
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAMBAQUANT: QUANTIZING THE MAMBA FAMILY
WITH VARIANCE ALIGNED ROTATION METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mamba is an efficient sequence model that rivals Transformers and demonstrates
significant potential as a foundational architecture for various tasks. Quantization
is commonly used in neural networks to reduce model size and computational
latency. However, applying quantization to Mamba remains underexplored, and
existing quantization methods, which have been effective for CNN and Trans-
former models, appear inadequate for Mamba models (e.g., Quarot suffers a 21%
accuracy drop on Vim-T† even under W8A8). We have pioneered the exploration
of this issue and identified several key challenges. First, significant outliers are
present in gate projections, output projections, and matrix multiplications. Sec-
ond, Mamba’s unique parallel scan further amplifies these outliers, leading to
uneven and heavy-tailed data distributions. Third, even with the application of the
Hadamard transform, the variance across channels in weights and activations still
remains inconsistent. To these ends, we propose MambaQuant, a post-training
quantization (PTQ) framework consisting of: 1) Karhunen-Loève Transformation
(KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse chan-
nel distributions. 2) Smooth-Fused rotation, which equalizes channel variances
and can merge additional parameters into model weights. Experiments show that
MambaQuant can quantize both weights and activations into 8-bit with less than
1% accuracy loss for Mamba-based vision and language tasks. To the best of our
knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba
family, paving the way for further advancements in its application.

1 INTRODUCTION

Mamba (Gu & Dao, 2023) is a modern sequence model that competes with the Transformer (Vaswani
et al., 2017), particularly noted for its ability to handle extremely long sequences. The model’s design
is inspired by the Structured State Space model (S4) (Gu et al., 2021) and integrates features from
recurrent, convolutional, and continuous-time models to effectively capture long-term periodic depen-
dencies. Expanding upon the S4 paradigm, Mamba brings about several noteworthy improvements,
especially in handling time-variant operations. These enhancements enable the effective and efficient
processing of lengthy data sequences, positioning Mamba as a promising foundational architecture
for vision (Zhu et al., 2024; Liu et al., 2024), language (Gu & Dao, 2023; Li et al., 2024), and
multi-modality tasks (Zhao et al., 2024).

Quantization is an essential technique for deploying deep neural networks (DNNs) in environments
with limited computational resources and the demand for real-time processing. This process involves
converting weights and activation of neural networks from high precision (e.g., 32-bit floating point
numbers) to lower precision (e.g., 8-bit integers) to reduce memory usage, computational burden,
and energy consumption. Although quantization has been successfully utilized in convolutional
neural networks (Krishnamoorthi, 2018; Liu et al., 2023) and Transformer-based large language
models (T-LLMs) (Du et al., 2024; Yuan, 2024), its application within the Mamba family has not
been systematically analyzed or studied.

To establish a comprehensive quantization methodology for Mamba models, we first examine the
potential constraints and challenges involved: ❶ Significant outliers occur in both weights and
activations of Mamba models. We observe the presence of outliers in the weights of linear layers,
particularly in the gate projection layers (Figure 1(a)) of Mamba-LLM (Gu & Dao, 2023) for language

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Visualized distribution of hard layers for Mamba quantization. (a) denotes the weight of the
gate projection, (b) denotes the input activations of the output projection. (c) represents the output of
the parallel scan (PScan) operator, which is also one of the input to the matrix multiplication.

tasks. We also find that certain inputs to linear layers exhibit significant variance in the channel
dimension. This occurrence is particularly pronounced in the output projection layers (Figure 1(b))
of Vim (Xu et al., 2024) for vision tasks. ❷ Parallel Scan (PScan) further amplifies the outliers
of activations. To obtain hidden states at each timestamp, the PScan operator (Smith et al., 2022)
continuously performs self-multiplication of a fixed parameter matrix. In this case, channels exhibiting
higher values will be amplified, while those with comparatively lower values will be diminished. This
obvious numerical difference across channels is directly expanded to activations (e.g., input variable
to the matrix multiplication as shown in Figure 1(c)).

Given that both Mamba and Transformer are sequence models with fully connected layers to be
quantized, our initial solution involves exploring techniques that have been proven effective on
Transformer-based large language models (T-LLMs). Recently, Hadamard-based methods (Tseng
et al., 2024), known for the capacity to uniform maximum values and the equivalent transformation
property, have shown significant success in the quantization of T-LLMs. For instance, quantizing
LLAMA2-70B to 4 bits with QuaRot (Ashkboos et al., 2024b) maintains 99% of the zero-shot
performance. However, directly applying this method to Mamba models leads to significant accuracy
degradation (e.g., on average more than 12% accuracy drop on Vim (Xu et al., 2024) even at 8
bits). Our analysis reveals that Hadamard transformation fails to achieve variance alignment across
channels, as shown in Figure 2(b)(e). The inconsistent variances inevitably result in an uneven
numerical distribution of the quantization data, thereby decreasing the accuracy.

To this end, we propose MambaQuant, an effective and efficient post-training quantization (PTQ)
framework tailored for Mamba models. The central concept of MambaQuant is to resolve the issue

Figure 2: Maximum values (blue color) and variances (red color) distribution across channels of: (a)
the original weight of the gate projection; (b) applying the standard offline Hadamard rotation to (a);
(c) applying the proposed KLT-Enhanced rotation to (a); (d) the input activation (generated by PScan)
of the matrix multiplication; (e) applying the standard online Hadamard rotation to (d); (f) applying
the proposed smooth-fused rotation to (d).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of inconsistent variances arising from the Hadamard transformation, thereby promoting the Mamba
quantization. Specifically, MambaQuant considers two distinct situations depending on whether to
integrate the rotation matrix into weights: the offline mode for exclusion and the online mode for
inclusion. (1) We propose the Karhunen-Loève Transformation (KLT) enhanced rotation in the offline
mode. This technique multiplies the Hadamard matrix with the KLT matrix, enabling the rotation
matrix to accommodate various channel distributions. (2) We introduce the smooth-fused rotation
in the online mode. This approach performs smoothing before the Hadamard transformation. The
additional smoothing parameters are flexibly integrated into weights of Mamba blocks to avoid extra
cost of memory space and inference step. Consequently, both the maximum values and the variances
of the quantization data are sufficiently normalized in the channel dimension (i.e., they are consistent
for the offline mode and closely aligned for the online mode as shown in Figure 2(c)(e)).

Experiments show that MambaQuant outperforms existing methods across various tasks on different
Mamba model families, including Vim (Zhu et al., 2024) and Mamba-ND (Li et al., 2024) for
Mamba-based vision tasks, as well as Mamba-LLM (Gu & Dao, 2023) for Mamba-based language
tasks. MambaQuant quantizes both weights and activations into 8-bit with a slight accuracy drop
(less than 1%) for all models. Additionally, it can quantize weights to 4-bit with a minimal accuracy
drop (about 1%) for vision tasks, and achieves significant accuracy improvements in language tasks
compared to existing methods. Lastly, our contributions can be concluded as follows:

• We identify that Mamba encounters quantization challenges primarily due to significant
outliers, which are even amplified by PScan. Our analysis reveals that the Hadamard
transformation is hindered by inconsistent channel variances to effectively solve these
problems.

