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ABSTRACT

The emerging paradigm of federated learning (FL) strives to enable collabora-
tive training of deep models on the network edge without centrally aggregating
raw data and hence improving data privacy. In most cases, the assumption of in-
dependent and identically distributed samples across local clients does not hold
for federated learning setups. Under this setting, neural network training per-
formance may vary significantly according to the data distribution and even hurt
training convergence. Most of the previous work has focused on a difference in
the distribution of labels or client shifts. Unlike those settings, we address an
important problem of FL, e.g., different scanners/sensors in medical imaging, dif-
ferent scenery distribution in autonomous driving (highway vs. city), where local
clients store examples with different distributions compared to other clients, which
we denote as feature shift non-iid. In this work, we propose an effective method
that uses local batch normalization to alleviate the feature shift before averaging
models. The resulting scheme, called FedBN, outperforms both classical FedAvg,
as well as the state-of-the-art for non-iid data (FedProx) on our extensive experi-
ments. These empirical results are supported by a convergence analysis that shows
in a simplified setting that FedBN has a faster convergence rate than FedAvg. Code
is available at https://github.com/med-air/FedBN.

1 INTRODUCTION

Federated learning (FL), has gained popularity for various applications involving learning from dis-
tributed data. In FL, a cloud server (the “server”) can communicate with distributed data sources
(the “clients”), while the clients hold data separately. A major challenge in FL is the training data
statistical heterogeneity among the clients (Kairouz et al., 2019; Li et al., 2020b). It has been shown
that standard federated methods such as FedAvg (McMahan et al., 2017) which are not designed
particularly taking care of non-iid data significantly suffer from performance degradation or even
diverge if deployed over non-iid samples (Karimireddy et al., 2019; Li et al., 2018; 2020a).

Recent studies have attempted to address the problem of FL on non-iid data. Most variants of
FedAvg primarily tackle the issues of stability, client drift and heterogeneous label distribution over
clients (Li et al., 2020b; Karimireddy et al., 2019; Zhao et al., 2018). Instead, we focus on the shift
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Figure 1: Training error on local datasets for
two clients respectively with and w/o BN, where
BN harmonizes the loss surface.
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Figure 2: Error surface of a client for model
parameter w ∈ [0.001, 12] and BN parameter
γ ∈ [0.001, 4]. Averaging model and BN pa-
rameters leads to worse solutions.

in the feature space, which has not yet been explored in the literature. Specifically, we consider that
local data deviates in terms of the distribution in feature space, and identify this scenario as feature
shift. This type of non-iid data is a critical problem in many real-world scenarios, typically in cases
where the local devices are responisble for a heterogeneity in the feature distributions. For example
in cancer diagnosis tasks, medical radiology images collected in different hospitals have uniformly
distributed labels (i.e., the cancer types treated are quite similar across the hospitals). However, the
image appearance can vary a lot due to different imaging machines and protocols used in hospitals,
e.g., different intensity and contrast. In this example, each hospital is a client and hospitals aim to
collaboratively train a cancer detection model without sharing privacy-sensitive data.

Tackling non-iid data with feature shift has been explored in classical centralized training in
the context of domain adaptation. Here, an effective approach in practice is utilizing Batch
Normalization (BN) (Ioffe & Szegedy, 2015): recent work has proposed BN as a tool to mitigate
domain shifts in domain adaptation tasks with promising results achieved (Li et al., 2016; Liu et al.,
2020; Chang et al., 2019). Inspired by this, this paper proposes to apply BN for feature shift FL. To
illustrate the idea, we present a toy example that illustrates how BN may help harmonizing local
feature distributions.

Observation of BN in a FL Toy Example: We consider a simple non-convex learning problem:
we generate data x, y ∈ R with y = cos(wtruex) + ε, where x ∈ R is drawn iid from Gaussian
distribution and ε is zero-mean Gaussian noise and consider models of the form fw(x) = cos(wx)
with model parameter w ∈ R. Local data deviates in the variance of x. First, we illustrate that
local batch normalization harmonizes local data distributions. We consider a simplified form of
BN that normalizes the input by scaling it with γ, i.e., the local empirical standard deviation, and
a setting with 2 clients. As Fig. 1 shows, the local squared loss is very different between the two
clients. Thus, averaging the model does not lead to a good model. However when applying local
BN, the local training error surfaces become similar and averaging the models can be beneficial.
To further illustrate the impact of BN, we plot the error surface for one client with respect to both
model parameter w ∈ R and BN parameter γ ∈ R in Fig. 2. The figure shows that for an optimal
weight w∗1 , changing γ deteriorates the model quality. Similarly, for a given optimal BN parameter
γ∗1 , changing w deteriorates the quality. In particular, the average model w = (w∗1 + w∗2)/2 and
average BN parameters γ = (γ∗1 + γ∗2 )/2 has a high generalization error. At the same time, the
average model w with local BN parameter γ∗1 performs very well.

Motivated by the above insight and observation, this paper proposes a novel federated learning
method, called FedBN, for addressing non-iid training data which keeps the client BN layers up-
dated locally, without communicating, and aggregating them at the server. In practice, we can
simply update the non-BN layers using FedAvg, without modifying any optimization or aggregation
scheme. This approach has zero parameters to tune, requires minimal additional computational re-
sources, and can be easily applied to arbitrary neural network architectures with BN layers in FL.
Besides the benefit shown in the toy example, we also show the benefits in accelerating convergence
by theoretically analyzing the convergence of FedBN in the over-parameterized regime. In addition,
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we have conducted extensive experiments on a benchmark and three real-world datasets. Compared
to classical FedAvg, as well as the state-of-the-art for non-iid data (FedProx), our novel method,
FedBN, demonstrates significant practical improvements on the extensive experiments.

2 RELATED WORK

Techniques for Non-IID Challenges in Federated Learning: The widely known aggregation
strategy in FL, FedAvg (McMahan et al., 2017), often suffers when data is heterogeneous over local
client. Empirical work addressing non-iid issues, mainly focus on label distribution skew, where
a non-iid dataset is formed by partitioning a “flat” existing dataset based on the labels. FedProx
(Li et al., 2020b), a recent framework tackled the heterogeneity by allowing partial information
aggregation and adding a proximal term to FedAvg. Zhao et al. (2018) assumed a subset of the
data is globally shared between all the clients, hence generalizes to the problem at hand. FedMA
(Wang et al., 2020) proposed an aggregation strategy for non-iid data partition that shares global
model in a layer-wise manner. However, so far there are only limited attempts considering non-iid
induced from feature shift, which is common in medical data collecting from different equipment
and natural image collected in various noisy environment. Very recently, FedRobust (Reisizadeh
et al., 2020) assumes data follows an affine distribution shift and tackles this problem by learning the
affine transformation. This hampers the generalization when we cannot estimate the explicit affine
transformation. Concurrently to our work, SiloBN Andreux et al. (2020) empirically shows that local
clients keeping some untrainable BN parameters could improve robustness to data heterogeneity, but
provides no theoretical analysis of the approach. FedBN instead keeps all BN parameters strictly
local. Recently, an orthogonal approach to the non-iid problem has been proposed that focuses on
improving the optimization mechanism (Reddi et al., 2020; Zhang et al., 2020).

