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Abstract
In predictive modeling, missing data can often re-
sult in learning biased models despite application
of imputation approaches. Therefore, it is impor-
tant to assess the missingness process of the data.
We present hypothesis tests for assessing these
dependencies: MI-MCAR (mutual information
for missing completely at random) and MI-US
(mutual information for unobserved sources). MI-
MCAR tests marginal independence between the
missingness pattern and the the data matrix, while
MI-US is a conditional randomization test (CRT)
to test the dependence of the missingness pat-
tern on unobserved sources. These methods can
be applied to heterogeneous data types and can
serve to identify missingness pathologies in data
which specifically affect performance for regres-
sion tasks. We evaluate our methods on simulated
and pseudo-simulated datasets and show that we
are able to identify data which suffers from miss-
ingness due to unobserved sources.

1. Introduction
Missing data are ubiquitous in many research areas and are
often overlooked when building predictive models. In many
cases, practitioners choose to completely remove samples
with missing data elements or may use one of the many
imputation methods such as multiple imputation. Despite
the application of imputation approaches, models can be
biased especially in the case of data that is missing not at
random (MNAR). Critically assessing the dependencies in
the underlying missingness process can lead to a deeper
understanding of observational data as well as inform mod-
eling approaches and imputation strategies. Past work has
focused on modeling the underlying missingness process
by leveraging graphical models (Mohan et al., 2013; Sh-
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pitser et al., 2015). There has also been work on developing
statistical tests to test for certain categories of missingness.
Little’s test (Little, 1988; Li, 2013) uses a chi-square statis-
tic with a null hypothesis that tests a necessary condition for
missing completely at random (MCAR) data. Since Little’s
test, many other tests have been proposed to test the MCAR
assumption including likelihood ratio tests with a missing
at random (MAR) alternative (Lipsitz et al., 1994) as well
as non-parametric extensions (Chen & Little, 1999).

In this work, we present information theoretic approaches to
testing for missingness in the context of predictive models.
We highlight mutual information and conditional mutual
information as favorable measures for testing independence.
Mutual information approaches are invariant to smooth, in-
vertible transformations and thus are nonparametric in a
specific sense (Weihs et al., 2018). Additionally, mutual in-
formation can be decomposed into entropy and conditional
entropy terms which makes modern density estimation ap-
proaches amenable for its estimation. We also note that neu-
ral density estimation approaches (Bishop, 1994; Germain
et al., 2015) can accommodate quantitative and categorical
data and as such a test statistic based on mutual information
could serve as a more general test for independence.

We summarize our contributions as: (1) We propose MI-
MCAR (mutual information for missinng completely at ran-
dom), which tests for an MCAR assumption by leveraging
density estimation approaches to estimate mutual informa-
tion between the data matrix (X) and the missingness pat-
tern (R) (2) We propose MI-US (mutual information for
unobserved sources) which identifies dependence of the
missingness pattern on unobserved sources by testing for
dependence between the missingness pattern (R) and the
response (Y) given the observed data (X) in the specific
setting of a predictive model where the response is fully
observed.

The methods in this work could help practitioners gain ad-
ditional insights into whether their data violates certain as-
sumptions that are normally taken for granted (MCAR or
MAR) specifically in the context of predictive modeling and
handle them accordingly. This could entail searching for
external features which may explain this dependence to add
them to the feature set, changing data collection practices
where possible or removing features.
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2. Background
2.1. Mutual Information and Conditional Mutual

Information

Mutual information is a natural measure of dependence
between two variables. It is equivalent to the KL divergence
between the joint and product of the marginal distributions
of two random variables. Furthermore, it can be split into
a marginal and conditional entropy which is useful when
doing density estimation.

I(X;Y ) =

∫
Y

∫
X

PX,Y (x, y)log
PX,Y (x, y)

PX(x)PY (y)

= H(Y )−H(Y |X)

(1)

The definition of conditional mutual information is very
similar.

