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ABSTRACT

AI agents are rapidly advancing from passive language models to autonomous
systems executing complex, multi-step tasks. Yet their overconfidence in failure
remains a fundamental barrier to deployment in high-stakes settings. Existing
calibration methods, built for static single-turn outputs, cannot address the unique
challenges of agentic systems, such as compounding errors along trajectories, uncer-
tainty from external tools, and opaque failure modes. To address these challenges,
we introduce, for the first time, the problem of Agentic Confidence Calibration
and propose Holistic Trajectory Calibration (HTC), a novel diagnostic frame-
work that extracts rich process-level features ranging from macro dynamics to
micro stability across an agent’s entire trajectory. Powered by a simple, inter-
pretable model, HTC consistently surpasses strong baselines in both calibration and
discrimination, across eight benchmarks, multiple LLMs, and diverse agent frame-
works. Beyond performance, HTC delivers three essential advances: it provides
interpretability by revealing the signals behind failure, enables transferability by
applying across domains without retraining, and achieves generalization through a
General Agent Calibrator (GAC) that achieves the best calibration (lowest ECE)
on the out-of-domain GAIA benchmark. Together, these contributions establish a
new process-centric paradigm for confidence calibration, providing a framework
for diagnosing and enhancing the reliability of AI agents.

Figure 1: Overview of Holistic Trajectory Calibration (HTC). The framework first collects confidence
signals along the agent’s trajectory, then derives rich process-level diagnostic features, which are used
to train a simple yet interpretable calibrator. This process not only improves calibration accuracy but
also yields the three pillars of reliable agentic AI: interpretability, transferability, and generalization,
across diverse tasks and models.

1 INTRODUCTION

Large Language Models (LLMs) are rapidly evolving from static or retrieval-augmented text-
generation tools into the core reasoning engines of complex, multi-step agentic systems (Xi et al.,
2023; Wang et al., 2024a). These agents, which integrate sophisticated capabilities such as planning,
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using tools, and handling memory (Yao et al., 2022; Schick et al., 2023), can autonomously interact
with dynamic environments to solve complex problems. As these systems are increasingly deployed
in high-stakes, safety-critical domains, their reliability has emerged as the most critical and yet
unresolved challenge (Wang et al., 2024b; Liu et al., 2023). Ensuring that we can trust the outputs of
these powerful but opaque systems is critical for their responsible adoption.

This shift from a static generator to a dynamic actor fundamentally alters the nature of the reliability
challenge. First, uncertainty is no longer an isolated property of a single output, but a compounding
factor that accumulates and propagates throughout a sequential trajectory (Ren et al., 2024; Kim et al.,
2023). An early, low-confidence decision-such as erroneously selecting a tool, can "poison" the entire
subsequent execution path, leading to an agent holding high confidence in a completely incorrect
result. Second, agents introduce new, external sources of uncertainty through their interaction with
tools and environments (Gao et al., 2024; Levy & Yih, 2024). API failures, noisy data returned by
tools, or the misuse of a tool’s functionality create new reliability bottlenecks independent of the
model’s internal knowledge. Finally, the multi-step nature of agentic processes makes failure modes
more opaque. A final incorrect answer may not stem from the last reasoning step, but from a critical,
masked breakdown that occurs at a specific intermediate step earlier in the trajectory (Fu et al., 2025).
Agent calibration also faces a fundamental data scarcity challenge that means each agent trajectory
represents an expensive execution involving LLM inference, tool interactions, and human evaluation
for ground truth labels. This constraint shapes us toward sample-efficient and interpretable methods.

In light of these unique challenges, existing approaches to confidence estimation are insufficient.
On one hand, traditional calibration techniques like Temperature Scaling (Guo et al., 2017) were
designed for post-hoc correction of static, single-point classification predictions. Methodologically,
they are incapable of processing sequential trajectory data and thus completely ignore the process-
level information that could reveal the root cause of an agent’s failure. On the other hand, while
recent work has begun to explore more fine-grained confidence signals (Geng et al., 2024a), these
efforts often rely on coarse aggregation methods like global averaging, which can mask local yet
critical reasoning failures (Fu et al., 2025), or are limited to evaluating pure reasoning chains without
external tool interaction (Wei et al., 2022), see more related work in Appendix A.1. Consequently, a
significant gap exists in the current studies: there is a lack of a systematic framework for effectively
calibrating the confidence of an agent’s final output by diagnosing its entire execution trajectory.

In this work, we introduce the new problem of Agentic Confidence Calibration (ACC): estimating the
likelihood that an agent’s trajectory will succeed by diagnosing its entire execution process rather
than only its final output. As illustrated in Figure 1, this process-centric perspective raises three key
challenges: uncertainty signals dispersed across multiple temporal scales, compounding noise from
both model and environment, and limited availability of labeled data. To address these challenges, we
propose Holistic Trajectory Calibration (HTC), a novel framework that transforms raw confidence
traces into a rich set of process-diagnostic features, encompassing cross-step dynamics, intra-step
stability, positional indicators, and structural attributes. These features are then mapped through
a simple, interpretable model to produce calibrated confidence estimates. Importantly, HTC is
decoupled from any specific agent architecture, making it lightweight, transparent, and broadly
applicable across diverse tasks and frameworks.

Our study demonstrates that HTC brings three key benefits:

• Interpretability: By grounding calibration in trajectory-level features such as early-step entropy,
confidence gradients, and stability dynamics, HTC exposes the signals behind model confidence,
enabling transparent diagnosis of failure modes and guiding principled agent design.

• Transferability: Once trained, an HTC calibrator can be seamlessly applied across tasks and
domains without retraining, delivering consistent gains in both calibration and discrimination and
reducing dependence on costly, task-specific tuning.

• Generalization: Pre-training a General Agent Calibrator (GAC) on diverse datasets yields a uni-
versal reliability layer that achieves the best calibration (lowest ECE) on out-of-domain challenges
such as GAIA, pointing toward a scalable foundation for trustworthy agentic AI.

Across eight benchmarks, multiple agent frameworks, and both closed- and open-source LLMs, we
show that HTC reliably outperforms strong baselines. Beyond empirical gains, HTC establishes a
process-centric paradigm for agentic confidence calibration, uniting interpretability, transferability,
and generalization, three essential components for building reliable and trustworthy AI agents.
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2 METHOD

2.1 HOLISTIC TRAJECTORY CALIBRATION: A NEW FORMULATION

An agent system is defined as a policy π that, at step t, maps the interaction history ht to an action
at ∈ A : at = π(ht), ht = (s0, a1, o1, . . . , st). The environment Ω executes at from state st and
returns an observation ot ∈ O together with the next state via a (possibly stochastic) transition kernel
(ot, st+1) ∼ δ( · | st, at ). This interaction produces an execution trajectory,

T =
(
s0, a1, o1,L1, s1, a2, o2,L2, . . . , aN , oN ,LN , sN

)
, (1)

which records the complete problem-solving process up to termination at step N . For LLM-based
agents, each action at (e.g., thinking, planning pr or tool call) is generated by an LLM M. We denote
by Lt = (ℓt,1, . . . , ℓt,mt) the sequence of token-level log-probabilities produced when generating at,
where mt is the number of tokens in action at. By concatenating these sequences across all N steps,
we obtain the log-probability trajectory after LLM execution:

LT =
(
(ℓ1,1, . . . , ℓ1,m1

), (ℓ2,1, . . . , ℓ2,m2
), . . . , (ℓN,1, . . . , ℓN,mN

)
)
. (2)

This trajectory captures the agent’s complete reasoning process, yet existing approaches typically
assess confidence only from the final action: Ctrad = H(sN , aN ). Agentic confidence calibration
introduces three fundamental challenges that make it substantially harder than static calibration.

Problem Formulation: Holistic Trajectory Calibration (HTC)

Given an agent’s execution trajectory T with associated token log-probabilities LT , learn a
calibration function FHTC that maps the trajectory to a calibrated confidence score CT ∈ [0, 1]:

CT = FHTC(T (LT ) s.t. E[ y | FHTC(T (LT )) = c ] ≈ c, ∀c ∈ [0, 1] (3)

where y ∈ {0, 1} indicates task success or matches ground truth solution.

Challenge 1: Compounding Uncertainty. Agentic trajectories accumulate and propagate uncertainty
across multiple steps: early misjudgments may amplify downstream errors, while interactions with
external tools introduce additional stochasticity, resulting in confidently incorrect final outputs.

Challenge 2: Multi-Source Uncertainty. Uncertainty in agentic reasoning is heterogeneous: it arises
from token-level fluctuations within a step, from cross-step dynamics describing how confidence
evolves. Signals are dispersed across multiple scales and cannot be reduced to a single summary.

Challenge 3: Data Scarcity and Uncertainty. Collecting agent trajectories is time-consuming and
costly, which limits available datasets to relatively small scales. Moreover, the length of trajectories
varies substantially with task complexity, introducing additional sources of data uncertainty.

To address the above challenges, we introduce a new paradigm Holistic Trajectory Calibra-
tion (HTC), and formulate HTC as a supervised learning problem. Given a dataset of trajectories
{Ti(LTi

)}Ni=1 with binary success labels {yi}Ni=1, we learn a calibration function FHTC by minimizing
a proper scoring loss:

F∗
HTC = argmin

F

1

N

N∑
i=1

ℓ
(
yi,F(Ti(LTi

))
)
+ λR(F), (4)

where ℓ(·, ·) is a calibration-sensitive loss and R(F) is a regularization term. The core question
is how to design an effective representation ϕ(T (LT )) that captures dispersed uncertainty signals,
while supporting learning that is sample-efficient, interpretable, and generalizable across tasks.

2.2 THE IMPERATIVE FOR TRAJECTORY-LEVEL FEATURES

Given the challenges identified above, we argue that trajectory-level features are indispensable for
effective HTC framework. Naïve alternatives such as relying only on final-step log-probabilities or
averaging token confidences fail to capture the dispersed, multi-scale, and noise-sensitive nature of
agentic uncertainty. In contrast, holistic trajectory-level features balance expressivity and practicality:
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they capture diverse uncertainty signals while remaining tractable in small-data regimes. Unlike
end-to-end neural encoders (e.g., RNN, LSTM, Transformer) which require large datasets and yield
opaque representations ill-suited for calibration, feature-based representations enable sample-efficient
learning and provide direct diagnostic insights.

Design principles. Our trajectory-level representation x = ϕ(T ) is guided by four principles: (i)
Universality: features should be agnostic to task, model, and agent framework; (ii) Informativeness:
features must encode signals causally linked to success and failure; (iii) Parsimony: the set should
remain compact for small-sample calibration; and (iv) Interpretability: each feature should provide
diagnostic value for analyzing uncertainty. Based on these principles, we organize trajectory-level
features into four complementary families:

• Cross-Step Dynamics: capture how confidence evolves across steps, detecting accumulation,
reversals, or abrupt shifts that reflect compounding uncertainty.

• Intra-Step Stability: measure within-step volatility and distributional shape of token-level log-
probabilities, indicating unstable or collapsed behaviors.

• Positional Indicator: critical early and late time-points where initialization quality and terminal
consolidation often determine success and dominate outcomes.

• Structure Attribute: summarize macroscopic trajectory attributes (e.g., step count, token-length
patterns) that proxy for task complexity and agent efficiency.

From trajectory to features. Concretely, we apply a small set of statistical operators (mean/variance,
min/max, entropy, skewness, finite differences) along two axes, within a step and across steps, to
the log-probability trajectory. This yields a compact vector x ∈ R48 that preserves essential uncer-
tainty signals while supporting efficient and interpretable calibration. We constructed a systematic
Taxonomy of Uncertainty covering four critical axes. This resulting 48-dimensional space balances
comprehensiveness with the need to prevent overfitting in small-sample regimes (see ablation in
Appendix A.4). A full taxonomy with formal definitions is provided in Appendix A.5.1.

2.3 INTERPRETABLE CALIBRATION MODEL

Given the designed feature x = ϕ(T ) ∈ R48, we adopt a simple yet interpretable light calibration
model. This choice is motivated by three considerations specific to agentic confidence calibration: (i)
small-sample robustness: agent trajectory datasets are inherently small so linear models are less prone
to overfitting than neural alternatives with thousands of parameters; (ii) interpretable diagnostics:
linear weights provide direct insights into which uncertainty signals matter for different tasks, which
is crucial for understanding agent failure modes; and (iii) transferability and generalization as low-
capacity models generalize more reliably across domains with heterogeneous trajectory distributions.
Formally, the calibration function maps features to a calibrated confidence score:

CT = FHTC(x) = σ
(
w⊤x+ b

)
, w ∈ R48, b ∈ R (5)

where w and b are learned parameters. We instantiate the model under two complementary regular-
ization regimes:

• HTC-Full: Retains all features while stabilizing estimates under collinearity through ridge
regularization, RL2(w) = λ∥w∥22. This preserves the full diagnostic surface across all features.