Batch Normalization in Deep Neural Networks: Batch Normalization (Ioffe & Szegedy, 2015)
is an indispensable component in many deep neural networks and has shown its success in neural
network training. Relevant literature has uncovered a number of benefits given by batch normal-
ization. Santurkar et al. (2018) showed that BN makes the optimization landscape significantly
smoother. Luo et al. (2018) investigated an explicit regularization form of BN such that improving
the robustness of optimization. Morcos et al. (2018) suggested that BN implicitly discourages sin-
gle direction reliance, thus improving model generalizability. Li et al. (2018) took advantage of BN
for tackling the domain adaptation problem. However, what a role BN is playing in the scope of
federated learning, especially for non-iid training, still remains unexplored to date.

3 PRELIMINARY

Non-IID Data in Federated Learning: We introduce the concept of feature shift in federated
learning as a novel category of client’s non-iid data distribution. So far, the categories of non-iid
data considered according to Kairouz et al. (2019); Hsieh et al. (2019) can be described by the joint
probability between features x and labels y on each client. We can rewrite Pi(x, y) as Pi(y|x)Pi(x)
and Pi(x|y)Pi(y). We define feature shift as the case that covers: 1) covariate shift: the marginal
distributions Pi(x) varies across clients, even if Pi(y|x) is the same for all client; and 2) concept
shift: the conditional distribution Pi(x|y) varies across clients and P (y) is the same.

Federated Averaging (FedAvg): We establish our algorithm on FedAvg introduced by McMahan
et al. (2017) which is the most popular existing and easiest to implement federated learning strategy,
where clients collaboratively send updates of locally trained models to a global server. Each client
runs a local copy of the global model on its local data. The global model’s weights are then updated
with an average of local clients’ updates and deployed back to the clients. This builds upon previous
distributed learning work by not only supplying local models but also performing training locally
on each device. Hence FedAvg potentially empowers clients (especially clients with small dataset)
to collaboratively learn a shared prediction model while keeping all training data locally. Although
FedAvg has shown successes in classical Federated Learning tasks, it suffers from slow convergence
and low accuracy in most non-iid contents (Li et al., 2020b; 2019).
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4 FEDERATED AVERAGING WITH LOCAL BATCH NORMALIZATION

4.1 PROPOSED METHOD - FEDBN

We propose an efficient and effective learning strategy denoted FedBN. Similar to FedAvg, FedBN
performs local updates and averages local models. However, FedBN assumes local models have
BN layers and excludes their parameters from the averaging step. We present the full algorithm
in Appendix C. This simple modification results in significant empirical improvements in non-iid
settings. We provide an explanation for these improvements in a simplified scenario, in which we
show that FedBN improves the convergence rate under feature shift.

4.2 PROBLEM SETUP

We assume N ∈ N clients to jointly train for T ∈ N epochs and to communicate after E ∈ N
local iterations. Thus, the system has T/E communication rounds over the T epochs. For simplicity,
we assume all clients to have M ∈ N training examples (a difference in training examples can be
account for by weighted averaging (McMahan et al., 2017)) for a regression task, i.e., each client
i ∈ [N ] ([N ] = {1, . . . , N}) has training examples {(xij , yij) ∈ Rd×R : j ∈ [M ]}. Furthermore, we
assume a two-layer neural network with ReLU activations trained by gradient descent. Let vk ∈ Rd
denote the parameters of the first layer, where k ∈ [m] and m is the width of the hidden layer. Let
‖ v ‖S,

√
v>Sv denote the induced vector norm for a positive definite matrix S.

We consider a non-iid setting in FL where local feature distributions differ—not label distribution,
as considered, e.g., in McMahan et al. (2017); Li et al. (2019). To be more precise, we make the
following assumption.
Assumption 4.1 (Data Distribution). For each client i ∈ [N ] the inputs xij are centered (Exi = 0)

with covariance matrix Si = Exixi>, where Si is independent from the label y and may differ for
each i ∈ [N ] e.g., Si are not all identity matrices, and for each index pair p 6= q, xp 6= κ ·xq for all
κ ∈ R \ {0}.

With Assumption 4.1, the normalization of the first layer for client i is v>k xi

‖vk‖Si
. FedBN with client-

specified BN parameters trains a model f∗ : Rd → R parameterized by (V, γ, c) ∈ Rm×d ×
Rm×N × Rm, i.e.,

f∗(x; V, γ, c) =
1√
m

m∑
k=1

ck

N∑
i=1

σ

(
γk,i ·

v>k x

‖ vk ‖Si

)
· 1{x ∈ client i} , (1)

where γ is the scaling parameter of BN and σ(s) = max{s, 0} is the ReLU activation function, c is
the top layer parameters of the network. Here, we omit learning the shift parameter of BN 1. FedAvg
instead trains a function f : Rd → R which is a special case of Eq. 1 with γk,i = γk for ∀i ∈ [N ].
We take a random initialization of the parameters (Salimans & Kingma, 2016) in our analysis:

vk(0) ∼ N
(
0, α2I

)
, ck ∼ U{−1, 1}, and γk = γk,i = ‖vk(0)‖2 /α, (2)

where α2 controls the magnitude of vk at initialization. The initialization of the BN parameters
γk and γk,i are independent of α. The parameters of the network f∗(x; V, γ, c) are obtained by
minimizing the empirical risk with respect to the squared loss using gradient descent :

L(f∗) =
1

NM

N∑
i=1

M∑
j=1

(
f∗(xij)− yij

)2
. (3)

4.3 CONVERGENCE ANALYSIS

Here we study the trajectory of networks FedAvg (f ) and FedBN (f∗)’s prediction through the
neural tangent kernel (NTK) introduced by Jacot et al. (2018). Recent machine learning theory

1We omit centering neurons as well as learning the shift parameter of BN for the neural network analysis
because of the assumption that x is zero-mean and the two layer network setting (Kohler et al., 2019; Salimans
& Kingma, 2016).
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studies (Arora et al., 2019; Du et al., 2018; Allen-Zhu et al., 2019; van den Brand et al., 2020;
Dukler et al., 2020) have shown that for finite-width over-parameterized networks, the convergence
rate is controlled by the least eigenvalue of the induced kernel in the training evolution.

To simplify tracing the optimization dynamics, we consider the case that the number of local updates
E is 1. We can decompose the NTK into a magnitude component G(t) and direction component
V(t)/α2 following Dukler et al. (2020):

df

dt
= −Λ(t)(f(t)− y), where Λ(t) :=

V(t)

α2
+ G(t).

The specific forms of V(t) and G(t) are given in Appendix B.1. Let λmin(A) denote the minimal
eigenvalue of matrix A. The matrices V(t) and G(t) are positive semi-definite, since they can
be viewed as covariance matrices. This gives λmin(Λ(t)) ≥ max

{
λmin(V(t))/α2, λmin(G(t))

}
.

According to NTK, the convergence rate is controlled by λmin(Λ(t)). Then, for α > 1, convergence
is dominated by G(t). Let Λ(t) and Λ∗(t) denote the evolution dynamics of FedAvg and FedBN
and let G(t) and G∗(t) denote the magnitude component in the evolution dynamics of FedAvg and
FedBN. For the convergence analysis, we use the auxiliary version of the Gram matrices, which is
defined as follows.
Definition 4.2. Given sample points {xp}NMp=1 , we define the auxiliary Gram matrices G∞ ∈
RNM×NM and G∗∞ ∈ RNM×NM as

G∞pq := Ev∼N(0,α2I)σ
(
v>xp

)
σ
(
v>xq

)
, (FedAvg) (4)

G∗∞pq := Ev∼N(0,α2I)σ
(
v>xp

)
σ
(
v>xq

)
1{ip = iq}, (FedBN). (5)

Given Assumption 4.1, we use the key results in Dukler et al. (2020) to show that G∞ is positive
definite. Further, we show that G∗∞ is positive definite. We use the fact that the distance between
G(t) and its auxiliary version is small in over-parameterized neural network, such that G(t) remains
positive definite.
Lemma 4.3. Fix points {xp}NMp=1 satisfying Assumption 4.1. Then Gram matrices G∞ and G∗∞

defined as in (4) and (5) are strictly positive definite. Let the least eigenvalues be λmin(G∞) =: µ0

and λmin(G∗∞) =: µ∗0, where µ0, µ
∗
0 > 0.

