific performance comparison, measured
in accuracy of the models in predicting answers to questions within a story, between
the implicit Mamba2 and baseline Mamba2. The one-layer implicit Mamba2 model
outperforms the one-layer explicit Mamba2 on most tasks. As the number of layers
in the explicit Mamba2 increases, its performance approaches that of the implicit
Mamba2. Adding more layers to the implicit Mamba2 benefits certain tasks, such
as ’Basic induction’ or ’Path finding,’ where the implicit Mamba2 achieves the best
performance. (b) The correlation between the number of self-iteration steps that the
implicit Mamba2 takes to solve a task and the number of layers in the implicit model’s
backbone architecture, showing a decrease in the required steps with additional layers.
(c) The implicit Mamba2 retains its performance as the story length increases, whereas
the explicit Mamba2’s performance declines. (d) The trend in the number of iterations
needed by the implicit Mamba2 models as story length increases, indicating a modest
rise in computational steps.

self-iteration cap of 32. This was due to the higher spectral norm of the Transformer models requiring
more steps to reach a fixed point below the threshold.

Resource Allocation for Training and Evaluating Large Language Models We trained our suite
of models on a cluster with AMD Instinct MI300X GPUs. Each node within the cluster comprises 8
GPUs, and we employed distributed multi-node processing to train our models on up to 32 GPUs
simultaneously. Table 6 details the number of GPUs allocated for the training of each model, as
well as the total GPU hours consumed by each. The evalution of models on downstream tasks was
achieved on one 80GB Nvidia H100 GPU.

24

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

65% (4+1)-35% (16+2)
65% (4+1)-35% (32+4)
65% (4+1)-35% (24+4)
100% (4+1)

Training StepsTraining Steps

A B
90% (4+1)-10% (24+4)
80% (4+1)-20% (24+4)
70% (4+1)-30% (24+4)
100% (4+1)

V
al

id
at

io
n

pe
rp

le
xi

ty

V
al

id
at

io
n

pe
rp

le
xi

ty
Figure 11: Left: Impact of Bounded Phase (4+1) Training Duration on Model Performance: A
comparison of perplexity on the validation split of the D-PILE obtained by 130M Mamba2 models
trained with 70%, 80%, and 90% bounded phase durations, with a batch size of 0.5M tokens. Right:
Evaluation of Fixed Point Solver Specifications: The relationship between different maximum
iterations (16, 24, 32) and gradient accumulation steps (2, 4) on the validation split perplexity of the
D-PILE for the 130M Mamba2 model with a batch size of 1M tokens.

Simultaneous mode Sequential mode

for in

for

return for

for in

for in

for

return for

for in
Exchange for loops

Duality between Simultaneous and Sequential Modes

Figure 12: The simultaneous mode exploits the parallelism of state-space models or transformers,
while the sequential mode is well suited for language generation. State-space models can further
utilize the sequential mode for processing with constant memory over any sequence length. The
two modes emerge from exchanging the for loops over the two variables t and s in the DEQ
iteration equation 4. We demonstrate in Section 5, and Figure 2, that 1.3B parameter language models
trained with the simultaneous mode show negligible difference in perplexity when evaluated with the
sequential mode.

25

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: Selected examples from the test split of the D-Pile dataset, showcasing the detokenized
output of the next-token predictions by the 1.3B implicit Mamba2 model, which was trained in a
parallel fashion and tested in both Simultaneous and Sequential modes. These outputs highlight the
duality of the two approaches.

Ground Truth Simultaneous Sequential
labour productivity and output
would rise as a result • it is
essential to protect the profes-
sionalism of certain categories
of workers: the debates here
centred on performance artists
and female theatrical employ-
ees engaged in highly phys-
ical and intensely emotional
work • heavy physical labour
and strenuous exercise can
lead to disruptions of the men-
strual cycle • women’s physi-
cal and intellectual capacities
are reduced during menstru-
ation; women lose muscular
strength and powers of con-
centration • women’s biolog-
ical constitution and reproduc-
tive functions require specific
recognition in law Against the
provision: • employers are less
likely to appoint women if
they are guaranteed paid time
off work during menstruation

, market. the. be. a result. The
would a to ensure the inter-
ests and of the professions of
workers professions on arered
on the management, the artists
performers in the skilled work
demanding competitive work
• the industry work is theren-
uous physical are be to in-
juryions in the body cycle and•
the’s bodies and emotional ca-
pacities are not by pregnancya-
tion this are their strength and
stam of endurance • menstru’s
menstrual clocks is menstrual
capacity are special protection
the •Thest this background of
• the should not likely to be
women to they are not the
matern off for for menstrua-
tion • womenin un the com-
mentators)

