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Abstract
Out-of-distribution (OOD) detection is essen-001
tial for the reliable and safe deployment of ma-002
chine learning systems in the real world. Great003
progress has been made over the past years.004
This paper presents the first review of recent005
advances in OOD detection with a particular fo-006
cus on natural language processing approaches.007
First, we provide a formal definition of OOD008
detection and discuss several related fields. We009
then categorize recent algorithms into three010
classes according to the data they used: (1)011
OOD data available, (2) OOD data unavailable012
+ in-distribution (ID) label available, and (3)013
OOD data unavailable + ID label unavailable.014
Third, we introduce datasets, applications, and015
metrics. Finally, we summarize existing work016
and present potential future research topics.017

1 Introduction018

Natural language processing systems deployed in019

the wild often encounter out-of-distribution (OOD)020

samples that are not seen in the training phase. A021

reliable and trustworthy NLP model should not022

only obtain high performance on samples from023

seen distributions, i.e., In-distribution (ID) samples,024

but also accurately detect OOD samples (Amodei025

et al., 2016; Boult et al., 2019). For instance, when026

building task-oriented dialogue systems, it is hard,027

if not impossible, to cover all possible user intents028

in the training stage. It is critical for a practical029

system to detect these OOD intents or classes in the030

testing phase so that they can be properly handled031

(Zhan et al., 2021).032

However, existing flourishes of neural-based033

NLP models are built upon the closed-world as-034

sumption, i.e., the training and testing data are035

sampled from the same distribution (Vapnik, 1991).036

This assumption is often violated in practice, where037

deployed models are generally confronting an open-038

world, i.e., some testing data may come from OOD039

distributions that are not seen in training (Bendale040

and Boult, 2015; Fei and Liu, 2016).041

A rich line of work has been proposed to tackle 042

problems introduced by OOD samples. Specifi- 043

cally, distributional shifts in NLP can be broadly 044

divided into two types: 1. semantic shift, i.e., OOD 045

samples may come from unknown categories, and 046

therefore should not be blindly predicted into a 047

known category; 2. non-semantic shift, i.e., OOD 048

samples may come from different domains or styles 049

but share the same semantic with some ID samples 050

(Arora et al., 2021). The detection of OOD sam- 051

ples with semantic shift is the primary focus of this 052

survey, where the label set Y of ID samples is dif- 053

ferent from that of OOD samples. Although there 054

already exists surveys on many aspects of OOD, 055

such as OOD generalization (Wang et al., 2022) 056

and OOD detection in computer vision (CV) (Yang 057

et al., 2021), a comprehensive survey for OOD de- 058

tection in NLP is still lacking and thus urgently 059

needed for the field. Concretely, applying OOD 060

detection to NLP tasks requires specific considera- 061

tions, e.g., tackling discrete input spaces, handling 062

complex output structures, and considering contex- 063

tual information, which have not been thoroughly 064

discussed. Our key contributions are summarized 065

as follows: 066

1. We propose a novel taxonomy of OOD de- 067

tection methods based on the availability of OOD 068

data (Section 3) and discuss their pros and cons for 069

different settings (Section 6.1). 070

2. We present a survey on OOD detection in NLP 071

and identify various differences between OOD de- 072

tection in NLP and CV (Section 6.2). 073

3. We review datasets, applications (Section 4), 074

metrics (Section 5), and future research directions 075

(Section 6.3) of OOD detection in NLP. 076

2 OOD Detection and Related Areas 077

Definition 1 (Data distribution). Let X denote a 078

nonempty input (non-semantic) space and Y a label 079

(semantic) space. A data distribution is defined as 080

a joint distribution P (X,Y ) over X × Y . P (X) 081
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and P (Y ) refer to the marginal distributions for082

