

000 001 002 003 004 005 ELLA: EMBODIED LIFELONG LEARNING AGENTS WITH 006 NON-PARAMETRIC MEMORY 007 008 009

010 **Anonymous authors**
 011 Paper under double-blind review
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029

030 ABSTRACT 031

032 Situated within human society, embodied agents are continuously exposed to di-
 033 verse streams of information, ranging from visual observations to natural language
 034 interactions. A central challenge is enabling them to learn from and effectively
 035 leverage this information over extended periods. To address this, we introduce
 036 *Ella*, an embodied lifelong learning agent designed to accumulate experiences and
 037 acquire knowledge across hours of social interaction in a 3D open world. At the
 038 core of *Ella*'s capabilities is a structured, non-parametric, long-term multi-modal
 039 memory system that stores, updates, and retrieves information effectively. It con-
 040 sists of a name-centric semantic memory for organizing acquired knowledge and a
 041 spatiotemporal episodic memory for capturing multimodal experiences. By inte-
 042 grating foundation models with this non-parametric memory system, *Ella* retrieves
 043 relevant information for decision-making, plans daily activities, builds social rela-
 044 tionships, and evolves autonomously while coexisting with other intelligent beings
 045 in the open world. We conduct capability-oriented evaluations in a dynamic 3D
 046 open world where 15 agents engage in social activities for days and are assessed
 047 with a suite of unseen controlled evaluations. Experimental results show that *Ella*
 048 can influence, lead, and cooperate with other agents well to achieve goals, show-
 049 casing its ability to learn effectively through observation and social interaction.
 050 Our findings highlight the transformative potential of combining non-parametric
 051 memory systems with foundation models for advancing embodied intelligence.
 052 More videos can be found at <https://ellaiclr2026.github.io/Ella>.
 053

054 1 INTRODUCTION 055

056 It's a long-standing goal to create intelligent beings capable of survival in the human community (Gan
 057 et al., 2021; Li et al., 2023a; Puig et al., 2024), which requires lifelong learning in an open and
 058 social world. The embodied agents must accumulate experiences, including visual observations and
 059 social interactions with other intelligent beings, such as conversations; and acquire knowledge from
 060 these multi-modal experiences, build new concepts of objects, agents, and events, and identify the
 061 connections among these concepts.

062 With the rapid advancement of Foundation Models (OpenAI, 2023; Ravi et al., 2024; Guo et al.,
 063 2025), a surge of powerful agents has emerged (Sumers et al., 2023). These range from agents
 064 operating solely in the text domain (Gur et al., 2023; Shinn et al., 2024) to multi-modal agents capable
 065 of controlling screens (Hong et al., 2024), playing games (Wang et al., 2023a;b), and even functioning
 066 as robots in the physical world (Ahn et al., 2022; Huang et al., 2023b; Du et al., 2023). Despite these
 067 advancements, one crucial component remains underexplored in current agent research: long-term
 068 memory. Humans organize accumulated experiences in Episodic Memory (Tulving, 1972; 1983;
 069 Nuxoll & Laird, 2007) and acquired knowledge in Semantic Memory (Lindes & Laird, 2016), enabling
 070 them to make long-term plans and exhibit higher-level cognitive capabilities (Laird, 2022; Tenenbaum
 071 et al., 2011). In contrast, current work in embodied agents is limited to constrained spatial regions
 072 (primarily indoor spaces) and brief temporal scales (seconds for robotic manipulation or minutes for
 073 navigation tasks). For agents to thrive in an ever-evolving world, it is essential to develop a long-
 074 term memory system that supports learning new concepts and forming new relationships. However,
 075 directly fine-tuning the parameters of large foundation model-based agents has been shown to suffer
 076 from catastrophic forgetting (Huang et al., 2024). Developing non-parametric memory and effective
 077 retrieval algorithms has been a practical alternative for continual learning with LLMs (Gutiérrez et al.,
 078

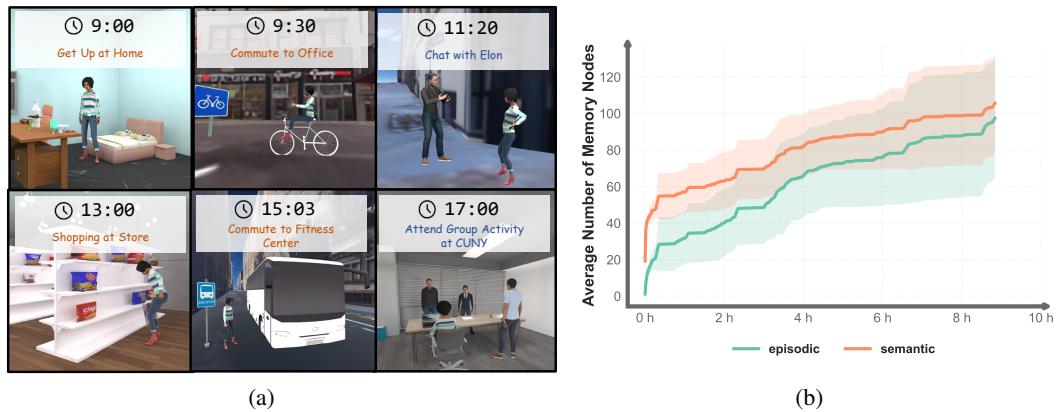


Figure 1: (a) Embodied agents require lifelong learning to accumulate experiences and acquire knowledge through everyday visual observation and social interaction within a community in a 3D open world. (b) *Ella* self-evolves by growing episodic and semantic memory over time.

2025). For Agents, Generative Agents (Park et al., 2023) introduced a textual temporal episodic memory, assuming oracle perception in a sandbox 2D environment. Similarly, Voyager (Wang et al., 2023a) designed a single agent with long-term procedural memory, enabling it to acquire new skills in Minecraft through oracle perception and self-training. However, the challenge of constructing effective lifelong memory systems for embodied agents in an open and social world—where they must learn from visual observations and engage in social interactions with other intelligent beings, as illustrated in Figure 1a—remains largely unexplored.

In this work, we propose to build a non-parametric long-term memory system that can store, update, and retrieve information effectively. Borrowing the concepts from psychology and cognitive neuroscience (Tulving, 1972), we construct the long-term memory in two forms: a name-centric semantic memory with a hierarchical scene graph and knowledge graph to organize acquired knowledge, and a spatiotemporal episodic memory to capture the agent’s multi-modal experiences. We present *Ella*, an embodied lifelong learning agent that can accumulate experiences and acquire knowledge effectively through visual perception and social interaction with other agents within a community in an open 3D world, by integrating this non-parametric memory with foundation models. To plan robustly and behave consistently through days of social life, *Ella* adopts a planning-reaction framework where it first retrieves related memory to make a structured daily schedule, then updates the memory with new visual observations and social interactions, and make reactions to the new context, which could be to revise the schedule, interact with the environment, or engage in social interactions.

We simulate *Ella* and other baseline agents in *Virtual Community* (Zhou et al., 2025), an open world simulation platform for multi-agent embodied AI, featuring large-scale community scenes with realistic physics and renderings. Unlike traditional task-oriented evaluations for agents, assessing high-level cognitive capabilities in a lifelong setting is more critical (Crosby et al., 2019). To this end, we first simulate 15 agents for 9 hours (with an observation and control frequency of 1 second), representing their first day in the community. During this phase, agents must plan their day based on their unique characteristics and acclimate to the environment and other agents. Then we test the agents with unseen controlled evaluations: *Influence Battle* and *Leadership Quest*, where the agents work in groups to persuade others to attend their party at a specific location despite conflicting schedules or lead their group to prepare for an activity under resource constraints. Experimental results across three communities show that *Ella* demonstrates advanced cognitive abilities including social reasoning and leadership, compared to baselines with only short-term memory or episodic memory, showcasing its ability to learn effectively through visual observation and social interaction. In sum, our contribution includes:

- We build a non-parametric long-term memory with name-centric semantic memory and spatiotemporal episodic memory for embodied lifelong learning in an open and social world.
- We introduce *Ella*, an embodied lifelong learning agent that can self-evolve through visual observation and social interaction by integrating long-term memory with foundation models.
- We conduct capability-oriented experiments in a 3D open world with 15 agents where *Ella* demonstrates superior cognitive abilities with a more advanced long-term memory.

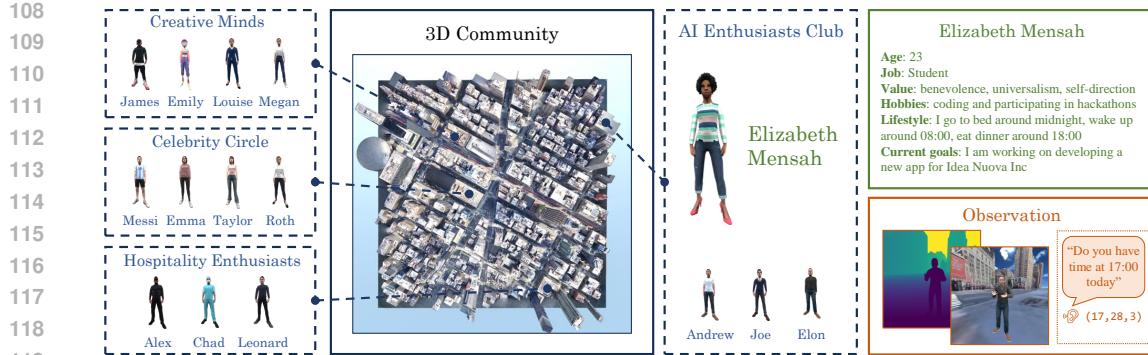


Figure 2: **An example community of 15 agents and 4 social groups in New York.** The character and observation of agent *Elizabeth Mensah* are shown on the right.

2 RELATED WORK

2.1 EMBODIED SOCIAL INTELLIGENCE

Social intelligence has been widely studied in embodied multi-agent environments (Zhou et al., 2025; Lowe et al., 2017; Carroll et al., 2019; Amato et al., 2019; Bard et al., 2020; Jain et al., 2020; Puig et al., 2021; Tsoi et al., 2020; Puig et al., 2023; Wen et al., 2022; Szot et al., 2023; Zhang et al., 2023; Li et al., 2019), while one branch focuses on simplified symbolic or game-like environments (Samvelyan et al., 2019; Suarez et al., 2019; Jaderberg et al., 2019; Baker et al., 2020; Niu et al., 2021; Sharon et al., 2015; Yu et al., 2024), often ignoring the challenges present in an open world, including perception and diverse personalities of agents. Specifically, generative agents (Park et al., 2023) developed a unified temporal memory, demonstrating the robust simulation of human-like agents within a symbolic community. Following this line of research, a series of works have explored socially intelligent agents within text-based sandbox environments (Li et al., 2023b; Zhou et al., 2024; Liu et al., 2024a; Chen et al., 2024; Liu et al., 2024b;c; Dai et al., 2024). The other branch, including works on human-robot interaction (Gombolay et al., 2015; Goodrich et al., 2008; Bobu et al., 2023; Dautenhahn, 2007; Nikolaidis et al., 2015; Rozo et al., 2016; Losey et al., 2022; Natarajan & Gombolay, 2020; Lasota et al., 2017), focuses on real-world domains but is limited to specific task settings. Different from above, we explore embodied social intelligence within a community in an open 3D world, featuring expansive spatial regions and a temporal scale spanning multiple days.

