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ABSTRACT

Federated Learning (FL) is becoming increasingly important in Al training, partic-
ularly for privacy-sensitive applications. At the same time, it has become a subject
of malicious action and needs better protection against adversarial attacks causing
data corruptions or other anomalies. In this work, we show that, in contradiction
to a popular point of view, if properly introduced security enhancement does im-
prove FL convergence and performance. Taking inspiration from the classical PID
control theory, we develop a novel anomaly detection and exclusion approach.
Unlike other aggregation techniques that rely solely on current round Euclidean
distances between clients, we compute a PID-based history-aware score, which is
used to detect anomalies that exceed a statistically defined threshold. Our adaptive
exclusion mechanism removes the need for predefined attacker counts, and its
server-side linear computational complexity of O(nd) ensures its scalability and
practical significance, while existing methods remain superlinear in complexity. We
prove theoretically and experimentally verify faster convergence and computational
efficiency on several benchmark datasets of various modalities, including non-iid
scenarios and different model architectures such as CNNs and LLMs, and show
that our method maintains effectiveness while boosting convergence. Our approach
is generalizable across diverse task domains and aggregation methods, and is easily
implementable in practice.

1 INTRODUCTION

Federated Learning (FL) is a decentralized Machine Learning (ML) paradigm that enables multiple
clients to collaboratively train a shared model without exposing their private data (McMahan et al.,
2017). FL is becoming indispensable in modern ML privacy-sensitive applications in various domains,
such as healthcare and finance, where data sharing is restricted due to ethical and legal constraints.
However, FL systems are prone to learning efficiency degradation due to anomalous client model
updates, which can occur because of malicious actions or data corruption (Zhang et al.| 2023} |Yan
et al.l [2023). There exist various anomaly detection and exclusion mechanisms operating in the
model space (Blanchard et al., 2017b; Mhamdi et al., [2018a; |Cao et al., 2021} Shejwalkar et al.,
2022])), which mitigate the malicious impact but commonly impose computational and communication
overhead, potentially slowing down the model’s convergence.

We argue that robustness need not come at the expense of efficiency. In fact, we demonstrate that
anomaly detection and exclusion can actually enhance FL and lead to models that converge faster
and are more accurate. Inspired by the classical Proportional-Integral-Derivative (PID) control
theory, we introduce PID-M ADE—Proportional-Integral-Derivative Model Anomaly Detection and
Exclusion technique. PID-MADE combines three metrics instead of one distance based, employed
by competitive methods. While on each round the generic proportional term calculates the current
update distance from the target reference, the integral term accumulates the sum of previous distances
to capture the persistent misbehavior, and the derivative term - the distance change to flag the sudden
attacks. A client is removed only when its composite score breaches a statistically derived threshold,
making the method adaptive, history-aware, and lightweight (O(nd) per round). Furthermore, we
relax the unrealistic in practice assumptions or system design requirements of some other approaches

(Table [T).
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Table 1: Comparison of FL aggregation strategies emphasizing convergence and practicality. PID-MADE
achieves both stable/fast convergence and practical deployability.

Algorithm Cost Convergence Speed ‘ Practicality | Ad (A) and Disad (D)

PID-MADE (ours) Low O(nd) Fast High A: Scalable, adaptive, stateful, no prior attacker
knowledge; ensures convergence stability. D:
Improper coefficients can make the detection
less effective.

FedAvg (McMahan et al.|[2023) Low O(nd) Slow High A: Extremely cheap. D: Easily diverges in
adversarial or heterogeneous settings.

FedMedian (Yin et al.|[2018] Medium O(nlogn - d) Medium High A: Scalable. D: Stateless; convergence slower
and less consistent.

Trimmed Mean (Yin et al.|[2018] Medium O(nlogn - d) Medium High A: Scalable. D: Requires attacker estimate;

— | stability depends on trimming.

FLTrust (Cao et al.}2021}) Low O(nd) Fast Low A: Strong in controlled setups. D: Impractical
without trusted dataset; stateless.

RFA (Geometric Median) (Pillutla et al.|[2022} Medium O(T - nd) Medium Medium A: Convergence reliable. D: Iterative overhead

) delays training; stateless.
Krum (Blanchard et al.|[2017a} High O(n?d) Slow Low A: Handles many anomalies. D: Not scalable;
| convergence stalls with high variance.

Bulyan (Mhamdi et al.|[2018b) High O(n?d) Slow Low A: Effective filtering. D: Extremely costly;
convergence often delayed.

FoolsGold (Fung et al.||2020} High O(n?d) Slow Low A: Handles collusion. D: Not scalable; conver-
gence unstable with non-iid data.

Clustered FL (Sattler et al.|[2020) Medium O(nCd) Medium High A: Improves local convergence. D: Not a pri-

] | mary defense; stateless.

SignFedAvg (Bernstein et al.|2018) Low O(nd) Slow High A: Very low cost. D: Convergence noisy with
adversarial or skewed updates.

Norm-Clipping (Abadi et al.[2016) Low O(nd) Medium High A: Simple and scalable. D: Restricts updates,
delaying convergence speed; stateless.

FLANDERS (Gabrielli et al.}[2024) Very High O(maz(d®, m?) Medium Low A: Models the temporal evolution of updates
using MAR D: Cubic complexity challenges
wider adoption.