inputs and labels, respectively.083

In practice, common non-semantic distribution084

shifts on P (X) include domain shifts (Wang et al.,085

2022), sub-population shifts (Koh et al., 2021),086

style changes (Pavlick and Tetreault, 2016), or087

adversarial examples (Carlini and Wagner, 2017;088

Rozsa et al., 2017). Typically, the label space Y re-089

mains unchanged in these non-semantic shifts, and090

sophisticated methods are developed to improve091

the model’s robustness and generalization perfor-092

mance (Hendrycks et al., 2020). On the contrary,093

semantic distribution shifts on P (Y ) generally lead094

to a new label space Ỹ that are different from the095

one seen in the training phase (Bendale and Boult,096

2016). These shifts are usually caused by the oc-097

currence of new classes at the testing stage. In this098

work, we mainly focus on detecting OOD samples099

with semantic shifts, the formal definition of which100

is given as follows:101

Definition 2 (OOD detection). We are given an ID102

training set Dtrain = {(xi, yi)}Li=1 ∼ Ptrain(X,Y ),103

where xi ∈ Xtrain is a training instance, and104

yi ∈ Ytrain = {1, 2, ...,K} is the associated class105

label. Facing the emergence of unknown classes,106

we are given a test set Dtest = {(xi, yi)}Ni=1 ∼107

Ptest(X,Y ), where xi ∈ Xtest, and yi ∈ Ytest =108

{1, ...,K,K+1}. Note that class K+1 is a group109

of novel categories representative of OOD samples,110

which may contain more than one class. The over-111

all goal of OOD detection is to learn a predictive112

function f from Dtrain to achieve a minimum ex-113

pected risk on Dtest: minf E(x,y)∼DtestI(y ̸= f(x)),114

i.e., not only classify known classes but also detect115

the unknown categories.116

We briefly describe the related research areas:117

Domain generalization (DG) (Wang et al.,118

2022), or out-of-distribution generalization, aims to119

learn a model from one or several source domains120

and expect these learned models generalize well on121

unseen testing domains (i.e., target domains). DG122

mainly focuses on the non-semantic drift, i.e., the123

training and testing tasks share the same label space124

Y while they have different distributions over the125

input space X . Different from DG, OOD detection126

handles a different label space during testing.127

Domain adaptation (DA) (Blitzer et al., 2006)128

follows most settings of DG except that DA has ac-129

cess to some unlabeled data from the target domain130

in the training process (Ramponi and Plank, 2020).131

Similar to DG, DA also assumes the label space132
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Figure 1: Taxonomy of OOD detection methods.

remains unchanged. 133

Zero-shot learning (Wang et al., 2019) aims to 134

use learned models to classify samples from unseen 135

classes. However, OOD detection in general aims 136

to classify samples from seen classes while flagging 137

the unseen class in testing. 138

Meta-learning (Vilalta and Drissi, 2002) aims 139

to learn from the model training process so that 140

models can quickly adapt to new data. Different 141

from meta-learning, achieving strong few-shot per- 142

formance is not the major focus of OOD detection. 143

Nevertheless, the idea of meta-learning can serve 144

as a strategy for OOD detection (Xu et al., 2019; 145

Li et al., 2021) by simulating the behaviors of pre- 146

dicting unseen classes in the training stage. 147

Positive-unlabeled Learning (Zhang and Zuo, 148

2008), or PU learning, aims to train a classifier 149

with only positive and unlabeled examples while 150

being able to distinguish both positive and nega- 151

tive samples in testing. However, OOD detection 152

considers multiple classes in training. PU learning 153

approaches can be applied to tackle the OOD de- 154

tection problem when only one labeled class exists 155

(Li and Liu, 2003). 156

3 Methodology 157

A major challenge of OOD detection is the lack of 158

representative OOD data, which is important for 159

estimating OOD distributions (Zhou et al., 2021b). 160

As shown in Figure 1, we classify existing OOD 161

detection methods into three categories according 162

to the availability of OOD data. Methods covered 163

in our survey are selected following the criteria 164

listed in Appendix A. 165
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3.1 OOD Data Available166

