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ABSTRACT

Mamba is an efficient sequence model that rivals Transformers and demonstrates
significant potential as a foundational architecture for various tasks. Quantization
is commonly used in neural networks to reduce model size and computational
latency. However, applying quantization to Mamba remains underexplored, and
existing quantization methods, which have been effective for CNN and Trans-
former models, appear inadequate for Mamba models (e.g., Quarot suffers a 21%
accuracy drop on Vim-T† even under W8A8). We have pioneered the exploration
of this issue and identified several key challenges. First, significant outliers are
present in gate projections, output projections, and matrix multiplications. Sec-
ond, Mamba’s unique parallel scan further amplifies these outliers, leading to
uneven and heavy-tailed data distributions. Third, even with the application of the
Hadamard transform, the variance across channels in weights and activations still
remains inconsistent. To these ends, we propose MambaQuant, a post-training
quantization (PTQ) framework consisting of: 1) Karhunen-Loève Transformation
(KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse chan-
nel distributions. 2) Smooth-Fused rotation, which equalizes channel variances
and can merge additional parameters into model weights. Experiments show that
MambaQuant can quantize both weights and activations into 8-bit with less than
1% accuracy loss for Mamba-based vision and language tasks. To the best of our
knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba
family, paving the way for further advancements in its application.

1 INTRODUCTION

Mamba (Gu & Dao, 2023) is a modern sequence model that competes with the Transformer (Vaswani
et al., 2017), particularly noted for its ability to handle extremely long sequences. The model’s design
is inspired by the Structured State Space model (S4) (Gu et al., 2021) and integrates features from
recurrent, convolutional, and continuous-time models to effectively capture long-term periodic depen-
dencies. Expanding upon the S4 paradigm, Mamba brings about several noteworthy improvements,
especially in handling time-variant operations. These enhancements enable the effective and efficient
processing of lengthy data sequences, positioning Mamba as a promising foundational architecture
for vision (Zhu et al., 2024; Liu et al., 2024), language (Gu & Dao, 2023; Li et al., 2024), and
multi-modality tasks (Zhao et al., 2024).

Quantization is an essential technique for deploying deep neural networks (DNNs) in environments
with limited computational resources and the demand for real-time processing. This process involves
converting weights and activation of neural networks from high precision (e.g., 32-bit floating point
numbers) to lower precision (e.g., 8-bit integers) to reduce memory usage, computational burden,
and energy consumption. Although quantization has been successfully utilized in convolutional
neural networks (Krishnamoorthi, 2018; Liu et al., 2023) and Transformer-based large language
models (T-LLMs) (Du et al., 2024; Yuan, 2024), its application within the Mamba family has not
been systematically analyzed or studied.

To establish a comprehensive quantization methodology for Mamba models, we first examine the
potential constraints and challenges involved: ❶ Significant outliers occur in both weights and
activations of Mamba models. We observe the presence of outliers in the weights of linear layers,
particularly in the gate projection layers (Figure 1(a)) of Mamba-LLM (Gu & Dao, 2023) for language
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Figure 1: Visualized distribution of hard layers for Mamba quantization. (a) denotes the weight of the
gate projection, (b) denotes the input activations of the output projection. (c) represents the output of
the parallel scan (PScan) operator, which is also one of the input to the matrix multiplication.

tasks. We also find that certain inputs to linear layers exhibit significant variance in the channel
dimension. This occurrence is particularly pronounced in the output projection layers (Figure 1(b))
of Vim (Xu et al., 2024) for vision tasks. ❷ Parallel Scan (PScan) further amplifies the outliers
of activations. To obtain hidden states at each timestamp, the PScan operator (Smith et al., 2022)
continuously performs self-multiplication of a fixed parameter matrix. In this case, channels exhibiting
higher values will be amplified, while those with comparatively lower values will be diminished. This
obvious numerical difference across channels is directly expanded to activations (e.g., input variable
to the matrix multiplication as shown in Figure 1(c)).

Given that both Mamba and Transformer are sequence models with fully connected layers to be
quantized, our initial solution involves exploring techniques that have been proven effective on
Transformer-based large language models (T-LLMs). Recently, Hadamard-based methods (Tseng
et al., 2024), known for the capacity to uniform maximum values and the equivalent transformation
property, have shown significant success in the quantization of T-LLMs. For instance, quantizing
LLAMA2-70B to 4 bits with QuaRot (Ashkboos et al., 2024b) maintains 99% of the zero-shot
performance. However, directly applying this method to Mamba models leads to significant accuracy
degradation (e.g., on average more than 12% accuracy drop on Vim (Xu et al., 2024) even at 8
bits). Our analysis reveals that Hadamard transformation fails to achieve variance alignment across
channels, as shown in Figure 2(b)(e). The inconsistent variances inevitably result in an uneven
numerical distribution of the quantization data, thereby decreasing the accuracy.

To this end, we propose MambaQuant, an effective and efficient post-training quantization (PTQ)
framework tailored for Mamba models. The central concept of MambaQuant is to resolve the issue

Figure 2: Maximum values (blue color) and variances (red color) distribution across channels of: (a)
the original weight of the gate projection; (b) applying the standard offline Hadamard rotation to (a);
(c) applying the proposed KLT-Enhanced rotation to (a); (d) the input activation (generated by PScan)
of the matrix multiplication; (e) applying the standard online Hadamard rotation to (d); (f) applying
the proposed smooth-fused rotation to (d).
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of inconsistent variances arising from the Hadamard transformation, thereby promoting the Mamba
quantization. Specifically, MambaQuant considers two distinct situations depending on whether to
integrate the rotation matrix into weights: the offline mode for exclusion and the online mode for
inclusion. (1) We propose the Karhunen-Loève Transformation (KLT) enhanced rotation in the offline
mode. This technique multiplies the Hadamard matrix with the KLT matrix, enabling the rotation
matrix to accommodate various channel distributions. (2) We introduce the smooth-fused rotation
in the online mode. This approach performs smoothing before the Hadamard transformation. The
additional smoothing parameters are flexibly integrated into weights of Mamba blocks to avoid extra
cost of memory space and inference step. Consequently, both the maximum values and the variances
of the quantization data are sufficiently normalized in the channel dimension (i.e., they are consistent
for the offline mode and closely aligned for the online mode as shown in Figure 2(c)(e)).