This paper has the following major contributions. (1) We produce a formal theoretical analysis
proving that a FL algorithm incorporating model anomaly detection and exclusion (MADE) does
not violate the original FL. procedure convergence. (2) We further provide the theoretical prove and
the empirical evidence demonstrating that FL. with MADE expedites the convergence in comparison
against the undefended FL in the presence of anomalies. (3) We introduce PID-MADE, a novel more
efficient FL anomaly detection and exclusion technique designed to reduce computational burden
while incorporating temporal information about clients. Another key advantage of PID-MADE is
that it could be employed with no knowledge of the estimated number of malicious clients or a
server-side validation dataset, like in Krum (Blanchard et al., |2017b), FLTrust (Cao et al.,|2021) and
its derivatives. We prove the PID-MADE’s linear computational complexity and provide statistically-
grounded recommendations on the threshold selection for FL. (4) To facilitate broader adoption and
further research, we implement our novel technique as software tools and make them available to the
public anonymousl for verification. We provide the results of our empirical study and their analysis.

2 RELATED WORK

To aggregate the updates, a variety of FL strategies have been developed, ranging from simple but
computationally efficient to complex, robust algorithms utilizing more resources to withstand the
Byzantine attacks. Table|l|lists the representative sample of the most popular aggregation strategies
classified against three characteristics.

Cost is primarily evaluated by the server-side computational overhead, where Low corresponds to
methods with linear complexity (e.g., O(nd)) , Medium is assigned to those with slightly higher
superlinear complexity (e.g., O(nlogn - d)), and High denotes methods with quadratic or higher
complexity (O(n?d)) that are not scalable to the large number of clients.

Convergence Speed is the ability of an aggregation method to ensure rapid and stable progress of the
global model toward a useful solution from a practical standpoint. Fast methods accelerate learning
despite potential adversarial interference Medium reflects slower or less consistent progress, often
requiring more rounds. Slow methods converge slowly or stagnate due to either excessive variance
introduced by defenses or inability to filter harmful updates effectively.

Practicality assesses the feasibility of real-world deployment, where High implies a “plug-and-play”
nature with no unrealistic assumptions, Medium suggests operational hurdles like iterative solvers,

"https://drive.google.com/file/d/1 VS TeE6ynMPQcnGUu_nIZO0_mkQdniSDH/view 2usp=drive_link.
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Symbol Description

7 Client index

t Communication round

w; Set of weights sent by client ¢ to the server at round ¢

Hnt Model parameters centroid computed by the server at round ¢

di Euclidean distance of the i-th client model from the centroid at round ¢

A Set of all clients participating in the learning process

GgCA Subset of “good” clients not excluded during learning

wf Set of weights for all clients in A atround ¢: A = {wzl s w? ,,,,, w_z‘Al }
wg Set of weights for all clients in G atround t: G = {w,z1 s w? ey wzlg‘ }
w Optimal model parameters that minimize the loss function

[_Ltg Centroid of the “good” models at round ¢

H;A Centroid of all models at round ¢

Table 2: Notation used in the paper.

and Low is reserved for methods with challenging assumptions, such as requiring prior knowledge of
the exact number of attackers, or those requiring representative root dataset.

A crucial shared limitation is that all these methods are stateless and rely on unrealistic assumptions.
They concentrate on analyzing updates within the scope of a single round, discarding additional
information conveyed in the history of client contributions that could reveal long-term or stealth
malicious behavior. Additionally, stronger robustness guarantees usually come at a cost of a more
complex system overall, like in (Cao et al.,[2021}; |Gabrielli et al.| [2024).

3 FL CONVERGENCE UNDER ANOMALIES FORMAL ANALYSIS

In this section, we present a theoretical analysis to evaluate the feasibility of boosting FL. convergence
by excluding anomalous clients from the aggregation process. First, we establish that model anomaly
detection and exclusion accelerates convergence, and then we quantify the acceleration. Figure[2]
summarizes the notation and terminology used throughout the paper. Due to space limitations we
present all the proofs in the Appendix.

We propose an FL defense that aims to identify and separate anomalous clients (“bad”) from benign
ones (“good”) to prevent biased model updates that hinder convergence. This is achieved by analyzing
the distribution of model updates and removing outliers based on their distance from the server’s
target reference representation of the optimal model, which is called the centroid. This can be
described by the following definition of anomalous model weights.

Definition 1 (Anomalous Model Weights): We say that weights submitted by a client are anomalous

if they satisfy the following separation condition: Assume some training round ¢. The minimal

distance between the aggregated anomalous client model updates (w;4 \g) and the optimal model (w*)

must be greater than the maximum distance between the aggregated “good” client model updates
+ M’

where M is a sensitivity margin for outliers. The defense works as long as |G| > | A\ G|, i.e. the
honest majority persists.

(w{) and the optimal model, plus the margin M min 4\g wa\g —w* H > maxg Hwtg — w*‘

Criterion 1 (Anomaly Signature in FL): In real-world FL deployments, some client updates may
deviate drastically from the benign population because of an attacker’s poisoned data or simply
corrupted measurements. We treat any such persistently “outlying” update as an anomaly. Formally,

we say an anomaly in FL satisfies: Ve > 0, 2N € Ns.t. Vt > N, ’

wit — w*H < €. In other words,

no matter how small a tolerance € we choose, there is no round after which the weights w;“ remain
within that tolerance of w™* due to some anomalous client’s contributions. This criterion follows from
Definition 1.