Proof sketch The main idea follows Du et al. (2018); Dukler et al. (2020), that given points
{xp}NMp=1 , the matrices G∞ and G∗∞ can be shown as covariance matrix of linearly independent
operators. More details of the proof are given in the Appendix B.2.

Based on our formulation, the convergence rate of FedAvg (Theorem 4.4) can be derived from
Dukler et al. (2020) by considering non-identical covariance matrices. We derive the convergence
rate of FedBN in Corollary 4.5. Our key result of comparing the convergence rates between FedAvg
and FedBN is culminated in Corollary 4.6.
Theorem 4.4 (G-dominated convergence for FedAvg Dukler et al. (2020)). Suppose network (4)
is initialized as in (2) with α > 1, trained using gradient descent and Assumptions 4.1 holds.
Given the loss function of training the neural network is the square loss with targets y satisfying
‖y‖∞ = O(1). If m = Ω

(
max

{
N4M4 log(NM/δ)/α4µ4

0, N
2M2 log(NM/δ)/µ2

0

})
, then with

probability 1− δ,

1. For iterations t = 0, 1, · · · , the evolution matrix Λ(t) satisfies λmin(Λ(t)) ≥ µ0

2 .

2. Training with gradient descent of step-size η = O
(

1
‖Λ(t)‖

)
converges linearly as

‖f(t)− y‖22 ≤
(

1− ηµ0

2

)t
‖f(0)− y‖22.

Following the key ideas in Dukler et al. (2020), here we further characterize the convergence for
FedBN.
Corollary 4.5 (G-dominated convergence for FedBN). Suppose network (5) and all other condi-
tions in Theorem 4.4. With probability 1 − δ, for iterations t = 0, 1, · · · , the evolution matrix
Λ∗(t) satisfies λmin(Λ∗(t)) ≥ µ∗0

2 and training with gradient descent of step-size η = O
(

1
‖Λ∗(t)‖

)
converges linearly as ‖f∗(t)− y‖22 ≤

(
1− ηµ∗0

2

)t
‖f∗(0)− y‖22.
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Figure 3: Convergence of the training loss of FedBN and FedAvg on the digits classification datasets.
FedBN exhibits faster and more robust convergence.

The exponential factor of convergence for FedAvg (1− ηµ0/2) and FedBN (1− ηµ∗0/2) are con-
trolled by the smallest eigenvalue of G(t), respectively G∗(t). Then we can analyze the convergence
performance of FedAvg and FedBN by comparing λmin(G∞) and λmin(G∗∞).

Corollary 4.6 (Convergence rate comparison between FedAvg and FedBN). For the G-dominated
convergence, the convergence rate of FedBN is faster than that of FedAvg.

Proof sketch The key is to show λmin(G∞) ≤ λmin(G∗∞). Comparing equation (4) and (5),
G∗∞ takes the M ×M block matrices on the diagonal of G∞. Let G∞i be the i-th M ×M block
matrices on the diagonal of G∞. By linear algebra, λmin(G∞i ) ≥ λmin(G∞) for i ∈ [N ]. Since
G∗∞ = diag(G∞1 , · · · ,G∞N ), we have λmin(G∗∞) = mini∈[N ]{λmin(G∞i )}. Therefore, we have
the result λmin(G∗∞) ≥ λmin(G∞).

5 EXPERIMENTS

In this section, we demonstrate that using local BN parameters is beneficial in the presence of feature
shift across clients with heterogeneity data. Our novel local parameter sharing strategy, FedBN,
achieves more robust and faster convergence for feature shift non-iid datasets and obtains better
model performance compared to alternative methods. This is shown on both benchmark and large
real-world datasets.

5.1 BENCHMARK EXPERIMENTS

Settings: We perform an extensive empirical analysis using a benchmark digits classification task
containing different data sources with feature shift where each dataset is from a different domain.
Data of different domains have heterogeneous appearance but share the same labels and label dis-
tribution. Specifically, we use the following five datasets: SVHN Netzer et al. (2011), USPS Hull
(1994), SynthDigits Ganin & Lempitsky (2015), MNIST-M Ganin & Lempitsky (2015) and MNIST
LeCun et al. (1998). To match the setup in Section 4, we truncate the sample size of the five datasets
to their smallest number with random sampling, resulting in 7438 training samples in each dataset
2. Testing samples are held out and kept the same for all the experiments on this benchmark dataset.
Our classification model is a convolutional neural network where BN layers are added following
each feature extraction layer (i.e., both convolutional and fully-connected). The architecture is de-
tailed in Appendix D.2. For model training, we use the cross-entropy loss and SGD optimizer with
a learning rate of 10−2. If not specified, our default setting for local update epochs is E = 1, and
the default setting for the amount of data at each client is 10% 3 of the dataset original size. For
the default non-iid setting, the FL system contains five clients. Each client exclusively owns data
sampled from one of the five datasets. More details are listed in Appendix D.2.

2This data preprocessing intends to strictly control non-related factors (e.g., imbalanced sample numbers
across clients), so that the experimental findings can more clearly reflect the effect of local BN. Results without
truncating are reported in Appendix E.2.

3Choosing 10% fraction as default is based on (i) considering it as a typical setting to present general
efficacy of our method; (ii) matching literature where the client size is usually around 100 to 1000 data points
(McMahan et al., 2017; Li et al., 2019; Hsu et al., 2019), which is a similar scale with respect to our 10% setting
(in terms of the absolute value of sample numbers).
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(a) (c)(b)

Figure 4: Analytical experimental results on: (a) Analysis on different local updating epochs.
FedBN consistently outperforms FedAvg in testing accuracy. (b) Model performance over vary-
ing dataset size on local clients. (c) Testing accuracy on different levels of heterogeneity.

Overviews: In the following paragraphs, we present a comprehensive investigation on the prop-
erties of the proposed FedBN approach, including: (1) convergence rate; (2) behavior with respect
to the choices of local update epochs; (3) performance on various amounts of data at each client;
(4) effects at different level of heterogeneity; (5) comparison to state of the art (FedProx (Li et al.,
2020b)), and two baselines (FedAvg and SingleSet, i.e., training an individual model within each
client). In Appendix G, we also provide empirical results for including a new client with data from
an unknown domain into the learning system.

Convergence Rate: We analyze the training loss curve of FedBN in comparison with FedAvg, as
shown in Fig. 3. The loss of FedBN goes down faster and smoother than FedAvg, indicating that
FedBN has a larger convergence rate. Moreover, compared to FedAvg, FedBN presents smoother
and more stable loss curves during learning. These experimental observations show consensus with
what given by Corollary 4.6. In addition, we present a more comprehensive comparison with dif-
ferent local update epochs E on convergence rate of FedBN and FedAvg (see Appendix E.1). The
results show similar patterns as in Fig 3.