• HTC-Reduced: Encourages sparsity via lasso regularization, RL1(w) = λ∥w∥1, automatically
selecting a compact subset S = {j : wj ̸= 0}. This denoises spurious features and often improves
calibration in small-data regimes.

Theoretical Motivation. From a theoretical standpoint, trajectory-level calibration is strictly more
informative than last-step confidence: conditioning on richer trajectory features can only reduce
Bayes risk under proper scoring rules. In addition, a sparse ℓ1-regularized logistic calibrator admits
favorable small-sample generalization bounds, explaining its stability in data-scarce regimes. A
simple chain-of-subgoals model further clarifies why last-step confidence can be systematically
optimistic, and the same diagnostics applied to prefixes establish a principled path toward online
reliability. Formal statements and complete proofs are provided in Appendix A.6.

4
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Efficiency and Deployment. The linear calibrator is computationally lightweight. Feature extraction
scales linearly with trajectory length and requires only simple aggregation operators, while model
training and inference are near-instantaneous. This efficiency makes HTC practical for real-time
deployment and rapid adaptation to new domains, see more discussion in Appendix A.7 and A.8.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. To comprehensively evaluate the effectiveness and generality of our
HTC framework, we select 8 representative public benchmarks. These datasets are categorized into
three groups to test distinct agent capabilities: (1) Knowledge-intensive QA (SimpleQA (Bordes
et al., 2015), HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021)) for factual retrieval and
multi-hop reasoning; (2) Complex Reasoning (MATH500 (Hendrycks et al., 2021), GPQA (Rein
et al., 2023), MMLU-Pro (Zhang et al., 2024), HLE (Zhang et al., 2025c)) for formal logic and deep
domain knowledge; and (3) Frontier Agentic Tasks (GAIA (Mialon et al., 2023)) for planning and
tool-use in difficult, open-ended scenarios. Detailed descriptions and references for all datasets are
provided in Appendix A.2.1.

Models & Agent Frameworks. Our experiments are conducted using smolagents (Roucher
et al., 2025), a lightweight and research-friendly framework, leveraging its CodeAct paradigm
where the agent generates executable Python code for tool use. We evaluate on a diverse set
of models that provide LOGPROBS access. Our closed-source models are GPT-4.1 and GPT-4o
(OpenAI et al., 2024). Our open-source suite includes GPT-OSS-120B & 20B (OpenAI, 2025),
Deepseek-v3.1 (DeepSeek-AI, 2024), and Qwen3-235B (Team, 2024). To ensure our findings are not
specific to a single framework, we conduct a generalization study using the state-of-the-art OAgents
framework (OPPO-PersonalAI, 2024) in our ablation analysis. Further details on all frameworks and
models are available in Appendix A.2.3.

Baselines. We compare HTC against two categories of baselines to address different evaluation
dimensions: Inference-based Baselines: (1) Verbalized Confidence (Tian et al., 2023a): agents
directly output confidence scores; (2) Last-Step Token Confidence (LastStep-TP): average log-
probabilities from final generation step; (3) Global-Trace Token Confidence (GlobalTrace-TP):
average log-probabilities across all steps; (4) Temperature Scaling (Guo et al., 2017) applied to
above methods (see details in Appendix A.2.4). Learning-based Baselines: (1) LSTM Encoder:
processes raw log-probability sequences with final hidden state classification; (2) Transformer:
attention-based sequence encoder. There are another three nonlinear methods based on our extracted
features: (3) Neural Network, (4) XGBoost and (5) Gaussian Process (Rasmussen & Williams,
2006). Detailed definitions and implementation specifics are provided in Appendix A.2.5.

Evaluation Metrics and Implementation. We evaluate calibration performance using three standard
metrics: Expected Calibration Error (ECE) (Guo et al., 2017), which measures the accuracy
of confidence scores; the Brier Score (BS) (Brier, 1950), a proper scoring rule assessing both
calibration and discrimination; and AUROC, which measures the model’s ability to distinguish
between successful and failed trajectories. It is important to distinguish the calibration method from
the evaluation metric. HTC is the proposed method (predictor) that outputs confidence scores, while
metrics like ECE and Brier Score serve as the ground-truth standards for assessing the quality of those
scores. Therefore, a method achieving consistently lower ECE and BS is objectively better aligned
with the true empirical accuracy. To ensure the validity of our ground truth labels, we employed a
Gemini-2.5-Pro based judge, which we verified on a stratified subset to achieve a 90-95% agreement
rate with human experts. All experiments are conducted using a cross-validation scheme to ensure
robust results. A detailed description is provided in Appendix A.2.2. The implementation details and
hyperparameter setting are provided in Appendix A.2.6.

3.2 MAIN RESULTS: CALIBRATION PERFORMANCE OF HTC

Table 1 summarizes results on three representative datasets. Note that we evaluate the quality of our
calibration method (HTC) using standard metrics (ECE, Brier Score); thus, lower values on these
metrics directly indicate superior alignment between predicted confidence and actual performance.
Across all metrics, both HTC variants substantially outperform inference-based baselines, with
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Table 1: Main results comparing HTC against baselines on representative datasets. Top 2 results in
ECE, BS and AUROC are marked as bold and see full results in Table 4 and 5 in Appendix A.3.1.

Method SimpleQA GPQA HLE
ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

Verbalized Conf 0.121 0.196 0.655 0.454 0.523 0.593 0.656 0.531 0.614
LastStep-TP 0.101 0.186 0.699 0.424 0.413 0.614 0.686 0.561 0.604
LastStep-TP + Temp 0.071 0.178 0.698 0.139 0.258 0.610 0.436 0.278 0.628
GlobalTrace-TP 0.110 0.193 0.692 0.414 0.402 0.649 0.685 0.560 0.551
GlobalTrace-TP + Temp 0.077 0.181 0.691 0.136 0.257 0.643 0.433 0.277 0.570

HTC-Full 0.075 0.150 0.727 0.124 0.219 0.704 0.072 0.098 0.617
HTC-Reduced 0.068 0.140 0.752 0.102 0.213 0.706 0.031 0.090 0.644

especially large gains in Brier Score and AUROC. On the most challenging tasks, HTC-Reduced
achieves the strongest calibration, e.g., ECE of 0.031 and Brier Score of 0.09 on HLE, highlighting
the benefit of sparsity in isolating universal uncertainty signals. We present a series of radar charts in
Figure 1 to provide a comprehensive overview of our framework’s performance across all eight diverse
datasets. We also compared against five learning-based baselines, including LSTM, Transformer,
Neural Networks (NN), Gaussian Process (GP) and XGboost methods on SimpleQA with detailed
learning curves shown in Figure 2. HTC consistently attains lower mean error and dramatically
smaller variance across dataset sizes (100–400), demonstrating robustness in small-data regimes
where neural baselines overfit or fluctuate heavily (see full results in Appendix A.3.1).

Figure 2: Learning Curve Comparison: HTC vs. Learning-Based Baselines on SimpleQA dataset,
showing HTC consistently outperforms and exhibits much lower variance under small-data regimes.

Figure 3: The Impact of Base LLM on Calibration Performance on the SimpleQA dataset.

Effect of LLM Choice. To validate HTC is model-agnostic, we evaluated its performance across
six different LLMs on SimpleQA. The results in Figure 3, reveal two key findings. First, our
HTC framework delivers consistent and substantial improvements for every model tested, from the
high-performing GPT-4.1 to other powerful open-source alternatives like GPT-OSS-20B, which
exhibits particularly poor initial calibration. Second, the results highlight that different LLMs possess
distinct baseline calibration profiles. For instance, while GPT-4o demonstrates the strongest raw
discriminative ability (highest baseline AUROC), its calibration (ECE) is notably poorer than that of
GPT-4.1. Our HTC framework effectively addresses these unique characteristics, not only elevating
the overall performance but also correcting the specific deficiencies of each model.

Effect of Agent Architectures. We investigated whether HTC’s effectiveness is tied to a specific agent
architectures. We compared its performance on the lightweight smolagents versus the highly-
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optimized OAgents architectures, using GPT-4.1 on GPQA (Figure 7 in Appendix A.3.1). HTC
provides significant gains on both architectures, confirming that our approach is architecture-agnostic
and can serve as a plug-and-play module to enhance the reliability of various agentic systems.

3.3 DIAGNOSTIC ANALYSIS: WHY HTC WORKS

3.3.1 FEATURE IMPORTANCE AND INTERPRETABILITY

A key advantage of HTC framework is its interpretability. By analyzing the features weights of our
regularized linear model, we can move beyond if it works to why it works, gaining deep insights into
the nature of agentic failure.

Uncertainty Signals are Task-Dependent. Our first major finding is that the most predictive signals
of failure are highly dependent on the cognitive demands of the task. Figure 8 in Appendix A.3.2
displays the important features selected by our model for each of the eight datasets. It is visually
apparent that there is no single universally dominant feature; the feature set and their relative
importances shift based on the task’s nature. To illustrate this task-dependency more clearly, we
compare the feature importance distributions for two representative tasks in Figure 4 (left):

• For SimpleQA, a task that typically involves a "search-then-synthesize" pattern, the most predictive
features are diverse and balanced across Dynamics, Stability, and Position. This suggests that failure
can occur at multiple distinct stages: a poor transition between search and synthesis (Dynamics),
an unstable generation process (Stability), or a weak final conclusion (Position). The model learns
to monitor a broad array of signals to detect these varied failure modes.

• For GPQA, a task involving long and complex reasoning chains, the feature importance is
heavily concentrated in the Position category. This indicates that for such difficult tasks, the
agent’s cognitive state at the very beginning (first_step) and, more critically, at the very end
(last_step) serves as the most potent summary of the entire arduous process. A hesitant or
unstable conclusion after a long chain of reasoning is a particularly strong signal of failure.

Figure 4: (Left) Distribution of feature importance across different task domains. (Right) Frequency
of feature category across different levels, including Top 1, Top 3, Top 5 and all selected features.

A General Hierarchy of Diagnostic Signals. We analyze the statistical distribution of feature
categories across all datasets, as shown in Figure 4 (right). The Top-1 most important feature across
all datasets is most frequently a Positional feature. This aligns with intuition: a flawed start or a
shaky conclusion is the most immediate and powerful "first alert" signal of a failing trajectory. As we
expand our view to the Top-3 and Top-5 most important features, Stability and Dynamics features
become increasingly prominent. This reveals that a comprehensive diagnosis requires looking beyond
the start/end points and into the micro- and macro-level stability of the reasoning process itself. When
considering all selected features, Dynamics emerges as the most frequently selected category overall.
This suggests that while not always the single strongest signal, the step-to-step evolution of an agent’s
confidence is a pervasive and indispensable component of a full reliability assessment. This analysis,
with full feature selection frequency detailed in Table 6 in Appendix A.3.2, allows us to distill a key
insight: effective agent calibration requires a hierarchical diagnostic approach.

To validate the complementarity of our feature design, we conducted an ablation study across
15 configurations spanning single categories, pairwise, three-way, and the full set over the four
feature categories (see Appendix A.4). We find that no single family suffices while multi-category
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combinations substantially improve performance. There is no “marginal” category—the effectiveness
of HTC derives precisely from integrating diverse, process-diagnostic signals.

Takeaway 1: Interpretable Feature Importance

Two insights into agent reliability. First, there is no single universally dominant feature;
the most predictive signals of failure are highly task-dependent, shifting from Positional
indicators in complex reasoning tasks to a more diverse signal set in multi-step QA. Second,
despite this diversity, a general diagnostic hierarchy emerges across all tasks: Positional
features (the start and end) serve as the strongest primary signals of failure, while Stability
and Dynamics features are essential for a complete diagnosis of the underlying process.

3.3.2 CROSS-DOMAIN TRANSFERABILITY

A central question is whether HTC’s process-diagnostic features capture generalizable uncertainty
signals rather than dataset-specific artifacts. To evaluate this, we pre-train a calibrator on one source
dataset and apply it without further training to multiple target datasets.