Lemma 1 (Variance Reduction through Outlier Removal): Let {a;} be a set of points on a number
line with scalar values where a; € R, € Nand a; < as < ... <an, N > 2. We consider one of
those points, ay, an outlier point a,, meaning that a, satisfies (a, — )? = maxj<i<y(a; — p)%
Let us form a new set of points by simply removing a,, from the original set. Then, if o2 is the

variance of the original set and 0’2 is the variance of the new set, we have that ¢/? < o2,

Theorem 1 (Convergence Preservation under Anomalous Model Exclusion): Consider global mod-
els m* composed by the aggregation of all local models w;* and m¥ composed by the aggregation

of models after exclusion wtg through FedAvg. If Ve > 0,dN; € Ns.t. Vt > Ny, Hw;“ —w* H <eg,
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then 3Ny € N s.t. Vi > N, Hwtg —w* H < e. That is, assuming the original learning algorithm
converges, an algorithm augmented with anomaly detection and exclusion also converges.

Discussion: removing anomalous clients from the FL aggregation does not violate the convergence
of the original algorithm if it still converges even under the attacks or anomalies. If the original
model ! does converge, this implies that the attack is not strong enough, which in practice can
occur due to various reasons, such as a low proportion of malicious clients or the attack goal was to
make it converge to the wrong model (Shejwalkar et al., |2022). With the convergence of mA, we
can guarantee that if the anomaly detection and exclusion is applied, m¥ will always converge to the
correct model and faster than m*, which is shown in the next part of the theorem. Furthermore, we
make a stronger assumption that even if m- does not converge, m¢ will still converge. While we do
not have a theoretical guarantee, this is suggested by empirical evidence, which we present in Sec. [5]

Theorem 2 (Accelerated Convergence under Anomaly Exclusion): If V; is the round, on which the

wit—w* || <
€, and Ns is the round, on which FL with good clients only (bad clients are removed) converges on
wf, that is V¢ > No, < g, then Ny < Nj.

conventional FL with all clients (no clients removed) converges on w;“, thatis V¢ > Ny,

wf — w*

Discussion: the implication of this theorem is that, when using only the updates from clients without
outlier updates (as in wtg ), the convergence towards the optimal model will be faster than when
aggregating updates from all clients, including those with outlier updates (as in w;*). This is because
the outlier updates, which may significantly deviate from the optimal model, distort the global model,
causing it to remain far from an optimal solution for a longer period. In Sec. [5] we demonstrate our
verification of the convergence on practical use cases. The next result shows a general upper-bound
on this accelerated rate (Theorem 3).

Theorem 3 (Enhanced Convergence Rate under Anomaly Exclusion): The distances between
good models’ and optimal model weights is bounded by the distances between all models’ and
optimal model weights, that is 3N € Ns.t. Vi > N, ng’ — w* H < Cng“ — w*||, where C'is a

constant if the number of malicious clients does not change during learning and C' = H% <1

Proof Sketch: by removing clients sending anomalous updates to the server, we remove the outliers
in the weights dimension, which also reduces the variance, as we show in Lemma 1. Comparing
the variance of benign model weights around the centroid ,utg and the variance of all model weights
around g, and further rewriting in vector notation using the Euclidean norm, the bound follows by
taking the square root.

Discussion: the practical significance of this relationship is that the model with weights w;9 at some
round ¢ > N will converge quicker than wy*, and the weights wtg will be % times closer to the

optimal model than the weights th.
4 PID-MADE APPROACH

We develop a novel PID control-inspired algorithm to detect and exclude anomalous updates from FL.
aggregation. PID provides for a feedback mechanism with three components — proportional, integral,
and derivative — widely used in automated control systems since its formalization by (Minorsky,
1922). The goal of the PID controller is to minimize the error value e(¢) over time by adjusting the
control variable ¢(t). The error is calculated as the difference between the setpoint and the control
variable. The control function ¢(t) is given by ¢(t) = Kpe(t) + K fot e(p)dp + Kq4 dfi(tt), where
e(t) is the error value at time ¢, and the coefficients K. »» K1, and K, determine the weights of the
proportional, integral, and derivative components.

In our approach, the proportional term reacts to instantaneous deviations, the integral term identifies
persistent drifts by accounting for historical trends, and the derivative term anticipates future changes.
These components together enable the effective detection of an abnormal client behavior. Our
algorithm measures the error as the distance between a client’s updates and the centroid, which serves
as a reference target proxy-optimal model for the server. In the following, we describe how we
adopt the PID principle for detecting anomalous clients in FL. The error value is calculated as the
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Euclidean distance of client 7’s model from the centroid p of all submitted models: Dgi) (wgi) we) =

Hwt(z) — 11t Depending on the robustness requirements of the application, the centroid y; can be

(@)

either the mean - ZZN:O w; " or the geometric median: arg min Eﬁio Hwtz) — y|. We illustrate our
Yy

findings in the following sections with the mean variant. The PID score for each client  is calculated
as:

t—1
ul = KpD () + K7 > DD (), py) + Ka(DY (wl”, i) = DIy (), pes))
SN——— —
proportional =0 derivative
integral

For each training round: (1) the server distributes the global model to the clients, (2) the clients train
the model locally for a number of epochs and send it back to the server, (3) the server computes
the centroid ; and our PID score as detailed above and excludes any clients above the threshold
T, derivation of which we describe in Sec. The full mechanism integrated with FedAvg is
summarized in Algorithm [I]

Algorithm 1 PID-MADE with FedAVG

Input: A, set of clients with private local data, alarm rate «
Output: (), aggregated global model
Clients Execute
receive global model from the server
for each local epoch do
execute training algorithm (e.g. SGD)
end for
push the local model w; to the aggregation server
Server Executes
Q+ A
for eachround ¢t = 1,2, ... do
receive wi from local clients
compute fi¢, ul” | iy, o
for each client i € @) do
Q+ Q\{w" : v <7 =u(t) + ko,}
end for
Perform aggregation of weights in () based on FedAvg.
Distribute aggregated global model back to the clients.
end for