• We propose MambaQuant. For offline mode, we introduce the KLT-Enhanced rotation to
equalize the channel variances. For online mode, we introduce smooth-fused rotation to
normalize the channel variances. Both the offline and online transformation can achieve
more uniform distributions prior to the quantization process.

• To the best of our knowledge, MambaQuant is the first comprehensive PTQ framework for
the Mamba family. It can efficiently quantize both weights and activations into 8-bit with
less than 1% accuracy loss for Mamba-based vision and language tasks.

• As a pioneering study on quantization within the Mamba family, we have published the code
in the hope of promoting further research and facilitating advancements in this field.

2 RELATED WORK

Mamba Models Mamba (Gu & Dao, 2023) is a selective structured state space model that sub-
stantially improves the performance of state space models (SSM) in handling sequential data. It
transforms parameters in the structured state space model (S4) (Gu et al., 2021) into learnable func-
tions and proposing a parallel scanning method. By overcoming the local perception limitations of
convolutional neural networks (CNNs) and the quadratic computational complexity of Transform-
ers (Vaswani et al., 2017), Mamba-based networks (Xu et al., 2024) are widely applied in various
tasks. For instance, the original Mamba (Gu & Dao, 2023) demonstrates comparable performance
to Transformers in language modeling, audio generation, and DNA sequence prediction. Vision
Mamba (Vim) (Zhu et al., 2024) marks the first introduction of Mamba to the field of computer
vision, employing bidirectional SSM for global modeling and position embedding for position-aware
understanding. Subsequently, VMamba (Liu et al., 2024) proposes cross-scan module to address
the direction-sensitive challenges. LocalMamba (Huang et al., 2024) further improves performance
by incorporating local inductive biases, while PlainMamba (Huang et al., 2024) is designed as a
non-hierarchical structure for enhancing integration across the different scales. Mamba-ND (Li et al.,
2024) simply alternates the order of sequence, effectively extending Mamba to multi-modal data
including images and videos. Despite reduced computational demands and impressive performance,
the large size of these models still limits their application on edge devices.

Quantization Methods. Quantization is an effective model compression technique. Current
methods can be categorized into quantization aware training (QAT) and post training quantization
(PTQ). While QAT typically necessitates full parameters training, which poses challenges for large
models, PTQ has garnered more research attention. Quantizing full-precision variables of pre-trained

3

https://github.com/MambaQuant/MambaQuant/tree/main

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

models into low-bit integers, PTQ reduces the memory consumption and enhances the inference
speed. For instance, in the field of Vision Transformer (Dosovitskiy, 2020), FQ-ViT (Lin et al., 2021)
introduces a comprehensive quantization scheme for the first time, employing powers of two factors
and Log2 quantizers for layer normalization and attention mapping. RepQ-ViT (Li et al., 2023)
further addresses the issue of extreme distribution in activations after layer normalization and SoftMax
operations. In the field of Large Language Models (LLMs), GPTQ (Frantar et al., 2022) introduces
a layer-wise quantization technique based on approximate second-order information, quantizing
weights to 3-4 bit with minimal accuracy loss. To suppress outliers in activations, SmoothQuant (Xiao
et al., 2022) adopts a smoothing parameter that transfers the difficulty of quantizing activations to
weights. Recently, QuaRot (Ashkboos et al., 2024b) adopts a similar methodology, which combines
the rotation in QuIP (Chee et al., 2024) and the computational invariance in SliceGPT (Ashkboos
et al., 2024a), pushing PTQ to a new level. While these methods perform effectively for Transformer-
based large language models, they do not work well with mamba models. Notably, to our knowledge,
our method is the first PTQ solution specifically designed for Mamba models, applicable to both
Mamba-based vision and language tasks.

3 PRELIMINARIES

3.1 STATE SPACE MODELS

Figure 3: Mamba block architecture.

The state space models (SSMs) are typically re-
garded as contiguous linear time-invariant (LTI)
systems (Kalman, 1960), which map an input sig-
nal x(t) ∈ R to its output y(t) ∈ R through a
hidden state h(t) ∈ Rd×1:

h(t) = Ah(t− 1) +Bx(t), (1)
yssm(t) = Ch(t) +Dx(t), (2)

where A ∈ Rd×d, B ∈ Rd×1, C ∈ R1×d, D ∈
R1×1 are weighting parameters, t ∈ Z+, and h(0)
is an initial hidden state.

3.2 MAMBA ARCHITECTURE

Since the usage of LTI system, the model parame-
ters remain unchanged, decreasing the performance
when representing changing inputs. To tackle this
issue, Mamba (Gu & Dao, 2023) propose an implementation of selective SSM (Gu et al., 2021),
which formulates parts of the parameters as functions of a specific input sequence:

x′ = σ(DWConv(State Projection(x))), ∆ = Sofplus(LoRA Module(x′)), (3)
A = eA⊙∆, B = B Projection(x′)⊙∆, C = C Projection(x′), (4)

where x′ denotes the transformed input and σ represents the SiLU activation. Those input-dependent
parameters and x′ are used by the Parallel Scan (PScan) operator to generate y′

ssm, The calculation
process of PScan can be expressed as:

h(t) = Ah(t− 1) +Bx(t), y
′

ssm(t) = Ch(t), (5)
This temporary output is then element-wisely multiplied with a gated variable z to generate better
outputs:

z = σ(Gate Projection(x)), yout = y′
ssm ⊙ z. (6)

3.3 QUANTIZATION

Quantization is generally performed to obtain a low-precision representation (e.g., 4-bit integer)
from a high-precision variable (e.g., 16-bit floating points). For a tensor x to be quantized, it can be
uniformly quantized to b-bits as follows (Jacob et al., 2018):

x̂ = (clamp(⌊x
s
⌉+ z, 0, 2b − 1)− z) · s, s =

max(x)−min(x)

2b − 1
, z =

−min(x)

s
, (7)

where z is the zero point, s is the scale factor, ⌊·⌉ denotes the rounding-to-nearest operator, clamp is
the clipping function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 METHOD

4.1 DIMINISHED EFFECTIVENESS OF HADAMARD TRANSFORMATION

Hadamard transformation is a promising quantization method for LLMs, recognized for its effective-
ness in handling outliers and its computational simplicity and speed. It provides robust performance
while efficiently managing data variability.

Hadamard matrices are square matrices with orthogonal rows and columns, where each element is
either 1√

m
or − 1√

m
(m is the order of the Hadamard matrix). By multiplying with such a uniformly

distributed matrix, each row contributes relatively equally to a given channel, thereby making
the extreme values of the channels closer together (Tseng et al., 2024). Additionally, due to the
orthogonal nature, the Hadamard matrix can be well integrated into model weights while ensuring
the computational consistency.

We initially attempt to directly apply this method to Mamba models, particularly to the gate projection,
output projection, and the matmul layer. However, the Hadamard transformation is not sufficiently
effective in normalizing the hard layers mentioned in Figure 1 of the Mamba architecture with
significant outliers, as illustrated in Figure 2(b)(e).