Knowledge Domain Transfer: From Knowledge to Reasoning. We first evaluate transferability
within the knowledge-intensive domain by training a calibrator on SimpleQA. As shown in Table 2, the
transferred model performs remarkably well on other QA tasks: on HotpotQA, it even outperforms
direct training across all metrics, with similar gains on StrategyQA. Figure 5 explains this effect—the
feature distributions of SimpleQA and HotpotQA are closely aligned, indicating shared uncertainty
patterns. By contrast, transfer to the out-of-domain GPQA is weaker, consistent with its clear
separation in feature space. These results suggest HTC can capture a robust “uncertainty patterns”
that generalizes across related tasks while revealing the boundaries of cross-domain transfer.

Reasoning Domain Transfer: The Challenge of Distribution Shift. We next examine transfer from
MMLU-Pro. As shown in Table 2, transfer to other reasoning tasks (MATH500, HLE) underperforms
direct training, despite their proximity in feature space (Figure 5). We attribute this to a distribution
shift in reasoning patterns: MMLU-Pro induces multiple-choice reasoning, producing a different
distribution characteristics than the open-ended generation in MATH500 or complex planning in
HLE. Interestingly, transfer to StrategyQA is strong, despite being cross-domain. The key factor
appears to be shared answer format (binary/short-form), suggesting that output structure can drive
transferability as much as task category. This highlights that HTC features capture not only what the
agent reasons about, but also how it organizes its final decision.

Table 2: Cross-domain transfer performance. A calibrator is trained on a single source dataset,
evaluated on multiple target datasets, comparing against a model trained directly on the target dataset.

Source: SimpleQA
(Knowledge)

HotpotQA (ID) StrategyQA (ID) GPQA (OOD)
ECE ↓ Brier Score ↓ AUROC ↑ ECE ↓ Brier Score ↓ AUROC ↑ ECE ↓ Brier Score ↓ AUROC ↑

DIRECTTRAIN (full) 0.116 0.193 0.714 0.079 0.141 0.670 0.124 0.219 0.704
DIRECTTRAIN (reduced) 0.082 0.183 0.729 0.055 0.136 0.665 0.102 0.213 0.706
Transfer (full) 0.113 0.194 0.719 0.099 0.148 0.657 0.435 0.446 0.587
Transfer (reduced) 0.070 0.183 0.732 0.064 0.135 0.681 0.304 0.330 0.629

Source: MMLU-Pro
(Reasoning)

MATH500 (ID) HLE (ID) StrategyQA (OOD)
ECE ↓ Brier Score ↓ AUROC ↑ ECE ↓ Brier Score ↓ AUROC ↑ ECE ↓ Brier Score ↓ AUROC ↑

DIRECTTRAIN (full) 0.060 0.077 0.788 0.072 0.098 0.617 0.079 0.141 0.670
DIRECTTRAIN (reduced) 0.048 0.070 0.816 0.031 0.090 0.644 0.055 0.136 0.665
Transfer (full) 0.081 0.092 0.782 0.457 0.329 0.620 0.056 0.134 0.682
Transfer (reduced) 0.081 0.083 0.792 0.504 0.349 0.645 0.028 0.131 0.689

Takeaway 2: Domain Transferability and Generalization

Our findings confirm that HTC can learn transferable signals of uncertainty. This transfer is
most effective between tasks with similar cognitive processes while revealing the boundaries
of cross-domain transfer. While a universal, "one-size-fits-all" calibrator faces challenges
when transferring across fundamentally different cognitive paradigms.
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Figure 5: Low-dimensional t-SNE visualization of the feature spaces for different datasets.

3.4 GENERALIZATION: THE GENERAL AGENT CALIBRATOR

Our analysis in Section 3.3.2 has shown that while uncertainty signals are task-dependent, they share
underlying patterns. This motivates our final and most ambitious experiment: can we train a single,
general agent calibrator (GAC) on a diverse corpus of tasks and have it successfully generalize
to a complex, completely held-out agentic benchmark? To test this, we pooled all seven datasets
(SimpleQA, HotpotQA, StrategyQA, GPQA, MATH500, HLE, MMLU-Pro) for pre-training and
held out GAIA as a challenging out-of-domain target. As visualized in Figure 5, GAIA lies dispersed
across and beyond the pre-training feature space, making it an ideal stress test for generalization. We
trained two versions of GAC (full vs. reduced features) on the combined corpus and evaluated them
directly on GAIA, with results presented in Table 3 and Figure 6. Note that while HTC refers to our
proposed methodological framework, GAC refers to the specific pre-trained model artifact released
for zero-shot generalization.

Figure 6: Reliability Diagrams for different calibration methods on the GAIA validation set.

Our results are highly encouraging. As shown in Table 3, pretraining GAC delivers the strongest
calibration results on GAIA. Pretrained GAC-Reduced achieves the best ECE at 0.118, with
Pretrained GAC-Full close behind at 0.128, both clearly surpassing DIRECTTRAIN (full: 0.169,
reduced: 0.142) as well as all domain-transfer baselines. While DIRECTTRAIN (reduced) obtains the
lowest Brier Score (0.233) and highest AUROC (0.686), GAC-Reduced remains highly competitive
(0.245 BS; 0.647 AUROC) and, crucially, retains a substantially broader feature base (29.6 vs.
4.8 on average). These findings demonstrate that pretraining enables GAC to capture a transferable
“uncertainty grammar” that prioritizes reliable calibration without resorting to extreme dataset-specific
sparsification. Overall, achieving the best ECE with a pretrained calibrator is a highly promising
result, highlighting its potential as a universal reliability layer for AI agents.

Takeaway 3: The General Agent Calibrator

Our experiments highlight the strong promise of a pretrained, general-purpose agent cali-
brator. By training on a diverse mix of domains, the calibrator achieves the best calibration
(lowest ECE) on challenging out-of-domain tasks such as GAIA. This demonstrates that
pretraining captures a transferable “uncertainty grammar” that generalizes beyond any single
dataset. As a result, our approach offers a robust, plug-and-play reliability layer that can
serve as a powerful foundation for future agentic systems.
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Table 3: Performance of the GAC on GAIA Validation Set (top 2 are marked as bold)

Method ECE ↓ Brier Score ↓ AUROC ↑ # of Features
LastStep-TP 0.382 0.375 0.607 1

Knowledge Domain Transfer 0.255±0.010 0.273±0.009 0.620±0.012 48
Reasoning Domain Transfer 0.258±0.010 0.268±0.008 0.619±0.020 48

DIRECTTRAIN (full) 0.169±0.011 0.265±0.009 0.620±0.016 48
DIRECTTRAIN (reduced) 0.142±0.010 0.233±0.003 0.686±0.013 4.8±2.0

Pretrained GAC-Full 0.128±0.001 0.250±0.001 0.636±0.001 48
Pretrained GAC-Reduced 0.118±0.006 0.245±0.002 0.647±0.005 29.6±3.9

4 CONCLUSION

We introduced Holistic Trajectory Calibration (HTC), a feature-based and interpretable framework
for agentic confidence calibration. Our work addresses compounding uncertainty, heterogeneous
signals, and data scarcity, yielding three key takeaways: (1) calibration relies on a hierarchy of
diagnostic signals; (2) HTC features capture a transferable “uncertainty patterns” enabling strong
cross-task generalization while exposing limits under distribution shift; and (3) a pretrained General
Agent Calibrator (GAC) achieves the best ECE (zero-shot) on unseen tasks like GAIA, providing a
plug-and-play foundation. Future work will scale GAC pre-training and explore light task-specific
fine-tuning to combine broad generalization with specialized accuracy.

5 ETHICAL STATEMENT

This research contributes to the development of safer and more reliable AI agents, which is critical
for their deployment in high-stakes domains like healthcare and finance. By enabling agents to better
"know what they don’t know," our work can facilitate more effective human-AI collaboration and
increase the transparency of agent decision-making. However, we also acknowledge potential risks.
A highly effective calibrator could be misused to create a false sense of security in an agent that is still
fundamentally flawed in ways not captured by our features. Like any technology that enhances AI
capability, it has a dual-use potential and must be deployed with a comprehensive evaluation strategy
that goes beyond calibration metrics alone.

6 REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure that our work is reproducible. All datasets used in our
experiments are publicly available and are described in Section 3, with preprocessing details included
in Appendix A.2.6. The proposed HTC framework is fully specified: Section 2 defines the core
methodology, Appendix A.6 provides complete theoretical proofs with explicit assumptions, and
Appendix A.5.2 gives a detailed description of all diagnostic features with both mathematical
definitions and intuitive explanations. Our learning-based baselines are described in Appendix A.2.5,
together with their architectures and hyperparameters. Evaluation metrics and cross-validation
strategies are reported in Appendix A.2.2. Because our calibrator is a lightweight logistic model
operating on engineered features, the entire system can be re-implemented with minimal effort. For
transparency, we additionally release an anonymized code base in the supplementary material, which
computes the feature map and reproduces the calibration experiments in the paper.
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A.1 RELATED WORK

Our work on Agentic Confidence Calibration (ACC) is situated at the intersection of two rapidly
developing research areas: confidence calibration for LLMs and the nascent field of uncertainty
quantification (UQ) for LLM-based agents.

Confidence Calibration in LLMs Confidence calibration aims to align a model’s predicted prob-
ability with the true likelihood of correctness. Classic methods such as Temperature Scaling (Guo
et al., 2017) are effective for standard classification tasks, but their direct application to the free-form,
generative outputs of LLMs is non-trivial (Kadavath et al., 2022; Lin et al., 2022). As a result, recent
work has explored calibration techniques specifically tailored for LLMs (Geng et al., 2024b). These
approaches typically leverage signals from the output distribution—e.g., prediction entropy (Kuhn
et al., 2023), top-k token probabilities (Lin et al., 2024), or verbalized confidence estimates (Tian
et al., 2023b; Groot & Valdenegro-Toro, 2024). Another notable direction, exemplified by Deep
Think with Confidence (Fu et al., 2025), highlights the importance of fine-grained, local signals
(such as the lowest-confidence step within a reasoning chain) over global averages for reasoning
calibration. Despite these advances, existing approaches remain focused on static, single-turn, and
self-contained outputs. They do not capture the compounding and multi-source uncertainties that
arise in the multi-step, interactive trajectories of AI agents (Kirchhof et al., 2025). Our work extends
this line of inquiry from isolated outputs to the entire agentic process.

Uncertainty in LLM Agents The study of uncertainty in LLM agents is an emerging but critical
field (Kirchhof et al., 2025). A few pioneering works have begun to formalize the unique challenges
agents present (Han et al., 2024; Tsai et al., 2024). Frameworks like UProp (Ren et al., 2024)
and SAUP (Kim et al., 2023) were the first to model how uncertainty propagates through the
sequential steps of an agent’s trajectory. While these works provide valuable analytical frameworks
for uncertainty propagation, they differ from HTC’s focus on supervised, data-driven calibration
and currently lack open-source implementations for direct comparison. Concurrently, other research
has focused on quantifying the external uncertainty introduced by tool use, analyzing how API
failures or noisy tool outputs impact reliability (Gao et al., 2024; Levy & Yih, 2024). While these
studies laid the essential groundwork by identifying the core problems of propagation and external
interaction, they primarily focus on high-level modeling and do not delve into a systematic, feature-
based diagnosis of the underlying generation process (Zhang et al., 2025b;a). Our work builds upon
their problem formulation but takes a fundamentally different approach. Instead of modeling the
propagation dynamics directly, we propose a holistic framework that analyzes the rich, fine-grained
signals embedded within the full trajectory’s confidence to perform a comprehensive diagnostic
calibration. To our knowledge, this is the first work to systematically validate a process-diagnostic
feature set for the purpose of agentic confidence calibration.

A.2 EXPERIMENTAL SETUP DETAILS

A.2.1 DETAILED DATASET DESCRIPTIONS

We use the following 8 benchmark datasets in our experiments to ensure a comprehensive and
multi-faceted evaluation of our proposed HTC framework.

• SimpleQA (Bordes et al., 2015): A large-scale factual question-answering dataset. We randomly
sampled 500 instances from its test set to evaluate the agent’s basic knowledge retrieval capabilities.

• HotpotQA (Yang et al., 2018): A multi-hop question-answering dataset that requires reasoning over
multiple documents. We sampled 500 instances from its test set to assess calibration performance
on more complex knowledge-intensive tasks.