Experiments show that MambaQuant outperforms existing methods across various tasks on different
Mamba model families, including Vim (Zhu et al., 2024) and Mamba-ND (Li et al., 2024) for
Mamba-based vision tasks, as well as Mamba-LLM (Gu & Dao, 2023) for Mamba-based language
tasks. MambaQuant quantizes both weights and activations into 8-bit with a slight accuracy drop
(less than 1%) for all models. Additionally, it can quantize weights to 4-bit with a minimal accuracy
drop (about 1%) for vision tasks, and achieves significant accuracy improvements in language tasks
compared to existing methods. Lastly, our contributions can be concluded as follows:

• We identify that Mamba encounters quantization challenges primarily due to significant
outliers, which are even amplified by PScan. Our analysis reveals that the Hadamard
transformation is hindered by inconsistent channel variances to effectively solve these
problems.

• We propose MambaQuant. For offline mode, we introduce the KLT-Enhanced rotation to
equalize the channel variances. For online mode, we introduce smooth-fused rotation to
normalize the channel variances. Both the offline and online transformation can achieve
more uniform distributions prior to the quantization process.

• To the best of our knowledge, MambaQuant is the first comprehensive PTQ framework for
the Mamba family. It can efficiently quantize both weights and activations into 8-bit with
less than 1% accuracy loss for Mamba-based vision and language tasks.

• As a pioneering study on quantization within the Mamba family, we have published the code
in the hope of promoting further research and facilitating advancements in this field.

2 RELATED WORK

Mamba Models Mamba (Gu & Dao, 2023) is a selective structured state space model that sub-
stantially improves the performance of state space models (SSM) in handling sequential data. It
transforms parameters in the structured state space model (S4) (Gu et al., 2021) into learnable func-
tions and proposing a parallel scanning method. By overcoming the local perception limitations of
convolutional neural networks (CNNs) and the quadratic computational complexity of Transform-
ers (Vaswani et al., 2017), Mamba-based networks (Xu et al., 2024) are widely applied in various
tasks. For instance, the original Mamba (Gu & Dao, 2023) demonstrates comparable performance
to Transformers in language modeling, audio generation, and DNA sequence prediction. Vision
Mamba (Vim) (Zhu et al., 2024) marks the first introduction of Mamba to the field of computer
vision, employing bidirectional SSM for global modeling and position embedding for position-aware
understanding. Subsequently, VMamba (Liu et al., 2024) proposes cross-scan module to address
the direction-sensitive challenges. LocalMamba (Huang et al., 2024) further improves performance
by incorporating local inductive biases, while PlainMamba (Huang et al., 2024) is designed as a
non-hierarchical structure for enhancing integration across the different scales. Mamba-ND (Li et al.,
2024) simply alternates the order of sequence, effectively extending Mamba to multi-modal data
including images and videos. Despite reduced computational demands and impressive performance,
the large size of these models still limits their application on edge devices.

Quantization Methods. Quantization is an effective model compression technique. Current
methods can be categorized into quantization aware training (QAT) and post training quantization
(PTQ). While QAT typically necessitates full parameters training, which poses challenges for large
models, PTQ has garnered more research attention. Quantizing full-precision variables of pre-trained
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models into low-bit integers, PTQ reduces the memory consumption and enhances the inference
speed. For instance, in the field of Vision Transformer (Dosovitskiy, 2020), FQ-ViT (Lin et al., 2021)
introduces a comprehensive quantization scheme for the first time, employing powers of two factors
and Log2 quantizers for layer normalization and attention mapping. RepQ-ViT (Li et al., 2023)
further addresses the issue of extreme distribution in activations after layer normalization and SoftMax
operations. In the field of Large Language Models (LLMs), GPTQ (Frantar et al., 2022) introduces
a layer-wise quantization technique based on approximate second-order information, quantizing
weights to 3-4 bit with minimal accuracy loss. To suppress outliers in activations, SmoothQuant (Xiao
et al., 2022) adopts a smoothing parameter that transfers the difficulty of quantizing activations to
weights. Recently, QuaRot (Ashkboos et al., 2024b) adopts a similar methodology, which combines
the rotation in QuIP (Chee et al., 2024) and the computational invariance in SliceGPT (Ashkboos
et al., 2024a), pushing PTQ to a new level. While these methods perform effectively for Transformer-
based large language models, they do not work well with mamba models. Notably, to our knowledge,
our method is the first PTQ solution specifically designed for Mamba models, applicable to both
Mamba-based vision and language tasks.

3 PRELIMINARIES

3.1 STATE SPACE MODELS

Figure 3: Mamba block architecture.

The state space models (SSMs) are typically re-
garded as contiguous linear time-invariant (LTI)
systems (Kalman, 1960), which map an input sig-
nal x(t) ∈ R to its output y(t) ∈ R through a
hidden state h(t) ∈ Rd×1:

h(t) = Ah(t− 1) +Bx(t), (1)
yssm(t) = Ch(t) +Dx(t), (2)

where A ∈ Rd×d, B ∈ Rd×1, C ∈ R1×d, D ∈
R1×1 are weighting parameters, t ∈ Z+, and h(0)
is an initial hidden state.

3.2 MAMBA ARCHITECTURE

Since the usage of LTI system, the model parame-
ters remain unchanged, decreasing the performance
when representing changing inputs. To tackle this
issue, Mamba (Gu & Dao, 2023) propose an implementation of selective SSM (Gu et al., 2021),
which formulates parts of the parameters as functions of a specific input sequence:

x′ = σ(DWConv(State Projection(x))), ∆ = Sofplus(LoRA Module(x′)), (3)
A = eA⊙∆, B = B Projection(x′)⊙∆, C = C Projection(x′), (4)

where x′ denotes the transformed input and σ represents the SiLU activation. Those input-dependent
parameters and x′ are used by the Parallel Scan (PScan) operator to generate y′

ssm, The calculation
process of PScan can be expressed as:

h(t) = Ah(t− 1) +Bx(t), y
′

ssm(t) = Ch(t), (5)
This temporary output is then element-wisely multiplied with a gated variable z to generate better
outputs:

z = σ(Gate Projection(x)), yout = y′
ssm ⊙ z. (6)

3.3 QUANTIZATION

Quantization is generally performed to obtain a low-precision representation (e.g., 4-bit integer)
from a high-precision variable (e.g., 16-bit floating points). For a tensor x to be quantized, it can be
uniformly quantized to b-bits as follows (Jacob et al., 2018):

x̂ = (clamp(⌊x
s
⌉+ z, 0, 2b − 1)− z) · s, s =

max(x)−min(x)

2b − 1
, z =

−min(x)

s
, (7)

where z is the zero point, s is the scale factor, ⌊·⌉ denotes the rounding-to-nearest operator, clamp is
the clipping function.
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4 METHOD

4.1 DIMINISHED EFFECTIVENESS OF HADAMARD TRANSFORMATION

Hadamard transformation is a promising quantization method for LLMs, recognized for its effective-
ness in handling outliers and its computational simplicity and speed. It provides robust performance
while efficiently managing data variability.