Methods in this category assume access to both167

labeled ID and OOD data during training. Based on168

the quantity and diversity of OOD data, we further169

classify these methods into two subcategories:170

3.1.1 Detection with Extensive OOD Data171

Some methods assume that we can access exten-172

sive OOD data in the training process together with173

ID data. In this subcategory, one line of work for-174

mulates OOD detection as a discriminative classifi-175

cation task, i.e., a special label is allocated in the176

label space for OOD samples. Fei and Liu (2016);177

Larson et al. (2019) formed a (K+1)-way classifi-178

cation problem, where K denoted the number of ID179

classes and the (K + 1)th class represented OOD180

samples. Larson et al. (2019); Kamath et al. (2020)181

regarded OOD detection as a binary classification182

problem, where the two classes correspond to ID183

and OOD samples, respectively. Kim and Kim184

(2018) introduced a neural joint learning model185

with a multi-class classifier for domain classifica-186

tion and a binary classifier for OOD detection.187

Another line of work optimizes an outlier expo-188

sure regularization term on these OOD samples to189

refine the representations and OOD scores learned190

by the OOD detector. Hendrycks et al. (2018) intro-191

duced a generalized outlier exposure (OE) loss to192

train models on both ID and OOD data. For exam-193

ple, when using the maximum Softmax probability194

detector (Hendrycks and Gimpel, 2016), the OE195

loss pushes the predicted distribution of OOD sam-196

ples to a uniform distribution (Lee et al., 2018a).197

When the labels of ID data are not available, the198

OE loss degenerates to a margin ranking loss on199

the predicted distributions of ID and OOD samples.200

Zeng et al. (2021b) added an entropy regularization201

objective to enforce the predicted distributions of202

OOD samples to have high entropy.203

3.1.2 Detection with Few OOD Data204

Some methods assume that we can only access a205

small amount of OOD data besides ID data. This206

setting is more realistic in practice since it is ex-207

pensive to annotate large-scale OOD data. Several208

methods in this subcategory are developed to gen-209

erate pseudo samples based on a small number of210

seed OOD data. Chen and Yu (2021) constructed211

pseudo-labeled OOD candidates using samples212

from an auxiliary dataset and kept only the most213

beneficial candidates for training through a novel214

election-based filtering mechanism. Rather than215

directly creating OOD samples in natural language, 216

Zeng et al. (2021b) borrowed the idea of adver- 217

sarial attack (Goodfellow et al., 2014) to obtain 218

model-agnostic worst-case perturbations in the la- 219

tent space, where these perturbations or noise can 220

be regarded as augmentations for OOD samples. 221

3.2 OOD Data Unavailable + ID Label 222

Available 223

Building OOD detectors using only labeled ID data 224

is the major focus of research communities. We 225

generally classify existing literature into three sub- 226

categories based on their learning principles: 227

3.2.1 Learn Representations Then Detect 228

Some methods formulize the OOD detector f into 229

two components: a representation extractor g and 230

an OOD scoring function d, i.e., f(x) = d(g(x)): 231

g aims to capture a representation space H in which 232

ID and OOD samples are distinct, and d maps each 233

extracted representation into an OOD score so that 234

OOD samples can be detected based on a selected 235

threshold. We provide an overview of methods to 236

enhance these two components: 237

a. Representation Learning usually involves 238

two stages: (1) a pre-training stage leverages mas- 239

sive unlabeled text corpora to extract representa- 240

tions that are suitable for general NLP tasks; (2) a 241

fine-tuning stage uses labeled in-domain data to re- 242

fine representations for specified downstream tasks. 243

An overview of these two stages is given here: 244

Pre-training Pre-trained transformer models 245

such as BERT (Kenton and Toutanova, 2019) 246

have become the de facto standard to implement 247

text representation extractors. Hendrycks et al. 248

(2020) systematically measured the OOD detection 249

performance on various representation extractors, 250

including bag-of-words models, ConvNets (Gu 251

et al., 2018), LSTMs (Hochreiter and Schmid- 252

huber, 1997), and pre-trained transformer models 253

(Vaswani et al., 2017). Their results show that pre- 254

trained models achieve the best OOD detection 255

performance, while the performances of all other 256

models are often worse than chance. The success 257

of pre-trained models attributes to these diverse cor- 258

pora and effective self-supervised training losses 259

used in training (Hendrycks et al., 2019). 260

Moreover, it is observed that better-calibrated 261

models generally produce higher OOD detection 262

performance (Lee et al., 2018a). Desai and Durrett 263

(2020) evaluated the calibration of two pre-trained 264

models, BERT and RoBERTa (Liu et al., 2019), on 265

3



different tasks. They found that pre-trained models266

were better calibrated in out-of-domain settings,267

where non-pre-trained models like ESIM (Chen268