. market. the. be. a re-
sult of The would a to ensure
the environment and of the
professions of workers profes-
sions on arered on the manage-
ment, the artists performers in
the skilled work demanding
demanding work • the indus-
try work is therenuous phys-
ical are be to injuryions in
the body cycle and• the’s bod-
ies and emotional capacities
are not by pregnancyation this
are their strength and stam of
endurance • menstru’s men-
strual clocks is menstrual ca-
pacity are special protection
the •Thest this background of
• the should not likely to be
women to they are not the
matern off for for menstrua-
tion • womenin un the com-
mentators)

form of ”photon counting”..
”This de-excitation is called
‘fluorescence’, and it is char-
acterized by a lifetime of a
few nanoseconds of the low-
est vibrational level of the first
excited state. De-excitation
from the excited singlet state
to the ground state also occurs
by other mechanisms, such as
non-radiant thermal decay or
‘phosphorescence’. In the lat-
ter case, the chromophore un-
dergoes a forbidden transition
from the excited singlet state
into the triplet state (intersys-
tem crossing, ISC, Fig 2.4),
which has a non-zero prob-
ability, for example because
of spin orbit coupling of the
electrons’ magnetic moments”
its a type of INTERSYSTEM
CROSSING doing a search for
Intersystem crossing, memris-
tor brings up this link.. A com-
posite optical microcavity, in
which nitrogen vacancy (NV)
centers in a diamond nanopil-
lar

meaning of thethe”” is IThe
isceptfactciting of a thep-
hotonorescence’ and it is the
by the photonphotonetime of
the few hundredoseconds. the
excited- level of the excited
of -excitation is the first state
state is the ground state is oc-
curs, , as -radiative , fluores-
cence’ the case case, the ex-
citedophore is a non transition
to the ground singlet state to
the ground state,‘ystem cross-
ing), ISC), or.).1). which is a
lifetime-ne probability of but
example, of the- coupling to
the excited to spin moment. ”
a bit of fluorescenceC crossin-
gOSSING, ” a google on ”ter-
system crossing I Ieor, up a
” mem material devicecavity
is consisting which the- (NV)
centers are diamond diamond
crystalillar are coupled to aing
gallery modes (a silicon mi-
crosphere, is fabricated.

meaning of theto”” is IThe
isceptfactciting of a thep-
hotonorescence’ and it is the
by the photonphotonetime of
the few hundredoseconds. the
excited energy state of the ex-
cited of -excitation is the first
state state is the ground state
is occurs, , as -radiative , fluo-
rescence’ the case case, the ex-
citedophore is a non transition
to the ground singlet state to
the ground state,‘ystem cross-
ing), ISC), or.).1). which is a
lifetime-ne probability of but
example, of the- coupling to
the excited to spin moments. ”
a bit of fluorescenceC crossin-
gOSSING, ” a google on ”ter-
system crossing, Ieor, up a
” mem material devicecavity
is consisting which the- (NV)
centers are diamond diamond
crystalillar are coupled to aing
gallery modes (a silicon mi-
crosphere, is fabricated.

26

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 5: Architecture and pretraining details

Params. SSM/Transformer # layers Dim. Emb. # Heads/ Dim. Training Steps Peak Learning Rate Batch Size (Tokens)
1.3B 48/24 2048 32/64 197701 0.001 1M
760M 48/24 1536 16/96 197701 0.00125 1M
350M 48/24 1024 16/64 197701 0.0015 1M
130M 24/12 768 12/64 197701 0.003 1M

Table 6: GPU resource allocation and utilization for training large language models. The GPU counts
employed and the total GPU hours expended for the training of each Mamba2 and Llama model
variant across different parameter scales—130M, 350M, 760M, and 1.3B is listed. The models were
trained using a cluster of AMD Instinct MI300X GPUs, with 8 GPUs per node, utilizing distributed
multi-node processing with up to 32 GPUs in parallel.

Model GPU Counts Total GPU Hours

13
0M

Mamba2∗ 8 1620
Mamba2 (4+1) 8 3185.6

Mamba2 (24+4) 8 2756.8

Llama† 32 1146.56
Llama (4 + 1) 32 1027.2
Llama (32+4) 32 1561.6

35
0M

Mamba2∗ 32 1516
Mamba2 (4+1) 8 2427.2

Mamba2 (24+4) 8 2168.8

Llama† 32 1324.8
Llama (4 + 1) 8 2515.2
Llama (32+4) 8 2335.2

76
0M

Mamba2∗ 16 1920
Mamba2 (4+1) 16 3932.8

Mamba2 (24+4) 16 3440

Llama† 16 4636.8
Llama (4 + 1) 16 7612.8
Llama (32+4) 32 7676.8

1.
3B

Mamba2∗ 32 3054.4
Mamba2 (4+1) 32 5820.8

Mamba2 (24+4) 32 5084.8

Llama† 32 3084.8
Llama (4 + 1) 32 6057.6
Llama (32+4) 32 7225.6

Sum 83132.16

27

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Sample types from the Catbabi Schlag et al. (2021) dataset, a modified version of the bAbI
dataset, categorized into 20 examples. These examples are derived from Weston et al. (2015).