4.1 PID-MADE: ANOMALY DETECTION AND EXCLUSION MECHANISM

We detect and exclude anomalies by calculating PID scores for each client based on the distance from
1+ and comparing them against the threshold 7, which is derived from the upper bound of PID scores
for non-anomalous clients. Since the optimal model is unknown, we estimate it with the centroid
e = % Zf\;o wgl) at each round. This yields a biased estimate in highly non-IID settings, in which
case the geometric median can be used instead for more robust estimation (Pillutla et al., [2022). To
derive the threshold 7, we analyze the PID metric in Formula[25]and first provide a permissive upper
bound which is free from assumptions, but leads to a high false negative rate. To improve this bound,
we introduce specific assumptions which allow us to provide a tighter estimate of 7.

Theorem 4 (Permissive Upper Bound for Benign PID Scores): The permissive upper bound of
the PID score for the good client is given by ¢ - (Amam + O(%)), where A, 4. 18 the maximal

deviation from the centroid, f is the number of anomalies, N is the number of all clients, and ¢ is the
number of training rounds. This overly permissive bound provides a zero false-positive (benign clients
misclassified as malicious) rate, but may yield a high false-negative (malicious clients misclassified
as benign) rate. Although impractical as a detection threshold, it serves as a useful baseline from
which we derive tighter, more effective bound estimates.

In Theorems 5 and 6, we provide tighter and more practical upper bounds on PID scores of non-
anomalous clients. Before we introduce Theorems 5 and 6, we present Lemma 2 and Assumption 1
which are necessary for us to prove the theorems.
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Lemma 2 (Bounded Centroid Shift): The centroid shift is bounded by O (%) (see Appendix, proof
of Theorem 4).

Let A, = Hwt(l) — ]| be the deviation of client ¢’s update from the centroid at any round ¢.

Assumption 1 (Uncorrelated Deviations): The sequence of random variables {A;}7_ satisfies
VO <t#y<T:Cov(Ay,Ay) =0.

Although Assumption 1 does not strictly hold in realistic federated settings, nonzero covariances
Cov(Ay, Ay) can only increase the true variance of the PID score — meaning that the threshold we
derive will be more conservative. Empirically, we observe that applying the threshold 7 derived
under Assumption 1 sufficiently separates benign from anomalous clients. A fully rigorous threshold
would account for each pairwise covariance term, however, estimating all Cov(A¢, Ay) online would
impose significant overhead, and in practice the independence-based approximation already provides
a tight, computationally efficient bound, which we derive in Theorems 5 and 6.

Theorem 5 (One-sided Chebyshev Threshold): Let us introduce the random variable U, representing
PID scores. Under Assumption 1 and using Lemma 2, without knowing the distribution of PID
scores, with probability at most «, the PID scores of good clients will be within zo; of the sample
average of PID scores u;, where oy is the standard deviation of PID scores at round ¢. Formally,
Pr[U; — @y > zo¢] < o, where o = ﬁ represents the desired alarm rate (i.e. false positive rate).
With a probability of at least 1 — « the benign clients will be under the threshold 7 = @; + zoy.
Equivalently, no more than a-fraction of benign clients exceed 7. The threshold derivation follows

Chebyshev’s inequality (see the Appendix).

Theorem 6 (Gaussian Threshold): If we assume A; ~ AN (ua, ai), then the PID scores become
also Gaussian, U; ~ N (@, of). Then, the exact Gaussian threshold 7gauss = U + 21— 0t €nsures

a false positive rate of a,, where z;_, is the z-score corresponding to desired a.

Theorems 5 and 6 give us an opportunity to efficiently select the threshold value based on the detection
statistics we want to achieve in practice. To transfer this theoretical foundation into practice and filter

out anomalous clients we compute the expected PID score as sample average u; = % Z?;O u;. Any

ugl) greater than u; + ko, is flagged as an anomaly and excluded from aggregation. As we show
in Sec. @ this empirical threshold estimation is effective even when A; are not Gaussian, which is
often the case in practice. The full algorithm is presented in Algorithm[I] where the input is the set
of client models A and desired alarm rate «, and the output is the non-anomalous client set ) and
the aggregated model. Unlike previous methods, our PID-based approach is adaptive and does not
require prior knowledge of the number of malicious clients. The integral term accumulates historical
deviations, making persistent attackers identifiable over time. Additionally, our method has a linear
time complexity of O(nd) which we prove in Lemma 3.

Lemma 3 (Computational Complexity): Algorithmruns in O(nd) time, where n refers to the
number of clients and d is the dimension of the model parameter space. Proof: the computation of

the centroid yi; and of ugi), U, oy are linear O(nd), keeping total complexity linear O(nd).

5 EMPIRICAL EVALUATION

Anomaly Model: Based on Criterion 1 of model anomalies, introduced in Sec. |3 we implement
and evaluate untargeted data poisoning attacks, focusing on a practical case likely in real-world
scenarios (Shejwalkar et al.,|2022)). Importantly, data poisoning serves as a proxy for a broader class
of anomalies, capturing not only malicious behaviors but also inadvertent deviations arising from
corrupted, mislabeled, or non-representative client data. Thus, our evaluation encompasses both
adversarial and non-adversarial sources of model anomalies.