Hadamard matrices are square matrices with orthogonal rows and columns, where each element is
either 1√

m
or − 1√

m
(m is the order of the Hadamard matrix). By multiplying with such a uniformly

distributed matrix, each row contributes relatively equally to a given channel, thereby making
the extreme values of the channels closer together (Tseng et al., 2024). Additionally, due to the
orthogonal nature, the Hadamard matrix can be well integrated into model weights while ensuring
the computational consistency.

We initially attempt to directly apply this method to Mamba models, particularly to the gate projection,
output projection, and the matmul layer. However, the Hadamard transformation is not sufficiently
effective in normalizing the hard layers mentioned in Figure 1 of the Mamba architecture with
significant outliers, as illustrated in Figure 2(b)(e).

To this end, we conduct a thorough analysis of this issue and find that this method fails to align the
channel variance of quantization variables, thereby overlooking the distribution consistency between
different channels. In detail, given a centered data matrix (the columns of the matrix are zero-mean.)
X (weights or activations) with dimensions (n,m) and the Hadamard transformation matrix H with
dimensions (m,m), the covariance matrix CXH of the transformed matrix XH can be expressed
as:

CXH =
1

n− 1
(XH)TXH =

1

n− 1
HTXTXH =

1

n− 1
HTKΛKTH, (8)

where XTX = KΛKT represents the eigenvalue decomposition, K is the eigenvectors matrix, and
Λ is the diagonal eigenvalues matrix. Considering that HTK and KTH are transposed matrices of
each other, the l-th diagonal elements of CXH can be expressed as:

(CXH)ll =
1

n− 1

m∑
j=1

(HTK)2ljλj =
1

n− 1

m∑
j=1

(

m∑
i=1

HilKij)
2λj , (9)

where λj is the j-th eigenvalue of Λ. The complete derivation from Equation 8 to Equation 9 is
provided in Appendix A.2. For a given value of l, Equation 9 represents the variance of the l-th
channel. As the vector H:,j varies with the l, the channel variances cannot be proven to be numerically
close in most cases refers to Appendix A.3. Further, considering that H is a fixed matrix while both
K and λ are input-dependent, it is not feasible for the Hadamard transformation to uniformly adjust
the channel variances across all scenarios. This property of Hadamard transformation inevitably
formulates a distinct distribution for each channel, thus leading to sub-optimal quantization.

4.2 KLT-ENHANCED ROTATION FOR OFFLINE TRANSFORMATION

To overcome the constrain stated in Section 4.1, we introduce the Karhunen-Loève Transformation
(KLT) (Dony et al., 2001) to equalize channel variances. KLT identifies principal components in the
data and projects it onto these components, retaining the most critical information by focusing on
directions of maximum variance. In practical, the mean value for each channel of the Mamba weights
and activations is typically close to zero, meeting the applicable conditions of KLT. Specifically, We
apply KLT by performing eigenvalue decomposition on the covariance matrix CX of the centered
matrix X derived from the calibration data.

CX =
1

n− 1
XTX =

1

n− 1
KΛKT . (10)

Next, the KLT-Enhanced rotation matrix HK can be obtained by applying the KLT to the Hadamard
matrix H , as described in Equation 11, and the Equation 8 turns into Equation 12:

HK = KH, (11)
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Figure 4: Offline transformation designs utilizing the KLT-Enhanced rotation.

CXHK
=

1

n− 1
HT

KKΛKTHK =
1

n− 1
HTKTKΛKTKH =

1

n− 1
HT IΛIH, (12)

where I denotes the identity matrix. Consequently, the Equation 9 thus turns to Equation 13:

(CXHK
)ll =

1

n− 1

m∑
j=1

(

m∑
i=1

HilIij)
2λj =

1

(n− 1)m

m∑
j=1

λj . (13)

In this way, the variance of each channel becomes the same, making quantization much easier. This
transformation serves a dual purpose: it not only equalizes the variance among different channels
but also embodies the distinctive property of Hadamard matrices, which is their ability to balance
maximum values. We also provide detailed steps for the formula of performing KLT rotation
followed by Hadamard rotation in Appendix A.4 to achieve variance balancing. In practice the KLT
is offline performed by using the calibration data to avoid extra computational costs. Still it can be
well-generalized to wider range of inputs (detailed in Appendix A.7).

To apply this KLT-Enhanced rotation matrix, we modify the offline transformation in QuaRot (Ashk-
boos et al., 2024b) for the Mamba structure. As shown in Figure 4, we employ this strategy for the
LoRA module and the inter-block connection (where the output projection, gate projection and the
state projection is transformed).

4.3 SMOOTH-FUSED ROTATION FOR ONLINE TRANSFORMATION

To mitigate the shortcoming of the Hadamard rotation discussed in Section 4.1 where the online
transformation is applied, we introduce the smoothing technique prior to its execution. The moti-
vation of employing this method is to uniform the channel variances through a smoothing vector.
Typically, the smoothing factors can be absorbed into the neighbored layers with the quantization of
T-LLMs (Xiao et al., 2022; Shao et al., 2023). This operation effectively circumvents the demand for
additional memory allocation and computational overhead that would arise from the incorporation
of extra parameters. However, this approach does not align with the Mamba modules due to the
non-linear SiLU operation and the complex loop structure of PScan. To this end, two distinct designs
are proposed for output projection and matrix multiplication, respectively.

For the output projection layer: We improve the traditional SiLU activation function with Smooth
SiLU (S-SiLU) (Hu et al., 2024) to meet the needs of smooth-fused quantization:

S-SiLU(x, s) = x⊙ σ(s⊙ x), (14)

where x is an activation variable, σ(·) represents the Sigmoid function, s denotes the introduced
smoothing parameter, and ‘⊙’represents element-wise multiplication. Depicted in Figure 5(a), the
application of the S-SiLU function on the gate projection described by Equation 6 can be expressed
as follows:

yout = [yssm ⊙ SiLU(xgWg)]Wo = [yssm ⊙ S-SiLU(xgW
′
g, sout)]W

′
o, (15)

where yssm denotes the output activation of the SSM, W ′
g = Wg ⊘ sout and W ′

o = sout ⊙Wo are
transformed weights of the gate projection (denoted with subscript ‘g’) and the output projection
(denoted with subscript ‘o’), ‘⊘’represents element-wise division, sout is the absorbed smoothing
factor, xg is the input of the gate projection, and yout represents the final output of the Mamba block.
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Figure 5: Fusing smooth parameters into the Mamba structure.