To this end, we conduct a thorough analysis of this issue and find that this method fails to align the
channel variance of quantization variables, thereby overlooking the distribution consistency between
different channels. In detail, given a centered data matrix (the columns of the matrix are zero-mean.)
X (weights or activations) with dimensions (n,m) and the Hadamard transformation matrix H with
dimensions (m,m), the covariance matrix CXH of the transformed matrix XH can be expressed
as:

CXH =
1

n− 1
(XH)TXH =

1

n− 1
HTXTXH =

1

n− 1
HTKΛKTH, (8)

where XTX = KΛKT represents the eigenvalue decomposition, K is the eigenvectors matrix, and
Λ is the diagonal eigenvalues matrix. Considering that HTK and KTH are transposed matrices of
each other, the l-th diagonal elements of CXH can be expressed as:

(CXH)ll =
1

n− 1

m∑
j=1

(HTK)2ljλj =
1

n− 1

m∑
j=1

(

m∑
i=1

HilKij)
2λj , (9)

where λj is the j-th eigenvalue of Λ. The complete derivation from Equation 8 to Equation 9 is
provided in Appendix A.2. For a given value of l, Equation 9 represents the variance of the l-th
channel. As the vector H:,j varies with the l, the channel variances cannot be proven to be numerically
close in most cases refers to Appendix A.3. Further, considering that H is a fixed matrix while both
K and λ are input-dependent, it is not feasible for the Hadamard transformation to uniformly adjust
the channel variances across all scenarios. This property of Hadamard transformation inevitably
formulates a distinct distribution for each channel, thus leading to sub-optimal quantization.

4.2 KLT-ENHANCED ROTATION FOR OFFLINE TRANSFORMATION

To overcome the constrain stated in Section 4.1, we introduce the Karhunen-Loève Transformation
(KLT) (Dony et al., 2001) to equalize channel variances. KLT identifies principal components in the
data and projects it onto these components, retaining the most critical information by focusing on
directions of maximum variance. In practical, the mean value for each channel of the Mamba weights
and activations is typically close to zero, meeting the applicable conditions of KLT. Specifically, We
apply KLT by performing eigenvalue decomposition on the covariance matrix CX of the centered
matrix X derived from the calibration data.

CX =
1

n− 1
XTX =

1

n− 1
KΛKT . (10)

Next, the KLT-Enhanced rotation matrix HK can be obtained by applying the KLT to the Hadamard
matrix H , as described in Equation 11, and the Equation 8 turns into Equation 12:

HK = KH, (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Offline transformation designs utilizing the KLT-Enhanced rotation.

CXHK
=

1

n− 1
HT

KKΛKTHK =
1

n− 1
HTKTKΛKTKH =

1

n− 1
HT IΛIH, (12)

where I denotes the identity matrix. Consequently, the Equation 9 thus turns to Equation 13:

(CXHK
)ll =

1

n− 1

m∑
j=1

(

m∑
i=1

HilIij)
2λj =

1

(n− 1)m

m∑
j=1

λj . (13)

In this way, the variance of each channel becomes the same, making quantization much easier. This
transformation serves a dual purpose: it not only equalizes the variance among different channels
but also embodies the distinctive property of Hadamard matrices, which is their ability to balance
maximum values. We also provide detailed steps for the formula of performing KLT rotation
followed by Hadamard rotation in Appendix A.4 to achieve variance balancing. In practice the KLT
is offline performed by using the calibration data to avoid extra computational costs. Still it can be
well-generalized to wider range of inputs (detailed in Appendix A.7).

To apply this KLT-Enhanced rotation matrix, we modify the offline transformation in QuaRot (Ashk-
boos et al., 2024b) for the Mamba structure. As shown in Figure 4, we employ this strategy for the
LoRA module and the inter-block connection (where the output projection, gate projection and the
state projection is transformed).

4.3 SMOOTH-FUSED ROTATION FOR ONLINE TRANSFORMATION

To mitigate the shortcoming of the Hadamard rotation discussed in Section 4.1 where the online
transformation is applied, we introduce the smoothing technique prior to its execution. The moti-
vation of employing this method is to uniform the channel variances through a smoothing vector.
Typically, the smoothing factors can be absorbed into the neighbored layers with the quantization of
T-LLMs (Xiao et al., 2022; Shao et al., 2023). This operation effectively circumvents the demand for
additional memory allocation and computational overhead that would arise from the incorporation
of extra parameters. However, this approach does not align with the Mamba modules due to the
non-linear SiLU operation and the complex loop structure of PScan. To this end, two distinct designs
are proposed for output projection and matrix multiplication, respectively.

For the output projection layer: We improve the traditional SiLU activation function with Smooth
SiLU (S-SiLU) (Hu et al., 2024) to meet the needs of smooth-fused quantization:

S-SiLU(x, s) = x⊙ σ(s⊙ x), (14)

where x is an activation variable, σ(·) represents the Sigmoid function, s denotes the introduced
smoothing parameter, and ‘⊙’represents element-wise multiplication. Depicted in Figure 5(a), the
application of the S-SiLU function on the gate projection described by Equation 6 can be expressed
as follows:

yout = [yssm ⊙ SiLU(xgWg)]Wo = [yssm ⊙ S-SiLU(xgW
′
g, sout)]W

′
o, (15)

where yssm denotes the output activation of the SSM, W ′
g = Wg ⊘ sout and W ′

o = sout ⊙Wo are
transformed weights of the gate projection (denoted with subscript ‘g’) and the output projection
(denoted with subscript ‘o’), ‘⊘’represents element-wise division, sout is the absorbed smoothing
factor, xg is the input of the gate projection, and yout represents the final output of the Mamba block.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Fusing smooth parameters into the Mamba structure.

For the matrix multiplication layer: We also design a scheme to absorb the smoothing factor for
the matrix multiplication operator within the Mamba block. One input stream of the multiplication
is the output of the C projection in Equation 4, which can directly fuse the smoothing factor smm

into the weight of C projection (WC) as shown in Figure 5(b). Another input stream comes from
the output of the parallel scan operator. As shown in Equation 5, the calculation of PScan includes
addition operator, and the smoothing factor smm will be transmitted along two routes on both sides of
the addition operator. One route is transmitted through B and absorbed by the weight of B projection
(WB), and the other route is transmitted through A and absorbed by ∆, which defined in Equation 3.
Because of the existence of exponential calculation in Equation 4, 1/smm becomes −ln(smm) when
transmitted to ∆, and is absorbed by applying the addcmul operator (PyTorch, 2023) to ∆(1) in
Euation 16. It is solely applied to the first token of ∆ (∆(1)).

addcmul(− ln(smm),∆(1),A) = A∆(1)− ln(smm). (16)

Figure 6: Online transfor-
mation designs utilizing the
smooth-fused rotation.