Analysis of Local Updating Epochs: Aggregating at different frequencies may affect the learning
behaviour. Although our theory and the default setting for the other experiment takes E = 1, we
demonstrate FedBN is effective for cases when E > 1. In Fig.4 (a), we explore E = 1, 4, 8, 16
and compare FedBN to baseline FedAvg. As expected, an inverse relationship between the local
updating epochs E and testing accuracy implied for both FedBN and FedAvg shown in Fig.4 (a).
Zooming into the final testing accuracy, FedBN’s accuracy stably exceeds the accuracy of FedAvg
on various E .

Analysis of Local Dataset Size: We vary the data amount for each client from 100% to 1% of
its original dataset size, in order to observe FedBN behaviour over different data capacities at each
client. The results in Fig.4 (b) present the accuracy of FedBN and SingleSet 4. Testing accuracy
starts to significantly drop when each of the local client is only attributed 20% percentage of data
from its original data amount. The improvement margin gained from FedBN increases as local
dataset sizes decrease. The results indicate that FedBN can effectively benefit from collaborative
training on distributed data, especially when each client only holds a small amount of data which
are non-iid.

Effects of Statistical Heterogeneity: A salient question that arises is: to what degree of het-
erogeneity on feature shift FedBN is superior to FedAvg. To answer the question, we simulate a
federated settings with varying heterogeneity as described below. We parcel each dataset into 10
subsets, one for each clients, with equal number of data samples and the same label distribution.
We treat the clients generated from the same dataset as iid clients, while the clients generated from
different datasets as non-iid clients.

4Detailed statistics and FedAvg results are presented in Appendix E.2.
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Method Caltech-10 DomainNet ABIDE (medical)
A C D W C I P Q R S NYU USM UM UCLA

SingleSet 54.9 40.2 78.7 86.4 41.0 23.8 36.2 73.1 48.5 34.0 58.0 73.4 64.3 57.3
(1.5) (1.6) (1.3) (2.4) (0.9) (1.2) (2.7) (0.9) (1.9) (1.1) (3.3) (2.2) (1.4) (2.4)

FedAvg 54.1 44.8 66.9 85.1 48.8 24.9 36.5 56.1 46.3 36.6 62.7 73.1 70.7 64.7
(1.1) (1.0) (1.5) (2.9) (1.9) (0.7) (1.1) (1.6) (1.4) (2.5) (1.7) (2.4) (0.5) (0.7)

FedProx 54.2 44.5 65.0 84.4 48.9 24.9 36.6 54.4 47.8 36.9 63.3 73.0 70.5 64.5
(2.5) (0.5) (3.6) (1.7) (0.8) (1.0) (1.8) (3.1) (0.8) (2.1) (1.0) (1.8) (1.1) (1.2)

FedBN 63.0 45.3 83.1 90.5 51.2 26.8 41.5 71.3 54.8 42.1 65.6 75.1 68.6 65.5
(1.6) (1.5) (2.5) (2.3) (1.4) (0.5) (1.4) (0.7) (0.8) (1.3) (1.1) (1.4) (2.9) (1.0)

Table 1: We report results on three different real-world datasets with format mean(std) from 5-trial
run. For Office-Caltech 10, A, C, D ,W are abbreviations for Amazon, Caltech, DSLR and WebCam,
for DomainNet, C, I, P, Q, R, S are abbreviations for Clipart, Infograph, Painting, Quickdraw, Real
and Sketch. For ABIDE, we list the abbreviations for the clients (i.e., medical institutions).

We start with including one client from each dataset in FL system. Then, we simultaneously add
one client from each datasets while keep the existing clients n times, for n ∈ {1, . . . , 9}5 . For each
setting, we train models from scratch. More clients correspond to less heterogenity. We show the
testing accuracy under different level of heterogeneity in Fig. 4 (c) and include a comparison with
FedAvg, which is designed for iid FL. Our FedBN achieves substantially higher testing accuracy
than FedAvg over all levels of heterogeneity.

  

Figure 5: Performance on benchmark experiments

Comparison with State-of-the-
art: To further validate our
method, we compare FedBN with
one of the current state-of-the-art
methods for non-iid FL, FedProx
Li et al. (2020b), which also shares
the benefit of easy adaptation to
current FL frameworks in practice.
We also include training on Sin-
gleSet and FedAvg as baselines.
For each strategy, we split an
independent testing datasets on
clients and report the accuracy on
the testing datasets. We perform
5-trial repeating experiment with
different random seeds. The mean
and standard deviation of the
accuracy on each dataset over trials are shown in Fig. 56. From the results, we can make the
following observation: (1) FedBN achieves the highest accuracy, consistently outperforming the
state-of-the-art and baseline methods; (2) FedBN achieves the most significant improvements on
SVHN whose image appearance is very different from others (i.e., presenting more obvious feature
shift); (3) FedBN shows a smaller variance in error over multiple runs, indicating its stability.

5.2 EXPERIMENTS ON REAL-WORLD DATASETS

To better understand how our proposed algorithm can be beneficial in real-word feature-shift non-
iid, we have extensively validated the effectiveness of FedBN in comparison with other methods on
three real-world datasets: image classification on Office-Caltech10 (Gong et al., 2012) with images
acquired in different cameras or environments; image classification on DomainNet (Peng et al.,
2019) with different image styles; and a neurodisorder diagnosis task on ABIDE I (Di Martino
et al., 2014) with patients from different medical institutions7.

5Namely, each increment contains five non-iid clients.
6Detailed statistics are shown in Appendix E.2
7More details about the datasets and training process are listed in the Appendix D.3 and D.4
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Datasets and Setup: (1) We conduct the classification task on natural images from Office-
Caltech10, which has four data sources composing Office-31 Saenko et al. (2010) (three data
sources) and Caltech-256 datasets (one data source) Griffin et al. (2007), which are acquired us-
ing different camera devices or in different real environment with various background. Each client
joining the FL system is assigned data from one of the four data sources. Thus data is non-iid across
the clients. (2) Our second dataset is DomainNet, which contains natural images coming from six
different data sources: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. Similar to (1),
each client contains iid data from one of the data sources, but clients with different data sources
have different feature distributions. (3) We include four medical institutions (NYU, USM, UM,
UCLA; each is viewed as a client) from ABIDE I that collects functional brain images using differ-
ent imaging equipment and protocols. We validate on a medical application for binary classification
between autism spectrum disorders patients and healthy control subjects.

The Office-Caltech10 contains ten categories of objects. The DomainNet extensively contains 345
object categories and we use the top ten most common classes to form a sub-dataset for our ex-
periments. Our classification models adopt AlexNet (Krizhevsky et al., 2012) architecture with BN
added after each convolution and fully-connected layer. Before feeding into the network, all images
are resized to 256 × 256 × 3. For ABIDE I, each instance is represented as a 5995-dimensional
vector through brain connectome computation. We use a three-layer fully connected neural network
as the classifier with the hidden layers of 16 with two BN layers after the first two fully connected
layers. Same as the above benchmark, we perform 5 repeated runs for each experiment.

Results and Analysis: The experimental results are shown in Table 1 in the form of mean (std).
On Office-Caltech10, FedBN significantly outperforms the state-of-the-art method of FedProx, and
improves at least 6% on mean accuracy compared with all the alternative methods. On DomainNet,
FedBN achieved supreme accuracy over most of the datasets. Interestingly, we find the alternative
FL methods achieves comparable results with SingleSet except Quickdraw, and FedBN outperforms
them over 10%. Surprisingly, for the above two tasks, the alternative FL strategies are ineffective in
the feature shift non-iid datasets, even worse than using single client data for training for most of the
clients. In ABIDE I, FedBN excell by a non-negligible margin on three clients regarding the mean
testing accuracy. The results are inspiring and bring the hope of deploying FedBN to healthcare
field, where data are often limited, isolated and heterogeneous on features.