et al., 2017) were overconfident. Dan and Roth269

(2021) also demonstrated that larger pre-trained270

models are more likely to be better calibrated and271

thus result in higher OOD detection performance.272

Fine-tuning With the help of labeled ID data,273

various approaches are developed to fine-tune the274

representation extractor to widen margins between275

ID and OOD samples. Lin and Xu (2019) proposed276

a large margin cosine loss (LMCL) to maximize277

the decision margin in the latent space. LMCL si-278

multaneously maximizes inter-class variances and279

minimizes intra-class variances. Yan et al. (2020)280

introduced a semantic-enhanced Gaussian mixture281

model to enforce ball-like dense clusters in the fea-282

ture space, which injects semantic information of283

class labels into the Gaussian mixture distribution.284

Zeng et al. (2021a); Zhou et al. (2021b) pro-285

posed a contrastive learning framework (Chen286

et al., 2020) to increase the discrepancy for rep-287

resentations extracted from different classes. They288

hypothesized that increasing inter-class discrepan-289

cies helps the model learn discriminative features290

for ID and OOD samples and therefore improves291

OOD detection performances. Concretely, a super-292

vised contrastive loss (Khosla et al., 2020; Gunel293

et al., 2020) and a margin-based contrastive loss294

was investigated. Zeng et al. (2021b) proposed295

a self-supervised contrastive learning framework296

to extract discriminative representations of OOD297

and ID samples from unlabeled data. In this frame-298

work, positive pairs are constructed using the back-299

translation scheme. Zhou et al. (2022) applied300

KNN-based contrastive learning losses to OOD301

detectors and Wu et al. (2022) used a reassigned302

contrastive learning scheme to alleviate the over-303

confidence issue in OOD detection.304

Moreover, there are some regularized fine-tuning305

schemes to tackle the over-confidence issue of306

neural-based OOD detectors. Kong et al. (2020)307

addressed this issue by introducing an off-manifold308

regularization term to encourage producing uni-309

form distributions for pseudo off-manifold sam-310

ples. Shen et al. (2021) designed a novel domain-311

regularized module that is probabilistically moti-312

vated and empirically led to a better generalization313

in both ID classification and OOD detection.314

b. OOD Scoring processes usually involve a315

scoring function d to map the representations of316

input samples to OOD detection scores. A higher 317

OOD score indicates that the input sample is more 318

likely to be OOD. The implementation of d can be 319

generally categorized into three types: (1) output- 320

based detecting, (2) feature-based detecting, and 321

(3) ensembles-based detecting: 322

Output-based Detecting compute the OOD 323

score based on the predicted probabilities. 324

Hendrycks and Gimpel (2016) used the maximum 325

Softmax probability as the detection score, and 326

Liang et al. (2018) improved this scheme with the 327

temperature scaling approach. Shu et al. (2017) 328

employed K 1-vs-rest Sigmoid classifiers for K 329

predefined ID classes and used the maximum prob- 330

abilities from these classifiers as the detection score. 331

Liu et al. (2020) proposed an energy score for bet- 332

ter distinguishing ID/OOD samples. The energy 333

score is theoretically aligned with the probability 334

density of the inputs. 335

Feature-based Detecting leverages features de- 336

rived from intermediate layers of the model to im- 337

plement density-based and distance-based scoring 338

functions. Gu et al. (2019) proposed a nearest- 339

neighbor based method with a distance-to-measure 340

metric. Breunig et al. (2000) used a local outlier 341

factor as the detection score, in which the concept 342

“local” measured how isolated an object was with 343

respect to surrounding neighborhoods. Lee et al. 344

(2018b); Podolskiy et al. (2021) obtained the class- 345

conditioned Gaussian distributions with respect to 346

features of the deep models under Gaussian dis- 347

criminant analysis. This scheme resulted in a con- 348

fidence score based on the Mahalanobis distance. 349

While Mahalanobis imposes a strong distributional 350

assumption on the feature space, Sun et al. (2022) 351

demonstrated the efficacy of non-parametric near- 352

est neighbor distance for OOD detection. Zhang 353

et al. (2021) proposed a post-processing method 354

to learn an adaptive decision boundary (ADB) for 355

each ID class. Specifically, the ADB is learned 356

by balancing both the empirical and open space 357

risks (Scheirer et al., 2014). Recently, Ren et al. 358

(2022) proposed to detect OOD samples for condi- 359

tional language generation tasks (such as abstrac- 360

tive summarization and translation) by calculating 361

the distance between testing input/output and a cor- 362

responding background model in the feature space. 363

Ensembles-based Detecting uses predictive un- 364

certainty of a collection of supporting models to 365

compute OOD scores. Specifically, an input sam- 366

ple is regarded as an OOD sample if the variance of 367
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these models’ predictions is high. Gal and Ghahra-368