After smoothing, the channel variances of activations for the output pro-
jection and the matrix multiplication becomes relatively uniform. Subse-
quently, we modify and apply the online Hadamard rotation (Ashkboos
et al., 2024b) for the Mamba structure as shown in Figure 6. The
Hadamard matrix H is dynamically applied to the input activation of
the output projection and the matrix multiplication, while the transposed
HT can be absorbed into corresponding weights.

5 EXPERIMENTS

Models and datasets. We assess the general quantization capabilities
of our proposed MambaQuant framework across three representative
Mamba-based applications: Mamba (Gu & Dao, 2023), Vim (Zhu et al., 2024), and Mamba-ND
(Li et al., 2024). We evaluate the performance of the quantized Mamba model across vision and
language tasks. For vision tasks, we tested the model on the image classification dataset ImageNet
(Russakovsky et al., 2015) and the video classification dataset UCF-101 (Soomro et al., 2012). In the
language domain, we conducted evaluations on five standard datasets: ARC-E (Boratko et al., 2018),
ARC-C (Clark et al., 2018), PIQA (Bisk et al., 2020), Winogrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019), and reported the average performance across these datasets.The
metric used for the evaluation of our test results on these tasks is Accuracy (Acc).

Baselines and implementation details. For comparison, we apply different quantization settings to
the Mamba model and reported the performance under two configurations: W8A8 and W4A8 (weights
and activations). Additionally, we compare with the different quantization methods, including the
Round To Nearest (RTN) method, SmoothQuant (Xiao et al., 2022), GPTQ (Frantar et al., 2022) for
weights and RTN for activations (GPTQ+RTN), as well as QuaRot (Ashkboos et al., 2024b). For the
vision tasks, we utilize a static quantization approach. The calibration data for image classification
was randomly sampled from 128 images in the ImageNet (Russakovsky et al., 2015) test set, while for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

video classification, we used samples from the UCF-101 (Soomro et al., 2012) test set for calibration.
In contrast, for language tasks, we employ dynamic quantization to better adapt to the varying input
structures during inference.

5.1 OVERALL RESULTS

Table 1: Comparative results under different quantization settings for Vision Mamba models. The
Vim models and Mamba-2d models are tested for accuracy on ImageNet, while the Mamba-3d model
is tested for accuracy on UCF-101. † indicates the fine-tuned model on Vim. ‡ denotes results based
on official weights.

Vision Mamba Mamba-ND
Bit Width Methods Vim-T Vim-T† Vim-S Vim-S† Vim-B mamba-2d S Mamba-2d B Mamba-3d

FP16 - 76.1 78.3 80.5 81.6 80.3‡ 81.7 83.0 89.6
RTN 37.4 32.4 68.8 68.8 52.2 80.3 82.2 87.9

GPTQ+RTN 37.7 32.5 68.9 70.5 52.2 80.4 82.2 87.8
SmoothQuant 37.7 32.3 68.7 72.9 52.1 80.3 82.2 87.9

QuaRot 59.3 57.4 73.8 75.5 73.8 80.8 82.3 88.0
W8A8

Ours 75.6 77.8 80.3 81.4 80.1 81.2 82.8 89.0
RTN 26.3 25.0 66.1 70.0 46.2 40.6 78.8 86.1

GPTQ+RTN 30.4 27.9 66.5 70.6 47.7 60.3 78.9 86.8
SmoothQuant 27.0 26.0 66.4 70.2 46.7 59.7 80.2 86.9

QuaRot 52.7 48.5 72 74.0 72.8 80.1 82.0 86.9
W4A8

Ours 72.1 73.7 79.4 80.4 79.8 80.4 81.9 88.4

Performance Comparison on Vision Model. Table 1 presents the results of various Mamba
vision models under different quantization settings, including Vision Mamba and Mamba-ND. The
quantization configurations evaluated are W8A8 (8-bit weights and activations) and W4A8 (4-bit
weights and 8-bit activations). The table compares the performance of several quantization methods,
including RTN, GPTQ+RTN, SmoothQuant, QuaRot, and our proposed method (“Ours”), across
different Mamba model variants. Our proposed quantization method demonstrates a significant
improvement over baseline techniques. Under the W8A8 configuration, the performance of our
method remains within 1 points of the floating-point baseline accuracy. In the stricter W4A8 setting,
our method substantially outperforms competing approaches, which experience more pronounced
accuracy drops. These results indicate that our approach offers a more robust solution for maintaining
high accuracy in Vim and Mamba-ND models under quantized settings. The findings suggest that our
method is more resilient to the challenges of precision reduction and provides a both practical and
effective quantization solution for deploying Mamba models.

Table 2: Comparative results under different quantization settings on language mamba models. Evalu-
ations on the five standard datasets—ARC-E, ARC-C, PIQA, Winogrande and HellaSwag—resulted
in the reported average accuracy across these datasets.

Mamba-LLMBit Width Methods Mamba-370m Mamba-790m Mamba-1.4b Mamba-2.8b
FP16 - 50.9 54.8 58.6 62.2

RTN 45.7 44.9 53.9 58.4
GPTQ+RTN 46.2 48.6 55.0 58.9
SmoothQuant 45.2 41.7 54.2 58.7

QuaRot 48.8 51.6 56.9 59.3
W8A8

Ours 50.0 53.8 58.3 62.1
RTN 36.2 35.4 51.6 54.8

GPTQ+RTN 36.7 36.0 51.1 53.6
SmoothQuant 36.8 39.3 52.0 54.9

QuaRot 43.4 40.0 53.8 58.5
W4A8

Ours 43.9 45.8 54.3 58.5

Performance Comparison on Language Model. Table 2 illustrates the quantization results for
the Mamba model applied to language tasks. The models evaluated range from Mamba-370m to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Mamba-2.8b. The table compares the accuracy of several quantization methods, includingRTN,
GPTQ+RTN, SmoothQuant, QuaRot, and our method. Our approach delivers superior performance
across different model sizes, particularly under the more challenging W4A8 configuration, where
it consistently outperforms baseline techniques by a significant margin. These results demonstrate
the robustness and efficiency of our quantization method for language model tasks.All experimental
results for both vision and language models under our proposed method are provided in Appendix
A.6.

5.2 ABLATION STUDY

Table 3: Ablation Experiment For KLT-Enhanced Rotation.

Bit Width Methods Vim T† Mamba-790m Bit Width Methods Vim T† Mamba-790m
FP16 - 78.3 54.8 FP16 - 78.3 54.8

Baseline(RTN) 32.4 44.2 Baseline(RTN) 25.0 35.4
Hadamard Rotate 33.9(↑ 1.5) 50.8(↑ 6.6) Hadamard Rotate 25.1(↑ 0.1) 40.2(↑ 4.8)W8A8

KLT-Enhanced Rotate 47.7(↑ 15.3) 51.3(↑ 7.1)
W4A8

KLT-Enhanced Rotate 38.9(↑ 3.9) 42.3(↑ 6.9)

Figure 7: Data of activatin of gate projection distribution and quantization of losses. (a) Original data
; (b) Hadamard rotateion to (a) ; (c) KLT-Enhanced rotation to (a). The first row of graphs depicts the
lineshowing the distribution of data values at different quantile points across various channels, while
the second row illustrates the count bar graphs representing the different quantization losses.