2.2 AGENT MEMORY

Memory has been studied for a long time in AI, especially related to cognitive architectures (Weston et al., 2014; Lindes & Laird, 2016; Sumers et al., 2023). However, most modern agent architecture primarily assumes a temporal memory due to the constraints of specific domains or the limited time horizon for which the agent is designed. A visual memory as a type of semantic memory has been implemented using various structures in computer vision, including voxels (Chaplot et al., 2020; Blukis et al., 2022; Min et al., 2022; Ramakrishnan et al., 2022), scene graphs (Li et al., 2022; Rana et al., 2023; Kurenkov et al., 2023; Gu et al., 2024b), Octrees (Hornung et al., 2013; Zhang et al., 2018; Asgharivaskasi & Atanasov, 2023; Zheng et al., 2023), or implicit continuous representations (Shafiuallah et al., 2022; Gadre et al., 2022; Huang et al., 2023a; Gadre et al., 2023). Recently, several works have explored agent memory for longer time horizons. (Kurenkov et al., 2023; Yang et al., 2024) and (Zhou et al., 2023) introduce updating mechanisms for scene graph-based memory, adapting it to long-term tasks. (Wang et al., 2023a) and (Li et al., 2024) develop procedural memory tailored for specific game environments to support long-term planning. (Jiang et al., 2024) proposes long-term memory with a graph-based structure to enable self-evolution in LLM tasks. (Wang et al., 2024) further integrates long-term and short-term memory to address long-horizon tasks within household environments. Another line of work studies how to better retrieve knowledge from external data sources to help Large Language Models answer questions (Borgeaud et al., 2022; Gutiérrez et al., 2024; 2025; Packer et al., 2023; Han et al., 2024; Shi et al., 2024; Yasunaga et al., 2023). However, none of the above have studied how to build a long-term memory system that could learn from both visual observations of the environment and social interactions with other agents, which we tackled with a dual-form structured memory and foundation models.

162 3 PROBLEM SETTING

163 In our setting, n agents with unique visual appearance v_i and character profile c_i inhabit an open,
 164 socially interactive world W , forming k social groups, as illustrated in Figure 2. Each character’s
 165 profile is defined by basic attributes such as name, age, occupation, values (Schwartz, 2012), hobbies,
 166 lifestyle, and current goals within the community. These attributes guide the agent’s daily decision-
 167 making. Social groups consist of a subset of agents selected based on character compatibility, and are
 168 defined by a group name, a detailed textual description, and a designated physical location for group
 169 activities. These groups connect the agents into a cohesive community, allowing rich and complex
 170 social interactions grounded in the 3D environment. Each agent is initialized with partial knowledge
 171 about the world, including known places and familiar agents, such as their residence and fellow group
 172 members, based on their characters’ profile. The simulation runs at a fine temporal resolution of
 173 one second per step, during which each agent receives an observation o_i including posed RGB and
 174 depth images, as well as dialogue content from nearby agents. Communication is spatial-constrained:
 175 agents can only engage in conversation if they are within a threshold distance θ_s , mimicking realistic
 176 spatial constraints on verbal interactions. Every second, agents execute an action a_i to interact with
 177 the environment or other agents. During controlled evaluations, intervention occurs solely through
 178 modifications to agents’ community goals. Agents are required to make optimal decisions a_i based
 179 on their updated character profiles c_i and incoming observations o_i .

180 4 ELLA: EMBODIED LIFELONG LEARNING AGENT

181 To enable the embodied agents to continually learn within a community in a 3D open world, robust
 182 and efficient long-term memory is the key. Many study finds that endorsing ever-evolving long-term
 183 memory by tuning the parameters of the LLMs faces the difficulty of catastrophic forgetting (Cohen
 184 et al., 2024; Gu et al., 2024a), while the non-parametric approach of building a knowledge base and
 185 retrieving new information from it avoids such challenges (Gutiérrez et al., 2025). Borrowing the
 186 concepts from psychology and cognitive neuroscience (Tulving, 1972), we build non-parametric long-
 187 term memory in two forms: name-centric semantic memory (Section 4.1) and spatiotemporal episodic
 188 memory (Section 4.2). Then in Section 4.3, we introduce how we leverage the foundation models to
 189 integrate this memory system to facilitate the agent’s everyday planning and social interactions.

190 4.1 NAME-CENTRIC SEMANTIC MEMORY

191 Semantic memory stores facts about the agent and world, which is continually updated while the
 192 agent interacts with the world and other agents. Different from language agents, which normally
 193 take external databases like Wikipedia as a form of knowledge to help reasoning (Sumers et al.,
 194 2023; Lewis et al., 2020; Borgeaud et al., 2022), embodied agents need knowledge grounded in the
 195 environment they inhabit. We organize the different types of knowledge in a name-centric way and
 196 connect the related ones into a graph as shown in Figure 3 (a). Specifically, we build a hierarchical
 197 scene graph on the fly to serve as a spatial memory to help the agent navigate the visual world. The
 198 semantic memory is updated whenever there is a new visual observation made or a conversation
 199 finished, as introduced in Section 4.3.3.

200 4.1.1 HIERARCHICAL SCENE GRAPH AS SPATIAL MEMORY

201 Maintaining a spatial memory of the surrounding world is vital for embodied agents to act in a 3D
 202 world. To serve this purpose, we incrementally build a hierarchical scene graph (Hughes et al., 2022;
 203 Gu et al., 2024b) on the fly as shown in Figure 3 (a).

204 **Volume Grid Layer** Given posed RGB and depth observation, we first project them to 3D space and
 205 represent them in volume grid representations to act as low-level geometric memory. We then obtain
 206 an occupancy map based on it to facilitate navigation while avoiding obstacles in the 3D world. We
 207 divided the entire map into blocks of $0.5m \times 0.5m$ and subdivided each block into smaller cells of
 208 $0.1m \times 0.1m$. We identified the lowest position within each small cell that could accommodate a
 209 person. A cell was classified as containing an obstacle if the height difference between this position
 210 and any of its neighboring cells exceeded $0.5m$.

211 **Object Layer** Taking inspiration from previous works (Gu et al., 2024b; Maggio et al., 2024), we
 212 employ a multi-stage perception pipeline to process RGB observations in an open world. Specifi-
 213 cally, we utilize a combination of open-set vision models—including tagging, object detection, and
 214 segmentation—to form the perception module. This module extracts a sequence of semantically
 215 labeled masks $\langle m_i, tag_i \rangle$ as object candidates. Using depth and pose observations, each mask m_i
 is projected into a 3D point cloud p_i , enabling the computation of geometric similarity $\text{sim}(p_i, p_j)$
 between objects based on their spatial overlap. Additionally, we extract visual features v_i for each

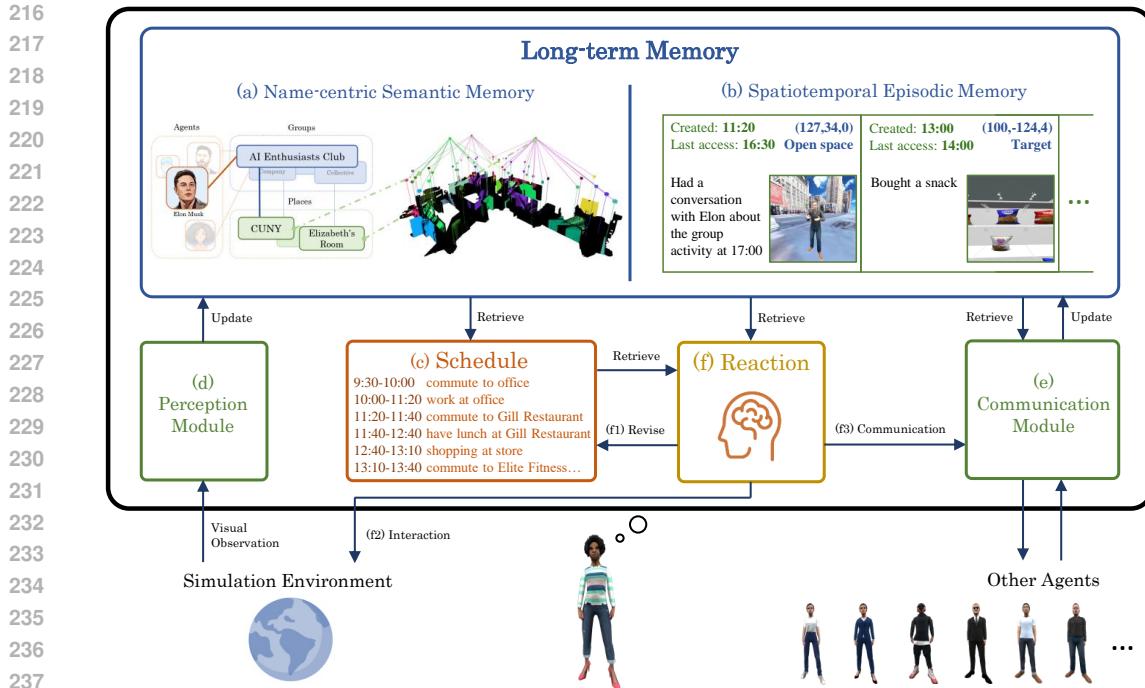


Figure 3: **Method Overview.** We build non-parametric long-term memory in two forms: (a) name-centric semantic memory organizes the knowledge in a name-centric graph including a hierarchical scene graph serving as the spatial memory; (b) spatiotemporal episodic memory stores the experience as a series of events consisting of **time**, **location**, and multimodal contents. (c) *Ella* first generates a daily schedule according to the knowledge and experiences retrieved from the long-term memory, (d) then updates the memory based on visual observations of the environment, and (e) social interactions with other agents and (f) makes reactions accordingly including (f1) revising the schedule, (f2) interacting with the environment, (f3) and engaging in a conversation.

object by encoding the corresponding cropped image. The detected object candidates from the current frame are then merged with existing objects based on similarity measurements. Unlike Gu et al. (2024b), we handle the additional complexity of dynamic objects such as agents and vehicles. Due to the relatively low perception rate (1 FPS), conventional tracking techniques are impractical. Instead, we rely on visual similarity to associate and merge dynamic objects across frames.

Region Layer We also implemented a region layer to further classify the buildings. First, we used the occupancy map and a breadth-first search to compute the Generalized Voronoi Diagram (GVD)(Hughes et al., 2022) of the map. For each point p in the GVD, we determined the set $S = \arg \min \{ \text{dist}(p, b) | b \in B \}$, where B represents the set of all buildings. We then connected all buildings in S with edges weighted by $\frac{1}{\text{dist}(p, s)^2}$, where $s \in S$. Finally, we connected all previously unconnected buildings by adding edges with zero weight, resulting in a complete graph. To group nodes connected by higher-weight edges, we applied spectral clustering, partitioning the graph into $\sqrt{|B|}$ regions. This clustering facilitated a more structured geometric partitioning of the buildings.