mani (2016) modeled uncertainties by applying369

dropouts to neural-based models. This scheme370

approximates Bayesian inference in deep Gaus-371

sian processes. Lakshminarayanan et al. (2017)372

used deep ensembles for uncertainty quantification,373

where multiple models with the same architecture374

were trained in parallel with different initializa-375

tion. Lukovnikov et al. (2021) further proposed a376

heterogeneous ensemble of models with different377

architectures to detect compositional OOD samples378

for semantic parsing.379

3.2.2 Generate Pseudo OOD Samples380

A scheme to tackle the problem of lacking OOD381

training samples is to generate pseudo OOD sam-382

ples during training (Lang et al., 2022). With these383

generated pseudo OOD samples, OOD detectors384

can be solved by methods designed for using both385

labeled ID and OOD data. There are mainly four386

types of approaches to generate pseudo OOD sam-387

ples: (1) phrase distortion, (2) feature mixup, (3)388

latent generation, and (4) open-domain sampling:389

Phrase Distortion approaches generate pseudo390

OOD samples for NLP tasks by selectively replac-391

ing text phrases in ID samples. Ouyang et al.392

(2021) proposed a data manipulation framework393

to generate pseudo OOD utterances with impor-394

tance weights. Choi et al. (2021) proposed Out-395

Flip, which revised a white-box adversarial attack396

method HotFlip to generate OOD samples. Shu397

et al. (2021) created OOD instances from ID exam-398

ples with the help of a pre-trained language model.399

Feature Mixup strategy (Zhang et al., 2018) is400

also a popular technique for pseudo data genera-401

tion. Zhan et al. (2021) generated OOD samples by402

performing linear interpolations between ID sam-403

ples from different classes in the representation404

space. Zhou et al. (2021a) leveraged the manifold405

Mixup scheme (Verma et al., 2019) for pseudo406

OOD sample generation. Intermediate layer repre-407

sentations of two samples from different classes are408

mixed using scalar weights sampled from the Beta409

distribution. These feature-mixup-based methods410

achieved promising performance while remaining411

conceptually and computationally straightforward.412

Latent Generation approaches considered to413

use generative adversarial networks (GAN) (Good-414

fellow et al., 2020) to produce high-quality pseudo415

OOD samples. Lee et al. (2018a) proposed to gen-416

erate boundary samples in the low-density area of417

the ID distribution as pseudo-OOD samples. Ryu418

et al. (2018) built a GAN on ID data and used 419

the discriminator to generate OOD samples in the 420

continuous feature space. Zheng et al. (2020) gen- 421

erated pseudo OOD samples using an auto-encoder 422

with adversarial training in the discrete text space. 423

Marek et al. (2021) proposed OodGAN, in which 424

a sequential generative adversarial network (Seq- 425

GAN) (Yu et al., 2017) was used for OOD sample 426

generation. This model follows the idea of Zheng 427

et al. (2020) but works directly on texts and hence 428

eliminates the need to include an auto-encoder. 429

Open-domain Sampling approaches directly 430

uses sentences from other corpora as pseudo OOD 431

samples (Zhan et al., 2021). 432

3.2.3 Other Methods 433

We also review some representative methods that 434

do not belong to the above two categories. Vyas 435

et al. (2018) proposed to use an ensemble of clas- 436

sifiers to detect OOD, where each classifier was 437

trained in a self-supervised manner by leaving out 438

a random subset of training data as OOD data. Li 439

et al. (2021) proposed kFolden, which included k 440

classifiers for k class labels. Each classifier was 441

trained on a subset with k−1 classes while leaving 442

one class unknown. Tan et al. (2019) tackled the 443

problem of OOD detection with limited labeled 444

ID training data and proposed an OOD-resistant 445

Prototypical Network to build the OOD detector. 446

Ren et al. (2019); Gangal et al. (2020) used the 447

likelihood ratio produced by generative models to 448

detect OOD samples. The likelihood ratio effec- 449

tively corrects confounding background statistics 450

for OOD detection. Ryu et al. (2017) employed 451

the reconstruction error as the detection score. 452

3.3 OOD data unavailable + ID label 453

unavailable 454

OOD detection using only unlabeled ID data can be 455

used for non-classification tasks. In fact, when ID 456

labels are unavailable, our problem setting falls 457

back to the classic anomaly detection problem, 458

which is developed with a rich set of literature 459

(Pang et al., 2021; Chalapathy and Chawla, 2019). 460

However, this problem setting is rarely investigated 461

in NLP studies. We keep this category here for the 462

completeness of our survey while leaning most of 463

our focus on NLP-related works. 464

Methods in this category mainly focus on ex- 465

tracting more robust features and making a more 466

accurate estimation for the data distribution. Zong 467

et al. (2018) proposed a DAGMM model for un- 468
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supervised OOD detection, which utilized a deep469