For the matrix multiplication layer: We also design a scheme to absorb the smoothing factor for
the matrix multiplication operator within the Mamba block. One input stream of the multiplication
is the output of the C projection in Equation 4, which can directly fuse the smoothing factor smm

into the weight of C projection (WC) as shown in Figure 5(b). Another input stream comes from
the output of the parallel scan operator. As shown in Equation 5, the calculation of PScan includes
addition operator, and the smoothing factor smm will be transmitted along two routes on both sides of
the addition operator. One route is transmitted through B and absorbed by the weight of B projection
(WB), and the other route is transmitted through A and absorbed by ∆, which defined in Equation 3.
Because of the existence of exponential calculation in Equation 4, 1/smm becomes −ln(smm) when
transmitted to ∆, and is absorbed by applying the addcmul operator (PyTorch, 2023) to ∆(1) in
Euation 16. It is solely applied to the first token of ∆ (∆(1)).

addcmul(− ln(smm),∆(1),A) = A∆(1)− ln(smm). (16)

Figure 6: Online transfor-
mation designs utilizing the
smooth-fused rotation.

After smoothing, the channel variances of activations for the output pro-
jection and the matrix multiplication becomes relatively uniform. Subse-
quently, we modify and apply the online Hadamard rotation (Ashkboos
et al., 2024b) for the Mamba structure as shown in Figure 6. The
Hadamard matrix H is dynamically applied to the input activation of
the output projection and the matrix multiplication, while the transposed
HT can be absorbed into corresponding weights.

5 EXPERIMENTS

Models and datasets. We assess the general quantization capabilities
of our proposed MambaQuant framework across three representative
Mamba-based applications: Mamba (Gu & Dao, 2023), Vim (Zhu et al., 2024), and Mamba-ND
(Li et al., 2024). We evaluate the performance of the quantized Mamba model across vision and
language tasks. For vision tasks, we tested the model on the image classification dataset ImageNet
(Russakovsky et al., 2015) and the video classification dataset UCF-101 (Soomro et al., 2012). In the
language domain, we conducted evaluations on five standard datasets: ARC-E (Boratko et al., 2018),
ARC-C (Clark et al., 2018), PIQA (Bisk et al., 2020), Winogrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019), and reported the average performance across these datasets.The
metric used for the evaluation of our test results on these tasks is Accuracy (Acc).

Baselines and implementation details. For comparison, we apply different quantization settings to
the Mamba model and reported the performance under two configurations: W8A8 and W4A8 (weights
and activations). Additionally, we compare with the different quantization methods, including the
Round To Nearest (RTN) method, SmoothQuant (Xiao et al., 2022), GPTQ (Frantar et al., 2022) for
weights and RTN for activations (GPTQ+RTN), as well as QuaRot (Ashkboos et al., 2024b). For the
vision tasks, we utilize a static quantization approach. The calibration data for image classification
was randomly sampled from 128 images in the ImageNet (Russakovsky et al., 2015) test set, while for
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video classification, we used samples from the UCF-101 (Soomro et al., 2012) test set for calibration.
In contrast, for language tasks, we employ dynamic quantization to better adapt to the varying input
structures during inference.

5.1 OVERALL RESULTS

Table 1: Comparative results under different quantization settings for Vision Mamba models. The
Vim models and Mamba-2d models are tested for accuracy on ImageNet, while the Mamba-3d model
is tested for accuracy on UCF-101. † indicates the fine-tuned model on Vim. ‡ denotes results based
on official weights.

Vision Mamba Mamba-ND
Bit Width Methods Vim-T Vim-T† Vim-S Vim-S† Vim-B mamba-2d S Mamba-2d B Mamba-3d

FP16 - 76.1 78.3 80.5 81.6 80.3‡ 81.7 83.0 89.6
RTN 37.4 32.4 68.8 68.8 52.2 80.3 82.2 87.9

GPTQ+RTN 37.7 32.5 68.9 70.5 52.2 80.4 82.2 87.8
SmoothQuant 37.7 32.3 68.7 72.9 52.1 80.3 82.2 87.9

QuaRot 59.3 57.4 73.8 75.5 73.8 80.8 82.3 88.0
W8A8

Ours 75.6 77.8 80.3 81.4 80.1 81.2 82.8 89.0
RTN 26.3 25.0 66.1 70.0 46.2 40.6 78.8 86.1

GPTQ+RTN 30.4 27.9 66.5 70.6 47.7 60.3 78.9 86.8
SmoothQuant 27.0 26.0 66.4 70.2 46.7 59.7 80.2 86.9

QuaRot 52.7 48.5 72 74.0 72.8 80.1 82.0 86.9
W4A8

Ours 72.1 73.7 79.4 80.4 79.8 80.4 81.9 88.4

Performance Comparison on Vision Model. Table 1 presents the results of various Mamba
vision models under different quantization settings, including Vision Mamba and Mamba-ND. The
quantization configurations evaluated are W8A8 (8-bit weights and activations) and W4A8 (4-bit
weights and 8-bit activations). The table compares the performance of several quantization methods,
including RTN, GPTQ+RTN, SmoothQuant, QuaRot, and our proposed method (“Ours”), across
different Mamba model variants. Our proposed quantization method demonstrates a significant
improvement over baseline techniques. Under the W8A8 configuration, the performance of our
method remains within 1 points of the floating-point baseline accuracy. In the stricter W4A8 setting,
our method substantially outperforms competing approaches, which experience more pronounced
accuracy drops. These results indicate that our approach offers a more robust solution for maintaining
high accuracy in Vim and Mamba-ND models under quantized settings. The findings suggest that our
method is more resilient to the challenges of precision reduction and provides a both practical and
effective quantization solution for deploying Mamba models.

Table 2: Comparative results under different quantization settings on language mamba models. Evalu-
ations on the five standard datasets—ARC-E, ARC-C, PIQA, Winogrande and HellaSwag—resulted
in the reported average accuracy across these datasets.