6 CONCLUSION AND DISCUSSION

This work proposes a novel federated learning aggregation method called FedBN that keeps the
local Batch Normalization parameters not synchronized with the global model, such that it mitigates
feature shifts in non-IID data. We provide convergence guarantees for FedBN in realistic federated
settings under the overparameterized neural networks regime, while also accounting for practical
issues. In our experiments, our evaluation across a suite of federated datasets has demonstrated
that FedBN can significantly improve the convergence behavior and model performance of non-IID
datasets. We also demonstrate the effectiveness of FedBN in scenarios that where a new client with
an unknown domain joins the FL system (see Appendix G).

FedBN is independent of the communication and aggregation strategy and thus can in practice be
readily combined with different optimization algorithms, communication schemes, and aggregation
techniques. The theoretical analysis of such combinations is an interesting direction for future work.
We also note that since FedBN makes only lightweight modifications to FedAvg and has much
flexibility to be combined with other strategies, these merits allow us to easily integrate FedBN
into existing tool-kits/systems, such as Pysyft (Ryffel et al., 2018), Google TFF (Google, 2020),
Flower (Beutel et al., 2020), dlplatform (Kamp & Adilova, 2020) and FedML (He et al., 2020)8.

We believe that FedBN can improve a wide range of applications such as healthcare (Rieke et al.,
2020) and autonomous driving (Kamp et al., 2018). A few interesting directions for future work
include analyzing what types of differences in local data can benefit from FedBN and explore the
limits of FedBN. Moreover, privacy is an essential concern in FL. Invisible BN parameters in FedBN
should make attacks on local data more challenging. It would be interesting to quantify the privacy-
preservation improvement in FedBN.

8The implementations on dlplatform and Flower are available, and the implementation on FedML is to
appear soon.
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APPENDIX

Roadmap of Appendix The Appendix is organized as follows. We list the notations table in
Section A. We provide theoretical proof of convergence in Section B. The algorithm of FedBN is
described in Section C. The details of experimental setting are in Section D and additional results
on benchmark datasets are in Section E. We show experiment on synthetic data in Section F. We
demonstrate the ability of generalizing FedBN to test on a new client in Section G.

A NOTATION TABLE

Notations Description
x features, x ∈ Rd
d dimension of x
y labels, y ∈ R

P (·) probability distribution
N total number of clients
T total number of epochs in training
E number of local iteration in FL
M number of training samples in each client
[N ] set of numbers, [N ] = {1, . . . , N}
i indicator for client, i ∈ [N ]
j indicator for sample in each client, j ∈ [M ]

(xij , y
i
j) the j-th training sample in client i

m number of neurons in the first layer
k indicator for neuron, k ∈ [m]
vk parameters for the k-th neuron in the first layer
‖ v ‖S vector norm, ‖ v ‖S,

√
v>Sv, given a matrix S

Si covariance matrix for features in client i, Si = Exixi>

p, q indicator for sample, p, q ∈ [NM ]
f two layer ReLU neural network with BN
f∗ two layer ReLU neural network with BN with client-specified BN parameters
V parameters of the first phase neurons, V ∈ Rm×d
γ the scaling parameter of BN
c top layer parameters of the network
σ(·) ReLU activation function, σ(·) = max{·, 0}

N(µ,Σ) Gaussian with mean µ and covariance Σ
U [−1, 1] Rademacher distribution

α variance of vk at initialization
L(f) empirical risk with square loss for network f
Λ(t) evolution dynamic for FedAvg at epoch t
V(t) evolution dynamic with respect to V for FedAvg at epoch t
G(t) evolution dynamic with respect to γ for FedAvg at epoch t
Λ∗(t) evolution dynamic for FedBN at epoch t
V∗(t) evolution dynamic with respect to V for FedBN at epoch t
G∗(t) evolution dynamic with respect to γ for FedBN at epoch t
λmin(A) the minimal eigenvalue of matrix A

G∞ expectation of G(t)
G∗∞ expectation of G∗(t)

Table 2: Notations occurred in the paper.
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B CONVERGENCE PROOF

B.1 EVOLUTION DYNAMICS

In this section, we calculate the evolution dynamics Λ(t) for training with function f and Λ∗(t)
for training with f∗. Since the parameters are updated using gradient descent, the optimization
dynamics of parameters are

dvk
dt

= − ∂L

∂vk
,

dγk
dt

= − ∂L
∂γk

.

Let fp = f(x
ip
p ). Then, the dynamics of the prediction of the p-th data point in site ip is

∂fp
∂t

=

m∑
k=1

∂fp
∂vk

dvk
dt

+
∂fp
∂γk

dγk
dt

= −
m∑
k=1

∂fp
∂vk

∂L

∂vk︸ ︷︷ ︸
Tpv

−
m∑
k=1

∂fp
∂γk

∂L

∂γk︸ ︷︷ ︸
Tpγ

.

The gradients of fp and L with respect to vk and γk are computed as
∂fp
∂vk

(t) =
1√
m

ck · γk(t)

‖vk(t)‖Sip
· xv

ip
k (t)⊥

p 1pk(t),

∂L

∂vk
(t) =

1√
m

NM∑
q=1

(fq(t)− yq)
ck · γk(t)

‖vk(t)‖Siq
x

v
iq
k (t)⊥

q 1qk(t),

∂fp
∂γk

(t) =
1√
m

ck
‖vk(t)‖Sip

σ
(
vk(t)>xp

)
,

∂L

∂γk
(t) =

1√
m

NM∑
q=1

(fq(t)− yq)
ck

‖vk(t)‖Siq
σ
(
vk(t)>xq

)
,

where fp = f(x
ip
p ), x

v
ip
k (t)⊥

p , (I− Sipuu>

‖u‖2Sip
)x, and 1pk(t) , 1{vk(t)>xp≥0}.

We define Gram matrix V(t) and G(t) as

Vpq(t) =
1

m

m∑
k=1

(αck · γk(t))
2 ‖vk(t)‖−1Sip

‖vk(t)‖−1Siq

〈
x

v
ip
k (t)⊥

p ,x
v
iq
k (t)⊥

q

〉
1pk(t)1qk(t), (6)

Gpq(t) =
1

m

m∑
k=1

c2k ‖vk(t)‖−1Sip
‖vk(t)‖−1Siq

σ
(
vk(t)>xp

)
σ
(
vk(t)>xq

)
. (7)

It follows that

T pv (t) =

NM∑
q=1

Vpq(t)

α2
(fq(t)− yq) , T pγ (t) =

NM∑
q=1

Gpq(t) (fq(t)− yq) .

Let f = (f1, . . . , fn)
>

= (f (x1) , . . . , f (xNM ))
>. The full evolution dynamic is given by

df

dt
= −Λ(t)(f(t)− y), where Λ(t) :=

V(t)

α2
+ G(t).