• StrategyQA (Geva et al., 2021): A question-answering benchmark requiring implicit reasoning
steps. We used 500 samples from its test set to evaluate the agent’s ability to handle problems that
require strategic thinking.

• MATH500 (Hendrycks et al., 2021): A dataset of problems from high school mathematics
competitions. We used 500 samples from the MATH500 test set to focus on the reliability of
formal mathematical reasoning and computation.
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• GPQA (Rein et al., 2023): A high-difficulty benchmark of graduate-level STEM questions that are
challenging even for domain experts. We used all 448 samples from its MAIN split. To maximize
the challenge, we converted it from a multiple-choice format to an open-ended generation task.

• MMLU-Pro (Zhang et al., 2024): A more challenging variant of MMLU that validates deep
knowledge and reasoning through multi-turn dialogue and Chain-of-Thought. We used 500
samples from its test set.

• HLE (Human Last Exam) (Zhang et al., 2025c): An extremely difficult dataset comprising
problems that are challenging for human experts, often requiring complex, multi-step reasoning.
We used 500 samples to test agent reliability at the frontier of its capabilities.

• GAIA (Mialon et al., 2023): A benchmark designed for general AI assistants, with tasks that often
require long-horizon planning, multi-tool coordination, and interaction with real-world documents
and websites. We used the full 165 samples from its validation set as a final test of general
autonomous capabilities.

Notably, to increase the challenge of GPQA, we removed its multiple-choice options, requiring the
agent to generate answers directly. For datasets with more than 500 samples, we randomly selected
a subset of 500; for those with fewer, we used the entire set (e.g., 448 samples for GPQA and the
165-sample validation set for GAIA). All samples were primarily sourced from the official test or
validation splits of their respective datasets. Finally, we assign a binary success label (y ∈ {0, 1}) to
each trajectory by evaluating the agent’s final answer against the ground truth.

A.2.2 DETAILED EVALUATION METRICS AND PROTOCOL

To rigorously evaluate the performance of our calibration framework, we focus on the following three
standard metrics. Let ci be the predicted confidence and yi ∈ {0, 1} be the ground-truth success label
for trajectory i over N samples.

Calibration Metrics

• Expected Calibration Error (ECE) (Guo et al., 2017): ECE measures the difference between a
model’s average confidence and its actual accuracy. To compute it, we partition the N predictions
into M bins (Bm) based on their confidence scores. The ECE is the weighted average of the
absolute difference between the accuracy and confidence of each bin:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (6)

where acc(Bm) and conf(Bm) are the accuracy and average confidence of the predictions in bin
Bm, respectively. A lower ECE indicates better calibration.

• Brier Score (Brier, 1950): The Brier Score is a proper scoring rule that measures the mean
squared error between predicted probabilities and actual outcomes. It simultaneously assesses both
calibration and discrimination. It is defined as:

Brier Score =
1

N

N∑
i=1

(ci − yi)
2 (7)

A lower Brier Score indicates a better overall prediction quality.

• AUROC: The Area Under the Receiver Operating Characteristic curve measures the model’s
ability to discriminate between successful (y = 1) and failed (y = 0) trajectories. It is threshold-
independent and evaluates how well the confidence score can rank predictions. An AUROC of 1.0
represents a perfect classifier, while 0.5 represents a random guess.

Evaluation Protocol Many of the agent tasks in our benchmark suite, particularly on datasets like
GAIA and HLE, result in complex, free-form text answers where simple string matching against
the ground truth is insufficient for accurate evaluation. To address this, we adopt the widely-used
LLM-as-Judge (Zheng et al., 2023) protocol for a robust and scalable evaluation. The process is
as follows: (1) For each completed trajectory, we extract the agent’s final generated answer. (2) We
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construct a prompt that includes the original question, the ground-truth answer from the dataset, and
the agent’s answer. (3) This prompt is sent to a powerful, impartial judge model, Gemini-2.5-Pro
(Comanici et al., 2025). (4) The judge model is instructed to provide a binary determination of
correctness, outputting the final success label y ∈ {0, 1} that we use for training and evaluating our
calibrator. We verified the reliability of the LLM judge on a stratified subset, observing a 90-95%
agreement rate with human experts.

A.2.3 MODEL AND AGENT FRAMEWORK DETAILS

• smolagents (Roucher et al., 2025): Our primary framework for all main experiments is
smolagents, a minimalist agent framework designed for clarity and research agility. We
specifically utilize its CodeAct functionality, where the agent’s actions (at) are formulated as
Python code blocks. This paradigm offers high expressiveness, allowing the agent to perform
complex computations and interact with tools (e.g., WEB SEARCH) through simple function calls
within the code. Its lightweight nature ensures that the core reasoning and uncertainty signals come
directly from the LLM, minimizing confounding variables from the framework itself.

• OAgents (OPPO-PersonalAI, 2024): For our framework generalization study, we use OAgents,
a state-of-the-art, open-source agent framework known for its high performance on complex
benchmarks like GAIA. OAgents incorporates more sophisticated planning and memory modules.
By testing our HTC framework on OAgents, we can validate that our process-diagnostic features
are fundamental signals of uncertainty, independent of the agent’s architectural complexity.

A.2.4 INFERENCE-BASED BASELINES

To rigorously evaluate our HTC framework, we compare it against five baseline methods, which are
detailed below. For all methods based on log-probabilities, we use the average of the top-k/top-1
token confidences, consistent with our framework’s feature extraction.

Verbalized Confidence. This is a standard black-box baseline that requires no access to internal
model states. We append an instruction to the agent’s final prompt, asking it to state its confidence on
a scale from 0% to 100%. An example instruction is: “After providing your final answer, on a new
line, state your confidence in its correctness as a single percentage, e.g., ’Confidence: 85%’.” We
then parse the numerical value as the confidence score, c. This method is inspired by recent work on
eliciting self-assessment from LLMs (Tian et al., 2023a).

LastStep-TP Confidence. This grey-box baseline represents the standard approach of relying on
the final generation step for a confidence signal. Let LN = (lN,1, . . . , lN,MN

) be the sequence of
token confidences from the final step (sN ) of the trajectory. The confidence score is the simple
average:

clast-step =
1

MN

MN∑
j=1

lN,j (8)

GlobalTrace-TP Confidence. This baseline extends the ‘Last-Step‘ approach by incorporating
information from the entire trajectory, but in a naive way. It computes the global average of all token
confidences across all N steps:

cglobal-trace =
1∑N

i=1 Mi

N∑
i=1

Mi∑
j=1

li,j (9)

This serves as a critical baseline to test whether the performance gain of our HTC framework comes
from our sophisticated feature engineering or simply from using more data.

LastStep-TP + Temperature Scaling. To create a stronger, calibrated baseline, we apply Tempera-
ture Scaling (Guo et al., 2017) to the ‘Last-Step Confidence‘ scores. A single temperature parameter
T is optimized on a validation set to minimize Log Loss, and this scalar is then used to adjust the
confidence scores.
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GlobalTrace-TP + Temperature Scaling. Similarly, we apply Temperature Scaling to the ‘Global-
Trace Confidence‘ scores to provide another strong, calibrated baseline.

A.2.5 LEARNING-BASED BASELINES

We further compare our framework against a set of supervised learning-based baselines. These
methods fall into two groups: (i) neural representation learning methods, which directly operate
on raw token-level confidence trajectories in an end-to-end fashion, and (ii) advanced nonlinear
feature-based methods, which consume our engineered 48-dimensional trajectory feature space.
Below we provide details for each baseline.

LSTM-based Confidence Predictor. This model treats the confidence trajectory as a variable-length
sequence and encodes it with a single-layer unidirectional LSTM (Hochreiter & Schmidhuber, 1997)
of hidden size 64 and dropout 0.4. Each input step corresponds to the top-5 token log-probabilities,
and the final hidden state is passed through a three-layer feed-forward classifier (64→32→32→2)
with ReLU activations and dropout. The parameter count is on the order of 4k–6k, and the model
is trained with Adam (learning rate 0.001), early stopping, and 5-fold cross-validation. The LSTM
can capture temporal dependencies and handle variable-length sequences, but its large parameter-to-
sample ratio makes it prone to overfitting in small-data regimes and yields limited interpretability
compared to feature-based approaches.

Transformer-based Confidence Predictor. This baseline applies a lightweight Transformer (Vaswani
et al., 2017) encoder to the raw confidence trajectories. We use one self-attention layer with model
dimension 32, two attention heads, a feed-forward size of 64, and dropout 0.3. Learnable positional
embeddings (up to length 2000) encode temporal order, and an attention pooling layer aggregates the
sequence before a two-layer classifier (32→16→2). The model has about 3k–5k parameters and is
trained with Adam (learning rate 0.001, batch size 4) and early stopping. While the Transformer can
capture long-range dependencies and trains in parallel, it is computationally more demanding and
unstable in small-data settings.

Neural Network (MLP). Operating on the engineered 48-dimensional feature representation, this
baseline uses a two-hidden-layer multilayer perceptron with sizes 48→32→16→2 and ReLU activa-
tions. Regularization includes dropout and L2 penalty (α = 0.01), and the network has about 2k–3k
parameters. Training is performed with Adam and early stopping. The MLP provides nonlinear
modeling capacity over compact, interpretable features, but its performance can fluctuate with dataset
size and it remains less transparent than linear models.

Gaussian Process Classifier. We implement a Gaussian Process classifier with an RBF kernel
combined with a white-noise kernel. Kernel hyperparameters are optimized with three random
restarts, and predictions use up to 100 iterations. Being non-parametric, the model’s effective
complexity scales with the training set size. Gaussian Processes (Rasmussen & Williams, 2006)
naturally provide calibrated probabilistic outputs and flexible capacity, but incur cubic computational
cost O(n3), require careful kernel selection, and are impractical for larger datasets.

XGBoost Classifier. This baseline uses gradient-boosted decision trees on the 48-dimensional
features, with 100 estimators of maximum depth 3, learning rate 0.1, row subsampling 0.8, column
subsampling 0.8, and both L1 (0.1) and L2 (1.0) regularization. The ensemble corresponds to roughly
1k–2k effective parameters. XGBoost (Chen & Guestrin, 2016) is robust on tabular data and captures
higher-order feature interactions, but still risks overfitting in very small datasets and provides less
interpretability than linear models.

In summary, the end-to-end neural encoders (LSTM, Transformer) directly consume raw confidence
trajectories but suffer from high parameter counts relative to the limited data, leading to severe
overfitting and unstable behavior. The feature-based nonlinear methods (MLP, Gaussian Process,
XGBoost) make better use of the engineered 48-dimensional representation and achieve stronger
performance overall, yet they remain less interpretable and still prone to variance under small-sample
regimes. These limitations highlight the motivation for our proposed lightweight linear calibrators,
which strike a favorable balance between stability, interpretability, and data efficiency.
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A.2.6 IMPLEMENTATION AND HYPERPARAMETER DETAILS

For completeness, we summarize the implementation details of our proposed Holistic Trajectory
Calibration (HTC) method.

Cross-Validation Strategy. We adopt a 5-fold stratified cross-validation protocol to preserve class
balance. With 500 labeled trajectories, each fold contains 100 samples. Within each fold, we
use an 80%/20% split for training and validation. All experiments use a fixed random seed of 42.
The liblinear solver is deterministic, and all code, hyperparameters, and configurations are
version-controlled for exact reproducibility. The maximum iteration count is set to 1000, although
convergence typically occurs within 50–100 iterations.

Hyperparameter Optimization. The regularization strength α is tuned via grid search over 15
candidate values: {0.001, 0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0, 50.0}. Model
selection is based on a combined criterion that maximizes AUROC while minimizing both Brier
Score and ECE, averaged across folds. In practice, the optimal α typically falls in the range of
1.0–5.0. The resulting sparse solutions select 15–25 features (50–70% of the 48 total). The model
demonstrates low variance across folds, with training requiring less than one second per fold and
inference under one millisecond per sample.

Key Advantages. Our approach provides (i) interpretability through transparent feature weights
and selection, (ii) stability across varying data sizes, (iii) high computational efficiency in both
training and inference, and (iv) robustness to overfitting compared to more complex baselines. These
properties make the method particularly suitable for small datasets (< 500 samples), production
systems requiring reliable calibration, and resource-constrained settings.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 MAIN RESULTS

In Section 3.2, we presented a summary of our HTC framework’s performance against baselines on a
subset of three representative datasets. For a complete overview of our method’s efficacy, we provide
detailed results for both the HTC-Full and HTC-Reduced variants across all eight datasets in our
benchmark suite.