Mamba-LLMBit Width Methods Mamba-370m Mamba-790m Mamba-1.4b Mamba-2.8b
FP16 - 50.9 54.8 58.6 62.2

RTN 45.7 44.9 53.9 58.4
GPTQ+RTN 46.2 48.6 55.0 58.9
SmoothQuant 45.2 41.7 54.2 58.7

QuaRot 48.8 51.6 56.9 59.3
W8A8

Ours 50.0 53.8 58.3 62.1
RTN 36.2 35.4 51.6 54.8

GPTQ+RTN 36.7 36.0 51.1 53.6
SmoothQuant 36.8 39.3 52.0 54.9

QuaRot 43.4 40.0 53.8 58.5
W4A8

Ours 43.9 45.8 54.3 58.5

Performance Comparison on Language Model. Table 2 illustrates the quantization results for
the Mamba model applied to language tasks. The models evaluated range from Mamba-370m to
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Mamba-2.8b. The table compares the accuracy of several quantization methods, includingRTN,
GPTQ+RTN, SmoothQuant, QuaRot, and our method. Our approach delivers superior performance
across different model sizes, particularly under the more challenging W4A8 configuration, where
it consistently outperforms baseline techniques by a significant margin. These results demonstrate
the robustness and efficiency of our quantization method for language model tasks.All experimental
results for both vision and language models under our proposed method are provided in Appendix
A.6.

5.2 ABLATION STUDY

Table 3: Ablation Experiment For KLT-Enhanced Rotation.

Bit Width Methods Vim T† Mamba-790m Bit Width Methods Vim T† Mamba-790m
FP16 - 78.3 54.8 FP16 - 78.3 54.8

Baseline(RTN) 32.4 44.2 Baseline(RTN) 25.0 35.4
Hadamard Rotate 33.9(↑ 1.5) 50.8(↑ 6.6) Hadamard Rotate 25.1(↑ 0.1) 40.2(↑ 4.8)W8A8

KLT-Enhanced Rotate 47.7(↑ 15.3) 51.3(↑ 7.1)
W4A8

KLT-Enhanced Rotate 38.9(↑ 3.9) 42.3(↑ 6.9)

Figure 7: Data of activatin of gate projection distribution and quantization of losses. (a) Original data
; (b) Hadamard rotateion to (a) ; (c) KLT-Enhanced rotation to (a). The first row of graphs depicts the
lineshowing the distribution of data values at different quantile points across various channels, while
the second row illustrates the count bar graphs representing the different quantization losses.

Ablation Study on KLT-Enhanced Rotation. We conducted a series of ablation studies on the
offline rotation layers described in Section 4.2 of our method, comparing the KLT-Enhanced rotation
and Hadamard rotation techniques as proposed in our method. The results are presented in Table 3,
where we directly contrast the outcomes of applying KLT-Enhanced rotation compared to Hadamard
rotation within the LoRA modules and at inter-block connections. The ablation study comparisons
from Table 3 demonstrate the effectiveness of the KLT-enhanced rotation approach. Compared with
the direct use of hadamard rotation, our method can achieve a greater degree of progress improvement,
which is about 14% higher than the direct hadamard method in the Vim-T† quantization of W8A8.

In addition to the quantitative analysis of the ablation study results, Figure 7 visually conveys the
optimization brought by the KLT-enhanced rotation over the Hadamard rotation. The upper part
of Figure 7 shows the quantile distribution of data across different channels, while the lower part
illustrates the quantization loss distribution using the 4-bit per-tensor method. In the bar graph, the
horizontal axis represents quantization loss magnitude, and the vertical axis indicates the data point
count. Subfigures (a), (b), and (c) display the quantization losses for the original data, Hadamard-
rotated data, and KLT-enhanced rotation data, respectively. Comparing these, the KLT-enhanced
rotation clearly outperforms Hadamard rotation in smoothing quantization and reducing losses across
channels. Moreover, our method reduces the L1 loss from quantization by nearly half compared to
using Hadamard rotation alone.

Table 4: Ablation Experiment For Smoothed Rotation.

Bit Width Methods Vim-T† Mamba-790M Bit Width Methods Vim-T† Mamba-790M
FP16 - 78.3 54.6 FP16 - 78.3 58.6

Baseline(KLT-enhanced Rotation) 47.7 51.3 Baseline(KLT-enhanced Rotation) 38.9 42.3
Hadamard Rotation 69.7(↑ 22.0) 51.8(↑ 0.5) Hadamard Rotation 62.0(↑ 23.1) 43.0(↑ 0.7)W8A8
Smooth-Fused Rotation 77.8(↑ 30.1) 53.3(↑ 2.0)

W4A8
Smooth-Fused Rotation 73.7(↑ 34.8) 45.8(↑ 3.5)
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Figure 8: Data of weight of output projection distribution and quantization of losses. (a) Original
data quantile and fake quantization loss, (b) Hadamard rotated data quantile and fake quantization
loss, (c) Smooth based rotated data quantile and fake quantization loss.

Ablation Study on Smoothed Rotation. Table 3 indicates that while our proposed KLT-Enhanced
rotation effectively improves quantization accuracy. However, there is still a gap compared to floating-
point precision. We then applied the method described in Section 4.3, focusing on the sensitive
matmul and output projection layers. The ablation results comparing the use of online Hadamard
rotation and smooth-fused rotation are presented in Table 4. We found that the smooth-fused rotation
can lead to significant improvements in quantization accuracy compared to directly using Hadamard
rotation. Under the condition of W4A8 quantization configuration, in the Vim T† model, the Smooth-
Fused rotation method is 11.7% ahead of the direct online Hadamard rotation method in terms of
accuracy.

Memory Occupancy and Computational Cost. In method 4.3, we introduce a smooth scale
parameter to optimize the quantization process, with minimal storage overhead since each quan-
tization channel is represented by a single scalar, which has negligible impact on overall model
size. Additionally, the method introduces the application of the online Hadamard rotation technique
described in the QuaRot (Ashkboos et al., 2024b), which ensures rapid transformations akin to FFT,
minimizing computational impact on inference speed. Taking the Mamba-2.8B model as an example,
the smooth scale adds only 329k parameters to the 2.8B model, while for a token sequence length of
1024, the computational increase is 25.6 GFLOPs over the baseline 2.8 TFLOPs. This translates to a
0.01% increase in the parameter size and just a 0.91% increase in computational cost.