4.2 SPATIOTEMPORAL EPISODIC MEMORY

Episodic memory is responsible for storing personal experiences (Tulving, 1972; 1983). As noted by Mastrogiovanni et al. (2019), episodic memory encodes not only when and what events occurred but also where they took place—highlighting the crucial role of spatial information. Unlike Park et al. (2023), our episodic memory module incorporates both temporal and spatial information, in addition to multi-modal content, enabling the agent to retrieve experiences relevant to its current location. Experiences are stored as a series of events, each composed of temporal attributes (event creation time and last access time), spatial attributes (event location and place), and content attributes (a textual description and a corresponding egocentric image), as illustrated in Figure 3(b).

Retrieval The episodic memory supports spatiotemporal retrieval. Given a query—comprising time, location, and content—all stored experience items are ranked based on the following three criteria:

Spatial Proximity measures the distance between the event location p_e and the query location p_q .

$$\text{proximity}(e, q) = \frac{1}{\|p_e - p_q\| + \epsilon}$$

270 *Content Relevance* measures how well an event’s content aligns with the given query by evaluating
 271 both textual and visual similarity. Specifically, we compute the cosine similarity between the
 272 encoded representations of the event and query, considering both their text descriptions T and images
 273 I . The final relevance score is obtained by averaging these two similarities. $\text{Relevance}(e, q) =$
 274 $(\cos(T_e, T_q) + \cos(I_e, I_q))/2$

275 *Temporal Recency* is higher for events recently accessed. Following (Park et al., 2023), we model
 276 recency using an exponential decay function based on the time elapsed since the memory was last
 277 accessed. $\text{Recency}(e) = \exp(t_e - t_q)$

278 All three scores are then normalized to the range of $[0, 1]$ with min-max scaling and averaged as the
 279 final score, and the top k events are retrieved.

281 4.3 PLANNING, REACTION, AND COMMUNICATION

282 With this structured long-term memory, *Ella* leverages foundation models to make efficient and robust
 283 everyday planning. Following Park et al. (2023), we adopt a planning and reaction framework with
 284 several modifications to facilitate efficient daily planning. *Ella* first generates an environment- and
 285 characters-grounded daily schedule according to the knowledge and experiences retrieved from the
 286 long-term memory, then updates the memory based on observations and makes reactions accordingly,
 287 including revising the schedule, engaging in a conversation, and interacting with the environment. A
 288 specific communication module is incorporated to generate the utterance to chat about, summarize
 289 the conversations, and extract knowledge from it. More details on the submodules are provided in
 290 Appendix B. All prompt templates are provided in Appendix C.

291 4.3.1 DAILY SCHEDULE

292 At the start of each day, *Ella* will retrieve experience and knowledge from the long-term memory
 293 with a query of “*Things to consider for my schedule today.*”, then use foundation models to generate
 294 the daily schedule. Different from Park et al. (2023), we generate the daily schedule in a structured
 295 manner directly with each activity represented with a start time, an ending time, an activity description,
 296 and the corresponding activity place. Specifically, we consider the required commute time between
 297 adjacent activities happening in different places explicitly, due to the actual cost of navigating in
 298 an expansive 3D environment. For example, commuting from the office to a party place may take
 299 more than 15 minutes on foot, without considering that the agent may miss the party if they planned
 300 to attend the party at the party’s starting time. Figure 3 (c) shows a generated daily schedule for
 301 agent *Elisabeth Mansah*. The daily schedule may be revised later by the reaction module, given new
 302 experience and knowledge obtained from observations and social interactions during the day. **There**
 303 **are four types of activities in the schedule: *commute, main, meal, and sleep*.** For *commute* activity,
 304 *Ella* will make a commute plan based on available knowledge of the transit system and places in
 305 the community, then execute it by invoking the navigation submodule detailed in Appendix B. For
 306 activities of other types, a behavior planning module will be invoked to generate low-level action
 307 schedules based on the activity description and the retrieved information about the objects in the
 308 activity place. Please see Appendix B.1- B.3 for more details.

309 4.3.2 REACTION

310 Upon receiving new observations, the agent first processes visual information and updates its semantic
 311 memory using the perception module introduced in Section 4.1.1. If new objects are detected or
 312 messages are heard, the agent invokes the reaction module. This module begins by retrieving relevant
 313 memories using the query “*Important things to react to.*”, then use foundation models to reason about
 314 the character, current time, place, schedule, and retrieved memory and make one of the four choices:
 315 *revising the schedule, interacting with the environment, engaging in a conversation, or no reactions*
 316 *needed*, as illustrated in Figure 3 (f). Additionally, the reaction module is automatically triggered if
 317 the time elapsed since the last reaction exceeds θ_{react} seconds.

318 4.3.3 COMMUNICATION

319 When the agent generates a reaction of *engaging in a conversation*, the communication module is
 320 revoked to generate the utterance by first retrieving the related knowledge and experience from the
 321 long-term memory with a query of the latest sentence in the conversation or “*Things to chat about*
 322 *with conversation targets*” if the agent is initiating a new conversation, then use foundation
 323 models to synthesize the appropriate utterance. When the conversation finishes, the communication
 module will summarize it and store the summarized conversation in episodic memory. *Ella* will also

324 Table 1: **Main results.** We report the show-up rate and the total number of conversations for **Influence Battle**,
 325 and the completion rate and the total number of conversations for **Leadership Quest**. + Oracle Perception
 326 assumes ground truth 2D segmentation. The best results are in **bold**. *Ella* achieves a higher show-up rate and
 327 completion rate across all three communities.

	<i>Influence Battle</i>				<i>Leadership Quest</i>			
	New York	London	Detroit	Average	New York	London	Detroit	Average
<i>CoELA</i> (Zhang et al., 2023)	46.7, 57	20.0, 27	6.7, 17	24.5, 33.7	0.0, 72	0.0, 957	11.5, 625	3.8, 551.3
<i>Generative Agents</i> (Park et al., 2023)	40.0, 3	40.0, 0	20.0, 0	33.3, 1.0	8.3, 169	0.0, 55	16.7, 14	8.3, 79.3
+ Oracle Perception	46.7, 5	53.3, 153	26.7, 0	42.2, 52.7	4.2, 649	0.0, 5	16.7, 2	7.0, 218.7
<i>Ella</i> (Ours)	46.7, 12	66.7, 19	46.7, 15	53.4, 15.3	33.3, 15	26.7, 17	37.5, 14	32.5, 15.3
+ Oracle Perception	60.0, 11	60.0, 28	53.3, 17	57.8, 18.7	39.6, 87	35.0, 35	25.0, 26	33.2, 49.3

333 try to extract new knowledge it learned from the conversation by prompting a foundation model with
 334 some demonstration knowledge items, and use it to update the semantic memory.

336 5 EXPERIMENTS

337 5.1 EXPERIMENTAL SETUP

339 We instantiate our embodied social agents community in *Virtual Community*, an open world simulation
 340 platform for multi-agent embodied AI. We conducted experiments with 15 agents of unique characters
 341 in 3 different scenes and communities. The observation space consists of posed 512×512 RGB and
 342 depth images, messages received within range, and current states. To evaluate the effectiveness of
 343 the proposed non-parametric memory and high-level cognitive capabilities of the agents, we design
 344 our experiments in two stages as shown in Figure 8. In the first stage, 15 agents are simulated for 9
 345 hours (34200 steps) for their first day in the community, during which the agents could familiarize
 346 themselves with the 600m * 600m scene and other agents and build memories. Then in the second
 347 stage, we test them with two controlled evaluations in the days following: **Influence Battle** and
 348 **Leadership Quest**. In **Influence Battle**, two of the four groups will be asked to organize a party at a
 349 specific place in 6 hours, and the members need to go around the city, find and invite agents outside
 350 of their group to attend the party. This evaluation tests the agents’ capability to impact other agents by
 351 persuading them to attend the parties, which requires the capability of social reasoning, persuasion,
 352 and decision-making. In **Leadership Quest**, each of the four groups is assigned a task to purchase
 353 several items from various stores in the city and return within 3 hours. One member from each group
 354 is designated as the leader and is the only one given full details of the task, while the remaining
 355 members are simply instructed to assist the leader. This controlled evaluation setting challenges the
 356 agent’s leadership abilities, particularly in assigning sub-tasks based on the diverse personalities and
 357 resources of group members. More details on the tasks can be found in Appendix A.

358 **Metrics** We evaluate agents’ capability to influence others with *show up rate*, the total number of
 359 agents showing up at any party organizing place during the 30-minute party time divided by the
 360 total number of agents; and *the total number of conversations* the organizing parties engaged in,
 361 reflecting the efficiency of the invitations. In **Leadership Quest**, we measure the success of agents’
 362 leadership and cooperation by *average completion rate*, the number of fulfilled target items divided
 363 by the number of all target items averaged across all groups; and *the total number of conversations*
 364 reflecting the efficacy of the communications among the agents.

365 **Baselines** To the best of our knowledge, there hasn’t been any embodied social agent framework
 366 supporting social interaction within a community with open-world 3D scenes. The most related
 367 methods are *CoELA* (Zhang et al., 2023), which only considered two agents within a constrained
 368 indoor scene for a specific task, and *Generative Agents* (Park et al., 2023), which assume oracle
 369 perception and use a predefined communication mechanism. We re-implemented these two methods
 370 in our setting as the baselines.

- 371 • *CoELA* (Zhang et al., 2023) is a cooperative embodied agent. We replace their perception module
 372 with ours since there isn’t a pretrained 2D segmentation model available under our open-world
 373 setting. We provide the character description to replace the *CoELA*’s task-specific description.
- 374 • *Generative Agent* (Park et al., 2023) is a believable simulacrum of human behavior with an uni-
 375 modality long-term memory. We adopt the perception module of *Ella* to convert visual observations
 376 into text descriptions and use the same occupancy map and a* algorithm for visual navigation.

377 **Implementation Details** For the perception module, we use open-set tagging model RAM++ (Huang
 378 et al., 2023c), object detection model GroundingDINO (Liu et al., 2023), and segmentation model
 379 SAM2 (Ravi et al., 2024). For the embedding models, we use CLIP (Radford et al., 2021) model

Figure 4: **Example behaviors demonstrating how *Ella* builds and leverages long-term memory.** (a) On the first day, Kate meets Elizabeth and establishes a connection, which later enables her to invite Elizabeth to their group’s party during the Influence Battle. (b) Taylor and Roth draw on their knowledge of store locations and available supplies, allowing their group to make more efficient decisions in obtaining the target items.