Table 4 presents the mean and standard deviation for ECE, Brier Score, and AUROC when using the
full set of 48 trajectory features (L2 regularization). These results demonstrate the robust performance
of HTC even when all features are considered, establishing a strong upper bound for the feature set.

Table 5 details the performance of the (reduced feature) variant (L1 regularization), showing its
mean and standard deviation for ECE, Brier Score, and AUROC across all datasets. Crucially, this
table also includes the mean and standard deviation of the number of features selected by the Lasso
regularization across different random seeds, providing insight into the sparsity and efficiency of
this approach. The consistent strong performance with a reduced feature set further validates the
effectiveness of our feature engineering and selection process.

Table 4: HTC Performance with Full Feature Set across All Datasets.

Dataset ECE Brier Score AUROC
Mean Std Mean Std Mean Std

HLE 0.0720 0.0108 0.0977 0.0019 0.6169 0.0231
GPQA 0.1241 0.0110 0.2185 0.0016 0.7040 0.0070
SimpleQA 0.0748 0.0065 0.1500 0.0029 0.7267 0.0103
MATH500 0.0604 0.0071 0.0773 0.0015 0.7875 0.0178
GAIA 0.1692 0.0114 0.2654 0.0093 0.6204 0.0164
HotpotQA 0.1156 0.0060 0.1930 0.0020 0.7141 0.0061
MMLU-Pro 0.0775 0.0075 0.1257 0.0032 0.7276 0.0118
StrategyQA 0.0785 0.0081 0.1405 0.0015 0.6698 0.0054
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Table 5: HTC Performance with Reduced Feature Set and Feature Counts across All Datasets

Dataset ECE Brier Score AUROC Features
Mean Std Mean Std Mean Std Mean Std

HLE 0.0305 0.0038 0.0897 0.0005 0.6439 0.0199 8.2 4.1
GPQA 0.1022 0.0159 0.2134 0.0018 0.7060 0.0066 23.4 1.9
SimpleQA 0.0676 0.0081 0.1402 0.0024 0.7523 0.0141 14.4 3.1
MATH500 0.0476 0.0088 0.0701 0.0006 0.8162 0.0075 15.2 3.0
GAIA 0.1420 0.0100 0.2332 0.0026 0.6860 0.0131 4.8 1.5
HotpotQA 0.0824 0.0109 0.1824 0.0007 0.7288 0.0026 7.6 0.8
MMLU-Pro 0.0592 0.0047 0.1167 0.0009 0.7492 0.0075 13.8 3.0
StrategyQA 0.0545 0.0048 0.1357 0.0014 0.6647 0.0117 15.2 6.3

Figure 7: The Impact of Agent Framework on the GPQA dataset.

A.3.2 FEATURE IMPORTANCE ANALYSIS

To better understand the internal behavior of HTC, we analyze which diagnostic features are most
influential across datasets and selection levels. Figure 8 shows the absolute weight magnitudes
of the ℓ1-regularized logistic calibrator on eight benchmarks, highlighting that certain dynamics
(e.g., confidence change) and stability measures (e.g., attention entropy, token volatility) consistently
receive high importance. Figure 9 provides a complementary perspective by reporting feature
selection frequencies under different levels (Top1, Top3, Top5, and all selected), allowing us to
quantify which features are repeatedly chosen across runs. Table 6 further aggregates these results
into a ranked list of top features, organized by category. Together, these analyses show that temporal
dynamics and stability signals emerge as the most dominant indicators of reliability, while positional
and structural features contribute complementary but non-negligible signals. This provides clear
interpretability benefits: HTC not only delivers strong calibration but also yields transparent insights
into which aspects of a reasoning trajectory drive reliable predictions.

A.3.3 DOMAIN TRANSFER ANALYSIS

We further investigate the generalization ability of HTC across domains, by training the calibrator on
one dataset and evaluating it directly on others without retraining. Figures 10–13 present transfer
matrices for both GPT-4.1 and GPT-4o under reduced and full feature sets, evaluated on ECE, Brier
Score, and AUROC. These heatmaps reveal that HTC achieves stable cross-domain calibration: mod-
els trained on one benchmark often transfer reasonably well to others, especially among datasets with
similar reasoning structures (e.g., QA benchmarks). Figure 14 provides an aggregated comparison,
showing that GPT-4.1 consistently outperforms GPT-4o by a small margin, but both demonstrate
robust transferability across metrics. Tables 7–10 give the complete numerical results, confirming that
reduced feature sets maintain performance levels close to the full feature space, thereby validating
the efficiency and compactness of our design.

Overall, these results demonstrate that HTC is not only effective in-domain but also generalizes
reliably across diverse datasets, while being relatively insensitive to the underlying backbone model
or the size of the feature set.
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Figure 8: Feature importance analysis across all datasets on five experimental runs.

Figure 9: Full feature selection distribution across different levels (Top1, Top3, Top5 and all selected)
on four feature categories.
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Table 6: Feature Selection Results

Selection Level Feature Index Feature Name Category Frequency Percentage
Top 1 F47 std_tokens_per_step Structure 5 12.5

F27 last_attention_concentration Position 5 12.5
F17 top1_confidence_change Dynamics 4 10
F33 attention_entropy_mean Stability 4 10
F26 last_attention_entropy Position 4 10
F25 first_topk_avg Position 3 7.5
F31 last_top1_avg Position 3 7.5
F37 attention_spread_mean Stability 3 7.5
F40 token_volatility_std Stability 2 5
F46 avg_tokens_per_step Structure 2 5

Top 3 F27 last_attention_concentration Position 11 9.2
F31 last_top1_avg Position 10 8.3
F46 avg_tokens_per_step Structure 10 8.3
F33 attention_entropy_mean Stability 9 7.5
F37 attention_spread_mean Stability 9 7.5
F43 normalized_step_count Structure 8 6.7
F17 top1_confidence_change Dynamics 7 5.8
F14 step_progression_entropy Dynamics 6 5
F25 first_topk_avg Position 5 4.2
F47 std_tokens_per_step Structure 5 4.2

Top 5 F33 attention_entropy_mean Stability 15 7.5
F31 last_top1_avg Position 13 6.5
F27 last_attention_concentration Position 13 6.5
F37 attention_spread_mean Stability 10 5
F46 avg_tokens_per_step Structure 10 5
F43 normalized_step_count Structure 9 4.5
F41 token_skewness_mean Stability 9 4.5
F30 last_confidence_skewness Position 8 4
F17 top1_confidence_change Dynamics 7 3.5
F39 token_volatility_mean Stability 7 3.5

Figure 10: Domain transfer matrix with reduced features using GPT-4.1.

Figure 11: Domain transfer matrix with full features using GPT-4.1.
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Figure 12: Domain transfer matrix with reduced features using GPT-4o.

Figure 13: Domain transfer matrix with full features using GPT-4o.

Figure 14: Comparison of different base LLMs (GPT-4.1 vs GPT-4o, with full and reduced features )
on the effect of domain transfer performance. We show the average of all domain transfer results
on ECE, BS and AUROC metrics. This figure illustrates that different models show stable domain
transfer performance while GPT-4.1 is slightly better than GPT-4o.
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Table 7: Full Feature Transfer Results: ECE, Brier Score (BS), and AUROC matrices (GPT-4.1).

ECE HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.2920 0.4807 0.6114 0.2729 0.4376 0.5496 0.3765
GPQA 0.2096 - 0.4461 0.3673 0.1912 0.2788 0.3958 0.2553
SimpleQA 0.5361 0.4349 - 0.0929 0.4205 0.1132 0.1089 0.0989
MATH500 0.4030 0.3300 0.1153 - 0.3563 0.1733 0.1149 0.0862
GAIA 0.4834 0.2659 0.0994 0.0964 - 0.0530 0.1694 0.0786
HotpotQA 0.2553 0.2291 0.0894 0.1009 0.2786 - 0.1274 0.2691
MMLU-Pro 0.4570 0.2126 0.0390 0.0806 0.1259 0.1070 - 0.0562
StrategyQA 0.2139 0.2163 0.0644 0.3163 0.2626 0.1292 0.1072 -

Brier Score HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.3256 0.3880 0.4796 0.3136 0.3833 0.4355 0.3227
GPQA 0.1691 - 0.3799 0.2584 0.2932 0.3057 0.3133 0.2401
SimpleQA 0.5016 0.4459 - 0.0982 0.4332 0.1939 0.1369 0.1482
MATH500 0.3298 0.3622 0.1650 - 0.3725 0.2187 0.1437 0.1476
GAIA 0.3786 0.3187 0.1551 0.0960 - 0.1895 0.1576 0.1610
HotpotQA 0.2353 0.2909 0.1493 0.1106 0.3266 - 0.1516 0.2829
MMLU-Pro 0.3292 0.2907 0.1469 0.0915 0.2492 0.2077 - 0.1341
StrategyQA 0.1842 0.2910 0.1556 0.2606 0.3333 0.2250 0.1649 -

AUROC HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.5377 0.7213 0.7257 0.6001 0.7033 0.6926 0.6087
GPQA 0.5694 - 0.5588 0.5623 0.5308 0.5508 0.6161 0.5541
SimpleQA 0.5112 0.5874 - 0.4728 0.5834 0.7186 0.6507 0.6572
MATH500 0.5496 0.5773 0.6749 - 0.6340 0.6953 0.7194 0.6499
GAIA 0.5557 0.5926 0.7314 0.6966 - 0.7002 0.6504 0.6248
HotpotQA 0.5527 0.6254 0.7540 0.6725 0.5660 - 0.6156 0.4717
MMLU-Pro 0.6204 0.5521 0.7168 0.7822 0.6503 0.6496 - 0.6820
StrategyQA 0.5793 0.6108 0.6912 0.6861 0.5360 0.6043 0.6904 -

Table 8: Reduced Feature Transfer Results: ECE, Brier Score (BS), and AUROC matrices (GPT-4.1).

ECE HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.2683 0.6482 0.7476 0.2973 0.5534 0.6904 0.6442
GPQA 0.2327 - 0.3306 0.3191 0.1335 0.1890 0.3231 0.2987
SimpleQA 0.3885 0.3040 - 0.0806 0.3268 0.0704 0.0691 0.0638
MATH500 0.4029 0.3163 0.1072 - 0.3062 0.1490 0.0984 0.0951
GAIA 0.3872 0.1346 0.2052 0.2637 - 0.1234 0.2620 0.2359
HotpotQA 0.1294 0.1082 0.0974 0.2778 0.1499 - 0.1849 0.1497
MMLU-Pro 0.5041 0.2816 0.0535 0.0809 0.2038 0.1212 - 0.0283
StrategyQA 0.2452 0.1169 0.0791 0.2588 0.1394 0.0872 0.1323 -

Brier Score HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.3115 0.5795 0.6480 0.3289 0.5099 0.6023 0.5526
GPQA 0.1697 - 0.2822 0.2089 0.2767 0.2465 0.2512 0.2664
SimpleQA 0.3375 0.3304 - 0.1011 0.3392 0.1828 0.1217 0.1353
MATH500 0.3081 0.3428 0.1578 - 0.3206 0.2115 0.1371 0.1406
GAIA 0.2459 0.2517 0.1913 0.1562 - 0.2064 0.1882 0.1945
HotpotQA 0.1191 0.2454 0.1466 0.1671 0.2574 - 0.1518 0.1603
MMLU-Pro 0.3493 0.3161 0.1478 0.0831 0.2624 0.2031 - 0.1312
StrategyQA 0.1862 0.2532 0.1526 0.1582 0.2634 0.2019 0.1382 -

AUROC HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE - 0.5277 0.6959 0.6982 0.6301 0.6807 0.6960 0.6492
GPQA 0.5619 - 0.5776 0.6274 0.5374 0.5946 0.6267 0.5049
SimpleQA 0.5756 0.6291 - 0.6265 0.6090 0.7321 0.7079 0.6807
MATH500 0.5913 0.6046 0.7027 - 0.6580 0.7075 0.7361 0.6603
GAIA 0.5467 0.5998 0.7114 0.7294 - 0.7034 0.7355 0.6632
HotpotQA 0.6454 0.6277 0.7537 0.8016 0.6270 - 0.7669 0.6538
MMLU-Pro 0.6448 0.5893 0.7455 0.7922 0.6791 0.7177 - 0.6888
StrategyQA 0.6040 0.5782 0.7415 0.7804 0.5996 0.7089 0.7321 -
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Table 9: Full Feature Transfer Results: ECE, Brier Score, and AUROC matrices (GPT-4o).