I(X;Y |Z) =
∫
X

∫
Y

PX,Y |Z(x, y|z)log
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)
= H(Y |Z)−H(Y |X,Z)

(2)

2.2. Tests for MCAR

Rubin originally introduced the different categories of miss-
ing data by summarizing them as a set of independence
assumptions (Rubin, 1976; Roderick et al., 2002). Let X
denote the data matrix where Xobs is the observed portion
andXmis is the missing portion of data. LetR be the matrix
of missingness indicators. Given this, the assumptions for
MCAR and MAR can be formulated as follows as in Rhoads
(2012):

P (Xmis|Xobs, R)P (Xobs|R) = P (Xobs, Xmis) (3)

P (Xmis|Xobs, R) = P (Xmis|Xobs) (4)

From this particular formulation, it is clear from (3) that
a MCAR assumption requires both that the observed data
is marginally independent of the missingness pattern and
that the missing data is conditionally independent of the
missingness pattern given the observed data. On the other
hand, as in (4) a MAR assumption only requires the latter.
Therefore, all MCAR data is MAR while the converse is not
true.

MI-MCAR is fundamentally testing the marginal indepen-
dence assumption of MCAR and thus can serve to confirm
that data is not MCAR. We contend that the true advantage
of this test is that it leverages mutual information as the test
statistic which is invariant to transformations of the data and
can be useful with combinations of different data types with
modern density estimation approaches.

While it is not possible to distinguish between a MAR and
MNAR assumption from just observed data, we propose a
method MI-US to test for the case of dependence between
the missingness pattern and unobserved sources which have
a significant effect on the response variable (Y ) in the con-
text of a regression problem. We define unobserved sources
to mean any feature which is missing in the data Xmis or
missing as a result of not being part of the feature set. We
note that definitions of MNAR often only consider missing-
ness inside of the feature set, or Xmis.

3. MI-MCAR: Test for MCAR
Let X ∈ RNxP denote the data matrix with some set of
missing values where R ∈ {0, 1}NxP denotes the missing-
ness pattern matrix, and ri and xi refer to specific points.

Let Ximp denote an imputed data matrix where missing
values are imputed using a multiple imputation approach.
We estimate the mutual information between R and X by
estimating the entropy and conditional entropy terms as
follows:

Î(R,Xobs) = Ĥ(R)− Ĥ(R|Xobs)

Ĥ(R) = − 1

N

N∑
i=1

log(pR(ri))

Ĥ(R|Xobs) = −
1

N

N∑
i=1

log(pR|Ximp
(ri|xi))

(5)

We note that if Ximp is constructed via a multiple imputa-
tion approach, then the estimated conditional entropy will
be Ĥ(R|Xobs). Using multiple imputation preserves this
relationship: p(R|Xobs, Ximp) = p(R|Xobs).

Recent work has highlighted the advantages of using mutual
information to develop a test for independence (Berrett &
Samworth, 2019). We use a similar approach to construct
this test, while noting that we estimate a marginal and condi-
tional entropy term and use different approaches for density
estimation.

The null hypothesis in this setting is that the joint distribu-
tion is not significantly different from the product of the
marginals. In order to obtain a p-value for this test, we
can construct a dataset {{R̃b

i}Ni=1}Bb=1 which consists of B
separate samples of the marginal distribution, pR. We can
use this to construct a pseudo-dataset {(Xobs, R

b)}Bb=1 and
estimate mutual information for each of these Îb( ˜Rb, Xobs).

In order to obtain a p-value for this test we can then use the
following:

ĉt =

B∑
b=1

1

(
Î(R,Xobs) ≤ Îb

)
p̂ =

1

B + 1

(
1 + ĉt

) (6)
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This is a p-value for a one-sided test for the independence
condition between R and Xobs with the alternative being
that they are not independent. We note that the distribution
of the count ĉt under the null hypothesis is discrete uniform
with support from 0 to B. This results in the addition of a 1
in the numerator and the denominator and produces a test
with the correct significance level, preventing the possibility
of a p-value of 0 (Phipson & Smyth, 2010).

While it is necessary to refit the conditional density estimate
for each null sample, we note that it is not necessary to
obtain a new density estimate for R, nor is it necessary to
estimate a density over the observed data Xobs.

Here, we have presented a test for MCAR which is flexible
for many data types, robust to transformations and relatively
simple to estimate a p-value for.