auto-encoder to generate low-dimensional repre-470

sentations to estimate OOD scores. Xu et al.471

(2021) transformed the feature extracted from each472

layer of a pre-trained transformer model into one473

low-dimension representation based on the Maha-474

lanobis distance, and then optimized an OC-SVM475

for detection. Some works also use language mod-476

els (Nourbakhsh and Bang, 2019) and word rep-477

resentations (Bertero et al., 2017) to detect OOD478

inputs on various tasks such as log analysis (Ya-479

dav et al., 2020) and data mining (Agrawal and480

Agrawal, 2015).481

4 Datasets and Applications482

In this section, we briefly discuss representative483

datasets and applications for OOD detection. We484

classify existing OOD detection datasets into three485

categories according to the construction schemes486

of OOD samples in the testing stage:487

(1) Annotate OOD Samples: This category488

of datasets contains OOD samples that are man-489

ually annotated by crowd-source workers. Specifi-490

cally, CLINIC150 (Larson et al., 2019) is a manu-491

ally labeled single-turn dialogue dataset that con-492

sists of 150 ID intent classes and 1,200 out-of-493

scope queries. STAR (Mosig et al., 2020) is a494

multi-turn dialogue dataset with annotated turn-495

level intents, in which OOD samples are labeled496

as “out_of_scope", “custom", or “ambiguous”.497

ROSTD (Gangal et al., 2020) is constructed by498

annotating about 4,000 OOD samples on the basis499

of the dataset constructed by Schuster et al. (2019).500

(2) Curate OOD samples using existing501

classes: This category of datasets curate OOD ex-502

amples by holding out a subset of classes in a given503

corpus (Zhang et al., 2021). Any text classification504

datasets can be adopted in this process.505

(3) Curate OOD samples using other cor-506

pora: This category of datasets curates OOD sam-507

ples using samples extracted from other datasets508

(Hendrycks et al., 2020; Zhou et al., 2021b), i.e.,509

samples from other corpora are regarded as OOD510

samples. In this way, different NLP corpora can be511

combined to construct OOD detection tasks.512

OOD detection tasks have also been widely ap-513

plied in various NLP applications. We generally514

divide these applications into three types:515

(1) Classification Tasks are natural applications516

for OOD detectors. Almost every text classifier517

built in the closed-world assumption needs the518

OOD detection ability before deploying to produc- 519

tion. Specifically, intent classification for dialogue 520

systems is the most common application for OOD 521

detection (Larson et al., 2019; Lin and Xu, 2019). 522

Other popular application scenarios involve gen- 523

eral text classification (Zhou et al., 2021b; Li et al., 524

2021), sentiment analysis (Shu et al., 2017), and 525

topic prediction (Rawat et al., 2021). 526

(2) Conditional Language Generation Tasks 527

aim to auto-regressively generate sequences of to- 528

kens. Specifically, tokens in each time step are 529

predicted by a classification process over the vo- 530

cabulary. Some studies explore the OOD detection 531

problem on these sequence generation tasks, such 532

as semantic parsing (Lukovnikov et al., 2021) and 533

translation (Ren et al., 2022). 534

(3) Selective Prediction Tasks predict higher- 535

quality outputs while abstaining on uncertain ones 536

(Geifman and El-Yaniv, 2017; Varshney et al., 537

2022). This setting can be combined naturally 538

with OOD detection techniques. A few studies 539

use OOD detection approaches for selective predic- 540

tion in question answering, semantic equivalence 541

judgments, and entailment classification (Kamath 542

et al., 2020; Xin et al., 2021). 543

5 Metrics 544

The main purposes of OOD detectors are separat- 545

ing OOD and ID input samples, which is essentially 546

a binary classification process. Most methods men- 547

tioned above try to compute an OOD score for this 548

problem. Therefore, threshold-free metrics that 549

are generally used to evaluate binary classifiers are 550

commonly used to evaluate OOD detectors: 551

AUROC: Area Under the Receiver Operating 552

Characteristic curve (Davis and Goadrich, 2006). 553

The Receiver Operating Characteristic curve is 554

a plot showing the true positive rate TPR = 555
TP

TP+FN and the false positive rate FPR = 556
FP

FP+TN against each other, in which TP, TN, FP, 557

FN denotes true positive, true negative, false posi- 558

tive, false negative, respectively. For OOD detec- 559

tion tasks, ID samples are usually regarded as posi- 560

tive. Specifically, a random OOD detector yields 561

an AUROC score of 50% while a “perfect” OOD 562

detector pushes this score up to 100%. 563

AUPR: Area Under the Precision-Recall curve 564

(Manning and Schutze, 1999). The Precision- 565

Recall curve plots the precision TP
TP+FP and recall 566

TP
TP+FN against each other. The metric AUPR is 567

used when the positive and negative classes in the 568
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testing phase are severely imbalanced because the569