Datasets: We evaluate our PID-based approach on four image datasets and one text dataset: our own
Intelligent Transportation Systems (ITS), FEMNIST (Caldas et al.,[2018), PneumoniaMNIST and
BloodMNIST (Yang et al.|[2023). In cases of FEMNIST, PneumoniaMNIST and BloodMNIST, the
data was divided based on the source distributions from the datasets. For the FEMNIST dataset, the
clients studied had 9 classes corresponding to the digits 0-9, each class containing 30-50 images.
In the PneumonisMNIST case, we had 8 clients with two imbalanced classes, class 1 consisted of
200-300 samples and class 2 consisted of 600-700 samples. The BloodMNIST dataset contained
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Figure 2: Speed of convergence comparison: the number of rounds required to converge to the specified accuracy
level (top) or loss level in our experiments. A dashed bar means the method did not reach the required threshold
in the given number of training rounds.

40 clients total. Each client of BloodMNIST had 7 classes with varying samples between 10-70,
which illustrated a non-iid case. The ITS datset was designed by us for a binary classification task
between "stop sign" and "traffic sign" labels. The images in the "traffic sign" class were purposefully
of different size, color, and contained traffic signs in various languages to mimic real-world data that
could be collected by an intelligent vehicle. The ITS dataset consisted of 8 clients, with two classes
containing 60 samples each. The dataset is fully available with our submission through the code
library. For each dataset, in the case of anomalous clients all clients had a poisoning rate of 100%, i.e.
all labels were flipped.

The LLM study uses the MedQuAD text dataset (Abacha & Demner-Fushman,2019), which contains
47,457 medical question-answer pairs curated from 12 NIH websites. The dataset was partitioned into
eight FL clients. This partitioning was done in a non-iid manner, simulating realistic heterogeneity in
client data distribution across different medical subdomains, with each client LLM learning responses
for a specific topic in the medical domain. Some clients also had significantly fewer data points,
further contributing to variation in client influence.

PID-MADE Coefficient Selection: Figure [TI| demon- Agaregated Loss History over Rounds (Zoomed In: 0 - 0.05)
strates the coefficient selection impact on the model con- ® foTls
vergence based on our experiments with FEMNIST dataset. T o
Initially, an expert set the coefficients at Kp = 1, K =
0.5 and K; = 0.05 with expectation of persistent anoma-
lies (yellow line). Additionally, we employed the TPE
Bayesian optimization (Bergstra et al.,|2011) to tune the ;
coefficients with the goal to expedite the convergence.
Other lines on Figure E] demonstrate how coefficient Opti— B T R N E R
mization may speed up the convergence.

°
°
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|

Figure 1: Effect of PID Coefficients selection

Metrics: We use loss as the metric that illustrates model
on the convergence speed.

convergence. To provide a more intuitive comparison of
our algorithm against other methods, we define accuracy
and loss thresholds. The thresholds help to illustrate how fast each of the algorithms helps achieve
convergence practically. These thresholds were selected based on the specific dataset that was studied
and the overall performance of the methods in the group, since each dataset presents a different level
of challenge.

Image Classification with CNN Use-Case: We perform an extensive evaluation of PID-MADE
against existing methods on four imaging datasets: FEMNIST, PneumoniaMNIST, our own ITS,
and BloodMNIST. This evaluation is performed in ideal, "laboratory" conditions, where we assume
that the amount of malicious clients is known a priori, which gives a significant edge to Krum,
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FEMNIST ITS PneumoniaMNIST BloodMNIST
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Aggregated Loss
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I —————— Convergence Threshold ——s¢— PID-MADE RFA Bulyan

Figure 3: Aggregated loss vs. rounds across datasets. Anomaly detection (PID-MADE) consistently reaches the
target loss in fewer rounds.

2 MC s. 38 BCs (5%) 4 MCs vs. 36 BCs (10%) 8 MCs vs. 32 BCs (20%) 20 MCs vs. 20 BCs (50%)
0.2 | | | | | | ;
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Figure 4: Aggregated loss vs. rounds on Bloodmnist dataset. PID-MADE preserves convergence effectively
under varying number of MCs as long as the honest majority persists (three left plots) compared to baseline
FedAvg method. With malicious clients reaching 50% convergence becomes problematic

Multi-Krum, and Bulyan. Nonetheless, PID-MADE, without any knowledge about the number of
malicious clients, is capable of providing comparable levels of performance. Figure 2]compares the
number of communication rounds required by five aggregation methods to reach high accuracy (top
row) and low loss (bottom row) on four datasets. Across all experiments, PID-MADE consistently
converges faster than the majority of baselines. On ITS, PID-MADE reaches 90% accuracy in only 5
rounds—besting Krum (6), MKrum (9), RFA (6), and Bulyan (6), and achieves the loss threshold
in 5 rounds compared with 6-14 for the others. For PneumoniaMNIST, PID-MADE requires just 8
rounds to surpass 98% accuracy (next best is Krum at 9) and ties for the lowest loss convergence (4
rounds, matching Krum). Even on the larger FEMNIST task, PID-MADE cuts the rounds almost in
half versus Krum (15 vs. 29 for 90% accuracy; 17 vs. 35 for loss < 0.02), outperforming MKrum
and Bulyan and yielding only to RFA by a small margin. Figure [3|demonstrates the loss curves to
achieve the loss thresholds from the bottom row of Figure[2] Together, Figures 2] 3] illustrate that
(1) distance-based anomaly detection and exclusion can accelerate convergence and (2) PID-MADE
demonstrates faster convergence with no additional knowledge which is required by other approaches
(e.g. number of malicious clients).