Task 1: Single supporting fact
sandra went back to the hallway. john moved to the hallway. where is sandra?
hallway john travelled to the bathroom. daniel travelled to the office. where is
daniel? office john moved to the office. sandra travelled to the bathroom. where
is sandra? bathroom daniel went back to the bedroom. daniel went back to the
garden. where is daniel? garden sandra moved to the hallway. john went back
to the bathroom. where is daniel? garden.

Task 2: Two supporting fact
mary went back to the bathroom. john went to the office. daniel grabbed the
football there. sandra travelled to the bathroom. daniel left the football. sandra
moved to the bedroom. sandra journeyed to the kitchen. sandra travelled to
the garden. sandra went back to the bathroom. john travelled to the kitchen.
daniel moved to the garden. sandra moved to the garden. mary went to the office.
daniel went to the kitchen.

Task 3: Three supporting fact
john went back to the bedroom . sandra got the milk . sandra discarded the
milk . sandra took the milk . john went back to the office . mary moved to the
bathroom . john travelled to the kitchen . daniel went back to the bedroom .
john went back to the office . mary took the apple . mary travelled to the office .
daniel went back to the kitchen . mary moved to the bathroom . sandra dropped
the milk there . where was the apple before the bathroom ? office

Task 4: Two argument relations
the bedroom is west of the bathroom . the kitchen is west of the bedroom . what
is west of the bathroom ? bedroom

Task 5: Three argument relations
jeff journeyed to the garden . fred went to the office . fred went to the hallway
. fred got the apple there . fred moved to the office . fred went to the kitchen
. fred put down the apple . fred took the apple there . mary went back to the
garden . fred travelled to the bathroom . jeff grabbed the milk there . bill went
to the office . jeff journeyed to the bathroom . jeff put down the milk there . fred
picked up the milk there . fred passed the apple to jeff . who gave the apple to
jeff ? fred

Task 6: Yes/No questions
john went to the office . sandra went to the bathroom . is sandra in the kitchen
? no sandra travelled to the garden . sandra went to the bedroom . is sandra in
the bedroom ? yes sandra travelled to the garden . mary went to the kitchen . is
sandra in the garden ? yes john grabbed the apple there . daniel journeyed to the
bedroom . is sandra in the bedroom ? no john picked up the football there . john
took the milk there . is mary in the bedroom ? no

Task 7: Counting
mary got the apple there . john went back to the kitchen . how many objects
is mary carrying ? one john moved to the garden . mary left the apple there .
how many objects is mary carrying ? none john moved to the bathroom . mary
grabbed the apple there . how many objects is mary carrying ? one john went
to the garden . mary dropped the apple . how many objects is mary carrying ?
none sandra journeyed to the bedroom . mary moved to the kitchen . how many
objects is mary carrying ? none

Task 8: List/Sets
john went to the bathroom . daniel travelled to the garden . mary moved to the
hallway . sandra moved to the bedroom . daniel journeyed to the hallway . mary
picked up the apple there . what is mary carrying ? apple sandra travelled to the
bathroom . mary dropped the apple . what is mary carrying ? daniel moved to
the office . daniel grabbed the football there . what is mary carrying ? nothing
daniel moved to the bedroom . mary got the apple there . what is daniel carrying
? football

Task 9: Simple negation
daniel is in the bathroom . sandra is no longer in the bedroom . is daniel in
the kitchen ? no mary is no longer in the bedroom . sandra is no longer in the
kitchen . is sandra in the kitchen ? no sandra is in the hallway . daniel is in the
garden . is sandra in the hallway ? yes sandra is in the bedroom . sandra is in the
bathroom . is sandra in the bedroom ? no sandra travelled to the hallway . john
is in the kitchen . is sandra in the kitchen ? no

Task 10: Indefinite knowledge
julie is either in the bedroom or the cinema . bill journeyed to the cinema . is
bill in the cinema ? yes bill is in the office . julie went to the school . is julie in
the park ? no julie travelled to the office . mary is in the school . is bill in the
park ? no mary is in the park . bill is either in the office or the kitchen . is mary
in the kitchen ? no fred travelled to the office . mary went back to the kitchen .
is mary in the kitchen ? yes