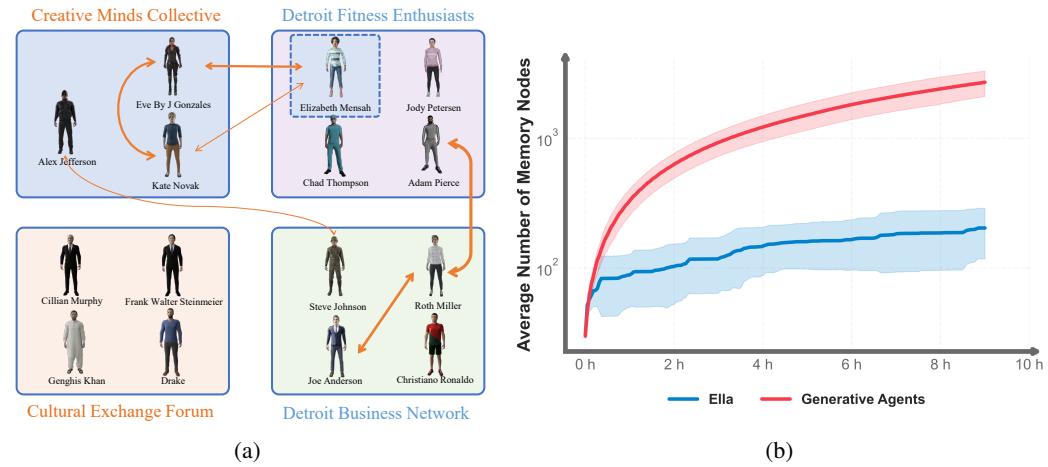


Figure 5: (a) **Social interaction pattern in *Influence Battle*.** The thickness of a line reflects the frequency of interaction. Members from Creative Minds Collective successfully persuaded Elizabeth Mensah to join their group’s party. (b) **Comparison of memory growth over time.** The number of memory nodes averaged over 15 agents is shown here. Our structured memory system allows for more stable and organized growth.

ViT-B-32-256 from openclip for images and text-embedding-3-small from Azure for text. We use gpt-4o¹ as the foundation model backbone for our method and *CoELA*, and gpt-35-turbo² for *Generative Agent*³. We also test our method with open source foundation models DeepSeek-R1-Distill-Qwen-14B and Qwen2.5-14B-Instruct served with vLLM (Kwon et al., 2023) in the experiments with oracle perception.

5.2 RESULTS

***Ella* can effectively accumulate experiences and acquire knowledge with the proposed long-term memory.** As shown in Figure 1b, *Ella* continuously accumulates new experiences and acquires new knowledge on the first day, covering nearly 50% of the environment. An example of the final spatial coverage in the Detroit community is illustrated in Figure 11 in the Appendix. Two example behaviors in Figure 4 show *Ella* effectively builds memory of other agents and the environment, which helps them make better decisions in the controlled evaluations.

***Ella*’s structured long-term memory is efficient.** Figure 5b further shows that *Ella*’s structured memory system allows for more stable and organized growth of memory nodes compared to the Generative Agents baseline. This structure enables more efficient retrieval as memory scales, supporting timely access to relevant events even as the memory grows.

***Ella* can influence other agents effectively.** As shown in Table 1, *Ella* achieves a higher show-up rate in the Influence Battle by successfully inviting more agents to the party across all three communities. This demonstrates its strong capabilities in social reasoning and persuasion. Although

¹model version 2024-11-20

²model version 0125

³We tried to implement Generative Agent with gpt-4o, but the original prompts broke often and it’s too costly given its large quantity of API call

	Influence Battle		Leadership Quest	
	show-up rate	# conv	completion rate	# conv
gpt-4o-1120	57.8	18.7	33.2	49.3
DeepSeek-R1-14B	40.0	48.3	8.0	46.0
Qwen2.5-14B	22.2	89.0	1.0	57.3

Table 2: **Results with open-source foundation model backbone.** We report the results of *Ella w/ Oracle Perception* with different backbones averaged over three communities.

	Influence Battle	Leadership Quest
Full model (ours)	46.7	37.5
+ <i>importance</i>	46.7	33.3
- <i>spatial proximity</i>	40.0	25.0
- <i>multimodal data</i>	33.3	33.3
- <i>temporal recency</i>	33.3	28.2

Table 3: **Ablation results on the Detroit community.** We report the main metric here.

the *CoELA* baseline engaged in twice as many conversations as *Ella*, its show-up rate was only half as high. This discrepancy arises from its lack of long-term memory, preventing it from effectively leveraging connections built the day before or recalling the party details after several hours (buried in new information from thousands of simulation steps). Meanwhile, Generative Agents engaged in so few conversations that they failed to invite other agents, despite being explicitly instructed to do so in their current community goals. As illustrated in Figure 5a, the party news propagates over time through the efforts of the organizer agents.

***Ella* can lead the group well.** As shown in Table 1, *Ella* completes four times more goals than other baselines in the Leadership Quest. Notably, *CoELA* had a completion rate of zero across all scenes—except in Detroit, where the leader partially completed the task alone—despite engaging in numerous conversations. This failure stems from its inability to retain the required items in memory. Among all scenarios, the London community posed the greatest challenge, where only *Ella* achieved a non-zero performance, demonstrating the robustness of our approach.

Robust perception is important for embodied social agents. Different from Park et al. (2023)’s setting where two agents knowing each other could only engage in a conversation when situated in the same grid, or Zhang et al. (2023)’s setting where two already-known agents could converse with each other anytime anywhere, our setting requires the agent to identify the agent to talk to according to their visual appearance or conversation contents and calculate the transmission range of their message according to the 3D location of the target agents to converse with, therefore a robust perception is critical for the agents to engage in social interactions in a 3D world. **To isolate this perception challenge, we include an *Oracle Perception* variant.** Comparing *Ella* with *w/ Oracle Perception* in Table 1, we observe meaningful performance gains: agents engage in more successful conversations and coordinated activities because they can more confidently and consistently identify one another and interpret the scene. This highlights that perception is a key limitation for embodied social agents, and motivates future work on improving robust 3D perception in open-world settings.

Open source foundation models backbone is promising. With advancements in open-source foundation models like DeepSeek-R1 (Guo et al., 2025), we wonder how well our framework works out-of-the-box on open-source foundation model backbones. We test *Ella w/ Oracle Perception* Agent with different backbones across all three communities and the two controlled evaluations, the results are shown in Table 2. Using DeepSeek-R1-Distill-Qwen-14B as the backbone without any further prompt engineering, *Ella w/ Oracle Perception* achieves a reasonable performance close to that of using a backbone of gpt-4o, while Qwen2.5-14B-Instruct performs much worse.

Ablation study To assess the contribution of each retrieval criterion, we perform an ablation study on four variants of our method in the Detroit community:

- add a criterion of *importance* during retrieval
- removes spatial information and the criterion of *spatial proximity*
- remove multimodal data in the episodic memory image by only calculating text embedding similarity for *content relevance* during retrieval
- remove *temporal recency* during retrieval

Table 3 reports the results. Across both tasks, performance drops consistently when any single criterion is removed, indicating that all three components, multimodal content relevance, spatial proximity, and temporal recency, contribute meaningfully and complement one another in supporting effective long-term memory retrieval.

486 6 LIMITATIONS
487488 **Leverage the graph structure of the name-centric semantic memory.** Although the name-
489 centric semantic memory is maintained as a graph structure, the current implementation retrieves
490 knowledge based solely on text and image feature similarity. Enhancing our memory system with
491 more sophisticated graph-based retrieval methods (Zhang et al., 2025; Sun et al., 2023; Gutiérrez et al.,
492 2024) could enable effective multi-hop reasoning, paving the way for addressing reasoning-intensive
493 challenges. This represents a promising direction for future work.
494495 **All agents’ thinking processes are assumed to finish synchronously.** Human cognition is bounded
496 by limited computational resources (Lieder & Griffiths, 2020). In our current setting, Agents are
497 assumed to *think* synchronously with unlimited computational resources, which means whatever
498 deliberate the agent’s thinking process is, it costs only 1 second in their world. It is interesting to
499 examine the time cost of reasoning under explicitly limited computational resources, and to study
500 how agents can adaptively switch between slow System 2 and fast System 1 thinking (Evans, 2003).
501502 7 CONCLUSION
503504 In this work, we build a non-parametric long-term memory for embodied agents with name-centric
505 semantic memory and spatiotemporal episodic memory. We introduce *Ella*, an embodied social agent
506 that uses foundation models and retrieved memory to reason, make daily plans, and engage in social
507 activities. We conducted capability-oriented experiments in the Virtual Community with 15 agents in
508 3 different communities and demonstrated *Ella* can use long-term memory effectively to influence,
509 cooperate, and lead other agents in an open world while accumulating multi-modal experience and
510 acquiring knowledge continuously from visual observations of the environment and social interactions
511 with other agents. Our findings imply the power of combining non-parametric long-term memory
512 and foundation models to advance embodied general intelligence that could co-exist with humans.
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT542
543
544
As embodied social agents become more advanced, their integration into human-centered environments raises critical ethical and societal considerations. It's important to design and follow best practices in human-AI interactions (Amershi et al., 2019).545
546
547
548
549
550
One key concern is the impact of AI-driven persuasion on human and agent interactions. In our ***Influence***-
Battle evaluation, *Ella* successfully convinces other agents to attend an event, demonstrating its
ability to shape group behavior. While such social reasoning capabilities are essential for cooperative
AI, they could be misused in real-world applications, leading to manipulation, misinformation, or
undue influence. To mitigate this, AI-driven persuasive agents must be designed with transparent
intent disclosure and value alignment, ensuring they do not engage in deceptive or coercive behaviors.551
552
553
554
555
556
Another concern is that their decision-making processes may inadvertently reflect and reinforce
societal biases present in their training data or interaction patterns. For example, in our ***Leadership***
Quest, *Ella* demonstrated superior leadership capabilities, but the fairness of leadership selection
criteria in AI-driven systems remains an open question. Ensuring diversity and fairness in AI
leadership roles requires robust bias mitigation strategies, careful dataset curation, and continuous
evaluation of AI decision-making in diverse social contexts.557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
597 Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
598 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022. 1

599 Christopher Amato, George Konidaris, Leslie P Kaelbling, and Jonathan P How. Modeling and
600 planning with macro-actions in decentralized pomdps. *Journal of Artificial Intelligence Research*,
601 64:817–859, 2019. 3

602 Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Journey, Besmira Nushi, Penny Collisson,
603 Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. Guidelines for human-ai interaction. In
604 *Proceedings of the 2019 chi conference on human factors in computing systems*, pp. 1–13, 2019.
605 11

606 Arash Asgharivaskasi and Nikolay Atanasov. Semantic octree mapping and shannon mutual informa-
607 tion computation for robot exploration. *IEEE Transactions on Robotics*, 39(3):1910–1928, 2023.
608 3

609 Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond,
610 December 2024. URL <https://github.com/Genesis-Embodied-AI/Genesis>. 20