Ablation Study on KLT-Enhanced Rotation. We conducted a series of ablation studies on the
offline rotation layers described in Section 4.2 of our method, comparing the KLT-Enhanced rotation
and Hadamard rotation techniques as proposed in our method. The results are presented in Table 3,
where we directly contrast the outcomes of applying KLT-Enhanced rotation compared to Hadamard
rotation within the LoRA modules and at inter-block connections. The ablation study comparisons
from Table 3 demonstrate the effectiveness of the KLT-enhanced rotation approach. Compared with
the direct use of hadamard rotation, our method can achieve a greater degree of progress improvement,
which is about 14% higher than the direct hadamard method in the Vim-T† quantization of W8A8.

In addition to the quantitative analysis of the ablation study results, Figure 7 visually conveys the
optimization brought by the KLT-enhanced rotation over the Hadamard rotation. The upper part
of Figure 7 shows the quantile distribution of data across different channels, while the lower part
illustrates the quantization loss distribution using the 4-bit per-tensor method. In the bar graph, the
horizontal axis represents quantization loss magnitude, and the vertical axis indicates the data point
count. Subfigures (a), (b), and (c) display the quantization losses for the original data, Hadamard-
rotated data, and KLT-enhanced rotation data, respectively. Comparing these, the KLT-enhanced
rotation clearly outperforms Hadamard rotation in smoothing quantization and reducing losses across
channels. Moreover, our method reduces the L1 loss from quantization by nearly half compared to
using Hadamard rotation alone.

Table 4: Ablation Experiment For Smoothed Rotation.

Bit Width Methods Vim-T† Mamba-790M Bit Width Methods Vim-T† Mamba-790M
FP16 - 78.3 54.6 FP16 - 78.3 58.6

Baseline(KLT-enhanced Rotation) 47.7 51.3 Baseline(KLT-enhanced Rotation) 38.9 42.3
Hadamard Rotation 69.7(↑ 22.0) 51.8(↑ 0.5) Hadamard Rotation 62.0(↑ 23.1) 43.0(↑ 0.7)W8A8
Smooth-Fused Rotation 77.8(↑ 30.1) 53.3(↑ 2.0)

W4A8
Smooth-Fused Rotation 73.7(↑ 34.8) 45.8(↑ 3.5)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Data of weight of output projection distribution and quantization of losses. (a) Original
data quantile and fake quantization loss, (b) Hadamard rotated data quantile and fake quantization
loss, (c) Smooth based rotated data quantile and fake quantization loss.

Ablation Study on Smoothed Rotation. Table 3 indicates that while our proposed KLT-Enhanced
rotation effectively improves quantization accuracy. However, there is still a gap compared to floating-
point precision. We then applied the method described in Section 4.3, focusing on the sensitive
matmul and output projection layers. The ablation results comparing the use of online Hadamard
rotation and smooth-fused rotation are presented in Table 4. We found that the smooth-fused rotation
can lead to significant improvements in quantization accuracy compared to directly using Hadamard
rotation. Under the condition of W4A8 quantization configuration, in the Vim T† model, the Smooth-
Fused rotation method is 11.7% ahead of the direct online Hadamard rotation method in terms of
accuracy.

Memory Occupancy and Computational Cost. In method 4.3, we introduce a smooth scale
parameter to optimize the quantization process, with minimal storage overhead since each quan-
tization channel is represented by a single scalar, which has negligible impact on overall model
size. Additionally, the method introduces the application of the online Hadamard rotation technique
described in the QuaRot (Ashkboos et al., 2024b), which ensures rapid transformations akin to FFT,
minimizing computational impact on inference speed. Taking the Mamba-2.8B model as an example,
the smooth scale adds only 329k parameters to the 2.8B model, while for a token sequence length of
1024, the computational increase is 25.6 GFLOPs over the baseline 2.8 TFLOPs. This translates to a
0.01% increase in the parameter size and just a 0.91% increase in computational cost.

6 CONCLUSION

In this paper, we focus on introducing the quantization techniques into the realm of Mamba models.
Firstly, we identify that significant outliers which challenge the quantization process are present in
gate projection, output projection, and matrix multiplication, while the unique PScan operator further
amplifies the numerical differences. Secondly, we find that Hadamard transformation method widely
adopted in Transformer quantization performs less satisfying when quantizing these hard layers.
Our analysis reveals that this method falls short of sufficiently aligning the channel variances, thus
remaining an uneven distribution challenging the quantization process. To beyond this limitation, we
propose MambaQuant, a comprehensive post training quantization framework especially designed
for the Mamba models. The core idea of this strategy is to facilitating the Hadamard transformation
with the ability to uniform the variance of each channel, thus enhancing the performance of Mamba
quantization. Specifically, we introduce the Karhunen-Loève Transformation to render the rotation
matrix adaptable to diverse channel distributions. We also incorporate a smoothing methodology
to uniform the channel variances, while additional parameters are fused into model weights to
avoid extra overhead. Our proposed MambaQuant advances in accuracy for both Mamba-based
vision and language tasks compared to existing methods, making Mamba models more practical for
deployment in resource-constrained environments. As a pioneering study on quantization within the
Mamba family, we have published the code in the hope of promoting further research and facilitating
advancements in this field.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929, 2020. 19

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. International
Conference on Learning Representations (ICLR), 2024a. 4

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024b. 2, 4, 6, 7, 10

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Association for the Advancement of Artificial Intelligence,
2020. 7

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al.
A systematic classification of knowledge, reasoning, and context within the arc dataset. arXiv
preprint arXiv:1806.00358, 2018. 7

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024. 4

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. 7

R Dony et al. Karhunen-loeve transform. The transform and data compression handbook, 1(1-34):
29, 2001. 5

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020. 4

Dayou Du, Gu Gong, and Xiaowen Chu. Model quantization and hardware acceleration for vision
transformers: A comprehensive survey. arXiv preprint arXiv:2405.00314, 2024. 1

Fino and Algazi. Unified matrix treatment of the fast walsh-hadamard transform. IEEE Transactions
on Computers, 100(11):1142–1146, 1976. 18

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022. 4, 7

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 1, 3, 4, 7

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021. 1, 3, 4

Xing Hu, Yuan Chen, Dawei Yang, Sifan Zhou, Zhihang Yuan, Jiangyong Yu, and Chen Xu. I-llm:
Efficient integer-only inference for fully-quantized low-bit large language models. arXiv preprint
arXiv:2405.17849, 2024. 6

Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
state space model with windowed selective scan. arXiv preprint arXiv:2403.09338, 2024. 3

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 4

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960. 4

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018. 1

Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
multi-dimensional data. arXiv preprint arXiv:2402.05892, 2024. 1, 3, 7

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for
post-training quantization of vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17227–17236, 2023. 4

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023. 19

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quantiza-
tion for fully quantized vision transformer. arXiv preprint arXiv:2111.13824, 2021. 4

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant:
Post-training quantization based on prediction difference metric. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24427–24437, 2023. 1