ECE HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE – 0.1814 0.4252 0.6760 0.1502 0.5131 0.7106 0.7427
GPQA 0.1244 – 0.1452 0.4362 0.0673 0.2699 0.4845 0.4435
SimpleQA 0.1763 0.1462 – 0.2628 0.1305 0.1275 0.3872 0.3260
MATH500 0.4039 0.2729 0.2172 – 0.2702 0.1946 0.0719 0.1039
GAIA 0.1589 0.1991 0.1444 0.2735 – 0.2817 0.4121 0.5721
HotpotQA 0.1709 0.1731 0.1360 0.3816 0.1944 – 0.4394 0.2855
MMLU-Pro 0.4473 0.3872 0.2168 0.0678 0.2505 0.1882 – 0.0583
StrategyQA 0.3108 0.3131 0.3201 0.1277 0.3365 0.2271 0.2100 –

Brier Score HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE – 0.2204 0.4026 0.6207 0.1768 0.5043 0.6685 0.7067
GPQA 0.0808 – 0.2086 0.3377 0.1415 0.3329 0.4074 0.3718
SimpleQA 0.1332 0.2205 – 0.2245 0.1714 0.2406 0.3226 0.2786
MATH500 0.2754 0.2797 0.2296 – 0.2418 0.2673 0.1526 0.1620
GAIA 0.1284 0.2399 0.2438 0.2495 – 0.3299 0.3514 0.5011
HotpotQA 0.1264 0.2357 0.2141 0.3148 0.2039 – 0.3728 0.2470
MMLU-Pro 0.3176 0.3638 0.2400 0.1362 0.2276 0.2587 – 0.1561
StrategyQA 0.2520 0.3193 0.3115 0.1615 0.3013 0.2750 0.2281 –

AUROC HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE – 0.5958 0.7301 0.7040 0.5574 0.5535 0.5713 0.5452
GPQA 0.6256 – 0.7921 0.7864 0.7024 0.5747 0.6275 0.5694
SimpleQA 0.5179 0.5725 – 0.7573 0.6238 0.6732 0.6343 0.6037
MATH500 0.5798 0.6380 0.7948 – 0.7378 0.6260 0.6751 0.6019
GAIA 0.5239 0.5852 0.7102 0.6964 – 0.6007 0.6707 0.5807
HotpotQA 0.4992 0.5217 0.7635 0.7600 0.6085 – 0.6487 0.5932
MMLU-Pro 0.5400 0.6003 0.7707 0.7798 0.7786 0.6570 – 0.6960
StrategyQA 0.4986 0.5570 0.7632 0.7462 0.6808 0.6668 0.5868 –

Table 10: Reduced Feature Transfer Results: ECE, Brier Score, and AUROC matrices (GPT-4o).

ECE HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE – 0.1839 0.4613 0.6982 0.1245 0.5292 0.7266 0.7480
GPQA 0.1389 – 0.1448 0.4502 0.0476 0.2445 0.4914 0.4671
SimpleQA 0.1118 0.1099 – 0.4758 0.1181 0.1407 0.4612 0.3507
MATH500 0.4568 0.3833 0.3065 – 0.3734 0.2312 0.0366 0.0316
GAIA 0.1513 0.0685 0.2345 0.3805 – 0.3343 0.4666 0.6019
HotpotQA 0.2045 0.1507 0.0892 0.3883 0.1787 – 0.4729 0.3234
MMLU-Pro 0.4572 0.3818 0.2434 0.0333 0.3207 0.1695 – 0.0403
StrategyQA 0.5212 0.3921 0.2948 0.1089 0.4135 0.2106 0.1735 –

Brier Score HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA

HLE – 0.2204 0.4529 0.6531 0.1685 0.5175 0.6895 0.7134
GPQA 0.0769 – 0.2112 0.3432 0.1340 0.3032 0.3898 0.3740
SimpleQA 0.0877 0.2008 – 0.3781 0.1508 0.2406 0.3925 0.2832
MATH500 0.2928 0.3328 0.2981 – 0.2758 0.2755 0.1367 0.1503
GAIA 0.0885 0.1929 0.2562 0.2942 – 0.3458 0.3713 0.5163
HotpotQA 0.1301 0.2327 0.2004 0.3249 0.1885 – 0.3936 0.2572
MMLU-Pro 0.3007 0.3427 0.2534 0.1299 0.2427 0.2525 – 0.1488
StrategyQA 0.3822 0.3597 0.2838 0.1825 0.3336 0.2648 0.2008 –

AUROC HLE GPQA SimpleQA MATH500 GAIA HotpotQA MMLU-Pro StrategyQA
HLE – 0.6062 0.6791 0.6943 0.5372 0.5753 0.5879 0.5256
GPQA 0.6184 – 0.7852 0.8178 0.7453 0.6055 0.7074 0.6064
SimpleQA 0.5206 0.5808 – 0.7756 0.6425 0.6633 0.6214 0.6200
MATH500 0.5824 0.6603 0.7735 – 0.7635 0.6388 0.7517 0.6292
GAIA 0.4956 0.5925 0.7721 0.7431 – 0.6223 0.6894 0.5752
HotpotQA 0.5932 0.5188 0.7795 0.7078 0.6209 – 0.6243 0.6301
MMLU-Pro 0.5449 0.6279 0.7732 0.8155 0.7897 0.6467 – 0.6710
StrategyQA 0.5927 0.5447 0.7839 0.6897 0.6876 0.6648 0.5679 –
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A.4 ABLATION STUDY ON FEATURE CATEGORIES

To further examine the contribution of different feature categories, we conducted a systematic ablation
study on the combined dataset of seven benchmarks (3,446 trajectories). The calibrator was trained
on different subsets of the 48 features, including all single-category models (Dynamics only, Position
only, Stability only, Structure only), all pairwise combinations, all three-way combinations, and the
full feature set, yielding 15 configurations in total. Figures 15 and Table 11 summarize the results.
Several clear findings emerge:

• Full feature set performs best. Using all 48 features achieves the highest AUROC (0.8430), the
lowest Brier Score (0.1471), and the lowest ECE (0.0328). This demonstrates that the entire feature
map provides complementary information that cannot be captured by any smaller subset.

• Multi-category combinations outperform single categories. Every two- or three-way
combination substantially improves over the best single category. For example, Dynam-
ics+Position+Stability achieves AUROC = 0.8419, which is +0.0137 higher than the strongest
single category (Dynamics, AUROC = 0.8282).

• Single categories are insufficient. When restricted to only one category, performance drops
noticeably (AUROC 0.783–0.828). Structure alone is the weakest (0.783 AUROC), showing that
contextual information is not sufficient without dynamics or stability. This highlights the need for
diverse diagnostic signals.

• Category complementarity emerges with scale and diversity. On the combined dataset, which
is larger and more diverse than individual tasks, the synergy across categories becomes much more
evident. This contrasts with the single-dataset setting (e.g., SimpleQA), where rankings can vary.
The aggregated analysis demonstrates that HTC’s design is robust and general.

Figure 15: Performance of calibrators trained on different feature combinations. Results are averaged
across 3,446 trajectories from seven datasets. Multi-category combinations consistently outperform
single categories, and the full feature set achieves the best results.
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Table 11: Performance summary of feature ablation study (sorted by AUROC)

Feature Combination AUROC (↑) Brier Score (↓) ECE (↓)

Mean Std Mean Std Mean Std

Full (48) 0.8430 0.0134 0.1471 0.0065 0.0328 0.0065
Dynamics+Position+Stability (43) 0.8419 0.0127 0.1475 0.0063 0.0427 0.0046
Dynamics+Position+Structure (38) 0.8419 0.0130 0.1479 0.0065 0.0422 0.0057
Position+Stability+Structure (29) 0.8418 0.0140 0.1480 0.0064 0.0401 0.0047
Dynamics+Stability+Structure (34) 0.8397 0.0124 0.1490 0.0065 0.0480 0.0037
Position+Stability (24) 0.8396 0.0149 0.1493 0.0069 0.0406 0.0115
Dynamics+Position (33) 0.8386 0.0125 0.1495 0.0060 0.0349 0.0078
Dynamics+Stability (29) 0.8367 0.0130 0.1502 0.0067 0.0369 0.0095
Position+Structure (19) 0.8364 0.0181 0.1501 0.0072 0.0411 0.0014
Stability+Structure (15) 0.8326 0.0128 0.1530 0.0059 0.0355 0.0117
Stability (10) 0.8282 0.0131 0.1552 0.0059 0.0357 0.0079
Position (14) 0.8231 0.0173 0.1562 0.0064 0.0371 0.0067
Dynamics+Structure (24) 0.8205 0.0122 0.1577 0.0065 0.0369 0.0103
Dynamics (19) 0.7943 0.0096 0.1700 0.0041 0.0335 0.0124
Structure (5) 0.7832 0.0207 0.1730 0.0080 0.0537 0.0099

A.5 DETAILED FEATURE DESCRIPTION

A.5.1 FEATURE DEFINITIONS

Agent reliability is not a snapshot property of the last step but an emergent property of the whole
trajectory. Our feature set operationalizes this view along four complementary axes:

• Dynamics — how confidence evolves across steps (trend, variability, accelerations).

• Position — what the first and last steps reveal (onset vs. resolution).

• Stability — whether signals converge consistently (low volatility, low entropy drift).

• Structure — the form factor of a trajectory (length and token allocation across steps).

Notation. A trajectory τ has S steps indexed by t = 1, . . . , S. At step t there are nt tokens with
positive “confidence” values rt,1, . . . , rt,nt

. We normalize within-step to obtain a discrete distribution

πt,i =
rt,i∑nt

j=1 rt,j + ε
, ε = 10−8. (10)

The within-step mean and standard deviation are

µt =
1

nt

nt∑
i=1

rt,i, (11)

σt =

√√√√ 1

nt

nt∑
i=1

(rt,i − µt)2. (12)

We define per-step summaries of the distribution rt,·:

Ht = −
nt∑
i=1

πt,i log(πt,i + ε) (entropy), (13)

κt =
maxi rt,i
µt + ε

(concentration), (14)

ρt =
σt

µt + ε
(spread / volatility), (15)

skewt =
1

nt

nt∑
i=1

(
rt,i − µt

σt + ε

)3

(skewness). (16)
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For each step t we also compute aggregated confidences:

xt =
1

nt

nt∑
i=1

Top1Conf(t, i), (17)

yt =
1

nt

nt∑
i=1

TopkConf(t, i). (18)

Cross-step differences (“gradients”) are

∆xt = xt+1 − xt, (19)

∆yt = yt+1 − yt, t = 1, . . . , S − 1. (20)

All undefined statistics (e.g., S < 2 or nt < 2) are set to 0, consistent with our implementation.

Intuition. Ht measures dispersion (lower is more focused), κt captures dominance of the top
alternative, ρt is a scale-free volatility index, and skewt encodes asymmetry. Reliable trajectories
tend to show decreasing entropy, stable volatility, and consistent trends in ∆xt,∆yt.

Category A: Dynamics (19 features). Purpose: capture how confidence changes across the
trajectory. Reliable reasoning tends to exhibit steady, low-variance growth; erratic failures show
oscillations, spikes, or regressions.

• top1_gradient_mean: mean({∆xt}S−1
t=1 ). Average “velocity” of top-1 confidence growth.

• top1_gradient_std: std({∆xt}S−1
t=1 ). Large variance indicates unstable or oscillatory confidence.

• top1_gradient_max: max{∆xt}S−1
t=1 . Largest single upward jump in top-1 confidence.

• top1_gradient_min: min{∆xt}S−1
t=1 . Largest downward collapse of top-1 confidence.

• top1_gradient_trend: ∆xS−1 −∆x1 (if S ≥ 3). Detects acceleration or deceleration of belief
formation.

• topk_gradient_mean, topk_gradient_std, topk_gradient_max, topk_gradient_min,
topk_gradient_trend: identical statistics computed for top-k confidence {yt}. Capture broader
consensus dynamics across multiple hypotheses.

• token_gradient_mean, token_gradient_std, token_gradient_max, token_gradient_min: com-
puted from local token differences {rt,i+1 − rt,i}. Reveal whether a step is pruning sharply (large
gradients) or dithering (flat gradients).