4. MI-US: Test for Dependence on
Unobserved Sources

While it is not possible in general to distinguish between
MAR and MNAR, in the case of a regression problem with a
fully observed outcome Y we can leverage the information
about the missing data in Y as a surrogate for Xmis.

Instead of testing the conditional independence between
Xmis and R given Xobs, we can instead test the conditional
independence between Y and R given Xobs as in (7).

P (R, Y |Xobs) = P (R|Xobs)P (Y |Xobs) (7)

If we can reject the null hypothesis, this indicates that there
is residual information between the missingness pattern R
and the response Y which is unexplained by Xobs. This
can be attributed to unobserved sources including but not
limited toXmis as shown in Figure 1, with other unobserved
sources U also possibly influencing Y and R. While this
test will not be able to capture all unobserved sources that
affect the missingness process, we argue that it captures all
the sources that are relevant for the purposes of prediction
by measuring information against Y .

The specific formulation of the test is a conditional random-
ization test (CRT) (Candes et al., 2018) using conditional
mutual information as a test statistic. Previous work has out-
lined a criterion for why conditional mutual information is
a proper test statistic in this setting (Sudarshan et al., 2020).
See Appendix A for details.

In our context, we can use the same setup as in Candes et. al.
but instead consider the conditional independence between
Y and R and use conditional mutual information as the test
statistic. The null samples in our setting R̃ are drawn from
the distribution p(R|Xobs).

I(R, Y |Xobs) = H(Y |Xobs)−H(Y |Xobs, R)

Inull(R̃, Y |Xobs) = H(Y |Xobs)−H(Y |Xobs, R̃)
(8)

Figure 1. Data generation process of the outcome Y and the miss-
ingness pattern R. If there is MNAR missingness or missingness
due to other unobserved sources U which has a significant effect
on the outcome, the test will capture this by testing the conditional
independence of Y and R given Xobs.

Given this decomposition of the conditional mutual infor-
mation, we can see that the first entropy term cancels and
we are left with the following p-value:

ĉt =

B∑
b=1

1

(
Ĥ(Y |Xobs, R) ≥ Ĥ(Y |Xobs, R̃

b)
)

R̃b ∼ P (R|Xobs)

p̂unob =
1

B + 1
(1 + ĉt)

(9)

In order to obtain a p-value for this test, we must resample R̃
and then build a new model for each conditional distribution
P (Y |Xobs, R̃

b).

Assuming we have a model specification for each of
the terms above including P (Y |Xobs, R), P (R|Xobs) and
P (Y |Xobs, R̃), we can estimate the p-value as p̂unob.

We can see that this p-value is being calculated by resam-
pling Rb from a conditional distribution and counting the
number of times the entropy of the conditional model of Y
is greater when using the true missingness pattern R. This
is directly testing the performance gain from including the
missingness pattern R in a model for Y .

5. Experiments
5.1. MI-MCAR Simulated Data

We test the MI-MCAR method on a combination of binary
data and continuous normal data with different numbers of
features. In order to simulate each kind of missingness, we
specify a set of variables which are always present and a set
that can be missing. Subsequently, we randomly initialize a
linear model to model the functional dependence between
the data and the missingness pattern. Depending upon the
type of missingness, we expose the model to just fully ob-
served data (MAR) or partially observed data (MNAR). See
Appendix B for further details.
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Table 1. MI-MCAR Empirical rejection rate with different num-
bers of features on heterogeneous data (binary and continuous)

f MCAR MAR MNAR

10 0.02 1.00 0.98

50 0.04 1.00 1.00

100 0.02 1.00 1.00

Table 2. MI-US empirical rejection rate under different missing-
ness simulations with different number of features

f MCAR MAR MNAR

10 0.02 0.06 0.87

50 0.05 0.03 0.96

100 0.03 0.02 0.94

We run 100 different seeds of each simulation and run the
MI-MCAR test to obtain a p-value for each seed. We present
the results in Table 1 as empirical rejection rates at signifi-
cance level α = 0.05. See Appendix D for p-value distribu-
tions.