6 CONCLUSION

In this paper, we focus on introducing the quantization techniques into the realm of Mamba models.
Firstly, we identify that significant outliers which challenge the quantization process are present in
gate projection, output projection, and matrix multiplication, while the unique PScan operator further
amplifies the numerical differences. Secondly, we find that Hadamard transformation method widely
adopted in Transformer quantization performs less satisfying when quantizing these hard layers.
Our analysis reveals that this method falls short of sufficiently aligning the channel variances, thus
remaining an uneven distribution challenging the quantization process. To beyond this limitation, we
propose MambaQuant, a comprehensive post training quantization framework especially designed
for the Mamba models. The core idea of this strategy is to facilitating the Hadamard transformation
with the ability to uniform the variance of each channel, thus enhancing the performance of Mamba
quantization. Specifically, we introduce the Karhunen-Loève Transformation to render the rotation
matrix adaptable to diverse channel distributions. We also incorporate a smoothing methodology
to uniform the channel variances, while additional parameters are fused into model weights to
avoid extra overhead. Our proposed MambaQuant advances in accuracy for both Mamba-based
vision and language tasks compared to existing methods, making Mamba models more practical for
deployment in resource-constrained environments. As a pioneering study on quantization within the
Mamba family, we have published the code in the hope of promoting further research and facilitating
advancements in this field.
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A APPENDIX

A.1 LIMITATIONS

Recently, Mamba models demonstrates superior accuracy across various vision and language tasks,
indicating its strong capabilities in feature extraction and pattern recognition. However, its deploy-
ment with the quantization methodology still remains largely under explored. We thus propose
MambaQuant, an accurate and efficient post training quantization framework especially desined for
the Mamba family.

While this approach can effectively quantize the weights and activations of Mamba models into 8-bit
with less than a 1% drop in accuracy, it struggles to maintain such a high level of accuracy when
quantizing weights to 4-bit. In addition, we note that the proposed Karhunen-Loève Transformation
(KLT) enhanced rotation is efficiently constrained if applied to the online Hadamard rotation. This is
primarily due to the additional computation steps introduced by the eigenvalue decomposition (as
stated in Equation 10) and the application to the Hadamard matrix (as stated in Equation 11). Despite
the constrains, we hope that our work could inspire the research interest on Mamba quantization
within the community. We are also committed to extending the KLT-Enhanced rotation method to
online transformation in order to achieve better performance in low-bit quantization.

A.2 DERIVED THE INABILITY OF HADAMARD ROTATION TO ENSURE CONSISTENCY OF
COLUMN VARIANCE.

Hadamard properties. An orthogonal matrix Q is a square matrix such that QQT = I . In this
work, we consider only real orthogonal matrices. A rotation matrix is an orthogonal matrix with
|Q| = 1. A Hadamard matrix is an orthogonal matrix with each element is either 1√

m
or − 1√

m
. A

2x2 Hadamard matrix is defined as follows:

H =
1√
2

(
1 1
1 −1

)
(17)

Covariance Calculation. Given a matrix X with dimensions (n,m) with zero mean across each
column. Alculate the covariance matrix CX of X:

CX =
1

n− 1
XTX =

1

n− 1
KΛKT , (18)

where K is the eigenvectors matrix, Λ is the diagonal eigenvalues matrix, n denotes the number of
rows. We provide a proof based on the above properties of Hadamard that Hadamard cannot achieve
column variance consistency. In detail, given a Hadamard transformation matrix H with dimensions
(m,m).the covariance matrix CXH of the transformed matrix XH can be expressed as:

CXH =
1

n− 1
(XH)TXH =

1

n− 1
HTXTXH, (19)

Subsituate Equation 18 into Equation 19:

CXH =
1

n− 1
HTXTXH =

1

n− 1
HTKΛKTH, (20)

Hadamard matrix expansion:

H =


H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

. . .
...

Hm1 Hm2 · · · Hmm

 , (21)

KLT matrix expansion:

K =


K11 K12 · · · K1m

K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

 , (22)
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We define the matrix P = HTK:

P = HTK =


∑m

i=1 Hi1Ki1

∑m
i=1 Hi1Ki2 · · ·

∑m
i=1 Hi1Kim∑m

i=1 Hi2Ki1

∑m
i=1 Hi2Ki2 · · ·

∑m
i=1 Hi2Kim

...
...

. . .
...∑m

i=1 HimKi1

∑m
i=1 HimKi2 · · ·

∑m
i=1 HimKim

 , (23)

Substitute Equation 23 into Equation 20:

CXH =
1

n− 1
PΛP T

=
1

n− 1


∑m

i=1 P
2
1iλi · · · · · · · · ·

· · ·
∑m

i=1 P
2
2iλi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 P
2
miλi



=
1

n− 1


∑m

j=1(
∑m

i=1 Hi1Kij)
2λj · · · · · ·

...
. . .

...
· · · · · ·

∑m
j=1(

∑m
i=1 HimKij)

2λj

 .

(24)

(CXH)ll =
1

n− 1

m∑
j=1

(HTK)2ljλj =
1

n− 1

m∑
j=1

(

m∑
i=1

HilKij)
2λj , (25)

Since the values of Pij are not equal, the variance for each column of matrix XH (which is the
value on the diagonal of CXH ) is also not equal. Because the Hadamard transform is a fixed
orthogonal transformation, a fixed orthogonal transformation cannot uniformly adjust the variance in
all directions, resulting in the variance after transformation still being uneven.

A.3 THE VARIANCE AFTER HADAMARD ROTATION IS STILL INCONSISTENT

We provide an example of a simple random 4x4 matrix after it has undergone the Hadamard transform.
Example of a simple random 4x4 matrix R and a 4x4 Hadamard matrix H::

R =

 3 −1 0 −4
−2 3 −3 1
1 −3 4 −3
−2 1 −1 6

 (26)

H =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (27)

Calculate the covariance matrix CRH of the matrix RH after the Hadamard transform:

CRH =

 1.83 −4.83 −2.83 2.00
−4.83 30.50 2.17 −5.67
−2.83 2.17 8.75 −1.50
2.00 −5.67 −1.50 2.17

 (28)

In the random example we provided, it can be seen that after the Hadamard rotation, there is a
significant imbalance in the variance across the columns (which are the diagonal values of the
covariance matrix CRH ).

We observe the distribution within the actual Mamba network. In the Vim-T network, we compare
the variances before and after the Hadamard rotation for the output projection inputs of the 1st, 10th,
and 20th blocks, as shown in Fig. 9. Additionally, Hadamard rotation is applied to the gate projection
inputs of the 1st, 10th, and 20th blocks in Fig. 10, as well as to the gate projection weights of the 1st,
10th, and 20th blocks in Fig. 11.
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Figure 9: Variances of input of output projection layer blocks in Vim-T: unequal across channels pre-
and post-Hadamard rotation

Figure 10: Variances of input of gate projection layer blocks in Mamba-790m: unequal across
channels pre- and post-Hadamard rotation

Figure 11: Variances of weight of gate projection layer blocks in Mamba-790m: unequal across
channels pre- and post-Hadamard rotation

A.4 KLT-ENHANCED ROTATION TO ENSURE COLUMN VARIANCE BALANCE

KLT rotation before Hadamard rotation. We perform the KLT transformation on X to obtain a
new matrix X ′, which is multiplying X by the matrix K on the right:

X′ = XK, (29)

Equation 29 is the KLT transform. We calculate the covariance matrix of the data X ′ as CX′ :

CX′ =
1

n− 1
X′TX′, (30)
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We substitute Equation 29 into Eq 30:

CX′ =
1

n− 1
(XK)T (XK) =

1

n− 1
KTXTXK, (31)

In Eq 19, we have XTX = KΛKT which can be substituted into Equation 31.