Similarly, we compute Gram matrix V∗(t) and G∗(t) for FedBN with f∗ as

V∗pq(t) =
1

m

m∑
k=1

(αck)
2
γk,ip(t)γk,iq (t) ‖vk(t)‖−1Sip

‖vk(t)‖−1Siq

〈
x

v
ip
k (t)⊥

p ,x
v
iq
k (t)⊥

q

〉
1pk(t)1qk(t),

(8)

G∗pq(t) =
1

m

m∑
k=1

c2k ‖vk(t)‖−1Sip
‖vk(t)‖−1Siq

σ
(
vk(t)>xp

)
σ
(
vk(t)>xq

)
1{ip = iq}. (9)

Thus, the full evolution dynamic of FedBN is
df∗

dt
= −Λ∗(t)(f∗(t)− y), where Λ∗(t) :=

V∗(t)
α2

+ G∗(t).
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B.2 PROOF OF LEMMA 4.3

Dukler et al. (2020) proved that the matrix G∞ is strictly positive definite. In their proof, G∞ is the
covariance matrix of the functionals φp define as

φp(v) := σ
(
v>xp

)
over the Hilbert space V of L2

(
N
(
0, α2I

))
. G∗∞ is strictly positive definite by showing that

φ1, · · · , φNM are linearly independent, which is equivalent to that

c1φ1 + c2φ2 + · · ·+ cNMφNM = 0 in V (10)

holds only for cp = 0 for all p.

Let G∞i denote the i-th M ×M block matrices on the diagonal of G∞. Then we have

G∗∞ = diag(G∞1 , · · · ,G∞N ).

To prove that G∗∞ is strictly positive definite, we will show that G∞i is positive definite. Let us
define

φ∗j,i(v) := σ
(
v>xj

)
1{j ∈ site i}, j = 1, · · · ,M.

Then, we are going to show that

c1φ
∗
1,i + c2φ

∗
2,i + · · ·+ cMφ

∗
M,i = 0 (11)

holds only for cj = 0,∀j ∈ [M ]. Suppose there exist c1, · · · , cM that are not identically 0, satisfying
(11). Let the coefficients for client i be c1, · · · , cM and let the coefficients for other client be 0. Then,
we have a sequence of coefficients satisfying (10), which is a contradiction with that G∞ is strictly
positive definite. This implies G∞i is strictly positive definite. Namely, G∞i ’s eigenvalues are
positive. Since the eigenvalues of G∗∞ are exactly the union of the eigenvalues of G∞i , λmin(G∗∞)
is positive and thus, G∗∞ is strictly positive definite.

B.3 PROOF OF COROLLARY 4.6

To compare the convergence rates of FedAvg and FedBN when E = 1, we compare the exponential
factor in the convergence rates, which are (1− ηµ0/2) and (1− ηµ∗0/2) for FedAvg and FedBN,
respectively. Then, it reduces to comparing µ0 = λmin(G∞) and µ∗0 = λmin(G∗∞). Comparing
equation (7) and (9), G∗∞ takes the M ×M block matrices on the diagonal of G∞:

G∞ =


G∞1 G∞1,2 · · · G∞1,N
G∞1,2 G∞2 · · · G∞2,N

...
...

. . .
...

G∞1,N G∞2,N · · · G∞N

 , G∗∞ =


G∞1 0 · · · 0

0 G∞2 · · · 0
...

...
. . .

...
0 0 · · · G∞N

 ,
where G∞i is the i-th M ×M block matrices on the diagonal of G∞. By linear algebra,

λmin(G∞i ) ≥ λmin(G∞), ∀i ∈ [N ].

Since the eigenvalues of G∗∞ are exactly the union of eigenvalues of G∞i , we have

λmin(G∗∞) = min
i∈[N ]
{λmin(G∞i )},

≥ λmin(G∞).

Thus, (1− ηµ0/2) ≥ (1− ηµ∗0/2) and we can conclude that the convergence rate of FedBN is
faster than the convergence of FedAvg.
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C FEDBN ALGORITHM

We describe the details algorithm of our proposed FedBN as following Algorithm 1:

Algorithm 1 Federated Learning using FedBN
Notations: The user indexed by k, neural network layer indexed by l, initialized model param-

eters: w(l)
0,k, local update pace: E, and total optimization round T .

1: for each round t = 1, 2, . . . , T do
2: for each user k and each layer l do
3: w

(l)
t+1,k ← SGD(w

(l)
t,k)

4: end for
5: if mod(t, E) = 0 then
6: for each user k and each layer l do
7: if layer l is not BatchNorm then
8: w

(l)
t+1,k ← 1

K

∑K
k=1 w

(l)
t+1,k

9: end if
10: end for
11: end if
12: end for
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D EXPERIMENTAL DETAILS

D.1 VISUALIZATION OF BENCHMARK DATASETS
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Figure 6: Data visualization. (a) Examples from each dataset (client). (b) Non-iid feature distribu-
tions across the datasets (over random 100 samples for each dataset).

We show image examples from the five benchmark datasets and the pixel value histogram. It ob-
viously presents the heterogeneous appearances and shifted distributions. Clients formed from the
five benchmark datasets are viewed as non-iid.

D.2 MODEL ARCHITECTURE AND TRAINING DETAILS ON BENCHMARK

We illustrate our model architecture and training details of the digits classification experiments in
this section.

Model Architecture. For our benchmark experiment, we use a six-layer Convolutional Neural
Network (CNN) and its details are listed in Table 3.

Layer Details

1 Conv2D(3, 64, 5, 1, 2)
BN(64), ReLU, MaxPool2D(2, 2)

2 Conv2D(64, 64, 5, 1, 2)
BN(64), ReLU, MaxPool2D(2, 2)

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

4 FC(6272, 2048)
BN(2048), ReLU

5 FC(2048, 512)
BN(512), ReLU

6 FC(512, 10)

Table 3: Model architecture of the benchmark experiment. For convolutional layer (Conv2D), we
list parameters with sequence of input and output dimension, kernal size, stride and padding. For
max pooling layer (MaxPool2D), we list kernal and stride. For fully connected layer (FC), we list
input and output dimension. For BatchNormalization layer (BN), we list the channel dimension.
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Training Details. We give detailed settings for the experiments conducted in 5.1: (1) convergence
rate (Table 4), (2) analysis of local update epochs (Table 5), (3) analysis of local dataset size (Table
6), (4) effects of statistical heterogeneity (Table 7) and (5) comparison with state-of-the-art (Table
8). Each table describes the number of clients, samples and the local update epochs.

During training process, we use SGD optimizer with learning rate 10−2 and cross-entropy loss,
we set batch size to 32 and training epochs to 300. For hyper-parameter µ, we use the best value
µ = 10−2 founded by grid search from the the default settings in FedProx Li et al. (2020b).

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1 1 1 1 1

Table 4: Settings for convergence rate. Each dataset has 1 client with 743 samples, local update
epoch is set to 1.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1,4,8,16 1,4,8,16 1,4,8,16 1,4,8,16 1,4,8,16

Table 5: Settings for local update epochs. Each dataset has 1 client with 743 samples, local update
epoch for all datasets is set to 1, 4, 8, 16 successively.
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Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples ω ω ω ω ω
Local update epochs 1 1 1 1 1

Table 6: Settings for local dataset size, we set local update epochs to 1 and each dataset has 1 client.
The number of samples ω ∈ {74, 371, 743, 1487, 2975, 4462, 7438}.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
Number of samples [1, 10]×743 [1, 10]×743 [1, 10]×743 [1, 10]×743 [1, 10]×743
Local update epochs 1 1 1 1 1

Table 7: Settings for statistical heterogeneity, [1, 10] for the range from 1 to 10. We increase number
of clients step by step and number of samples will increase accordingly.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1 1 1 1 1

Table 8: Settings for comparison with SOTA, we use 1 client with 743 samples and 1 local update
epoch for comparison experiment.
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D.3 MODEL ARCHITECTURE AND TRANING DETAILS OF IMAGE CLASSIFICATION TASK ON
OFFICE-CALTECH10 AND DOMAINNET

In this section, we provide the details of our model and training process on both Office-Caltech10
Gong et al. (2012) and DomainNet Peng et al. (2019) dataset.