611 Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
612 Mordatch. Emergent tool use from multi-agent autocurricula. In *International Conference on Learn-
613 ing Representations*, 2020. URL <https://openreview.net/forum?id=SkxpxJBKwS>.
614 3

615 Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
616 Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
617 new frontier for ai research. *Artificial Intelligence*, 280:103216, 2020. 3

618 Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent spatial semantic
619 representation for high-level natural language instruction execution. In *Conference on Robot
620 Learning*, pp. 706–717. PMLR, 2022. 3

621 Andreea Bobu, Andi Peng, Pulkit Agrawal, Julie Shah, and Anca D Dragan. Aligning robot and
622 human representations. *arXiv preprint arXiv:2302.01928*, 2023. 3

623 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
624 George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving
625 language models by retrieving from trillions of tokens. In *International conference on
626 machine learning*, pp. 2206–2240. PMLR, 2022. 3, 4

627 Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
628 Dragan. On the utility of learning about humans for human-ai coordination. *Advances in neural
629 information processing systems*, 32, 2019. 3

630 Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R Salakhutdinov.
631 Object goal navigation using goal-oriented semantic exploration. *Advances in Neural Information
632 Processing Systems*, 33:4247–4258, 2020. 3

633 Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen Xu, Gao Xing, Weizhou Shen, Xiaojun Quan,
634 Chenliang Li, Ji Zhang, and Fei Huang. Socialbench: Sociality evaluation of role-playing con-
635 versational agents. In *Findings of the Association for Computational Linguistics ACL 2024*, pp.
636 2108–2126, 2024. 3

637 Zhiyuan Chen and Bing Liu. *Lifelong machine learning*. Morgan & Claypool Publishers, 2018. 23

638 Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
639 of knowledge editing in language models. *Transactions of the Association for Computational
640 Linguistics*, 12:283–298, 2024. 4

641 Matthew Crosby, Benjamin Beyret, and Marta Halina. The animal-ai olympics. *Nature Machine
642 Intelligence*, 1(5):257–257, 2019. 2

648 Gordon Dai, Weijia Zhang, Jinhan Li, Siqi Yang, Srihas Rao, Arthur Caetano, Misha Sra, et al.
649 Artificial leviathan: Exploring social evolution of llm agents through the lens of hobbesian social
650 contract theory. *arXiv preprint arXiv:2406.14373*, 2024. 3

651

652 Kerstin Dautenhahn. Socially intelligent robots: dimensions of human–robot interaction. *Philosophical transactions of the royal society B: Biological sciences*, 362(1480):679–704, 2007. 3

653

654 Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
655 Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. *arXiv preprint*
656 *arXiv:2310.10625*, 2023. 1

657

658 Jonathan St BT Evans. In two minds: dual-process accounts of reasoning. *Trends in cognitive*
659 *sciences*, 7(10):454–459, 2003. 10

660

661 Emily Falk and Christin Scholz. Persuasion, influence, and value: Perspectives from communication
662 and social neuroscience. *Annual review of psychology*, 69(1):329–356, 2018. 22

663

664 Samir Yitzhak Gadre, Kiana Ehsani, Shuran Song, and Roozbeh Mottaghi. Continuous scene
665 representations for embodied ai. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
666 *and Pattern Recognition*, pp. 14849–14859, 2022. 3

667

668 Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song.
669 Cows on pasture: Baselines and benchmarks for language-driven zero-shot object navigation.
670 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
671 23171–23181, 2023. 3

672

673 Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De
674 Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias
675 Wang, Michael Lingelbach, Aidan Curtis, Kevin Tyler Feigelis, Daniel Bear, Dan Gutfreund,
676 David Daniel Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh Mcdermott,
677 and Daniel LK Yamins. ThreeDWorld: A platform for interactive multi-modal physical simulation.
678 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
679 *Track (Round 1)*, 2021. URL <https://openreview.net/forum?id=db1InWAw2T>. 1

680

681 Matthew C Gombolay, Reymundo A Gutierrez, Shanelle G Clarke, Giancarlo F Sturla, and Julie A
682 Shah. Decision-making authority, team efficiency and human worker satisfaction in mixed human–
683 robot teams. *Autonomous Robots*, 39:293–312, 2015. 3

684

685 Michael A Goodrich, Alan C Schultz, et al. Human–robot interaction: a survey. *Foundations and*
686 *Trends® in Human–Computer Interaction*, 1(3):203–275, 2008. 3

687

688 Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
689 Peng. Model editing harms general abilities of large language models: Regularization to the rescue.
690 *arXiv preprint arXiv:2401.04700*, 2024a. 4

691

692 Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
693 Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs: Open-
694 vocabulary 3d scene graphs for perception and planning. In *2024 IEEE International Conference*
695 *on Robotics and Automation (ICRA)*, pp. 5021–5028. IEEE, 2024b. 3, 4, 5

696

697 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
698 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
699 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. 1, 9

700

701 Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
702 Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized
703 teams. *arXiv preprint arXiv:2403.12482*, 2024. 22

704

705 Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
706 Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
707 synthesis. *arXiv preprint arXiv:2307.12856*, 2023. 1

702 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
 703 Neurobiologically inspired long-term memory for large language models. In *The Thirty-*
 704 *eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=hkujvAPVsg>. 3, 10

705

706 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
 707 Non-parametric continual learning for large language models, 2025. URL <https://arxiv.org/abs/2502.14802>. 1, 3, 4

708

709

710 Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar,
 711 Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented generation with
 712 graphs (graphrag). *arXiv preprint arXiv:2501.00309*, 2024. 3

713

714 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 715 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 716 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 717 14281–14290, 2024. 1

718

719 Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. Octomap:
 720 An efficient probabilistic 3d mapping framework based on octrees. *Autonomous robots*, 34:
 721 189–206, 2013. 3

722

723 Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
 724 navigation. In *2023 IEEE International Conference on Robotics and Automation (ICRA)*, pp.
 725 10608–10615. IEEE, 2023a. 3

726

727 Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
 728 and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
 729 rehearsal. *arXiv preprint arXiv:2403.01244*, 2024. 1

730

731 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 732 Composable 3d value maps for robotic manipulation with language models. In *Conference on
 733 Robot Learning*, pp. 540–562. PMLR, 2023b. 1

734

735 Xinyu Huang, Yi-Jie Huang, Youcai Zhang, Weiwei Tian, Rui Feng, Yuejie Zhang, Yanchun Xie,
 736 Yaqian Li, and Lei Zhang. Open-set image tagging with multi-grained text supervision. *arXiv
 737 e-prints*, pp. arXiv–2310, 2023c. 7

738

739 Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial perception system for 3d
 740 scene graph construction and optimization. *arXiv preprint arXiv:2201.13360*, 2022. 4, 5

741

742 Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
 743 Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
 744 level performance in 3d multiplayer games with population-based reinforcement learning. *Science*,
 745 364(6443):859–865, 2019. 3

746

747 Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and
 748 Alexander Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied
 749 tasks. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
 750 2020, Proceedings, Part V 16*, pp. 471–490. Springer, 2020. 3

751

752 Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
 753 Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
 754 reinforcement learning. In *International conference on machine learning*, pp. 3040–3049. PMLR,
 755 2019. 22

756

757 Xun Jiang, Feng Li, Han Zhao, Jiaying Wang, Jun Shao, Shihao Xu, Shu Zhang, Weiling Chen,
 758 Xavier Tang, Yize Chen, et al. Long term memory: The foundation of ai self-evolution. *arXiv
 759 preprint arXiv:2410.15665*, 2024. 3

760

761 Andrey Kurenkov, Michael Lingelbach, Tanmay Agarwal, Emily Jin, Chengshu Li, Ruohan Zhang,
 762 Li Fei-Fei, Jiajun Wu, Silvio Savarese, and Roberto Martin-Martin. Modeling dynamic envi-
 763 ronments with scene graph memory. In *International Conference on Machine Learning*, pp.
 764 17976–17993. PMLR, 2023. 3

756 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 757 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 758 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 759 *Systems Principles*, 2023. 8

760 John E Laird. Introduction to soar. *arXiv preprint arXiv:2205.03854*, 2022. 1

762 Przemyslaw A Lasota, Terrence Fong, Julie A Shah, et al. A survey of methods for safe human-robot
 763 interaction. *Foundations and Trends® in Robotics*, 5(4):261–349, 2017. 3

764 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 765 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 766 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 767 9459–9474, 2020. 4

768 Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
 769 Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
 770 benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In *Conference*
 771 *on Robot Learning*, pp. 80–93. PMLR, 2023a. 1

773 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 774 municative agents for "mind" exploration of large language model society. *Advances in Neural*
 775 *Information Processing Systems*, 36:51991–52008, 2023b. 3

776 Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
 777 reinforcement learning via minimax deep deterministic policy gradient. In *Proceedings of the*
 778 *AAAI conference on artificial intelligence*, volume 33, pp. 4213–4220, 2019. 3

779 Xinghang Li, Di Guo, Huaping Liu, and Fuchun Sun. Embodied semantic scene graph generation. In
 780 *Conference on robot learning*, pp. 1585–1594. PMLR, 2022. 3

781 Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Liqiang Nie. Optimus-
 782 1: Hybrid multimodal memory empowered agents excel in long-horizon tasks. In *The Thirty-
 783 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=XXOMCwZ6by>. 3

784 Falk Lieder and Thomas L Griffiths. Resource-rational analysis: Understanding human cognition as
 785 the optimal use of limited computational resources. *Behavioral and brain sciences*, 43:e1, 2020.
 786 10

787 Peter Lindes and John E Laird. Toward integrating cognitive linguistics and cognitive language
 788 processing. In *Proceedings of the 14th International Conference on Cognitive Modeling (ICCM)*,
 789 2016. 1, 3

790 Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge Zhang, Diyi Yang, and Soroush Vosoughi. Training socially
 791 aligned language models on simulated social interactions. In *The Twelfth International Conference*
 792 *on Learning Representations*, 2024a. 3

793 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 794 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 795 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023. 7

796 Xuan Liu, Jie Zhang, Song Guo, Haoyang Shang, Chengxu Yang, and Quanyan Zhu. Exploring
 797 prosocial irrationality for llm agents: A social cognition view. *arXiv preprint arXiv:2405.14744*,
 798 2024b. 3

799 Ziyi Liu, Abhishek Anand, Pei Zhou, Jen-tse Huang, and Jieyu Zhao. Interintent: Investigating social
 800 intelligence of llms via intention understanding in an interactive game context. *arXiv preprint*
 801 *arXiv:2406.12203*, 2024c. 3

802 Dylan P Losey, Hong Jun Jeon, Mengxi Li, Krishnan Srinivasan, Ajay Mandlekar, Animesh Garg,
 803 Jeannette Bohg, and Dorsa Sadigh. Learning latent actions to control assistive robots. *Autonomous*
 804 *robots*, 46(1):115–147, 2022. 3

810 Ryan Lowe, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 811 critic for mixed cooperative-competitive environments. *Advances in neural information processing*
 812 *systems*, 30, 2017. 3