CX′ =
1

n− 1
KTKΛKTK =

1

n− 1
Λ, (32)

We use the Hadamard matrix H to transform on X ′ to obtain X ′′:

X′′ = X′H, (33)

Calculate the covariance matrix CX′′ of X ′′:

CX′′ =
1

n− 1
(X′′)TX′′

=
1

n− 1
(X′H)TX′H

=
1

n− 1
HTX′TX′H

=
1

n− 1
HTCX′H

=
1

n− 1
HTΛH. (34)

Every element hij of the Hadamard matrix is 1/
√
m or −1/

√
m: The composition of Λ is

(λ1, λ2, ..., λn). Substitute Equation 21 into Equation 34.

CX′′ =
1

n− 1


∑m

i=1 H
2
i1λi · · · · · · · · ·

· · ·
∑m

i=1 H
2
i2λi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 H
2
imλi

 (35)

Substitute the actual value of H2
ij = 1/m, into Equation 35.Further calculate CX′′ , and the result is:

CX′′ =
1

(n− 1)m


∑m

i=1 λi · · · · · · · · ·
· · ·

∑m
i=1 λi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 λi

 (36)

The main diagonal elements of Equation 36 represent the variance of each column of the matrix X ′′,
which has been transformed first by KLT rotation and subsequently by Hadamard rotation. As evident
from the equation, these variances are observed to be perfectly uniform across all columns.

A.5 THE CALCULATION PROCESS OF INCREASING PARAMETERS AND ADDING
COMPUTATIONAL LOAD

In this section, we take the Mamba-2.8b model as an example to illustrate the increase in parameter
count and computational load. The Mamba-2.8b model comprises 64 blocks, and we assume a
token quantity of 1024 for our calculations. We detail the computational overhead introduced by our
smoothing process. The original parameter count of the Mamba-2.8b model is 2.8 billion. In our
Method 4.3, we integrated a smoothing process by replacing the SiLU activation function with the S-
SiLU activation function, which added 5,120 smoothing scale parameters. Additionally, we modified
the mul operation to an addcmul operation, contributing an additional 16 parameters. Consequently,
the percentage increase in parameter count is calculated as: .

((5120 + 16)× 64)

2.8× 109
≈ 0.01%. (37)
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We estimate the original computational load of the Mamba-2.8b model to be 2.8 TFlops. In Method
4.2, we employed the online Hadamard technique, which has a complexity of O(nlog2(n)). The
complexity of the online Hadamard transformation is provided in Equation (1) of the paper by (Fino
& Algazi, 1976). Within the Mamba block, we inserted an online Hadamard transformation of size
[16,16] for the matmul smoothing and similarly used a [5120,5120] Hadamard transformation for the
output projection smoothing. Thus, the percentage increase in computational load is calculated as:

(1024× 5120× 16× log2(16) + 1024× 5120× log2(5120))× 64

2.8× 1012
≈ 0.91% (38)

This analysis demonstrates that our proposed enhancements introduce minimal increases in both
parameter count and computational load, making them practical for efficiency-critical applications.

A.6 ADDITIONAL RESULTS

Table 5 shows the performance of increasing the KLT based rotate method and the smooth based
rotate method on a variety of visual tasks.

Table 6 shows the performance of increasing the KLT based rotate method and the smooth based
rotate method on a variety of language tasks.

Table 5: Add our methods sequentially on vision tasks
Vision tasks Vim Mamba-ND

Models Vim-T Vim-T† Vim-S Vim-S† Vim-B Mamba-2d S Mamba-2d B Mamba-3d

FP 76.1 78.3 80.5 81.6 80.3 81.7 83.0 89.6

RTN 37.4 32.4 68.8 72.8 52.2 79.9 82.2 88.9
+KLT-Enhanced Rotation 48.4 47.7 73.4 77.2 72.9 80.5 82.2 89.2W8A8
+Smooth-Fused Rotation 75.6 77.8 80.3 81.4 80.1 81.5 82.8 89.2

RTN 26.3 25.0 66.1 70.0 46.2 40.6 78.8 87.1
+KLT-Enhanced Rotation 41.7 38.9 71.3 75.7 71.2 79.2 81.7 88.0W4A8
+Smooth-Fused Rotation 72.1 73.7 79.4 80.4 79.6 80.4 82.5 88.4

Table 6: Add our methods sequentially on language tasks
Models Bit Width Mehods Avg ACC Arc-E Arc-C PIQA WinoGrande HellaSwag

FP16 - 44.7 48.0 24.3 64.5 51.9 35.3
RTN 41.5 41.0 25.4 56.3 51.7 32.9

+KLT-Enhanced Rotation 42.2 42.3 25.1 59.4 50.4 33.9W8A8
+Smooth-Fused Rotation 43.9 45.9 24.2 62.5 52.3 34.7

RTN 35.2 27.6 22.4 49.8 51.0 25.1
+KLT-Enhanced Rotation 39.0 33.5 23.9 55.8 51.7 30.1

Mamba-130m

W4A8
+Smooth-Fused Rotation 39.8 36.2 24.6 56.9 50.9 30.5

FP16 - 50.9 55.1 28.0 69.5 55.3 46.5
RTN 45.7 43.8 27.5 59.6 53.5 44.0

+KLT-Enhanced Rotation 49.0 50.8 28.9 66.1 53.7 45.6W8A8
+Smooth-Fused Rotation 50.0 54.1 28.2 67.3 53.8 46.5

RTN 36.3 27.2 25.7 50.6 50.7 27.4
+KLT-Enhanced Rotation 43.1 37.0 27.0 60.1 51.6 39.7

Mamba-370m

W4A8
+Smooth-Fused Rotation 44.1 38.7 27.3 61.5 53.9 39.0

Fp16 - 54.8 61.2 29.5 72.1 56.0 55.1
RTN 44.2 43.7 26.1 60.7 52.7 37.8

+KLT-Enhanced Rotation 51.3 52.4 32.3 65.1 55.0 51.9W8A8
+Smooth-Fused Rotation 53.8 59.5 30.6 68.9 55.8 54.6