Model Architecture. For the image classification tasks on these two real-worlds datasets Office-
Caltech10 and DomainNet data, we use adapted AlexNet added with BN layer after each convolu-
tional layer and fully-connected layer (except the last layer), architecture is shown in Table 9.

Layer Details

1 Conv2D(3, 64, 11, 4, 2)
BN(64), ReLU, MaxPool2D(3, 2)

2 Conv2D(64, 192, 5, 1, 2)
BN(192), ReLU, MaxPool2D(3, 2)

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

3 Conv2D(192, 384, 3, 1, 1)
BN(384), ReLU

4 Conv2D(384, 256, 3, 1, 1)
BN(256), ReLU

5 Conv2D(256, 256, 3, 1, 1)
BN(256), ReLU, MaxPoll2D(3, 2)

6 AdaptiveAvgPool2D(6, 6)

7 FC(9216, 4096)
BN(4096), ReLU

8 FC(4096, 4096)
BN(4096), ReLU

9 FC(4096, 10)

Table 9: Model architecture for Office-Caltech10 and DomainNet experiment. For convolutional
layer (Conv2D), we list parameters with sequence of input and output dimension, kernal size, stride
and padding. For max pooling layer (MaxPool2D), we list kernal and stride. For fully connected
layer (FC), we list input and output dimension. For BatchNormalization layer (BN), we list the
channel dimension.

Training Details. Office-Caltech10 selects 10 common objects in Office-31 Saenko et al. (2010)
and Caltech-256 datasets Griffin et al. (2007). There are four different data sources, one from
Caltech-256 and three from Office-31, namely Amazon(images collected from online shopping web-
site), DSLR and Webcam(images captured in office environment using Digital SLR camera and web
camera).

We first reshape input images in the two dataset into 256×256×3, then for training process, we use
cross-entropy loss and SGD optimizer with learning rate of 10−2, batch size is set to 32 and training
epochs is 300. When comparing with FedProx, we set µ to 10−2 which is tuned from the default
settings. The data sample number are kept into the same size according to the smallest dataset,
i.e. Office-Caltech10 uses 62 training samples and DomainNet uses 105 training samples on each
dataset. In addition, for simplicity, we choose top-10 class based on data amount from DomainNet
containing images over 345 categories.
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D.4 ABIDE DATASET AND TRAINING DETAILS

Here we describe the real-world medical datasets, the preprocessing and training details.

Dataset: The study was carried out using resting-state fMRI (rs-fMRI) data from the Autism
Brain Imaging Data Exchange dataset (ABIDE I preprocessed, (Di Martino et al., 2014)). ABIDE
is a consortium that provides preciously collected rs-fMRI ASD and matched controls data for the
purpose of data sharing in the scientific community. We downloaded Regions of Interests (ROIs)
fMRI series of the top four largest sites (UM, NYU, USM, UCLA viewed as clients) from the
preprocessed ABIDE dataset with Configurable Pipeline for the Analysis of Connectomes (CPAC)
and parcellated by Harvard-Oxford (HO) atlas. Skipping subjects lacking filename, resulting in 88,
167, 52, 63 subjects for UM, NYU, USM, UCLA separately. Due to a lack of sufficient data, we
used sliding windows (with window size 32 and stride 1) to truncate raw time sequences of fMRI.
The compositions of four sites were shown in Table 10. The number of overlapping truncate is the
dataset size in a client.

NYU UM1 USM UCLA1
Total Subject 167 88 52 63
ASD Subject 73 43 33 37
HC Subject 94 45 19 26
ASD Percentage 44% 49% 63% 59%
fMRI Frames 176 296 236 116
Overlapping Trunc 145 265 205 85

Table 10: Data summary of the dataset used in our study.

Training Process : For all the strategies, we set batch size as 100. The total training local epoch
is 50 with learning rate 10−2 with SGD optimizer. Local update epoch for each client is E = 1. We
selected the best parameters µ = 0.2 in FedProx through grid search.
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E MORE EXPERIMENTAL RESULTS ON BENCHMARK DATASETS

E.1 CONVERGENCE COMPARISON OVER FEDAVG AND FEDBN

In this section we conduct an additional convergence analysis experiment over different local update
epochs settings: E = 1, 4, 8, 16. As shown in Fig. 7, FedBN converges faster than FedAvg under
different values of E, which is supportive to our theoretical analysis in Section 4 and experimental
results in Section 5.

Figure 7: Training loss over epochs with different local update frequency.

E.2 DETAILED STATISTICS OF FIGURE 5

In Figure 5, we compare the performance with respect to accuracy of FedBN and alternative meth-
ods. We show the detailed accuracy in the following Table 11.

Methods SVHN USPS Synth MNIST-M MNIST
Single 65.25 (1.07) 95.16 (0.12) 80.31 (0.38) 77.77 (0.47) 94.38 (0.07)
FedAvg 62.86 (1.49) 95.56 (0.27) 82.27 (0.44) 76.85 (0.54) 95.87 (0.20)
FedProx 63.08 (1.62) 95.58 (0.31) 82.34 (0.37) 76.64 (0.55) 95.75 (0.21)
FedBN 71.04 (0.31) 96.97 (0.32) 83.19 (0.42) 78.33 (0.66) 96.57 (0.13)

Table 11: The detailed statistics reported with format mean (std) of accuracy presented on Fig. 5 .
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E.3 COMPARE FEDBN WITH CENTRALIZED TRAINING

To better understand the significance of the numbers reported in our main context, we compare
FedBN with centralized training, that pools all training data in to a center. We present the testing
accuracy on each digit dataset in Table 12. FedBN, federated learning with data-specific BN layers,
could achieve comparable performance with vanilla centralized training strategy.

SVHN USPS SynthDigits MNIST-M MNIST
Centralized 74.18 (0.44) 96.46 (0.30) 84.57 (0.38) 79.65 (0.24) 96.53 (0.19)
FedBN 71.04 (0.31) 96.97 (0.32) 83.19 (0.42) 78.33 (0.66) 96.57 (0.13)

Table 12: Testing accuracy on each testing sets with format mean(std) from 5-trial run.

E.4 DIFFERENT COMBINATIONS OF E AND B

In this section, we show different combinations of local update epochs E and batch size B. Specif-
ically, E ∈ {1, 4, 16} and B ∈ {10, 50,∞}, ∞ denotes full batch learning. Following the setting
in original FedAvg paper McMahan et al. (2017), we present the comparisons between FedBN and
FedAvg on each combination ofE andB in Table 13. The results are in good agreement that FedBN
can consistently outperform FedAvg and robust to batch size selection. Further, we depicts the test
sets accuracy vs. local epochs under different combination of E and B in Figure 8.