We further stress-test PID-MADE with increasing the ratio of malicious participants. The results in
Figure [ show that PID-MADE consistently drives the global model below the target loss threshold
when benign clients are in majority, whereas FedAvg fails to converge and increasingly diverges as
the number of malicious clients grows. While in the borderline case (20 MCs) PID-MADE is less
effective, it can drive the model towards convergence, although with more noticeable fluctuations. This
highlights PID-MADE’s ability to preserve fast and stable convergence even under high adversarial
pressure.
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Figure 5: PID-MADE generalization to LLMs. On federated MLM with a domain LLM, MADE-PID maintains
stable optimization and preserves accuracy while separating adversarial from benign clients. In (c), Client 0 (M)
is the only malicious client.

Masked Language Modeling (MLM) Task with LLM Use-Case: We illustrate the generalization
ability of PID-MADE to the language modeling domain based on the MLM task (Devlin et al., 2019).
We utilize FedProx in this case to illustrate how our method can be applied to other aggregation
methods besides FedAvg. Figure [5shows the performance of PID-MADE combined with FedProx
(PID-MADE + FedProx) compared to baseline FedProx, Krum, Bulyan and RFA on a federated
MLM task with one malicious client injected and non-iid data. On the left, the aggregated loss
decreases much more sharply under PID-MADE, whereas the closest Krum still can’t achieve the
same level of low loss. The center panel highlights the same trend in terms of accuracy: PID-MADE
consistently achieves higher average client accuracy throughout training, surpassing 0.75 by round 3
and continuing to improve. Finally, the right panel illustrates the PID-MADE scores per client. Here,
the malicious client (Client 0) is cleanly separated from benign participants, with scores remaining
above the threshold. This demonstrates that PID-MADE not only accelerates convergence and
improves accuracy, but also provides reliable adversarial detection even in the challenging LLM
setting with diverse client data in the cross-silo case.

6 LIMITATIONS

The statistical nature of our threshold derivation implies that PID-MADE benefits from larger client
populations, which may limit its effectiveness in deployments with extremely few clients. Our
approach is effective as long as the honest majority of clients persists, which is shown in Figure[d] We
assume that benign updates share roughly similar deviation patterns. In highly non-1ID environments,
where legitimate clients’ data distributions vary dramatically, PID-MADE can misclassify rare-but-
valid updates as anomalies.

7 CONCLUSION

We demonstrated that augmenting FL. with anomaly detection and exclusion improves learning
efficiency by provably boosting convergence. Our theoretical analysis provided a foundation for
understanding how FL anomaly exclusion mechanisms contribute to faster convergence of the global
model. As the key contribution, we introduced PID-MADE, a novel FL detection mechanism offering
several key advantages over existing approaches. Notably, PID-MADE operates without requiring
the estimate of expected anomalies, unlike other methods such as Krum and its derivatives, freeing
users from specifying this potentially difficult-to-determine parameter in practice. PID-MADE’s
theoretical analysis demonstrated linear computational complexity while maintaining similar or even
better learning efficiency, a critical factor for scalability in large-scale FL deployments. Finally, we
also provided statistically justified recommendations for threshold selection, which were verified
empirically and demonstrated improved performance against state-of-the-art methods.

8 REPRODUCIBILITY STATEMENT

All code necessary to replicate the experimental results reported in this paper is provided in an
anonymized Google Drive repository. The link to the repository is included on the second page of
the manuscript and in the supplementary materials to ensure full reproducibility while maintaining
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A PROOFS

A.1 PROOF OF CRITERION 1

Assume that Ve > 0,3N € Ns.t. V& > N, ||lw* — w*|| < . This means that by Definition 1

min 4\ g Jwi VI | < e, which can only happen when there are no anomalies. Hence, we have
reached a contradiction with Definition 1, and thus for every € > 0 there is no such NV for which
lwt — w*|| < ¢ is satisfied.

A.2 PROOF OF LEMMA 1

We will show that removing outliers reduces the variance for a set of points on a number line with
scalar values. Let {a;} be a set where a; € R, € Nand a; < a2 < ... < ay. We consider one
of those points, ay, an outlier point a,, meaning that a, significantly deviates from the rest of the
points. The mean @ of {a;} is given as

X
a=— Z a;. (D
N i=1
If we exclude a,, the new mean a’ is
;N
Zl/ = ﬁ Z ;. (2)

But (1) can be rewritten as

1 N—-1
ELN<Zai+aO> 3)

a= - La & % @)
Equivalently, /
Go — G
a—a = ~ o
Variance o2 of the set without outlier removal:
L XN
ot = > (a; —a)? (6)
i=1

L /Nl
o’ = N ( Z (a;i —a)* + (ap — Ez)2> @)

=1

Variance (0')? of the set with a, removed:

-1

() = g O (o~ ) ®)

T =1

The deviation of each term a; around the mean a is

a;—a=a;—a — (a—a) 9

Using (5):

(10)
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(ai—a)2=<a,»—a’—a°;fa> (11)

2
2 o onf[a—d ap, — @
=(a; —a')* —2(a; a)< ~ >—|—< I > (12)

=

@\ =
) (a; —a')+ (13)

=

Zf\gl (a; — a@') = 0 due to sum of deviations around the mean being zero. Then (13) reduces to

NI N2 (14)
2 (Gz _a/)Q + (N— 1)<ao];a )
Plugging (14) into (7) we get
1 [ a, — a' ’
U2:N Z(ai—a')2+(N—l)< "N ) +(ao—a)2] (15)
i=1
Using (8):
2
— _ _a _ )2
O'QZNN 10,2+(NN 1)<a0Na) +(aoNa) (16)