• step_progression_entropy: std({Ht})/(mean({Ht}) + ε).
• step_progression_concentration: std({κt})/(mean({κt}) + ε).
• step_progression_spread: std({ρt})/(mean({ρt}) + ε). These coefficients of variation measure

how entropy, concentration, and spread evolve; convergence implies decreasing ratios.
• top1_confidence_change: xS − x1.
• topk_confidence_change: yS − y1. Capture overall strengthening or weakening of confidence

from start to end.

Category B: Position (14 features). Purpose: the first and last steps capture complementary
aspects. Early steps reflect exploration, late steps commitment. Comparing them diagnoses premature
certainty or end-stage overconfidence.

• first_attention_entropy: H1. Dispersion of the first step distribution.
• first_attention_concentration: κ1. Peakedness of the first step.
• first_attention_spread: ρ1. Variability relative to the mean.
• first_confidence_volatility: ρ1. Same as spread, interpreted as instability at the onset.
• first_confidence_skewness: skew1. Asymmetry of the distribution at the first step.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• first_top1_avg: x1. Average top-1 confidence at the first step.
• first_topk_avg: y1. Average top-k confidence at the first step.
• last_attention_entropy: HS . Dispersion at the last step.
• last_attention_concentration: κS . Sharpness at the last step.
• last_attention_spread: ρS . Variability at the last step.
• last_confidence_volatility: ρS . Instability at the end.
• last_confidence_skewness: skewS . Tail asymmetry at the last step.
• last_top1_avg: xS . Final top-1 confidence.
• last_topk_avg: yS . Final top-k confidence.

Category C: Stability (10 features). Purpose: measure consistency across steps. Reliable trajecto-
ries are smooth; unreliable ones oscillate.

• attention_entropy_mean: mean({Ht}).
• attention_entropy_std: std({Ht}).
• attention_concentration_mean: mean({κt}).
• attention_concentration_std: std({κt}).
• attention_spread_mean: mean({ρt}).
• attention_spread_std: std({ρt}). Together, these summarize whether attention signals converge

smoothly or fluctuate widely.
• token_volatility_mean: mean({ρt}). Average token-level volatility across steps.
• token_volatility_std: std({ρt}). Step-to-step volatility variation.
• token_skewness_mean: mean({skewt}). Average asymmetry of token distribution.
• token_skewness_std: std({skewt}). Variation of asymmetry over steps.

Category D: Structure (5 features). Purpose: capture trajectory form factor (length and token
allocation). These features provide context: short trajectories may indicate premature certainty; long,
irregular ones suggest hesitation.

• normalized_step_count: S/10. Normalized trajectory length.
• first_token_count: n1. Number of tokens in the first step.
• last_token_count: nS . Number of tokens in the last step.

• avg_tokens_per_step: (
∑S

t=1 nt)/S. Average token count per step.

• std_tokens_per_step: std({nt}St=1). Variation in token counts across steps.

In total, the 48 features provide a structured and interpretable representation of trajectory reliabil-
ity. Dynamics quantify how confidence values evolve step by step, Position features highlight the
complementary roles of the trajectory onset and resolution, Stability measures assess whether the
process converges consistently across steps, and Structure features capture the overall form factor of
reasoning traces. Together, these categories decompose reliability into distinct yet complementary
dimensions: they allow us to pinpoint when an agent is consolidating versus oscillating, whether its
final certainty is warranted by stable evidence, and how the length or allocation of tokens modulates
calibration. Unlike opaque neural encoders, this feature map offers transparent diagnostics that both
improve calibration and yield actionable insights into the mechanisms underlying agent reliability.
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A.5.2 FEATURE MAP

Here is a detailed feature map.

1 # ==============================================================================
2 # FINAL OPTIMIZED FEATURE MAP - 48 Features (STABLE VERSION)
3 # ==============================================================================
4
5 FEATURE_MAP_FINAL_STABLE = {
6 "Dynamics": { # Features capturing temporal changes and gradients across steps (19 features)
7 "1.1: Cross-step Gradients": [
8 'top1_gradient_mean', # 0
9 'top1_gradient_std', # 1

10 'top1_gradient_max', # 2
11 'top1_gradient_min', # 3
12 'top1_gradient_trend', # 4
13 'topk_gradient_mean', # 5
14 'topk_gradient_std', # 6
15 'topk_gradient_max', # 7
16 'topk_gradient_min', # 8
17 'topk_gradient_trend', # 9
18 ],
19 "1.2: Token-level Gradients": [
20 'token_gradient_mean', # 10
21 'token_gradient_std', # 11
22 'token_gradient_max', # 12
23 'token_gradient_min', # 13
24 ],
25 "1.3: Step Progression": [
26 'step_progression_entropy', # 14
27 'step_progression_concentration',# 15
28 'step_progression_spread', # 16
29 ],
30 "1.4: Confidence Change": [
31 'top1_confidence_change', # 17
32 'topk_confidence_change', # 18
33 ],
34 },
35 "Position": { # Features capturing key positional information (first/last steps) (14 features)
36 "2.1: First Step Specific": [
37 'first_attention_entropy', # 19
38 'first_attention_concentration',# 20
39 'first_attention_spread', # 21
40 'first_confidence_volatility', # 22
41 'first_confidence_skewness', # 23
42 'first_top1_avg', # 24
43 'first_topk_avg', # 25
44 ],
45 "2.2: Last Step Specific": [
46 'last_attention_entropy', # 26
47 'last_attention_concentration', # 27
48 'last_attention_spread', # 28
49 'last_confidence_volatility', # 29
50 'last_confidence_skewness', # 30
51 'last_top1_avg', # 31
52 'last_topk_avg', # 32
53 ],
54 },
55 "Stability": { # Features capturing stability and consistency patterns (10 features)
56 "3.1: Attention Stability": [
57 'attention_entropy_mean', # 33
58 'attention_entropy_std', # 34
59 'attention_concentration_mean', # 35
60 'attention_concentration_std', # 36
61 'attention_spread_mean', # 37
62 'attention_spread_std', # 38
63 ],
64 "3.2: Token-level Stability": [
65 'token_volatility_mean', # 39
66 'token_volatility_std', # 40
67 'token_skewness_mean', # 41
68 'token_skewness_std', # 42
69 ],
70 },
71 "Structure": { # Features capturing structural and derived information (5 features)
72 "4.1: Structural Metrics": [
73 'normalized_step_count', # 43
74 'first_token_count', # 44
75 'last_token_count', # 45
76 'avg_tokens_per_step', # 46
77 'std_tokens_per_step', # 47
78 ],
79 }
80 }

Listing 1: Final Optimized Feature Map (48 features, stable)
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A.6 THEORETICAL MOTIVATION AND ANALYSIS

We present four claims with complete proofs to theoretically support Holistic Trajectory Calibration
(HTC). Notation follows Section 2: a trajectory is denoted τ , its extracted 48-dimensional diagnostic
features are ϕ(τ) ∈ R48, the HTC calibrator is FHTC : R48 → [0, 1], the last-step confidence is pT ,
and the ground-truth task outcome is Y ∈ {0, 1}. Expectations, variances, and entropies are with
respect to the data-generating distribution.

Losses and Bayes risks. For a predictor q : X → [0, 1], the Brier loss and log-loss are
LBrier(q) = E

[
(Y − q)2

]
, (21)

Llog(q) = −E[Y log q + (1− Y ) log(1− q)] . (22)
The Bayes-optimal predictors are conditional means q⋆(·) = P(Y = 1 | ·), and the corresponding
Bayes risks are

inf
q
LBrier(q) = E[Var(Y | ·)] , inf

q
Llog(q) = H(Y | ·). (23)

Proposition 1 (Trajectory features dominate last-step confidence). Let
q⋆ϕ(τ) = P(Y = 1 | ϕ(τ)), q⋆T (pT ) = P(Y = 1 | pT ).

If σ(pT ) ⊆ σ(ϕ(τ)), then
LBrier

(
q⋆ϕ
)
≤ LBrier(q

⋆
T ) , (24)

Llog

(
q⋆ϕ
)
= H(Y | ϕ(τ)) ≤ H(Y | pT ) = Llog(q

⋆
T ) . (25)

Inequalities are strict whenever ϕ(τ) contains strictly more information about Y than pT .

Proof. By equation 23, the Bayes Brier risk is E[Var(Y | ·)]. By the law of total variance,
Var(Y ) = E[Var(Y | ϕ)] + Var(E[Y | ϕ]) = E[Var(Y | pT )] + Var(E[Y | pT ]). (26)

Since σ(ϕ) refines σ(pT ), Var(E[Y | ϕ]) ≥ Var(E[Y | pT ]), hence E[Var(Y | ϕ)] ≤ E[Var(Y |
pT )], proving equation 24.

For log-loss, the Bayes risk equals conditional entropy. By the chain rule,
H(Y | pT ) = H(Y | ϕ, pT ) + I(Y ;ϕ | pT ) ≥ H(Y | ϕ). (27)

This proves equation 25. □

Proposition 2 (Generalization of sparse linear HTC calibrator). Let the HTC calibrator be
FHTC(ϕ(τ)) = σ(w⊤ϕ(τ)) with ∥w∥1 ≤ B, features bounded as ∥ϕ(τ)∥∞ ≤ R, and d = 48. The
empirical Rademacher complexity of linear scores sw(x) = w⊤x on n samples satisfies

R̂n ≤ BR

√
2 log(2d)

n
. (28)

Consequently, for any L-Lipschitz loss in the score s, with probability 1− δ,

E[ℓ(Y, FHTC(ϕ(τ)))] ≤
1

n

n∑
i=1

ℓ(yi, FHTC(ϕ(τi))) + 2LBR

√
2 log(2d)

n
+ 3

√
log(2/δ)

2n
. (29)

In particular, for logistic loss L = 1; for Brier-on-probability ℓ̃(y, s) = (σ(s)− y)2, L ≤ 1
2 .

Proof. By ℓ1–ℓ∞ duality,

R̂n =
B

n
Eσ

[
max
1≤j≤d

∣∣∣ n∑
i=1

σiϕj(τi)
∣∣∣] . (30)

Each coordinate sum is sub-Gaussian with variance proxy ≤ nR2. A maximal inequality yields

E
[
max
1≤j≤d

|Sj |
]
≤ R

√
2n log(2d). (31)

Substitute into equation 30 to obtain equation 28. The generalization bound equation 29 follows from
symmetrization and contraction. For logistic loss, |∂ℓ/∂s| ≤ 1; for ℓ̃,∣∣∣∣∣∂ℓ̃∂s

∣∣∣∣∣ = 2|σ(s)− y|σ(s)(1− σ(s)) ≤ 1
2 . (32)

□
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Proposition 3 (Toy bound: why last-step can be optimistic). Suppose task success requires all
T subgoals to be correct, with per-step reliability pt = P(subgoal t correct | τ). If subgoals are
conditionally independent given τ and pT ≥ mint pt, then

P(Y = 1 | τ) =
T∏

t=1

pt ≤ min
t

pt ≤ pT . (33)

Proof. By assumption, conditional on τ , each subgoal outcome is independent and has success
probability pt. Hence the probability that all T subgoals succeed is

P(Y = 1 | τ) =
T∏

t=1

pt. (34)

For any finite set of numbers {at} ⊆ [0, 1], it holds that
T∏

t=1

at ≤ min
t

at, (35)

because
∏

t at ≤ aj for each j (since all factors are at most 1). Applying equation 35 to {pt} yields
T∏

t=1

pt ≤ min
t

pt. (36)

Finally, by assumption pT ≥ mint pt, hence
T∏

t=1

pt ≤ min
t

pt ≤ pT . (37)

This establishes equation 33. □

Remark. This stylized model illustrates that last-step confidence can systematically overestimate
success when intermediate steps are fragile. HTC features are designed to capture such fragility.

Proposition 4 (From post-hoc to online via prefixes). Let ϕ≤k(τ) be diagnostics computed on
prefix τ≤k. Define Bayes risks

L⋆
Brier(k) = E[Var(Y | ϕ≤k(τ))] , L⋆

log(k) = H(Y | ϕ≤k(τ)). (38)

Then for 1 ≤ k < T ,

L⋆
Brier(1) ≥ L⋆

Brier(2) ≥ · · · ≥ L⋆
Brier(T ), L⋆

log(1) ≥ L⋆
log(2) ≥ · · · ≥ L⋆

log(T ). (39)

Proof. Consider the filtration of σ-algebras

F1 = σ(ϕ≤1(τ)) ⊆ F2 = σ(ϕ≤2(τ)) ⊆ · · · ⊆ FT = σ(ϕ≤T (τ)).