5.2. MI-US Simulated Data

For the simulation from unobserved sources, we simulate
a logistic model where the output is a binary variable Y .
The output is regressed on a set of continuous features.
We simulate missingness in the same way as in the prior
experiment. We use simple logistic regression models for
P (Y |Ximp, R) and P (Y |Ximp, R̃). In order to estimate
P (R|Ximp) we use a logistic model. See Appendix B for
further details.

We run 100 different seeds of each simulation and run the
MI-US test to obtain a p-value for each seed. We present the
results in Table 2 as empirical rejection rates at significance
level α = 0.05. See Appendix D for p-value distributions.

Figure 2. MNIST semi-synthetic dataset p-value distributions un-
der different missingness assumptions across 50 seeds. The distri-
butions on MCAR and MAR data are near-uniform while MNIST
datasets consistently reject the null.

5.3. MNIST Semi-synthetic Data

In order to evaluate the proposed tests on real data, we use
MNIST data with the missingness patterns simulated. The
prediction task is the classic digit classification task. We
select a patch over which we simulate a missing pattern
for every digit based on values within the patch (MNAR)
or outside the patch (MAR) just as in prior simulations.
We impute the missing data using MissForest (Stekhoven
& Bühlmann, 2012) and then run the MI-US test. If the
missing patch of pixels is predictive of the output, we can
determine that in cases where missingness is MNAR there
is dependence on unobserved sources (missing data) while
in cases where there is MAR this dependence does not exist.
See Appendix C for further details.

We run 50 different seeds for each missingness type, pre-
senting the distribution of the p-values in Figure 2.

6. Discussion and Conclusion
The results on simulated data show that MI-MCAR rejects
MCAR data near the expected rate of rejection, while it
is does not reject with MAR and MNAR simulated data.
These results provide evidence that this test can be effective
with heterogeneous data and could serve as an alternative to
Little’s test in cases where data types are mixed.

The simulations for MI-US in Table 2 shows that the test is
able to reject in cases of MCAR and MAR near the expected
rate of rejection, while MNAR simulations show some pos-
sibility of type II error. In general, this can be attributed to
a number of causes including: weak influence of missing
data on Y , missingness model has weak dependency struc-
ture on missing data, missing data can still be effectively
estimated from observed data. In each of these cases, it is
not necessarily unfavorable to be unable to reject the null
as practitioners need not be as concerned from a predictive
modeling perspective.

The MNIST semi-simulated results shown in Figure 2
demonstrate the promise of these methods on real data. We
run 50 different seeds representing different missingness
pattern simulations. It is clear from Figure 2 that the p-value
distribution in the case of MCAR and MAR data is near
uniform while the test rejects in all but one case on MNAR
simulated missingness.

The main limitation of running these tests is that they
are computationally expensive as they require retraining a
model across multiple resamples. Given that model training
isn’t prohibitively expensive, running MI-US could reveal
important insights about missingness pathologies that have
a significant effect on performance. In future work, we hope
to scale the results to higher dimensions with more seeds as
well as apply the test on real-world clinical data.
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A. Conditional Randomization Tests
A CRT is defined as follows as in Candes et al. in the setting
of feature importance.

Assume we have a set of independent samples where X is a
vector and Y is the outcome {Xi, Yi}1≤i≤n assembled as
a data matrix X and response vector Y . Further, a statistic
Tj(X, y) is defined to test whether Xj and Y are condition-
ally independent given X−j (all variables except j). With
this setup, a new matrix Xb is simulated by sampling from
the conditional distribution: p(Xj |X−j). With this setup,
the one-sided p-value is as follows:

Pj =
1

B + 1

(
1 +

B∑
b=1

1
(
Tj(X

b, y) ≥ Tj(X, y)
))

(10)

In our context, we can use the same setup as in Candes et. al.
but instead consider the conditional independence between
Y and R and use conditional mutual information as the test
statistic. The null samples in our setting R̃ are drawn from
the distribution p(R|Xobs).

I(R, Y |Xobs) = H(Y |Xobs)−H(Y |Xobs, R)

Inull(R̃, Y |Xobs) = H(Y |Xobs)−H(Y |Xobs, R̃)
(11)

We notice that when using the same construction for the
p-value as above, the first entropy term cancels. This results
in the p-value in (9).