Given that a, is sufficiently large, from (16) it follows that 02 > o2,

A.3 PROOF OF THEOREMS 1 AND 3

According to lemma 1 (the inequality here is not strict because we might not remove any model

weights at all):
1] Z( ) |A\ Z (wt He ) 17

Multiplying by |G| both sides and additionally multiplying the right side by % yields:

: <9l ( >
; 18
In vector notation using the Euclidean norm:

191 H A AH2

s — w8 < i (19)

13
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Because centroid 7' minimizes Hwt — ¥ H

R | R e e 20
H“’t H A A @0
. G % _
Af&!ﬂt wl =0
Fort > N:
G _ < 19l H 21
Finally,

[f - 22)

W\\w—

Let assume that possibly Ny > N7 : N7 < k < N, such that for ka and wg, there exists round &
such that:

A.4 PROOF OF THEOREM 2

*

ng —wt|| > ¢, (23)

ot

meaning that in round &

ot (24)

that contradicts to the definition given in (1). In (]Z[) k is sufficiently large such that the outlier
updates significantly affect the global model wk , causing it to deviate beyond e-distance from w*

ADDITIONAL COMMENTARY TO THEOREMS 1 AND 3

If we further split w;* into “good” wt and “bad” w? clients (B = {wt ,wf e ,wz‘s‘ 1), we can
derive the following, more detailed bound for the relation ‘Il‘fz’u"lll
wy
4 91 ¢ Bl s
wy = wy + w
t IBI +Ig1" 1Bl + \GI '
A H —w* H —w*
w w w w
H ' |B|+Ig| ' \BHIQ\ !
Dividing both sides by ||w¢ — w*|| yields
lwt —wll _ 191 1Bl i —w|
lwf = 1BI+1G] 1B+ 1G] [[wf —we|
A s
In comparison to Theorem 1.2, here we provide an equality, i.e. we can quantify the relation %
t
However, since w* in practice is unknown our approximation can only be based on y;. This would
B * B
further increase the term 1=l to lwe—uell,
llwi —w*[| = flwi —pel

A.5 PROOF OF THEOREM 4

Proof: PID score:

ul? = D (i, +KIZD (), 1) + Ka(D{ (wf? ) — DYy (wf?, 1)) (25)
where

DI ) = [ — |

14
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Substitute into (25):

[ o R

t—1
> ot -
x=0

o = o0 o

Assume minority of clients are anomalous, i.e. f < %, where f is the number of anomalies. Let’s
first show that the centroid p; = % > wf) will not be shifted significantly.

_ 1 @ _ 1 (i) ()
ut—N;wt _N<§wt +§3wt . (27)

Consider the purely good centroid uf'

i = |g|Z =y 28)

i€g
Let’s subtract ,utg from both sides of (4):
1 i 1 i 1 ;
/Jt_;u’tg:Nng)_mzw§)+ﬁzw§])' (29)
i€g i€g jeB
1 1 ; 1 ;
g _ (@) (4)
_Nt—<N_]V_f>Zwt +Nzwt
i€g JEB
Take the Euclidean norm on both sides and apply triangle inequality:
o = 1 el (30)
t N N | N < Er
jeEB
Note that
1 1 _|IN—-f-N| _ f 31)
N N-f| |NN-f)| NN-f)

Now, assume both anomalous and benign norms are bound with some constant {. This means that

2icg Hwt(i) <(N—f)Cand 37, p Hwt(i)
pe = pf Sm<+£4_ Yoo 0(f> o)

(32) Provides an upper bound on the centroid shift, which refer to as Bounded Centroid Shift in
Lemma 2 of the main paper. This lemma allows us to bound the PID score for benign clients. Let’s
analyze each term in (8) by rewriting it with the benign centroid utg:

t—1
50 = s S - {5~}
—_— =0

Proportional Derivative
Integral

(33)
First, consider the proportional part. Add and subtract ,utg:

(i)eg

o ] < ot ] o). o

— e+ pf — utgH < Hwti)e

15



Under review as a conference paper at ICLR 2026

§“eg — utgH is some

Assuming bounded heterogeneity between good clients, the upper bound on Hw
Anae- Then (34) is bounded above by A, + O(%)

Second, look at the integral part. Same manipulation:

+t«0(%
(35)

fz—pf

t—1 t—1 t—1
3\ [T P o WIS 5
=0 =0 =0

t—1
= ||wo
=0

Third, we do the same analysis on the derivative part:

N Fe

N N
(36)
Combining (34), (35), (36), we get that for a good client, the upper bound on PID value uii)eg is

Amaz + O(%) + t(Amax + O(%)) + O(%), which can be simplified to t(Amax + O(%))

The permissive upper bound of a threshold for the PID score of good clients {i : i € G} is
t (Ama:r + O(%)) . This upper bound ensures zero false positive rate, however, the false negative

rate can be expected to be high. This bound is not usable, however, it provides a starting point for us
to derive a more tight and practical threshold.

A.6 PROOF OF THEOREM 5

Proof:

t—1
BV = E [l - puel]] + K1 > E [0l — ol + KpEllwf” = el =, = pusll] 37)
z=0
Using j1a = E[A]
E[U,] = pa + Krtpa + 2Kppa = pa(l + Krt) (38)

Next, derive the variance of our PID Score. Due to Bienaymé identity we would have additional

covariance terms, but those can be neglected due to assumption (1). The variance of U, then becomes:
t—1

o2 = Var[Uy] = Var[A;] + K? ZVar[Az] +2KpVar[A,] = 0 + Kjoa +2K3oa  (39)

=0

Finally, using Chebyshev’s inequality we can state that with a probability of at least 1 — « the benign
clients will be under the threshold 7 = u; + zo;. Equivalently, no more than a-fraction of benign
clients exceed 7.