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024. 1, 3

PyTorch. torch.addcmul. https://pytorch.org/docs/stable/generated/torch.addcmul.
html, 2023. 2024.09.24. 7

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015. 7

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 2021. 7

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. CoRR, abs/2308.13137, 2023. 6, 19

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022. 2

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action classes
from videos in the wild. Center for Research in Computer Vision, 2(11):1–7, 2012. 7, 8

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks. Forty-first International
Conference on Machine Learning, 2024. 2, 5

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 2017. 1, 3

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438,
2022. 4, 6, 7, 19

Rui Xu, Shu Yang, Yihui Wang, Yu Cai, Bo Du, and Hao Chen. Visual mamba: A survey and new
outlooks, 2024. 2, 3, 19

Zhihang Yuan. LLMViewer. https://github.com/hahnyuan/LLMViewer, 2024. Accessed: Febru-
ary 14, 2024. 1

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 7

12

https://pytorch.org/docs/stable/generated/torch.addcmul.html
https://pytorch.org/docs/stable/generated/torch.addcmul.html
https://github.com/hahnyuan/LLMViewer

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng Huang, and Donglin Wang. Cobra:
Extending mamba to multi-modal large language model for efficient inference. arXiv preprint
arXiv:2403.14520, 2024. 1

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024. 1, 3, 7

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS

Recently, Mamba models demonstrates superior accuracy across various vision and language tasks,
indicating its strong capabilities in feature extraction and pattern recognition. However, its deploy-
ment with the quantization methodology still remains largely under explored. We thus propose
MambaQuant, an accurate and efficient post training quantization framework especially desined for
the Mamba family.

While this approach can effectively quantize the weights and activations of Mamba models into 8-bit
with less than a 1% drop in accuracy, it struggles to maintain such a high level of accuracy when
quantizing weights to 4-bit. In addition, we note that the proposed Karhunen-Loève Transformation
(KLT) enhanced rotation is efficiently constrained if applied to the online Hadamard rotation. This is
primarily due to the additional computation steps introduced by the eigenvalue decomposition (as
stated in Equation 10) and the application to the Hadamard matrix (as stated in Equation 11). Despite
the constrains, we hope that our work could inspire the research interest on Mamba quantization
within the community. We are also committed to extending the KLT-Enhanced rotation method to
online transformation in order to achieve better performance in low-bit quantization.

A.2 DERIVED THE INABILITY OF HADAMARD ROTATION TO ENSURE CONSISTENCY OF
COLUMN VARIANCE.

Hadamard properties. An orthogonal matrix Q is a square matrix such that QQT = I . In this
work, we consider only real orthogonal matrices. A rotation matrix is an orthogonal matrix with
|Q| = 1. A Hadamard matrix is an orthogonal matrix with each element is either 1√

m
or − 1√

m
. A

2x2 Hadamard matrix is defined as follows:

H =
1√
2

(
1 1
1 −1

)
(17)

Covariance Calculation. Given a matrix X with dimensions (n,m) with zero mean across each
column. Alculate the covariance matrix CX of X:

CX =
1

n− 1
XTX =

1

n− 1
KΛKT , (18)

where K is the eigenvectors matrix, Λ is the diagonal eigenvalues matrix, n denotes the number of
rows. We provide a proof based on the above properties of Hadamard that Hadamard cannot achieve
column variance consistency. In detail, given a Hadamard transformation matrix H with dimensions
(m,m).the covariance matrix CXH of the transformed matrix XH can be expressed as:

CXH =
1

n− 1
(XH)TXH =

1

n− 1
HTXTXH, (19)

Subsituate Equation 18 into Equation 19:

CXH =
1

n− 1
HTXTXH =

1

n− 1
HTKΛKTH, (20)

Hadamard matrix expansion:

H =


H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

. . .
...

Hm1 Hm2 · · · Hmm

 , (21)

KLT matrix expansion:

K =


K11 K12 · · · K1m

K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

 , (22)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We define the matrix P = HTK:

P = HTK =


∑m

i=1 Hi1Ki1

∑m
i=1 Hi1Ki2 · · ·

∑m
i=1 Hi1Kim∑m

i=1 Hi2Ki1

∑m
i=1 Hi2Ki2 · · ·

∑m
i=1 Hi2Kim

...
...

. . .
...∑m

i=1 HimKi1

∑m
i=1 HimKi2 · · ·

∑m
i=1 HimKim

 , (23)

Substitute Equation 23 into Equation 20:

CXH =
1

n− 1
PΛP T

=
1

n− 1


∑m

i=1 P
2
1iλi · · · · · · · · ·

· · ·
∑m

i=1 P
2
2iλi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 P
2
miλi



=
1

n− 1


∑m

j=1(
∑m

i=1 Hi1Kij)
2λj · · · · · ·

...
. . .

...
· · · · · ·

∑m
j=1(

∑m
i=1 HimKij)

2λj

 .

(24)

(CXH)ll =
1

n− 1

m∑
j=1

(HTK)2ljλj =
1

n− 1

m∑
j=1

(

m∑
i=1

HilKij)
2λj , (25)

Since the values of Pij are not equal, the variance for each column of matrix XH (which is the
value on the diagonal of CXH) is also not equal. Because the Hadamard transform is a fixed
orthogonal transformation, a fixed orthogonal transformation cannot uniformly adjust the variance in
all directions, resulting in the variance after transformation still being uneven.

A.3 THE VARIANCE AFTER HADAMARD ROTATION IS STILL INCONSISTENT

We provide an example of a simple random 4x4 matrix after it has undergone the Hadamard transform.
Example of a simple random 4x4 matrix R and a 4x4 Hadamard matrix H::

R =

 3 −1 0 −4
−2 3 −3 1
1 −3 4 −3
−2 1 −1 6

 (26)

H =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (27)

Calculate the covariance matrix CRH of the matrix RH after the Hadamard transform:

CRH =

 1.83 −4.83 −2.83 2.00
−4.83 30.50 2.17 −5.67
−2.83 2.17 8.75 −1.50
2.00 −5.67 −1.50 2.17

 (28)

In the random example we provided, it can be seen that after the Hadamard rotation, there is a
significant imbalance in the variance across the columns (which are the diagonal values of the
covariance matrix CRH).

We observe the distribution within the actual Mamba network. In the Vim-T network, we compare
the variances before and after the Hadamard rotation for the output projection inputs of the 1st, 10th,
and 20th blocks, as shown in Fig. 9. Additionally, Hadamard rotation is applied to the gate projection
inputs of the 1st, 10th, and 20th blocks in Fig. 10, as well as to the gate projection weights of the 1st,
10th, and 20th blocks in Fig. 11.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 9: Variances of input of output projection layer blocks in Vim-T: unequal across channels pre-
and post-Hadamard rotation

Figure 10: Variances of input of gate projection layer blocks in Mamba-790m: unequal across
channels pre- and post-Hadamard rotation

Figure 11: Variances of weight of gate projection layer blocks in Mamba-790m: unequal across
channels pre- and post-Hadamard rotation

A.4 KLT-ENHANCED ROTATION TO ENSURE COLUMN VARIANCE BALANCE

KLT rotation before Hadamard rotation. We perform the KLT transformation on X to obtain a
new matrix X ′, which is multiplying X by the matrix K on the right:

X′ = XK, (29)

Equation 29 is the KLT transform. We calculate the covariance matrix of the data X ′ as CX′ :

CX′ =
1

n− 1
X′TX′, (30)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We substitute Equation 29 into Eq 30:

CX′ =
1

n− 1
(XK)T (XK) =

1

n− 1
KTXTXK, (31)

In Eq 19, we have XTX = KΛKT which can be substituted into Equation 31.