metric AUROC is biased in this situation. Gen-570

erally, two kinds of AUPR scores are reported:571

1) AUPR-IN where ID samples are specified as572

positive; 2) AUPR-OUT where OOD samples are573

specified as positive.574

Besides these threshold-free metrics, we are also575

interested in the performance of OOD detectors576

after the deployment, i.e., when a specific threshold577

is selected. The following metric is usually used to578

measure this performance:579

FPR@N : The value of FPR when TPR is N%580

(Liang et al., 2018; Lee et al., 2018a). This metric581

measures the probability that an OOD sample is582

misclassified as ID when the TPR is at least N%.583

Generally, we set N = 95 or N = 90 to ensure584

high performance on ID samples. This metric is585

important for a deployed OOD detector since ob-586

taining a low FPR score while achieving high ID587

performance is important for practical systems.588

In addition to the ability to detect OOD samples,589

some OOD detectors are also combined with down-590

stream ID classifiers. Specifically, for a dataset591

that contains K ID classes, these modules allocate592

an additional OOD class for all the OOD samples593

and essentially perform a K+1 class classification594

task. The following metrics are used to evaluate595

the overall performance of these modules:596

F1: The macro F1 score is used to evaluate clas-597

sification performance, which keeps the balance be-598

tween precision and recall. Usually, F1 scores are599

calculated over all samples to estimate the overall600

performance. Some studies also compute F1 scores601

over ID and OOD samples, respectively, to evaluate602

fine-grained performances (Zhang et al., 2021).603

Acc: The accuracy score is also used to evaluate604

classification performance (Zhan et al., 2021). See605

Appendix B for more details of various metrics.606

6 Discussion607

6.1 Pros and Cons for Different Settings608

Labeled OOD data provide valuable information609

for OOD distributions, and thus models trained610

using these OOD samples usually achieve high per-611

formance in different applications. However, the612

collection of labeled OOD samples requires addi-613

tional efforts that are extremely time-consuming614

and labor-extensive. Moreover, due to the infinite615

compositions of language, it is generally imprac-616

tical to collect OOD samples for all unseen cases.617

Using only a small subset of OOD samples may618

lead to serious selection bias issues and thus hurt 619

the generalization of the learned model. Therefore, 620

it is important to develop OOD detection methods 621

that do not rely on labeled OOD samples. 622

OOD detection using only labeled ID data fits 623

the above requirements. The representation learn- 624

ing and detecting approaches decompose the OOD 625

detection process in this setting into two stages so 626

that we can separately optimize each stage. Specif- 627

ically, the representation learning stage attempts to 628

learn distinct feature spaces for ID/OOD samples. 629

Results show that this stage benefit from recent 630

advances in pre-training and semi-supervised learn- 631

ing schemes on unlabeled data. Recent research 632

also shows that a good ID classifier benefits the 633

OOD detection (Vaze et al., 2021). OOD scoring 634

functions aim to produce reliable scores for OOD 635

detection. Various approaches generate the OOD 636

score with different distance measurements and dis- 637

tributions. Another way to tackle the problem of 638

lacking annotated OOD data is to generate pseudo 639

OOD samples. Approaches in this category benefit 640

from the strong language modeling prior and the 641

generation ability of pre-trained models. Promising 642

results are reported by applying the mixup strategy. 643

In some applications, we can only obtain a set 644

of ID data without any labels. This situation is 645

commonly encountered in non-classification tasks 646

where we also need to detect OOD inputs. Com- 647

pared to NLP, this setting is more widely inves- 648

tigated in other fields like machine learning and 649

computer vision (CV). Popular approaches involve 650

using estimated distribution densities or reconstruc- 651

tion losses as the OOD scores. 652

6.2 Comparison between NLP and CV in 653

OOD Detection 654

OOD detection is an active research field in CV 655

communities (Yang et al., 2021). Compared to CV, 656

models in NLP need to tackle discrete input spaces 657

and handle complex output structures. Therefore, 658

additional efforts should be paid to develop algo- 659

rithms for OOD detection in NLP. We summarize 660

the differences in OOD detection between NLP and 661

CV in the following three aspects: 662

Discrete Input NLP handles token sequences 663

that lie in discrete spaces. Therefore distorting 664

ID samples in their surface space (Ouyang et al., 665

2021; Choi et al., 2021; Shu et al., 2021) produces 666

high-quality OOD samples if a careful filtering 667

process is designed. On the contrary, CV tackles 668
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inputs from continuous spaces, where it is hard to669