Task 11: Basic conference
daniel journeyed to the garden . afterwards he journeyed to the kitchen . where
is daniel ? kitchen sandra went back to the kitchen . then she moved to the office
. where is daniel ? kitchen john moved to the office . afterwards he journeyed to
the bedroom . where is john ? bedroom daniel journeyed to the office . after that
he moved to the hallway . where is john ? bedroom sandra went to the hallway .
following that she journeyed to the bathroom . where is daniel ? hallway

Task 12: Conjugation
daniel and mary journeyed to the bedroom . mary and sandra moved to the
bathroom . where is daniel ? bedroom sandra and john journeyed to the hallway
. mary and sandra went back to the bedroom . where is sandra ? bedroom
sandra and mary went to the office . sandra and daniel went back to the bathroom
. where is sandra ? bathroom mary and daniel went to the bedroom . john and
mary travelled to the bathroom . where is john ? bathroom mary and daniel
went to the hallway . john and daniel went back to the bedroom . where is daniel
? bedroomTask 13: Compound conference

sandra and daniel journeyed to the bedroom . following that they travelled to
the kitchen . where is daniel ? kitchen john and mary travelled to the bathroom
. then they went to the hallway . where is john ? hallway daniel and sandra
travelled to the office . following that they went to the bathroom . where is
sandra ? bathroom daniel and sandra moved to the kitchen . then they went to
the bathroom . where is sandra ? bathroom mary and john went to the kitchen .
then they went to the bedroom . where is john ? bedroom

Task 14: Time reasoning
bill travelled to the office yesterday . bill moved to the school this morning .
fred went back to the kitchen yesterday . julie journeyed to the school yesterday
. where was bill before the school ? office this afternoon bill journeyed to the
cinema . yesterday mary journeyed to the park . where was bill before the
cinema ? school fred journeyed to the bedroom this morning . julie went back
to the kitchen this morning . where was bill before the cinema ? school fred
travelled to the park this afternoon .

Task 15: Basic deduction
mice are afraid of cats . cats are afraid of wolves . emily is a cat . wolves are
afraid of cats . jessica is a mouse . gertrude is a wolf . sheep are afraid of mice .
winona is a wolf . what is winona afraid of ? cat what is jessica afraid of ? cat
what is jessica afraid of ? cat what is jessica afraid of ? cat

Task 16: Basic induction
greg is a swan . bernhard is a rhino . julius is a frog . bernhard is white . brian
is a rhino . julius is green . greg is white . brian is green . lily is a swan . what
color is lily ? white

Task 17: Positional reasoning
the red square is to the right of the triangle . the pink rectangle is below the red
square . is the triangle to the left of the pink rectangle ? yes is the triangle to the
right of the pink rectangle ? no is the triangle below the pink rectangle ? no is
the triangle above the pink rectangle ? yes is the pink rectangle to the right of
the triangle ? yes is the pink rectangle below the triangle ? yes is the triangle
to the right of the pink rectangle ? no is the pink rectangle to the right of the
triangle ? yes

Task 18: Size reasoning
the chocolate fits inside the container . the box is bigger than the chest . the
chest fits inside the container . the box of chocolates fits inside the container .
the chest is bigger than the suitcase . is the suitcase bigger than the box ? no
does the box fit in the suitcase ? no does the box fit in the suitcase ? no is the
suitcase bigger than the box ? no is the suitcase bigger than the box ? no

Task 19: Path finding
the bathroom is south of the garden . the kitchen is north of the bedroom . the
hallway is north of the garden . the bedroom is west of the garden . the office is
west of the hallway . how do you go from the hallway to the bedroom ? s,w

Task 20: Agent’s motivation
yann is tired . where will yann go ? bedroom jason is bored . where will
jason go ? garden antoine is bored . where will antoine go ? garden antoine
moved to the garden . why did antoine go to the garden ? bored antoine got
the football there . why did antoine get the football ? bored sumit is hungry .
where will sumit go ? kitchen sumit travelled to the kitchen . why did sumit go
to the kitchen ? hungry yann travelled to the bedroom . why did yann go to the
bedroom ? tired28

	Introduction
	Background
	State-Space Models
	Limitations of Transformers and SSMs
	Deep Equilibrium Models

	Implicit Sequence Models
	Implicit State-space Models
	Implicit Transformers

	Implicit SSMs Adapt to Hard Languages
	Implicit Large Language Models
	Related Work
	Discussion and Conclusion
	Algebraic Structure of Finite State Machines
	Circuit Complexity
	Algebraic Concepts of Finite State Machines

	Proof of Theorem 1
	Additional Results
	Inference Dynamics and Convergence of Implicit Language Models
	Length Extrapolation Capabilities in Pretrained Models
	Effective Duality between Simultaneous Mode and Sequential Mode in SSMs

	Experimental Details
	The Word Problem
	CatbAbI
	Language Modeling