CX′ =
1

n− 1
KTKΛKTK =

1

n− 1
Λ, (32)

We use the Hadamard matrix H to transform on X ′ to obtain X ′′:

X′′ = X′H, (33)

Calculate the covariance matrix CX′′ of X ′′:

CX′′ =
1

n− 1
(X′′)TX′′

=
1

n− 1
(X′H)TX′H

=
1

n− 1
HTX′TX′H

=
1

n− 1
HTCX′H

=
1

n− 1
HTΛH. (34)

Every element hij of the Hadamard matrix is 1/
√
m or −1/

√
m: The composition of Λ is

(λ1, λ2, ..., λn). Substitute Equation 21 into Equation 34.

CX′′ =
1

n− 1


∑m

i=1 H
2
i1λi · · · · · · · · ·

· · ·
∑m

i=1 H
2
i2λi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 H
2
imλi

 (35)

Substitute the actual value of H2
ij = 1/m, into Equation 35.Further calculate CX′′ , and the result is:

CX′′ =
1

(n− 1)m


∑m

i=1 λi · · · · · · · · ·
· · ·

∑m
i=1 λi · · · · · ·

...
...

. . .
...

· · · · · · · · ·
∑m

i=1 λi

 (36)

The main diagonal elements of Equation 36 represent the variance of each column of the matrix X ′′,
which has been transformed first by KLT rotation and subsequently by Hadamard rotation. As evident
from the equation, these variances are observed to be perfectly uniform across all columns.

A.5 THE CALCULATION PROCESS OF INCREASING PARAMETERS AND ADDING
COMPUTATIONAL LOAD

In this section, we take the Mamba-2.8b model as an example to illustrate the increase in parameter
count and computational load. The Mamba-2.8b model comprises 64 blocks, and we assume a
token quantity of 1024 for our calculations. We detail the computational overhead introduced by our
smoothing process. The original parameter count of the Mamba-2.8b model is 2.8 billion. In our
Method 4.3, we integrated a smoothing process by replacing the SiLU activation function with the S-
SiLU activation function, which added 5,120 smoothing scale parameters. Additionally, we modified
the mul operation to an addcmul operation, contributing an additional 16 parameters. Consequently,
the percentage increase in parameter count is calculated as: .

((5120 + 16)× 64)

2.8× 109
≈ 0.01%. (37)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We estimate the original computational load of the Mamba-2.8b model to be 2.8 TFlops. In Method
4.2, we employed the online Hadamard technique, which has a complexity of O(nlog2(n)). The
complexity of the online Hadamard transformation is provided in Equation (1) of the paper by (Fino
& Algazi, 1976). Within the Mamba block, we inserted an online Hadamard transformation of size
[16,16] for the matmul smoothing and similarly used a [5120,5120] Hadamard transformation for the
output projection smoothing. Thus, the percentage increase in computational load is calculated as:

(1024× 5120× 16× log2(16) + 1024× 5120× log2(5120))× 64

2.8× 1012
≈ 0.91% (38)

This analysis demonstrates that our proposed enhancements introduce minimal increases in both
parameter count and computational load, making them practical for efficiency-critical applications.

A.6 ADDITIONAL RESULTS

Table 5 shows the performance of increasing the KLT based rotate method and the smooth based
rotate method on a variety of visual tasks.

Table 6 shows the performance of increasing the KLT based rotate method and the smooth based
rotate method on a variety of language tasks.

Table 5: Add our methods sequentially on vision tasks
Vision tasks Vim Mamba-ND

Models Vim-T Vim-T† Vim-S Vim-S† Vim-B Mamba-2d S Mamba-2d B Mamba-3d

FP 76.1 78.3 80.5 81.6 80.3 81.7 83.0 89.6

RTN 37.4 32.4 68.8 72.8 52.2 79.9 82.2 88.9
+KLT-Enhanced Rotation 48.4 47.7 73.4 77.2 72.9 80.5 82.2 89.2W8A8
+Smooth-Fused Rotation 75.6 77.8 80.3 81.4 80.1 81.5 82.8 89.2

RTN 26.3 25.0 66.1 70.0 46.2 40.6 78.8 87.1
+KLT-Enhanced Rotation 41.7 38.9 71.3 75.7 71.2 79.2 81.7 88.0W4A8
+Smooth-Fused Rotation 72.1 73.7 79.4 80.4 79.6 80.4 82.5 88.4

Table 6: Add our methods sequentially on language tasks
Models Bit Width Mehods Avg ACC Arc-E Arc-C PIQA WinoGrande HellaSwag

FP16 - 44.7 48.0 24.3 64.5 51.9 35.3
RTN 41.5 41.0 25.4 56.3 51.7 32.9

+KLT-Enhanced Rotation 42.2 42.3 25.1 59.4 50.4 33.9W8A8
+Smooth-Fused Rotation 43.9 45.9 24.2 62.5 52.3 34.7

RTN 35.2 27.6 22.4 49.8 51.0 25.1
+KLT-Enhanced Rotation 39.0 33.5 23.9 55.8 51.7 30.1

Mamba-130m

W4A8
+Smooth-Fused Rotation 39.8 36.2 24.6 56.9 50.9 30.5

FP16 - 50.9 55.1 28.0 69.5 55.3 46.5
RTN 45.7 43.8 27.5 59.6 53.5 44.0

+KLT-Enhanced Rotation 49.0 50.8 28.9 66.1 53.7 45.6W8A8
+Smooth-Fused Rotation 50.0 54.1 28.2 67.3 53.8 46.5

RTN 36.3 27.2 25.7 50.6 50.7 27.4
+KLT-Enhanced Rotation 43.1 37.0 27.0 60.1 51.6 39.7

Mamba-370m

W4A8
+Smooth-Fused Rotation 44.1 38.7 27.3 61.5 53.9 39.0

Fp16 - 54.8 61.2 29.5 72.1 56.0 55.1
RTN 44.2 43.7 26.1 60.7 52.7 37.8

+KLT-Enhanced Rotation 51.3 52.4 32.3 65.1 55.0 51.9W8A8
+Smooth-Fused Rotation 53.8 59.5 30.6 68.9 55.8 54.6

RTN 35.4 28.0 25.0 50.7 49.6 23.5
+KLT-Enhanced Rotation 42.3 33.6 27.1 58.0 53.5 39.2