B. Simulation Specification
B.1. MI-MCAR Simulation

For the MI-MCAR simulated datasets for each seed, we
simulate a set number of variables f = {10, 50, 100} with
dataset size N = 1000, wherein each simulation, half of
the variables are iid Bernoulli with a randomly specified
parameters and the other half are drawn from a multivariate

https://openreview.net/forum?id=HJg_tkBtwS
https://openreview.net/forum?id=HJg_tkBtwS
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normal distribution with a random mean and covariance
matrix.

We use a logistic model to estimate p(R|Xobs), however we
also ran tests with a masked autoencoder approach (MADE),
which can be used in a more general setting where the
missingness process is unknown. For the purposes of this
test, we use B = 50.

B.1.1. MISSING DATA

For each dataset, we randomly specify half of the features to
be fully observed and the other half to be possibly missing.
Then, we aim to simulate a missingness pattern over the
partially observed set of features.

In order to simulate MCAR missingness, we simply draw
from a Bernoulli distribution with missingness probability
0.5.

For simulating MAR and MNAR missingness patterns, we
randomly initialize a linear model which generates a miss-
ingness matrix of probabilities. For MAR missingness, we
can simply input the fully observed set of features into a
randomly initialized linear model with a sigmoid activation
to generate the missingness probabilities. Subsequently,
we sample a Bernoulli distribution with these probabilities
to generate the missingness pattern. For MNAR missing-
ness, we input the partially observed features and output a
missingness pattern thus creating dependence on missing
data.

B.2. MI-US Simulation

For the MI-US simulated datasets for each seed, we simulate
the output as a binary variable Y . The output is regressed
on a set of continuous features which are sampled from a
multivariate normal distribution with a random mean and
covariance matrix. The conditional model specification of
Y is a simple logistic regression. We use a simple logistic
model to estimate p(R|Xobs) but also run some tests with
mixture density networks. These networks may be used
when the missingness process is more complex.

The missingness patterns are simulated in the same way as
with the MI-MCAR simulations. After fitting (and refitting)
each of these models, we can calculate the entropy directly
as the negative log likelihood loss and count the number
of resampled datasets which have smaller entropy than the
model with the true missingness pattern to obtain a p-value.
For the purposes of this test, we use B = 50.

C. MNIST Semi-Synthetic Specification
We use a subset of the MNIST dataset with N = 10000. In
order to simulate missingness in the context of image data,
we specify a 14 by 14 mask at the center of the image to

simulate a missingness pattern over. The outer edges of the
image are considered fully observed.

In order to simulate the missingness pattern for MCAR, we
simply generate a binary mask with a missingness probabil-
ity of 0.5.

For generating MAR missingness, we use a similar approach
as previous experiments with a randomly initialized linear
model which takes as input the fully observed (flattened)
data and outputs Bernoulli parameters over the missingness
mask. We can then threshold the missingness probabilities
in order to generate a missingness pattern.

In order to generate MNAR missingness, we use a simpler
approach than past approaches which is to identify all pixels
in the missing 14 x 14 region which are above a certain
threshold in pixel value (0.2 in our case) and then randomly
sample from a Bernoulli with a fixed probability (0.9 in our
case) for each of these points. All pixels below the threshold
can be randomly sampled with a lower fixed probability (0.1
in our case). This creates MNAR dependence which directly
depends on the missing values themselves.

We specify a basic CNN model with two convolutional
layers, relu activations with max pooling and dropout layers
in between as the model for P (Y |Xobs, R). The input is
multi-channeled with the Ximp and R as the two channels.

For P (R|Xobs) we use a simple logistic model but also
experiment with mixture density networks which can be
used in more general cases where the missingness process
is not known.

For these experiments, we use B = 30 as it is more expen-
sive to train many CNN models.

D. P-value Distributions
In this section, we include the p-value distributions for each
of our simulations to show that the null distributions closely
reflect a uniform distribution.
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Figure 3. MI-MCAR simulation p-value distributions for MCAR data with different feature numbers.

Figure 4. MI-US simulation p-value distributions on different feature sizes under different missingness pattern assumptions. The
distributions are near uniform for MCAR and MAR simulated data while MNAR rejects the null hypothesis a high percentage of the time.