813

814 Dominic Maggio, Yun Chang, Nathan Hughes, Matthew Trang, Dan Griffith, Carolyn Dougherty,
 815 Eric Cristofalo, Lukas Schmid, and Luca Carlone. Clio: Real-time task-driven open-set 3d scene
 816 graphs. *arXiv preprint arXiv:2404.13696*, 2024. 4

817

818 Marilina Mastrogiuseppe, Natasha Bertelsen, Maria Francesca Bedeschi, and Sang Ah Lee. The
 819 spatiotemporal organization of episodic memory and its disruption in a neurodevelopmental
 820 disorder. *Scientific reports*, 9(1):18447, 2019. 5

821

822 So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar Ravikumar, Yonatan Bisk, and Ruslan
 823 Salakhutdinov. Film: Following instructions in language with modular methods. In *International
 824 Conference on Learning Representations*, 2022. 3

825

826 Manisha Natarajan and Matthew Gombolay. Effects of anthropomorphism and accountability on
 827 trust in human robot interaction. In *Proceedings of the 2020 ACM/IEEE international conference
 828 on human-robot interaction*, pp. 33–42, 2020. 3

829

830 Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient model learning
 831 from joint-action demonstrations for human-robot collaborative tasks. In *Proceedings of the tenth
 832 annual ACM/IEEE international conference on human-robot interaction*, pp. 189–196, 2015. 3

833

834 Yaru Niu, Rohan R Paleja, and Matthew C Gombolay. Multi-agent graph-attention communication
 835 and teaming. In *AAMAS*, volume 21, pp. 20th, 2021. 3

836

837 Andrew M Nuxoll and John E Laird. Extending cognitive architecture with episodic memory. In
 838 *AAAI*, pp. 1560–1564, 2007. 1

839

840 OpenAI. Gpt-4 technical report, 2023. 1

841

842 Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonzalez.
 843 Memgpt: Towards llms as operating systems. *arXiv preprint*, 2023. 3

844

845 Joon Sung Park, Joseph C O'Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
 846 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. *arXiv preprint
 847 arXiv:2304.03442*, 2023. 2, 3, 5, 6, 7, 9

848

849 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
 850 Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single
 851 image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp.
 852 10975–10985, 2019. 20

853

854 Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B Tenenbaum, Sanja
 855 Fidler, and Antonio Torralba. Watch-and-help: A challenge for social perception and human-ai
 856 collaboration. In *International Conference on Learning Representations*, 2021. 3

857

858 Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
 859 Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat
 860 for humans, avatars and robots. *arXiv preprint arXiv:2310.13724*, 2023. 3

861

862 Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
 863 Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat for
 864 humans, avatars, and robots. In *The Twelfth International Conference on Learning Representations*,
 865 2024. 1

866

867 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 868 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 869 models from natural language supervision. In *International conference on machine learning*, pp.
 870 8748–8763. PMLR, 2021. 7

864 Santhosh Kumar Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Malik, and Kristen
 865 Grauman. Poni: Potential functions for objectgoal navigation with interaction-free learning.
 866 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 867 18890–18900, 2022. 3

868 Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian D Reid, and Niko Suenderhauf.
 869 Sayplan: Grounding large language models using 3d scene graphs for scalable task planning.
 870 *CoRR*, 2023. 3

872 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 873 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 874 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 875 Sam 2: Segment anything in images and videos, 2024. URL <https://arxiv.org/abs/2408.00714>. 1, 7

877 Leonel Rozo, Sylvain Calinon, Darwin G Caldwell, Pablo Jimenez, and Carme Torras. Learning
 878 physical collaborative robot behaviors from human demonstrations. *IEEE Transactions on Robotics*,
 879 32(3):513–527, 2016. 3

881 Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In *International conference
 882 on machine learning*, pp. 507–515. PMLR, 2013. 23

884 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
 885 Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
 886 starcraft multi-agent challenge. In *Proceedings of the 18th International Conference on Autonomous
 887 Agents and MultiAgent Systems*, pp. 2186–2188, 2019. 3

888 Shalom H Schwartz. An overview of the schwartz theory of basic values. *Online readings in
 889 Psychology and Culture*, 2(1):11, 2012. 4

891 Nur Muhammad Mahi Shafullah, Chris Paxton, Lerrel Pinto, Soumith Chintala, and Arthur
 892 Szlam. Clip-fields: Weakly supervised semantic fields for robotic memory. *arXiv preprint
 893 arXiv:2210.05663*, 2022. 3

894 Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for optimal
 895 multi-agent pathfinding. *Artificial intelligence*, 219:40–66, 2015. 3

897 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
 898 Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. In
 899 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
 900 tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8364–8377,
 901 2024. 3

902 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 903 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 904 Systems*, 36, 2024. 1

906 Abhishek Srivastava, Kathryn M Bartol, and Edwin A Locke. Empowering leadership in management
 907 teams: Effects on knowledge sharing, efficacy, and performance. *Academy of management journal*,
 908 49(6):1239–1251, 2006. 22

910 Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively multiagent
 911 game environment for training and evaluating intelligent agents. *arXiv preprint arXiv:1903.00784*,
 912 2019. 3

913 Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive architectures
 914 for language agents. *arXiv preprint arXiv:2309.02427*, 2023. 1, 3, 4

916 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Heung-Yeung
 917 Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model
 918 with knowledge graph. *arXiv preprint arXiv:2307.07697*, 2023. 10

918 Andrew Szot, Unnat Jain, Dhruv Batra, Zsolt Kira, Ruta Desai, and Akshara Rai. Adaptive coordi-
 919 nation in social embodied rearrangement. In *International Conference on Machine Learning*, pp.
 920 33365–33380. PMLR, 2023. 3

921 Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
 922 mind: Statistics, structure, and abstraction. *science*, 331(6022):1279–1285, 2011. 1

923 Nathan Tsoi, Mohamed Hussein, Jeacy Espinoza, Xavier Ruiz, and Marynel Vázquez. Sean: Social
 924 environment for autonomous navigation. In *Proceedings of the 8th international conference on*
 925 *human-agent interaction*, pp. 281–283, 2020. 3

926 E Tulving. Episodic and semantic memory. *Organization of memory/Academic Press*, 1972. 1, 2, 4, 5

927 E Tulving. Elements of episodic memory, 1983. 1, 5

928 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
 929 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *arXiv*
 930 *preprint arXiv:2305.16291*, 2023a. 1, 2, 3

931 Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
 932 explain, plan and select: interactive planning with llms enables open-world multi-task agents. In
 933 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b. 1

934 Zixuan Wang, Bo Yu, Junzhe Zhao, Wenhao Sun, Sai Hou, Shuai Liang, Xing Hu, Yinhe Han, and
 935 Yiming Gan. Karma: Augmenting embodied ai agents with long-and-short term memory systems.
 936 *arXiv preprint arXiv:2409.14908*, 2024. 3

937 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
 938 agent reinforcement learning is a sequence modeling problem. *Advances in Neural Information*
 939 *Processing Systems*, 35:16509–16521, 2022. 3

940 Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. *arXiv preprint*
 941 *arXiv:1410.3916*, 2014. 3

942 Yuncong Yang, Han Yang, Jiachen Zhou, Peihao Chen, Hongxin Zhang, Yilun Du, and Chuang Gan.
 943 Snapmem: Snapshot-based 3d scene memory for embodied exploration and reasoning. *arXiv*
 944 *preprint arXiv:2411.17735*, 2024. 3

945 Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Richard James, Jure Leskovec, Percy Liang,
 946 Mike Lewis, Luke Zettlemoyer, and Wen-Tau Yih. Retrieval-augmented multimodal language
 947 modeling. In *International Conference on Machine Learning*, pp. 39755–39769. PMLR, 2023. 3

948 Xianhao Yu, Jiaqi Fu, Renjia Deng, and Wenjuan Han. Mineland: Simulating large-scale multi-agent
 949 interactions with limited multimodal senses and physical needs. *arXiv preprint arXiv:2403.19267*,
 950 2024. 3

951 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin
 952 Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
 953 models, 2023. 3, 7, 9

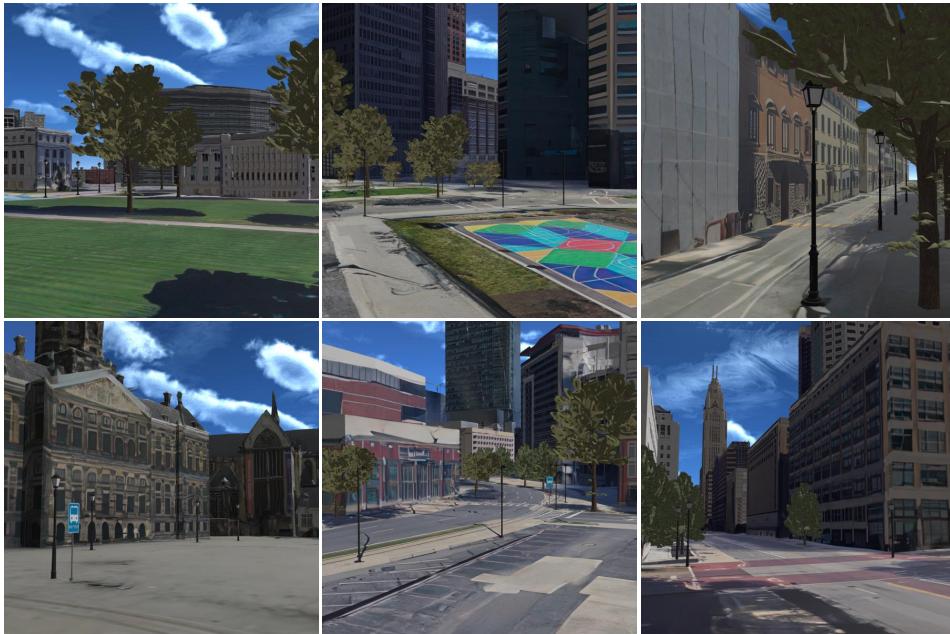
954 Liang Zhang, Leqi Wei, Peiyi Shen, Wei Wei, Guangming Zhu, and Juan Song. Semantic slam based
 955 on object detection and improved octomap. *IEEE Access*, 6:75545–75559, 2018. 3

956 Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan
 957 Dong, Hao Chen, Yi Chang, and Xiao Huang. A survey of graph retrieval-augmented generation for
 958 customized large language models, 2025. URL <https://arxiv.org/abs/2501.13958>.
 959 10

960 Kaiyu Zheng, Anirudha Paul, and Stefanie Tellex. A system for generalized 3d multi-object search. In
 961 *2023 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1638–1644. IEEE,
 962 2023. 3

963 Fangbo Zhou, Huaping Liu, Huailin Zhao, and Lanjun Liang. Long-term object search using
 964 incremental scene graph updating. *Robotica*, 41(3):962–975, 2023. 3

972 Qinrong Zhou, Hongxin Zhang, Xiangye Lin, Zheyuan Zhang, Yutian Chen, Wenjun Liu, Zunzhe
973 Zhang, Sunli Chen, Lixing Fang, Qiushi Lyu, Xinyu Sun, Jincheng Yang, Zeyuan Wang, Bao Chi
974 Dang, Zhehuan Chen, Daksha Ladia, Jiageng Liu, and Chuang Gan. Virtual community: An
975 open world for humans, robots, and society, 2025. URL <https://arxiv.org/abs/2508.14893>. 2, 3, 20
976
977 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
978 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation
979 for social intelligence in language agents. In *The Twelfth International Conference on Learning
980 Representations*, 2024. 3
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **A ADDITIONAL EXPERIMENT DETAILS**
10271028 **A.1 VIRTUAL COMMUNITY**
10291051 **Figure 6: Close-up views of different scenes in Virtual Community.**
1052

1053 Virtual Community (ViCo), introduced by Zhou et al. (2025), is an open world simulation platform for
1054 multi-agent embodied AI, featuring large-scale community scenarios derived from the real world with
1055 realistic physics and renderings. It was developed using Genesis (Authors, 2024) as its core engine, a
1056 generative physics simulator capable of modeling a wide variety of materials and an extensive array
1057 of robotic tasks, all while maintaining full differentiability. Additionally, Genesis features a real-time
1058 renderer based on OpenGL and a path-tracing renderer powered by Luisa. ViCo primarily offers
1059 scalable 3D scene creation and the generation of an embodied agent community.