Mamba-790m

W4A8
+Smooth-Fused Rotation 45.8 39.8 30.2 62.5 52.3 44.3

FP16 - 58.6 65.5 32.8 74.2 61.4 59.1
RTN 53.9 54.9 31.4 69.4 56.8 57.0

+KLT-Enhanced Rotation 56.1 60.8 32.7 71.3 57.9 57.9W8A8
+Smooth-Fused Rotation 58.3 64.9 32.8 73.8 60.9 59.1

RTN 51.6 51.7 30.9 64.9 57.4 53.0
+KLT-Enhanced Rotation 54.3 57.8 30.6 70.4 57.0 55.9

Mamba-1.4b

W4A8
+Smooth-Fused Rotation 54.3 57.7 31.3 70.3 56.7 55.3

FP16 - 62.2 69.7 36.3 75.2 63.5 66.1
RTN 57.5 60.4 33.8 71.0 58.5 63.9

+KLT-Enhanced Rotation 60.5 68.3 35.3 73.9 60.2 64.7W8A8
+Smooth-Fused Rotation 62.1 69.8 36.3 75.5 62.9 66.0

RTN 53.7 54.5 32.6 66.2 56.7 58.6
+KLT-Enhanced Rotation 58.0 60.7 35.8 71.6 60.7 61.1

Mamba-2.8b

W4A8
+Smooth-Fused Rotation 58.5 62.2 35.5 72.0 60.9 62.1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.7 GENERALIZATION EVALUTATION OF THE KLT-ENHANCED ROATION

To generate K without introducing online computational overhead, we use the calibration method,
which is a common practice of PTQ works (Lin et al., 2023; Xiao et al., 2022; Shao et al., 2023). In
most cases, this method can effectively characterize the whole data distribution by a small subset to
achieve rapid quantization optimization.

For instance, the experiments shown in Table 2 are calibrated from the HellaSwag dataset. Zero-shot
evaluation results, especially on other datasets like ARC-E, ARC-C, PIQA, and Winogrande can
effectively demonstrate the generalization ability.

Furthermore, for various inputs, we visualize the activations distribution of the in projection layer of
the first block in the Vim-T model. Then we respectively performs the classic Hadamard rotation and
our KLT-enhanced rotation.

Figure 12: Analysis of Activation Values in the in projection of the block 0 of the Vim-T model.(a)
Display using 384 images from ImageNet for calibration. (b), (c) and (d) Display of other data outside
the calibration set.

Figure 12(a) shows the calibration data and its distribution after KLT-enhanced rotation, while
Figure 12(b), (c), and (d) display the situation for non-calibration data. Figure 12(b) and (c) clearly
demonstrate that the KLT-enhanced rotation can also effectively maintain the uniformity of the
maximum values and variances of data with similar distribution to calibration. Its effect is significantly
better than using only Hadamard rotation. In most cases, the calibration of PTQ can sufficiently
characterize various data distributions. For extreme circumstances where the distribution of the inputs
are dissimilar to that of the calibration (as shown in Figure 12(d)), the effect of the KLT-enhanced
matrix is still not worse than that of Hadamard rotation.

A.8 COMPARISON OF NUMERICAL DISTRIBUTIONS BETWEEN VIT AND VIM MODELS

The distributions of Transformers and Mamba are significantly different. For instance, we randomly
sample 96 images from ImageNet, then feed them into the classic Vit (Alexey, 2020) model and
Vim (Xu et al., 2024) model. Next, we calculate the top-3 channel maximums and top-3 channel
variances of the input activations of all quantized modules in the last block. It can be clearly seen
that Vim has more uneven distribution and more outliers than Vit, leading to great challenges for
quantization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Statistics of the top 3 maximum values and maximum variances among activation channels.
We choose the modules to be quantized of the last block of Vim and Vit. Data are randomly sampled
from the ImageNet dataset.

Model Module Top3 Channel Maximums Top3 Channel Variances
attention.qkv proj 4.7 / 3.8 / 3.7 0.4 / 0.4 / 0.4

attention.qk matmul.q 7.1 / 7.1 / 7.1 2.1 / 1.6 / 1.6
attention.qk matmul.k 10.8 / 10.6 / 10.5 4.5 / 4.4 / 4.3

attention.o proj 11.6 / 8.8 / 8.6 4.1 / 3.4 / 3.3
attention.pv matmul.p 4.8 / 4.7 / 4.2 0.1 / 0.1 / 0.1
attention.pv matmul.v 14.9 / 12.5 / 12.5 6.5 / 5.4 / 4.5

mlp.fc1 11.4 / 8.2 / 7.8 2.3 / 2.0 / 1.6

vit-base-patch16-224

mlp.fc2 17.26 / 13.15 / 13.01 12.10 / 9.84 / 7.35
in proj 49.3 /48.8 / 38.9 230.8 / 95.5 / 62.8
conv1d 48.2 / 36.2 / 36.2 41.3 / 27.8 / 27.7
x proj 15.1 / 12.0 / 11.1 8.6 / 4.5 / 3.9
dt proj 14.9 / 13.6 / 4.1 11.0 / 10.9 / 10.6

matmul in1 75.2 / 59.0 / 58.2 20.8 / 19.84 / 18.4
matmul in2 8.5 / 6.7 / 5.4 1.8 /1.6 / 1.6

vim-base-patch16-224

out proj 1371.6 / 1064.3 / 930.3 8854.9 / 2513.8 / 1377.8

Figure 13: The amplification phenomenon of activations by the Pscan operator in different blocks of
the Vim-T model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 VISUALIZED AMPLIFICATION EFFECT OF THE PSCAN OPERATOR

In Section 1, it is stated that the Parallel Scan (PScan) further amplifies the outliers of activations.
Despite the corresponding explanation, we here provide the visualized data to further support this
viewpoint. Specifically, we focus on the activation statistics of the Vim-T network on the ImageNet
dataset and visually present the distribution differences between the inputs and outputs of Pscan in
different blocks.

Figure 13(a) presents the distribution of activation values input of Pscan, which corresponds to Bx(t)
in Equation 5. Meanwhile, Figure 13(b) illustrates the distribution of activation values subsequent
to the application of the Pscan operator. It has been observed that following the application of the
pscan operator, the distribution differences of activation values in the hidden dimension become more
pronounced. This phenomenon can be attributed to the multiple consecutive multiplications involved
in the internal implementation of the pscan operator.

21

	Introduction
	Related Work
	Preliminaries
	State Space Models
	Mamba Architecture
	Quantization

	Method
	Diminished Effectiveness of Hadamard Transformation
	KLT-Enhanced Rotation for offline transformation
	Smooth-Fused Rotation for Online Transformation

	Experiments
	Overall Results
	Ablation Study

	Conclusion
	Appendix
	Limitations
	Derived the Inability of Hadamard Rotation to Ensure Consistency of Column Variance.
	The variance after Hadamard rotation is still inconsistent
	KLT-Enhanced rotation to ensure column variance balance
	The calculation process of increasing parameters and adding computational load
	Additional results
	Generalization evalutation of the KLT-enhanced roation
	Comparison of numerical distributions between Vit and Vim models
	Visualized amplification effect of the Pscan operator