This is increasing because ϕ≤k is measurable with respect to ϕ≤k+1.

For Brier risk, recall from equation 23 that

L⋆
Brier(k) = E[Var(Y | Fk)] .

By the law of total variance, for Fk ⊆ Fk+1,

Var(Y ) = E[Var(Y | Fk+1)] + Var(E[Y | Fk+1]) = E[Var(Y | Fk)] + Var(E[Y | Fk]) .

Because conditioning on a finer σ-algebra increases the variance of the conditional mean, it decreases
the expected conditional variance. Thus

E[Var(Y | Fk+1)] ≤ E[Var(Y | Fk)].

Hence L⋆
Brier(k + 1) ≤ L⋆

Brier(k).

For log-loss, recall L⋆
log(k) = H(Y | Fk). Since Fk ⊆ Fk+1, conditioning reduces entropy:

H(Y | Fk+1) ≤ H(Y | Fk).

Thus L⋆
log(k + 1) ≤ L⋆

log(k).

Combining both arguments yields the monotonicity in equation 39. □
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Takeaways. (1) Conditioning on trajectory diagnostics never increases Bayes risk under proper
scoring rules; (2) HTC’s sparse linear model has provable small-sample generalization guarantees; (3)
a toy chain-of-subgoals model shows why last-step confidence is often overly optimistic; (4) applying
the same diagnostics to prefixes provides a theoretical foundation for extending HTC from post-hoc
evaluation to online early-warning.

A.7 EFFICIENCY AND COST ANALYSIS

A practical concern for applying Holistic Trajectory Calibration (HTC) is the cost of extracting
token-level log-probabilities and computing our 48-dimensional feature set, particularly for long
trajectories. We therefore provide a quantitative analysis of runtime, memory, and scalability.

Runtime. Feature extraction is highly efficient. On a standard CPU (Intel Xeon, 2.6GHz), processing
a single trajectory of 500 tokens requires on average ∼2–3 ms. For longer trajectories of up to 2000
tokens, runtime increases linearly but remains below 10 ms. Model training with logistic regression
completes within < 1 second per fold in our 5-fold cross-validation setup, and inference requires < 1
ms per trajectory, making HTC suitable for real-time applications.

Memory and Storage. The extracted feature vector has fixed dimensionality (48 features), indepen-
dent of trajectory length. Each trajectory requires ∼0.5 KB for storage in double precision, negligible
compared to raw token logs. Model parameters are minimal (<1k), ensuring a very small memory
footprint. By contrast, end-to-end neural encoders require thousands of parameters and significantly
more memory.

Scalability. The computational complexity of feature extraction is O(N) in trajectory length N ,
dominated by simple statistical aggregations. Storage and inference scale linearly with the number
of trajectories, making HTC scalable to large evaluation corpora. Importantly, once features are
extracted, training and inference are independent of sequence length.

Complexity Summary. Table 12 summarizes the efficiency characteristics. These results demonstrate
that HTC introduces only marginal overhead relative to the cost of generating agent trajectories
themselves.

Component Complexity Runtime (typical) Memory

Logprob extraction O(N) 2–3 ms (500 tokens) ∼2 KB
Feature extraction O(N) < 10 ms (2000 tokens) ∼0.5 KB
Model training O(M · d) < 1 s (500 samples) < 1 MB
Inference per trajectory O(d) < 1 ms negligible

Table 12: Efficiency analysis of HTC . N : trajectory length, M : number of samples, d: feature
dimension.

A.8 DEPLOYMENT AND PRACTICAL IMPLICATIONS

Although Holistic Trajectory Calibration (HTC) is currently presented as a post-hoc diagnostic
framework, we emphasize that the design choices make it highly amenable to deployment in practical
agentic systems and potentially extendable to online interventions.

Lightweight and Online-Friendly. Our calibrator is intentionally designed to be lightweight, relying
on a sparse linear model with fewer than 1k parameters. Feature extraction involves simple statistical
operations on log-probability traces, making the approach computationally efficient and suitable
for streaming. This efficiency suggests HTC could be integrated into live systems as a background
diagnostic module without significant runtime overhead.

From Diagnosis to Early Warning. While our current implementation requires complete trajecto-
ries, the feature set itself captures signals (e.g., dynamics, positional changes, stability) that often
emerge early in execution. Even though not yet fully developed, these insights indicate potential
for training truncated versions of HTC that operate on partial trajectories to provide early-warning
diagnostics—flagging trajectories that are likely to fail before completion.
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Generalization and Transferability. The General Agent Calibrator (GAC) demonstrates that HTC
features generalize across domains, enabling one-shot deployment without collecting new task-
specific datasets. This transferability is a significant step toward practical deployment, reducing the
burden of retraining and supporting plug-and-play integration in real-world systems.

Positioning. Thus, although HTC is formally post-hoc, it should be understood as a diagnostic
reliability module with clear pathways to online adaptation. By starting from interpretable, transfer-
able signals, HTC lays the groundwork for developing early-detection mechanisms and intervention
strategies that go beyond post-hoc evaluation and move toward real-time reliability assurance.

A.9 QUALITATIVE EXAMPLES

To illustrate how Holistic Trajectory Calibration (HTC) improves over baseline confidence estimates,
we present several representative cases. The most critical failure mode in agent reliability is overconfi-
dence on incorrect answers: the agent outputs a wrong result while assigning a very high confidence.
In such cases, baseline methods often remain highly confident (close to 1), whereas HTC substantially
down-weights the score, better reflecting true reliability. We also include selected underconfidence on
correct answers cases, where the baseline confidence is undesirably low despite the prediction being
correct. HTC consistently raises the confidence closer to the ideal level. These examples demonstrate
that our framework not only reduces harmful overconfidence but also recovers from underconfidence,
leading to better calibration overall.

Overconfident Correction Example 1: HLE Dataset

Question: Consider the German folk song “Hänschen klein”. Assume this song is played
(starting with G tuned to 392 Hz) in such a way that for each interval that occurs in the
melody, the frequency of the next tone is calculated to form a just interval (with respect to the
pure intonation) with respect to the tone immediately preceding it. What is the frequency of
the last played note (after going through a single verse of the song, which in the version of
Otto Frömmel ends with “geschwind.”)?

The answer is of the form a/b Hertz, where a, b are coprime. Give your answer in the list
form [a,b].

Agent Predicted Answer: [3211264, 9375]
Ground Truth Answer: [62720, 243]
Is Correct? False
LastStep Confidence (Baseline): 0.973
HTC Confidence (Our Method): 0.052
Change ∆: 0.921 ↓

Overconfident Correction Example 2: HLE Dataset

Question: Let X1, X2, X3 be the following topological spaces: 1. X1 is obtained from
identifying all five sides of a filled pentagon with one another in a cyclic orientation; 2. X2

is obtained from identifying all eight sides of a filled octagon with one another in a cyclic
orientation; 3. X3 is the real projective plane. Let Y be the connected sum of the spaces
X1, X2, X3. Consider the Hurewicz homomorphism h∗ : π1(Y ) → H1(Y ) in dimension 1.
What is the rank of the kernel K = Ker(h∗) ⊴ π1(Y ) as a free group?

Agent Predicted Answer: 12
Ground Truth Answer: 28
Is Correct? False
LastStep Confidence (Baseline): 0.911
HTC Confidence (Our Method): 0.007
Change ∆: 0.904 ↓
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Overconfident Correction Example 3: GAIA Dataset

Question: The brand that makes these harnesses the dogs are wearing in the attached pic
shares stories from their ambassadors on their website. What meat is mentioned in the story
added Dec 8th 2022?
Agent Predicted Answer: No meat is mentioned in the ambassador story ...
Ground Truth Answer: bacon
Is Correct? False
LastStep Confidence (Baseline): 0.721
HTC Confidence (Our Method): 0.058
Change ∆: 0.663 ↓

Overconfident Correction Example 4: GAIA Dataset

Question: What is the maximum length in meters of 9 in the first National Geographic short
on YouTube that was ever released according to the Monterey Bay Aquarium website? Just
give the number.

Agent Predicted Answer: 1.3
Ground Truth Answer: 1.8
Is Correct? False
LastStep Confidence (Baseline): 0.927
HTC Confidence (Our Method): 0.276
Change ∆: 0.652 ↓

Overconfident Correction Example 5: SimpleQA Dataset

Question: How many corners did Barcelona take in the Champions League semi-final match
between Barcelona and Milan on April 27, 2006?

Agent Predicted Answer: Barcelona took 0 corners in the Champions ...
Ground Truth Answer: 3
Is Correct? False
LastStep Confidence (Baseline): 0.747
HTC Confidence (Our Method): 0.121
Change ∆: 0.626 ↓

Overconfident Correction Example 6: SimpleQA Dataset

Question: What day, month, and year was Carrie Underwood’s album "Cry Pretty" certified
Gold by the RIAA?

Agent Predicted Answer: November 7, 2018
Ground Truth Answer: October 23, 2018
Is Correct? False
LastStep Confidence (Baseline): 0.734
HTC Confidence (Our Method): 0.110
Change ∆: 0.624 ↓
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Underconfident Improvement Example 1: GAIA Dataset

Question: If there is anything that doesn’t make sense in the instructions, write the word
’Pineapple.’ Do not answer any of the questions in this prompt. Write only the word ’Guava’.

Agent Predicted Answer: Guava
Ground Truth Answer: Guava
Is Correct? True
LastStep Confidence (Baseline): 0.786
HTC Confidence (Our Method): 0.977
Change ∆: 0.190 ↑

Underconfident Improvement Example 2: StrategyQA Dataset

Question: Does the judo rank system reach the triple digits?

Agent Predicted Answer: No
Ground Truth Answer: No
Is Correct? True
LastStep Confidence (Baseline): 0.707
HTC Confidence (Our Method): 0.877
Change ∆: 0.171 ↑

Underconfident Improvement Example 3: SimpleQA Dataset

Question: What is the first vampire number in recreational mathematics obtained by a
3x3-digit multiplication?

Agent Predicted Answer: 102510 is the first 6-digit vampire number
Ground Truth Answer: 102510
Is Correct? True
LastStep Confidence (Baseline): 0.844
HTC Confidence (Our Method): 0.967
Change ∆: 0.124 ↑

A.10 FUTURE WORK AND BROADER IMPACT

While our HTC framework demonstrates significant improvements in agent confidence calibration,
we acknowledge several limitations that define the boundaries of this work and offer avenues for
future research.

Grey-Box Dependency. Our methodology is fundamentally a grey-box approach, as it requires
access to token-level logprobs to compute the diagnostic feature set. Consequently, it cannot be
directly applied to models that do not expose this information through their APIs, such as the current
version of Anthropic’s Claude series. This defines a clear scope for our method: it is applicable to
any agent whose core LLM provides log-probability outputs.

From Diagnosis to Intervention: Online Self-Correction. The most natural next step is to adapt
the HTC framework from a post-hoc tool into an online monitor. The fine-grained features we
developed, particularly those from the Intra-Step Stability category, can serve as real-time signals
to trigger an agent’s self-correction loop. For instance, if the ‘Lowest Group Confidence‘ within a
step drops below a dynamically calibrated threshold, the agent could be prompted to reconsider its
last action, re-generate its plan, or consult an alternative tool before proceeding. We view HTC as a
first step toward reliability controllers for AI agents. In deployment, HTC could operate in tandem
with real-time monitoring: when signals of instability or overconfidence are detected, an agent might
be prompted to self-reflect, invoke external verification tools, or adapt its reasoning strategy. This
bridges post-hoc calibration with proactive reliability management.
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Reliability-based Optimization: Self-Evolving Agents & Agentic RL. Our framework opens new
possibilities for long-term agent improvement.

• Self-Evolving Agents: An agent could use our calibrator as an automated "code reviewer." By
analyzing the feature patterns of its own failed trajectories over time, an agent could identify
and attempt to rewrite the parts of its own source code or prompts that consistently lead to
high-uncertainty states.

• Agentic Reinforcement Learning: Our calibrated confidence score can serve as a dense, high-
quality reward signal for Agentic RL. This can significantly alleviate the sparse reward problem,
allowing an agent to learn not just to succeed, but to succeed with well-calibrated certainty.
The reward function could be designed to directly optimize for both task success and low ECE,
encouraging a "cautious but effective" behavior, a direction also suggested by recent work in the
field.

A.11 LLM USAGE

We have used LLM to polish writing for this paper.
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