1060 ViCo develops an online pipeline to transform existing 3D geospatial data into high-quality simulation-
1061 ready scenes. Moreover, the pipeline automatically annotates the scenes from these geospatial data to
1062 facilitate real-world alignment. It supports the creation of expansive outdoor and indoor environments
1063 at any location and scale. Currently, ViCo has generated 57 scenes of various cities worldwide. In
1064 this paper, we use a subset of 3 scenes from the generated scenes for our evaluation: New York City,
1065 Detroit, and London. Figure 6 presents views of different scenes within Virtual Community.

1066 ViCo has 74 avatar skins, consisting of skins retrieved from the Mixamo ⁴ and generated from
1067 real-world images using Avatar SDK ⁵. We randomly sampled 15 skins for each of the 3 scenes. ViCo
1068 combines SMPL-X human skeletons (Pavlakos et al., 2019) with created avatar skins to support up to
1069 2,299 unique motions from Mixamo. Additionally, ViCo can generate scene-grounded characters that
1070 are socially connected at a community level. Figure 7 illustrates a generated community in New York
1071 City with places of different functionalities annotated.

1072 **A.2 TASK DETAILS**
1073

1074 To evaluate the effectiveness of the proposed non-parametric memory and high-level cognitive
1075 capabilities of the embodied agents, we design our experiments in two stages as shown in Figure 8. In
1076 the first stage, 15 agents are simulated for 9 hours (34200 steps) for their first day in the community,
1077 during which the agents could familiarize themselves with the 600m * 600m scene and other agents

1078 ⁴<https://www.mixamo.com/>
1079 ⁵<https://avatarsdk.com>

Figure 7: An illustration of a community in New York City with places of different functionalities annotated. There are 6 types of functional places: accommodation, entertainment, food, office, stores, and transit, each labeled with different colors on the figure. Social group information is also annotated with the group name, the group meeting place, and the group description.

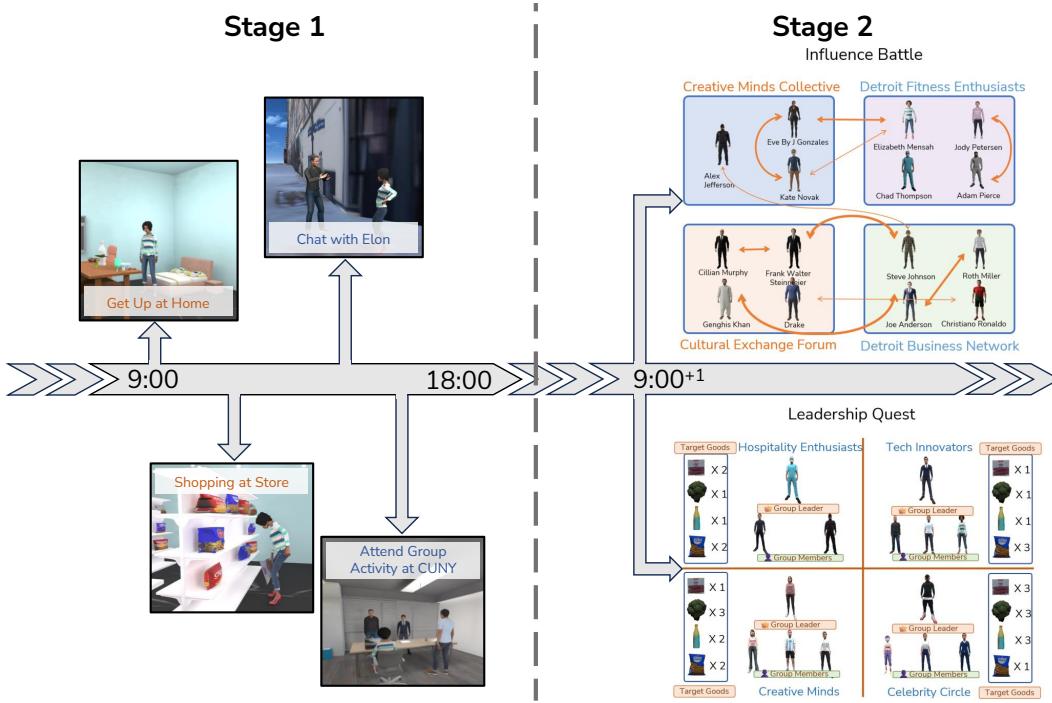


Figure 8: **Two stages of the experiments.** The embodied agents first live a 9-hour social life with diverse community goals in stage 1, then are evaluated with two controlled evaluations in stage 2.

and build memories. Then in the second stage, we test them with two controlled evaluations in the days following: *Influence Battle* and *Leadership Quest*. We select these tasks because they probe meaningful social-cognitive capabilities that require long-term memory, social reasoning, and spatial grounding—rather than narrowly defined short-term behaviors. *Influence Battle* is inspired by

1134
1135
1136
1137
1138**Community Goal Prompt:**

My group \$group_name\$ is organizing a party at \$group_place\$ from 14:30:00 to 15:00:00 today. I need to go around the city, find and invite people outside of my group to attend our party today.

1139
1140
1141

Figure 9: **Prompt for assigning community goals in *Influence Battle*.** \$group_name\$ is replaced with the agent’s group name, \$group_place\$ is replaced with the agent’s group place.

1142
1143**Community Goal Prompt for Group Leaders:**

I am the leader of my group \$group_name\$. I need to discuss and assign tasks to my group members to collect \$target_items\$ from stores and bring them back here at \$group_place\$ before 12:00:00. Each person could take 2 items at a time with each of his hand.

1144
1145
1146
1147
1148
1149
1150
1151
1152**Community Goal Prompt for Group Members:**

I need to help my group \$group_name\$’s leader \$leader\$ to prepare for a group activity. I will discuss with my leader about the items to collect, follow the instructions given by my leader and complete my assigned task before 12:00:00.

1153
1154
1155
1156

Figure 10: **Prompt for assigning community goals in *Leadership Quest*.** \$group_name\$ is replaced with the agent’s group name, \$group_place\$ is replaced with the agent’s group place, \$target_items\$ is replaced with a string containing all target items and the quantity, \$leader\$ is replaced with the name of the leader of the group.

1157
1158

the line of research on multi-agent influence and persuasion in mixed-motive environments (Jaques et al., 2019; Falk & Scholz, 2018), ***Leadership Quest*** builds on longstanding work in multi-agent coordination and leadership assignment (Srivastava et al., 2006; Guo et al., 2024). In ***Influence Battle***, two of the four groups will be asked to organize a party at a specific place in 6 hours, and the members need to go around the city, find, and invite agents outside of their group to attend the party. This evaluation tests the agents’ capability to impact other agents by persuading them to attend the parties, which requires the capability of social reasoning, persuasion, and decision-making. In ***Leadership Quest***, each of the four groups is assigned a task to purchase several items from various stores in the city and return within 3 hours. One member from each group is designated as the leader and is the only one given full details of the task, while the remaining members are simply instructed to assist the leader. This controlled evaluation setting challenges the agent’s leadership abilities, particularly in assigning sub-tasks based on the diverse personalities and resources of group members.

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

The observation includes posed 512×512 RGB and depth images, the content of the heard messages within range, and current states including pose, place, time, cash, held objects, and vehicles being taken. The agent’s action space consists of navigation actions of *move forward x m*, *turn left x degree*, *turn right x degree*, *enter x place or vehicle*, and *exit x vehicle*; interaction actions of *pick x object with hand y*, *drop object in hand x*; and *converse message x with a range of y m*. The message transmission range threshold θ_{msg} is set to 10m.

1171
1172
1173
1174
1175
1176

We include the detailed prompt used to assign the community goal to agents in two tasks in Figure 9 and Figure 10.

1177
1178
1179
1180
1181**A.3 COMPUTE**1182
1183
1184
1185
1186
1187

We conducted our experiments using a single NVIDIA A100 GPU. Stage one of each community life simulation was run for 20 hours, while stage two of each task and community was executed for an additional 10 hours. On average, each agent’s saved memory—including both episodic and semantic components—occupies approximately 161 MB after 9 hours of simulation. During runtime, agents consume additional memory for perception, planning, and retrieval. In particular, the perception module alone requires around 4 GB of GPU memory per agent. The peak RAM usage per agent process is approximately 1 GB.