A.7 PROOF OF THEOREM 6
Proof: the Gaussian threshold follows directly from Theorem 5 under the Gaussian assumption

A; ~ N (pa,03). If o is the desired alarm rate, than using the standard normal distribution and the
z-score corresponding to 1 — «v gives us Pr[U; > Tgauss] = 1 — ®(21-0) = a.

16

) - t(AmaerO(

+0(3)|Jui25 . [+o () < o(5):

I
N

)
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B

B.1

PERFORMANCE

PID COMPUTATION TIME

Table 3: Time required for computing the PID score and RFA criterion as the number of participating clients
increases from 5 to 20 clients

Time (milliseconds)

Total clients | MADE-PID Time (ms) | RFA (next fastest, ms)
5 2.225 88.404
6 2.394 75.425
7 2.160 75.405
8 2.575 75.462
9 2.602 93.799
10 2.757 83.496
11 3.051 95.252
12 3.348 99.076
13 3.771 106.084
14 3.752 106.784
15 4.126 116.48
16 4.260 112.684
17 4.196 118.06
18 4.329 132.287
19 4.559 130.349
20 4767 142.596
|
—  Kium
1,000 - MU
— MAbEPD
800
600
400
200
0 ]
é‘l é é 1‘0 1‘2 1‘4 1‘6 1‘8 2‘0

Number of Clients

Figure 6: Metric computation time based on the number of clients

Figure 7: Computational complexity study - metric calculation time growth as the number of total clients
increases
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C ADDITIONAL RESULTS

Table 4: Attack Mitigation Effect with PID-MADE vs. FedAvg baseline. FEMNIST (2/20).

Poisoning rate (%) Total FP Total FN PID-MADE Accuracy (%) FedAvg Accuracy (%)

10% 0 3 96.8 93.22
50% 0 1 95.7 92.83
100% 0 0 96.8 89.90

Comparison of Aggregated Loss History

== PID
FEDAVG
RFA

—— BULYAN

0.30

o
N
o
P

o

o

U
-,

Aggregated Loss
4

o
=
o

/4
{
1

0.05 .~

0.00

Rounds

Figure 8: 100 clients with full participation. 10 clients were poisoned with full label flipping.
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D RECOMMENDATIONS FOR EXPERT COEFFICIENT SELECTION

In cases where automated coefficient selection is not possible, we provide the following recommen-
dations.The proportional coefficient should be fixed at Kp = 1, since this term reflects information
from the current round—similar to what is used in existing methods such as Multi-Krum and RFA.

The integral coefficient K; should be increased (e.g., K € [0.5, 1]) in scenarios where detecting
slow, low intensity consistent attacks is critical. The derivative coefficient K p should also fall within
[0.5, 1] only when detecting sudden anomalous updates becomes important, otherwise it can introduce
additional fluctuations into the overall PID score. We provide the following edge case classification
which can help guide PID coefficient selection.

* Edge case (1), Kp = 1, K < 0.5, Kp < 0.5: majority of the clients are malicious, the

attack is implemented by randomly shifting (through model or data poisoning) each wt(i) that
is controlled by the attacker. Depending on the selection of 7, our PID-MADE algorithm
will still work, but may yield false positives and false negatives.

* Edge case 2) Kp = 1, K € [0.5,1], Kp < 0.5: minority of the clients are malicious, but
they perform a coordinated attack. In this case the centroid that serves as a proxy for w*
should be calculated as the geometric median. Since the geometric median is known to
be statistically robust to outliers, PID-MADE is still effective and can identify malicious
clients.

» Edge case (3): If malicious clients constitute a majority and execute a coordinated attack that
leads to targeted shifts of the centroid position (as well as in edge case (2)), our technique,
like other similarity-based detection methods (e.g., cosine similarity, Euclidean distance),
will not be effective.
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E CLIENT DATA DISTRIBUTIONS

These plots illustrate client data distributions

Client Topic Distribution Clusters (LLM Study, Improved Extraction)

X Client_6

] 0.02 X Client 5

-o.01 %@%xcnenu

—0.02 X Client_7

—0.02 0.00 0.02 0.04 0.06
PC1

Figure 9: LLM study: each client was assigned a different topic, but some topics shared similarities.

BloodMNIST: Data Distribution per Label for Clients 29 and 15
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Figure 10: Example of moderate non-iid clients in BloodMNIST dataset.
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Figure 11: IID label imbalance in PneumoniaMNIST dataset
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F CODE AND DATASET ARTIFACTS

The experiments were conducted on a system equipped with an AMD Ryzen 5 7600 CPU, 32 GB of
RAM, and an NVIDIA RTX 4060TI GPU with 16 GB of dedicated memory, running the Ubuntu
22.04 OS. Our code may be used for the reproduction and further reconfiguration of our experimental
setup. Additionally, it provides the ability to collect and save metrics necessary for the further
analysis. We also provide the datasets that we used to facilitate the reproduction of our empirical
study experiments. All the shared materials can be found by this anonymized link that does not
disclose the authors’ identities: https://drive.google.com/file/d/1VSTeE6ynMPQcnGUu_nlZO0_
mkQdni8DH/view ?usp=drive_link.

Datasets used in the experiments are initially downloaded from AWS by the execution script and later
can be found in the datasets/ folder of the archive.

Guidelines for the experiment setup configuration and execution are included in the README with
the code artifacts found in the link above.
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G LLM USAGE

An LLM was used to assist with enhancing the communication in the paper. All research results and
contributions presented in this paper are original human work.
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