RTN 35.4 28.0 25.0 50.7 49.6 23.5
+KLT-Enhanced Rotation 42.3 33.6 27.1 58.0 53.5 39.2

Mamba-790m

W4A8
+Smooth-Fused Rotation 45.8 39.8 30.2 62.5 52.3 44.3

FP16 - 58.6 65.5 32.8 74.2 61.4 59.1
RTN 53.9 54.9 31.4 69.4 56.8 57.0

+KLT-Enhanced Rotation 56.1 60.8 32.7 71.3 57.9 57.9W8A8
+Smooth-Fused Rotation 58.3 64.9 32.8 73.8 60.9 59.1

RTN 51.6 51.7 30.9 64.9 57.4 53.0
+KLT-Enhanced Rotation 54.3 57.8 30.6 70.4 57.0 55.9

Mamba-1.4b

W4A8
+Smooth-Fused Rotation 54.3 57.7 31.3 70.3 56.7 55.3

FP16 - 62.2 69.7 36.3 75.2 63.5 66.1
RTN 57.5 60.4 33.8 71.0 58.5 63.9

+KLT-Enhanced Rotation 60.5 68.3 35.3 73.9 60.2 64.7W8A8
+Smooth-Fused Rotation 62.1 69.8 36.3 75.5 62.9 66.0

RTN 53.7 54.5 32.6 66.2 56.7 58.6
+KLT-Enhanced Rotation 58.0 60.7 35.8 71.6 60.7 61.1

Mamba-2.8b

W4A8
+Smooth-Fused Rotation 58.5 62.2 35.5 72.0 60.9 62.1
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A.7 GENERALIZATION EVALUTATION OF THE KLT-ENHANCED ROATION

To generate K without introducing online computational overhead, we use the calibration method,
which is a common practice of PTQ works (Lin et al., 2023; Xiao et al., 2022; Shao et al., 2023). In
most cases, this method can effectively characterize the whole data distribution by a small subset to
achieve rapid quantization optimization.

For instance, the experiments shown in Table 2 are calibrated from the HellaSwag dataset. Zero-shot
evaluation results, especially on other datasets like ARC-E, ARC-C, PIQA, and Winogrande can
effectively demonstrate the generalization ability.

Furthermore, for various inputs, we visualize the activations distribution of the in projection layer of
the first block in the Vim-T model. Then we respectively performs the classic Hadamard rotation and
our KLT-enhanced rotation.

Figure 12: Analysis of Activation Values in the in projection of the block 0 of the Vim-T model.(a)
Display using 384 images from ImageNet for calibration. (b), (c) and (d) Display of other data outside
the calibration set.

Figure 12(a) shows the calibration data and its distribution after KLT-enhanced rotation, while
Figure 12(b), (c), and (d) display the situation for non-calibration data. Figure 12(b) and (c) clearly
demonstrate that the KLT-enhanced rotation can also effectively maintain the uniformity of the
maximum values and variances of data with similar distribution to calibration. Its effect is significantly
better than using only Hadamard rotation. In most cases, the calibration of PTQ can sufficiently
characterize various data distributions. For extreme circumstances where the distribution of the inputs
are dissimilar to that of the calibration (as shown in Figure 12(d)), the effect of the KLT-enhanced
matrix is still not worse than that of Hadamard rotation.

A.8 COMPARISON OF NUMERICAL DISTRIBUTIONS BETWEEN VIT AND VIM MODELS

The distributions of Transformers and Mamba are significantly different. For instance, we randomly
sample 96 images from ImageNet, then feed them into the classic Vit (Alexey, 2020) model and
Vim (Xu et al., 2024) model. Next, we calculate the top-3 channel maximums and top-3 channel
variances of the input activations of all quantized modules in the last block. It can be clearly seen
that Vim has more uneven distribution and more outliers than Vit, leading to great challenges for
quantization.
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Table 7: Statistics of the top 3 maximum values and maximum variances among activation channels.
We choose the modules to be quantized of the last block of Vim and Vit. Data are randomly sampled
from the ImageNet dataset.

Model Module Top3 Channel Maximums Top3 Channel Variances
attention.qkv proj 4.7 / 3.8 / 3.7 0.4 / 0.4 / 0.4

attention.qk matmul.q 7.1 / 7.1 / 7.1 2.1 / 1.6 / 1.6
attention.qk matmul.k 10.8 / 10.6 / 10.5 4.5 / 4.4 / 4.3

attention.o proj 11.6 / 8.8 / 8.6 4.1 / 3.4 / 3.3
attention.pv matmul.p 4.8 / 4.7 / 4.2 0.1 / 0.1 / 0.1
attention.pv matmul.v 14.9 / 12.5 / 12.5 6.5 / 5.4 / 4.5

mlp.fc1 11.4 / 8.2 / 7.8 2.3 / 2.0 / 1.6

vit-base-patch16-224

mlp.fc2 17.26 / 13.15 / 13.01 12.10 / 9.84 / 7.35
in proj 49.3 /48.8 / 38.9 230.8 / 95.5 / 62.8
conv1d 48.2 / 36.2 / 36.2 41.3 / 27.8 / 27.7
x proj 15.1 / 12.0 / 11.1 8.6 / 4.5 / 3.9
dt proj 14.9 / 13.6 / 4.1 11.0 / 10.9 / 10.6

matmul in1 75.2 / 59.0 / 58.2 20.8 / 19.84 / 18.4
matmul in2 8.5 / 6.7 / 5.4 1.8 /1.6 / 1.6

vim-base-patch16-224

out proj 1371.6 / 1064.3 / 930.3 8854.9 / 2513.8 / 1377.8

Figure 13: The amplification phenomenon of activations by the Pscan operator in different blocks of
the Vim-T model.
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A.9 VISUALIZED AMPLIFICATION EFFECT OF THE PSCAN OPERATOR

In Section 1, it is stated that the Parallel Scan (PScan) further amplifies the outliers of activations.
Despite the corresponding explanation, we here provide the visualized data to further support this
viewpoint. Specifically, we focus on the activation statistics of the Vim-T network on the ImageNet
dataset and visually present the distribution differences between the inputs and outputs of Pscan in
different blocks.

Figure 13(a) presents the distribution of activation values input of Pscan, which corresponds to Bx(t)
in Equation 5. Meanwhile, Figure 13(b) illustrates the distribution of activation values subsequent
to the application of the Pscan operator. It has been observed that following the application of the
pscan operator, the distribution differences of activation values in the hidden dimension become more
pronounced. This phenomenon can be attributed to the multiple consecutive multiplications involved
in the internal implementation of the pscan operator.
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