1188 **Lifelong simulation of a community of agents in a visually rich, physics-realistic environment is**
 1189 **computationally expensive.** Although our experiments span only 1.5 simulated days—seemingly
 1190 short for a "lifelong" setting—we adopt the widely used interpretation of lifelong learning as an agent's
 1191 ability to accumulate, retain, and reuse knowledge across experiences (Chen & Liu, 2018). Despite
 1192 extensive system-level optimizations to accelerate simulation, each simulated second still requires
 1193 at least one second of real time. This is due to the intensive demands of multi-camera rendering,
 1194 skinned motion computation, and the invocation of multiple models or APIs during each agent's
 1195 decision-making process. As a result, simulating one day in the environment consumes an entire real-
 1196 world day, significantly constraining the scale of experimentation. Continued progress in graphics
 1197 and simulation technologies is expected to ease this bottleneck and support faster development of
 1198 embodied social agents in high-fidelity, physics-grounded environments.
 1199
 1200
 1201

1202 A.4 ADDITIONAL DISCUSSIONS

1203
 1204 **Perception error propagation and mitigation** Perception errors inevitably occur in an open-world
 1205 3D environment and can propagate into an agent's long-term memory, influencing later retrieval,
 1206 planning, and social interaction. In our current implementation, both episodic and semantic memories
 1207 are updated directly from each new observation or conversation, without explicit confidence modeling
 1208 or cross-observation consistency checks. As a result, misidentifications, such as confusing two
 1209 agents, misclassifying an object, or localizing an entity imprecisely, may enter episodic memory
 1210 and occasionally lead to suboptimal actions or incorrect assumptions during later queries. However,
 1211 the system can tolerate a moderate level of such noise without causing uncontrolled cascading
 1212 failures due to three mitigating factors. First, the retrieval module ranks memory items using joint
 1213 multimodal relevance, spatial proximity, and temporal recency, which naturally downweights isolated
 1214 noisy entries that do not consistently match a query along these dimensions. Second, conversational
 1215 interactions often act as a verbal correction channel: misidentified agents in visual observations
 1216 may later be clarified when their names or roles are explicitly referenced in dialogue, allowing the
 1217 semantic memory to store accurate facts even when earlier episodic traces were noisy. Third, the
 1218 dual-memory structure separates low-level event logs from higher-level semantic facts, so noisy
 1219 episodic observations do not automatically overwrite established semantic knowledge. Together,
 1220 these properties allow the memory system to resist some level of perception error without catastrophic
 1221 drift, while developing stronger error-handling mechanisms remains a valuable direction for future
 1222 research.
 1223

1224 **Selective forgetting for lifelong operation** As the duration of an agent's life increases, long-term
 1225 memory inevitably accumulates a large number of events, observations, and social interactions. While
 1226 our current system does not implement an explicit forgetting mechanism, the hierarchical structure
 1227 of the memory already provides a natural foundation for selective pruning at different levels of
 1228 abstraction. Low-level spatial voxel information tends to be the most redundant and scene-specific.
 1229 These low-level details can be pruned or downsampled over time without significantly affecting
 1230 the integrity of the semantic memory. Similarly, episodic entries that are repeatedly superseded by
 1231 stable semantic facts, such as a person's identity, home location, or profession, could be removed
 1232 entirely when memory pressure increases. Such mechanisms would allow the agent to retain core
 1233 long-term knowledge while discarding outdated or low-utility details, mirroring human forgetting
 1234 processes that preserve essential semantic structure while compressing or discarding past experiences.
 1235 Designing principled, query-aware forgetting strategies that balance stability and plasticity represents
 1236 an important direction for enabling lifelong operation in even larger or unbounded environments.
 1237

1238 **Clarification on naming.** To avoid confusion with prior work, we note that our embodied agent **ELLA**
 1239 is unrelated to *ELLA: Efficient Lifelong Learning Algorithm* (Ruvolo & Eaton, 2013). The classical
 1240 **ELLA** focuses on efficient parametric transfer across a sequence of supervised tasks, whereas our
 1241 **ELLA** tackles embodied lifelong learning in an open 3D social world using non-parametric multimodal
 1242 memory, long-horizon visual and social experience accumulation, and spatially grounded interaction.
 1243 Our naming choice stems from the semantic meaning of "Ella" ("her" in Spanish), reflecting our
 1244 long-term vision for socially and visually grounded embodied agents. We include this clarification to
 1245 ensure readers do not conflate the two distinct lines of work.
 1246

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

1269
1270 Figure 11: **A visualization of the final spatial coverage on the Detroit community.** Explored regions are
1271 shown in red, buildings are shown in white, and unexplored regions are shown in black. The buildings in the
1272 agent’s schedule are denoted with green circles.
1273

1274 B ADDITIONAL IMPLEMENTATION DETAILS

1275 B.1 NAVIGATION

1276 Given the volume grid maintained in the semantic memory introduced in Section 4.1.1, we construct
1277 the occupancy map and partition the entire map into three types of grid points: unknown, known
1278 obstacles, and known non-obstacles, as illustrated in Figure 11. The A* algorithm is employed to
1279 search for the shortest path, where the weight of known non-obstacle points is set to 1, unknown
1280 points are assigned a weight of 5, and obstacle points are given an infinite weight. Additionally, to
1281 mitigate the issue of agents getting stuck near obstacles due to potential wall-clipping, points closer
1282 to obstacles are assigned higher weights. Specifically, a point at a distance d from an obstacle is
1283 assigned an additional weight of $\frac{100}{d}$. Finally, to prevent the agent from wandering in place due
1284 to significant discrepancies between consecutive navigation paths, the previously computed path is
1285 prioritized unless it is found to be infeasible (i.e., it crosses an obstacle).
1286

1287 B.2 COMMUTE

1288 When an agent executes a *commute* activity, it must determine how to travel between locations
1289 using the available transit options in the community. *Ella* begins by retrieving knowledge about the
1290 transit system together with the spatial information of the origin and destination. This information is
1291 provided to a foundation model, which produces a *commute plan* composed of a sequence of travel
1292 segments (e.g., walking, bicycling, or taking a bus). Each segment in the generated plan is then
1293 executed using the navigation submodule described in Appendix B.1.
1294

1296 B.3 BEHAVIOR PLANNING
12971298 For activities such as *meal* or *main*, the agent generates a structured behavior plan that specifies
1299 navigation steps and task-relevant motions. Upon starting the activity, *Ella* retrieves information
1300 about the objects and affordances available at the current location. This contextual information,
1301 together with the activity description and the agent’s own profile, is passed to a foundation model to
1302 produce a *motion schedule*, which the agent then executes step-by-step.
13031304 C PROMPT TEMPLATES
13051306 We provide the full prompt template for the modules introduced in Section 4.3 in Figure 12 -
1307 Figure 16.
13081309 **Prompt:**
13101311 Given my character description and retrieved memory, please help me plan tomorrow's schedule.
13121313 My Character Description:
13141315 \$Character\$
13161317 Current Situation:
13181319 \$Context\$
13201321 Schedule format: The output should be a JSON object which is an array of activities for the character. Each
1322 activity should follow the following format:
13231324 {
1325 "type": "activity type, should be one of the following: 'commute', 'meal', 'sleep', 'main'",
1326 "activity": "activity description",
1327 "place": "name of the place where the activity takes place, should be in the list of the known places. Should
1328 be null for commute activities",
1329 "building": "name of the building the activity place belongs to, should be consistent as in the list of known
1330 places. Should be null for commute activities",
1331 "start_time": "HH:MM:SS",
1332 "end_time": "HH:MM:SS",
1333 }
13341335 Note: The schedule should be planned based on the character's description and known places. The place
1336 should be mentioned for each activity and must be included in the known places. Do not hallucinate places.
1337 Commute activities should be given enough time to finish and be inserted between all consecutive activities
1338 that do not share the same building so the agent can have time to commute to the correct building before
1339 the start of the activity, including commute to meal places. The schedule should start at 00:00:00 and end
1340 at 23:59:59, and covering the consecutive time of 24 hours with no gaps. The schedule should not end with a
1341 commute activity or an activity lasting over 23:59:59, so the character is not commuting when the day is
1342 ending. The schedule should be planned in a way that the character can complete all the activities within the
1343 given time frame.
13441345 Tomorrow is \$Date\$. My full schedule for tomorrow:
13461347 Figure 12: **Prompt template for generating the daily schedule.** \$Character\$ is replaced with the agent's
1348 character description, \$Context\$ is replaced with the retrieved memory.
1349

```

1350
1351
1352
1353
1354
1355
1356
1357
1358 Prompt:
1359
1360 Given my character description, current schedule and situation, help me determine what I should do.
1361
1362 My Character Description:
1363 $Character$
1364
1365 My current schedule:
1366 $Schedule$
1367
1368 Current Time:
1369 $Time$
1370
1371 Current Place:
1372 $Place$
1373
1374 Related Experiences:
1375 $Experiences$
1376
1377 Current Situation:
1378 $Context$
1379
1380
1381 Note: There are four types of options: revise the schedule, interact with the environment, engage in a
1382 conversation, or continue doing current activity. Please help me choose the best option based on my
1383 situation. Output a JSON object with the following format:
1384
1385 {
1386   "option": "name of the option",
1387   "target": "For 'engage in a conversation,' include the person's full name if known. For 'interaction with the
1388 environment,' include the action name and object name. Otherwise, set to null.",
1389   "reason": "Explain why this option is the best choice given the context."
1390 }
1391
1392
1393
1394 Figure 13: Prompt template for generating the reaction. $Character$ is replaced with the agent's character
1395 description, $Schedule$ is replaced with today's remaining schedules, $Experience$ is replaced with
1396 the retrieved memory, $Context$ is replaced with the latest memory.
1397
1398
1399
1400
1401
1402
1403

```

1404
1405 **Prompt:**
1406
1407 Given my character description, knowledge about and experience with \$Target_name\$, and current
1408 situation, help me decide what I should say next.
1409
1410 **My Character Description:**
1411
1412 \$Character\$
1413
1414 **My knowledge about \$Target_name\$:**
1415
1416 \$Target_knowledge\$
1417
1418 **My experience with \$Target_name\$:**
1419
1420 \$Target_experience\$
1421
1422 **Current Place:**
1423
1424 \$Place\$
1425
1426 **Current Time:**
1427
1428 \$Time\$
1429
1430 **Current Situation:**
1431
1432 \$Context\$
1433
1434 **Current conversation history:**
1435
1436 \$Conversation_history\$
1437
1438 Note: Please generate a short utterance of what I should say next to \$Target_name\$, which should be null if
1439 the conversation should be ended now. Output a JSON object with the following format:
1440
1441 {
1442 "utterance": "short utterance of what I should say next to \$Target_name\$, null if the conversation should
1443 be ended now.",
1444 "reason": "reason for generating this utterance"
1445 }
1446

Figure 14: **Prompt template for generating the utterance.** \$Character\$ is replaced with the agent's character description, \$Target_knowledge\$, \$Target_experience\$, \$Context\$ are replaced with the retrieved memory, \$Conversation_history\$ is replaced with the last 4 messages.

1446
1447 **Prompt:**
1448
1449 I just had a conversation with \$Target_name\$. Summarize it in one sentence.
1450
1451 **Full conversation:**
1452
1453 \$Conversation_history\$
1454
1455 Note: Output only the summary of the conversation in one sentence. Do not include any other information.
1456
1457

Figure 15: **Prompt template for generating the summarization of the conversation.** \$Conversation_history\$ is replaced with the full conversation.

```

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474 Prompt:
1475 I just had a conversation with $Target_name$. Help me extract new knowledge I learned from it.
1476
1477 Full conversation:
1478
1479 $Conversation_history$
1480
1481 Note: Output a JSON object which is an array of knowledge items. Each knowledge item should follow the
1482 following format:
1483 {
1484   "name": "name of the knowledge item",
1485   "description": "description of the knowledge item"
1486   other fields
1487 }
1488 Example knowledge items I already have:
1489
1490 $Knowledge_items$
1491
1492 New knowledge items I learned from the conversation:
1493
1494 Figure 16: Prompt template for extracting knowledge from a conversation. $Conversation_history$ is replaced with the full conversation, $Knowledge_items$ is replaced with sampled knowledge items from semantic memory.
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```