Setting SVHN USPS SynthDigits MNIST-M MNIST

B=10, E=1 FedAvg 65.50 97.04 84.25 81.65 96.55
FedBN 76.18 97.37 86.51 82.81 97.41

B=10, E=4 FedAvg 69.80 96.67 85.63 82.54 97.21
FedBN 76.23 97.04 86.99 83.14 97.05

B=10, E=16 FedAvg 65.05 95.05 83.74 80.79 96.71
FedBN 75.56 96.13 84.78 80.29 96.44

B=50, E=1 FedAvg 62.42 95.32 81.66 75.28 96.06
FedBN 70.70 97.04 82.74 78.38 96.57

B=50, E=4 FedAvg 61.67 95.16 80.69 74.44 95.71
FedBN 69.85 97.10 81.78 77.56 96.40

B=50, E=16 FedAvg 60.00 94.68 79.37 73.39 95.28
FedBN 67.67 96.94 80.39 76.54 95.66

B=∞, E=1 FedAvg 60.99 94.57 79.69 74.36 95.86
FedBN 65.98 96.29 79.75 76.79 96.15

B=∞, E=4 FedAvg 59.07 95.38 79.88 73.97 94.51
FedBN 65.25 96.34 79.99 73.96 95.51

B=∞, E=16 FedAvg 61.88 94.68 78.69 74.36 95.46
FedBN 64.39 95.16 78.22 73.96 95.57

Table 13: Test sets accuracy using different combinations of batch size B and local update epoch E
on benchmark experiment with the default non-iid setting.
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Figure 8: Test set accuracy curve (average of 5 datasets) of using different local updating epochs E
and batch size B for FedBN.

E.5 DETAILED STATISTICS OF VARYING LOCAL DATASET SIZE EXPERIMENT

Considering putting all results in one figure (15 lines) might affect readability of the figure, we
excluded the statistics of FedAvg in our Fig. 4 (b), the ablation study of our method on the effect of
local dataset size. Here, we list the full results in Table 14. It is not too surprising that at Singleset
can be the best when the a local client gets a lot of data.

Setting 100% 60% 40% 20% 10% 5% 1%

MNIST
SingleSet 98.09 97.84 97.22 96.14 94.35 90.86 75.28
FedAvg 98.96 98.54 98.13 97.51 96.22 93.79 79.94
FedBN 98.91 98.63 98.34 97.78 96.72 94.67 85.22

SVHN
SingleSet 85.74 84.62 82.75 76.42 66.81 52.62 12.06
FedAvg 82.08 79.56 77.37 70.84 63.80 49.15 23.67
FedBN 86.93 84.72 82.87 78.20 71.31 61.53 31.98

USPS
SingleSet 98.87 98.49 97.85 96.94 95.11 93.01 80.11
FedAvg 98.33 97.85 97.42 96.61 95.59 93.76 79.09
FedBN 98.82 98.92 98.55 98.17 97.58 96.24 85.05

Synth
SingleSet 94.33 92.82 91.02 86.77 80.47 70.61 14.10
FedAvg 93.98 92.57 91.04 87.03 82.17 72.76 42.11
FedBN 94.40 92.81 91.75 88.03 83.06 74.85 43.76

MNISTM
SingleSet 93.30 91.63 89.41 84.34 77.59 66.02 17.23
FedAvg 90.59 88.91 86.21 82.11 76.93 67.97 41.71
FedBN 91.35 89.95 87.79 83.73 78.80 70.04 44.17

Table 14: Model performance over varying dataset sizes on local clients

E.6 TRAINING ON UNEQUAL DATASET SIZE

In our benchmark experiment (Section 5.1), we truncate the sample size of the five datasets to their
smallest number. This data preprocessing intends to strictly control non-related factors (e.g., imbal-
anced sample numbers across clients), so that the experimental findings can more clearly reflect the
effect of local BN. In this regard, truncating datasets is a reasonable way to make each client have
an equal number of data points and local update steps. It is also possible to keep the data sets in their
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original size (which is unequal), by allowing clients with less data to repeat sampling. In this way,
all clients use the same batch size and same local iterations of each epoch. We add results of such a
setting with 10% and full original datasize in Table 15 and Table 16 respectively. It is observed that
FedBN still consistently outperforms other methods.

Method SVHN USPS SynthDigits MNIST-M MNIST
7943 743 39116 5600 5600

FedAvg 87.00 98.01 97.55 88.69 98.75
FedProx 86.75 97.90 97.53 88.86 98.86
FedBN 89.34 98.28 97.83 90.34 98.89

Table 15: Testing accuracy of each clients when clients’ training samples are unequal using 10% of
original data. The number of training samples for each client are denoted under their names.

Method SVHN USPS SynthDigits MNIST-M MNIST
79430 7430 391160 56000 56000

FedAvg 99.59 92.27 98.71 99.30 95.27
FedProx 99.50 92.12 98.66 99.27 95.44
FedBN 99.62 94.34 98.92 99.54 96.72

Table 16: Testing accuracy of each clients when clients’ training samples are unequal using full size
data. The number of training samples for each client are denoted under their names.
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F SYNTHETIC DATA EXPERIMENT

Settings We generate data from two-pair of multi-Gaussian distributions. For one pair, samples
(x, 0) and (x, 1) are sampled from N (−1, Σ1) and N (1, Σ1) respectively, with coveriance Σ1 ∈
R10×10. For another pair, samples (x̃, 0) and (x̃, 1) are sampled from N (−1, Σ2) and N (1, Σ2)
respectively, with coveriance Σ2 ∈ R10×10. Specifically, we design convariance matrix Σ1 as an
identity diagonal matrix and Σ2 is different from Σ1 by having non-zero values on off-diagonal
entries. We train a two-layer neural network with 100 hidden neurons for 600 steps using cross-
entropy loss and SGD optimizer with 1×10−5 learning rate. DenoteWk and bk are the in-connection
weigths and bias term of neuron k. We initialize the model parameters with Wk ∼ N (0, α2I), bk ∼
N (0, α2), where α = 10.

Results. The aim of synthetic experiments is to study the behavior of using FedBN with a controlled
setup. We achieve 100% accuracy on binary classification for FedAvg and FedBN. Fig. 9 shows
comparison of training loss curve over steps using FedAvg and FedBN, presenting that FedBN
obtains significantly faster convergence than FedAvg.

 

MNISTSVHN USPS SynthDigits MNIST-M

(a) client 1 (b) client 2

Figure 9: Training loss on synthetic data. Data in client 1 is generated from Diagonal Gaussian,
client 2 is generated from combination of Diagonal Gaussian and Full Gaussian.
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G TRANSFER LEARNING AND TESTING ON UNKNOWN DOMAIN CLIENT

In this section, we discuss out-of-domain generalization of FedBN and prove the solutions for the
following two scenarios: 1) transferring FedBN to a new unknown domain clients during training;
2) testing an unknown domain client.

If a new center from another domain joins training, we can transfer the non-BN layer parameters
of the global model to this new center. This new center will compute its own mean and variance
statistics, and learn the corresponding local BN parameters.

Testing the global model on a new client with unknown statistics outside federation requires allow-
ing access to local BN parameters at testing time (though BN layers are not aggregated at the global
server during training). In this way, the new client can use the averaged trainable BN parameters
learned at existing FL clients, and compute the (mean, variance) on its own data. Such a solution
is also in line with what was done in recent literature, e.g., SiloBN (Andreux et al., 2020). We
conduct the experiment with this solution for FedBN and compared its performance with FedAvg
and FedProx. Specifically, we use the digits classification task and treat the two unseen datasets –
Morpho-global and Morpho-local from Morpho-MNIST (Castro et al., 2019) as the two new clients.
The new clients contain substantially perturbed digits. Specifically, Morpho-global containing thin-
ning and thickening versions of MNIST digits, while Morpho-local changes MNIST by swelling
and fractures. The results are listed in Table 17. It is observed that the obtained results from three
methods are generally comparable in such a challenging setting, with FedBN presenting slightly
higher performance on overall average accuracy.

Morpho-global Morpho-local
FedBN 92.45 94.61
FedProx 92.35 94.31
FedAvg 91.28 93.55

Table 17: Generalizing the global model to unseen-domain clients.
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