navigate on the manifold of the data distribution.670

Du et al. (2022b,a) showed OOD synthesizing in671

the pixel space with a noise-additive manner led to672

limited performance.673

Complex Output Most OOD detection methods674

in CV are proposed for K-way classification tasks.675

However, in NLP, conditional language generation676

tasks need to predict token sequences that lie in se-677

quentially structured distributions, such as seman-678

tic parsing (Lukovnikov et al., 2021), abstractive679

summarization, and machine translation (Ren et al.,680

2022). Hence, the perils of OOD are arguably more681

severe as (a) errors may propagate and magnify in682

sequentially structured output, and (b) the space of683

low-quality outputs is greatly increased as arbitrary684

text sequences can be generated. OOD detection685

methods for these conditional language generation686

tasks should consider the internal dependency of687

input-output samples.688

Contextual Information Some datasets in NLP689

contain contextual information. It is important to690

properly model this extra information for OOD de-691

tection in these tasks. For example, STAR (Mosig692

et al., 2020) is a multi-turn dialogue dataset, and ef-693

fective OOD detectors should consider multi-turn694

contextual knowledge in their modeling process695

(Chen and Yu, 2021). However, most CV models696

only consider single images as their inputs.697

6.3 Future Research Challenges698

OOD Detection and Domain Generalization In699

most practical applications, we are not only inter-700

ested in detecting OOD inputs that are semanti-701

cally shifted, but also required to build more robust702

ID classifiers that can tackle covariate shifted data703

(Yang et al., 2021). We believe there are oppor-704

tunities to tackle problems of OOD detection and705

domain generalization in a unified framework. Fu-706

ture research opportunities can be explored to equip707

OOD detectors with better text representation ex-708

tractors since recent results demonstrate that a good709

ID classifier improves the OOD detection perfor-710

mance (Vaze et al., 2021). Both new task design711

and algorithm development can be investigated.712

OOD Detection with Extra Information Sources713

Humans usually consider OOD inputs easily dis-714

tinguishable because they can access external in-715

formation besides plain texts (e.g., images, audio,716

and videos). OOD detectors are expected to per-717

form better if we can equip them with inputs from 718

different sources. Although various works are pro- 719

posed to model each single information source, 720

such as text or image, few works are dedicated 721

to combining different sources, and no studies try 722

to equip OOD detectors with external knowledge, 723

such as structured knowledge graphs. We envision 724

great performance improvements if we can prop- 725

erly model external knowledge in OOD detectors. 726

Moreover, Internet search engines are common 727

approaches for humans to obtain external knowl- 728

edge (Komeili et al., 2021). More research opportu- 729

nities can be explored to build Internet-augmented 730

OOD detectors that can utilize rich and updated 731

knowledge yielded by search engines to enhance 732

the OOD detection performance. 733

OOD Detection and Lifelong Learning All pre- 734

vious approaches focus on detecting OOD inputs 735

so that we can safely ignore them. However, OOD 736

inputs usually represent new tasks that the current 737

system does not support. Systems deployed in an 738

ever-evolving environment are usually expected to 739

continuously learn from these OOD inputs rather 740

than ignoring them (Liu and Mazumder, 2021). 741

However, humans exhibit outstanding abilities in 742

learning new tasks from OOD inputs. We believe 743

OOD detectors are essential components in a life- 744

long learning system, and it is helpful to combine 745

OOD detection with a downstream lifelong learn- 746

ing process to build stronger systems. 747

Theoretical Analysis of OOD Detection De- 748

spite impressive empirical results that OOD studies 749

have achieved, theoretical investigation of OOD de- 750

tection is far behind the empirical success (Morteza 751

and Li, 2022; Fang et al., 2022). We hope more 752

attention can be paid to theoretical analysis for 753

OOD detection and provide insights to guide the 754

development of better algorithms and applications. 755

7 Conclusion 756

In this survey, we provide a comprehensive review 757

of OOD detection methods in NLP. We formalize 758

the OOD detection tasks and identify the major 759

challenges of OOD detection in NLP. A taxonomy 760

of existing OOD detection methods is also pro- 761

vided. We hope this survey helps researchers lo- 762

cate their target problems and find the most suitable 763

datasets, metrics, and baselines. Moreover, we also 764

provide some promising directions that can inspire 765

future research and exploration. 766
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Limitations767

There are several limitations of this work. First,768

this survey mainly focuses on OOD detection ap-769

proaches for NLP domains. Despite the restrictive770

scope, our work well complements the existing771

survey on OOD detection in CV tasks, and hence772

will benefit a well-targeted research community773

in NLP. Second, some OOD detection methods774

mentioned in this paper are not extended in this775

survey due to space limitations. We include details776

that are necessary to outline the development of777

OOD detection methods so that readers can get778

a comprehensive overview of this field. Our sur-779

vey provides an elaborate starting point for readers780

who want to dive deep into OOD detection for NLP.781

Moreover, The term “OOD detection” has vari-782

ous alias, such as “Anomaly Detection”, “Outlier783

Detection”, “One-class Classification”, “Novelty784

Detection”, and “Open Set Recognition”. These785

notations represent similar tasks with subtle differ-786

ences in detailed experiment settings. We do not787

extensively discuss these differences due to space788

limitations. Readers can refer to other papers for789

more detailed discussions (Yang et al., 2021). Fi-790

nally, we do not present any new empirical results.791

It would be helpful to perform comparative experi-792

ments over different OOD detection methods (Yang793

et al., 2022). We leave this to future work.794

Ethics Statement795

This work does not present any direct ethical issues.796

In this survey, we provide a comprehensive review797

of OOD detection methods in NLP, and we believe798

this study leads to intellectual merits that benefit799

from a reliable application of NLU models.800
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A Surveying Process1332

In this appendix, we provide more details of how1333

we select papers for our survey. Specifically, the1334

selected paper follows at least one criterion listed1335

below:1336

1. Peer-reviewed papers published in Top-tier1337

NLP venues, such as ACL, EMNLP, NAACL,1338

AAAI, and IJCAI.1339

2. Peer-reviewed papers that have a significant1340

impact on the OOD detection area. These pa-1341

pers are not necessarily limited to NLP tasks.1342

3. Papers that are highly cited in the OOD detec-1343

tion area.1344

4. Most recently published papers that make1345

a non-trivial contribution to OOD detection,1346

such as methods, datasets, metrics, and theo-1347

retical analysis.1348

5. Papers that initiate each research direction in1349

the OOD detection area.1350

B More details of Metrics1351

Table 1 provides more detailed information of vari-1352

ous metrics for OOD detection, regarding whether1353

to consider ID performance, frequency of use, and1354

applications.1355
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Metric Definition

Whether to
consider
ID perfor-
mance

Frequency
of use

Applica-
tions

Papers that use this
metric (Selected)

AUROC

Area under the
Receiver
Operating
Characteristic
curve

No Very
Frequent

NLP, CV,
ML

(Hendrycks and
Gimpel, 2016;
Hendrycks et al.,
2018, 2019; Lee
et al., 2018a)

AUPR-IN

Area under the
Precision-Recall
curve (ID
samples as
positive)

No Frequent NLP, CV,
ML

(Lee et al., 2018a;
Zheng et al., 2020;
Shen et al., 2021)

AUPR-OUT

Area under the
Precision-Recall
curve (OOD
samples as
positive)

No Frequent NLP, CV,
ML

(Lee et al., 2018a;
Zheng et al., 2020;
Shen et al., 2021)

FPR@N
Value of FPR
when TPR is
N%

No Not
Frequent

NLP, CV,
ML

(Lee et al., 2018a;
Zheng et al., 2020;
Shen et al., 2021)

F1

Macro F1 score
over all testing
samples
(ID+OOD)

Yes Very
Frequent NLP

(Xu et al., 2019;
Zhan et al., 2021;
Shu et al., 2021;
Zhou et al., 2022)

Acc

Accuracy score
over all testing
samples
(ID+OOD)

Yes Very
Frequent NLP

(Zhan et al., 2021;
Shu et al., 2017,
2021; Zhou et al.,
2022)

Table 1: More detailed information of various metrics for OOD detection.

15


