Under review as a conference paper at ICLR 2026

SIM-COoT: SUPERVISED IMPLICIT CHAIN-OF-
THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to
explicit CoT reasoning in Large Language Models (LLMs), but a persistent per-
formance gap has limited their adoption. We identify a core latent instability
issue when scaling the computational budget of implicit CoT: as the number of
reasoning tokens increases, training often becomes unstable and collapses. Our
analysis shows that this instability arises from latent representations becoming
homogeneous and losing semantic diversity, caused by insufficient step-level super-
vision in current implicit CoT methods. To address this, we propose SIM-CoT, a
plug-and-play training module that introduces step-level supervision to stabilize
and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder
during training to align each implicit token with its corresponding explicit reason-
ing step, ensuring latent states capture distinct and meaningful information. The
auxiliary decoder is removed at inference, preserving the efficiency of implicit
CoT with no added overhead. It also provides interpretability by projecting each
latent token onto an explicit reasoning vocabulary, enabling per-step visualization
and diagnosis. SIM-CoT significantly improves both in-domain accuracy and
out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2% on
GPT-2 and CODI by +3.0% on LLaMA-3.1 8B. It further surpasses the explicit
CoT baseline on GPT-2 by 2.1% with 2.3 x greater token efficiency, while closing
the performance gap on larger models like LLaMA-3.1 8B.

1 INTRODUCTION

“Measure what is measurable, and make measurable what is not so.” — Galileo Galilei

The strong reasoning capabilities of Large Language Models (LLMs) (OpenAll |2024; (Googlel [2024;
Anthropic}, |2024) are often unlocked through explicit Chain-of-Thought (CoT) prompting (Wei et al.,
2022). The explicit CoT approach enables LLMs to solve complex problems in a step-by-step
manner, yielding high performance in domains like mathematics and programming (Guo et al., [2025}
Muennighoff et al.,|2025). Despite its advantages, explicit CoT also faces several limitations. For
instance, explicit CoT approaches must verbalize intermediate thoughts from a fixed vocabulary,
thereby precluding the exploration of alternative solution paths (Li et al.| 2025} Zhang et al., [2025).
Additionally, the generation of extensive intermediate sequences significantly increases inference
cost and can result in redundant over-thinking steps or unnecessary verbosity (Chen et al., 2024)).

To address the flexibility and efficiency issues of explicit CoT methods, recent implicit CoT ap-
proaches (Hao et al.,|2025; Zhang et al.||2025; [Li et al., 2025) have been proposed by representing
reasoning in a continuous latent space rather than as a sequence of discrete text tokens. The implicit
CoT methods allow each latent representation to encode richer information than a single explicit
token, often with a significantly smaller number of latents than the length of an explicit reasoning
chain. Early representative implicit work like Coconut (Hao et al.,[2025) improves efficiency while
still capturing useful intermediate structure. More recent approaches, such as CODI (Shen et al.|
2023)), further apply trajectory-level distillation from explicit reasoning paths to enhance performance.
Despite these advancements, a performance gap still exists between existing implicit CoT methods
and their explicit counterparts. The implicit CoT approaches are fast, token-efficient but less accurate,
which currently limits their broader application.

Under review as a conference paper at ICLR 2026

35 2 latent 4 latent 5 latent 9L5 89.9 86.6 83.0
80 :
1 latent 3 latent
:\;30 0.3 Number acc.
g 60
3‘25 multi-stage training curriculum 51.4 Operator acc
S 40 383 41.0 Answer acc.
220 333
< 27.4 25.9 27.8
worst performance (12.5%) . 20.9 20.3
— 4.7
10 0 :
5 10 15 20 25 1latent 2 latent 4 latent 5latent Failure
Epoch Latent tokens (5 latent)
(a) The latent instability issue (b) Information Loss
Janet’ s ducks lay 16 eggs per day ...How much in
¢ dollars does she make every day at the farmers'
Latent distance narrows market? steps: <<16-3-4=9>> ... ###gt: 18
& .
Normal Implicit Model:
& p
& genc2 latent 1: ["3%, "4", "15%. 737, 75" WG, w301 10N
& Jatent 2: ['=", "N M4t v g w3)
W 1. (LllLel lncm dlst ance, 11th:1 u)mem)
latent
aten (Falled Implicit Model: -
(S latent 1: ["16", "3", ", 12", 14" ngn MIgN u24ﬂ]
vocab center ldtel’lT 2 [H3H "16" H30H HZH Vl()ﬂ ”]2" H18H H24V|]
1 latent 2 latent 4 latent S latent Failure NG (Smaller latent distancc, more uniform,)
(c) Shifted Distance S latent (d) Semantic Homogenization

Figure 1: (a) The latent instability issue: while using more implicit tokens initially improves
accuracy, training becomes unstable and sometimes collapses. (b) Information Loss: the implicit
tokens of failed models (5 latent tokens) lose crucial information about operators (like 4+, —), which
makes complex reasoning impossible. (c¢) Shifted Distance: the latent-to-latent distance of failed
models shrinks and becomes too similar to each other, while the latent drifts away from the central
vocabulary embedding space. (d) Semantic Homogenization: failed models produce similar latent
representations, resulting in a narrower range of decoded tokens, mostly numbers, as opposed to the
more varied content generated by a normal model.

To narrow the performance gap, inspired by the success of explicit CoT that scales computational
budget for better performance, we explore a similar strategy for implicit CoT methods by increasing
the number of implicit tokens. However, in Fig. 1| (a), we reveal one underlying latent instability
issue in current implicit CoT approaches. As we extend the number of implicit tokens from the
default three (Hao et al.,2025)) to five, the training process initially improves accuracy but becomes
unstable and sometimes collapses entirely. To interpret the latent instability issue, we analyze
implicit tokens from models trained on math reasoning data GSM8K-Aug (Deng et al., 2024). We
follow previous works (Hao et al., 2025} Deng et al.,2024)) to project the implicit tokens through the
LM head and examine their top decoded tokens for analysis. As shown in Fig.[1|(b), failed models
tend to collapse into homogeneous latent states. While successful reasoning requires capturing both
numerical and operator information, the implicit tokens of failed models primarily represent numbers,
almost completely losing the critical operator information. Fig.|[l|(¢) further demonstrates that a
model’s collapse is accompanied by two changes: a reduction in the inter-latent distance and a drift
of the latent states away from the central vocabulary embedding space. The latent representations of
failed models become too similar and lose their semantic connection to the tokens they are meant to
represent. Fig. |l|(d) provides an example of the semantic homogenization. A normal model (top)
maintains a large distance between its two latent tokens, allowing them to capture distinct information
for numbers and operators. In contrast, a failed model (bottom)’s latent tokens become homogeneous,
with both states decoding to similar information, primarily numbers.

Our observation (Fig.[I)) reveals the reasons for the latent instability issue: a lack of sufficient step-
level supervision for existing implicit methods to maintain the rich and varied internal representations.
Without stronger guidance, the latent space collapses, losing its diversity and making it impossible
to reliably encode the distinct, step-level reasoning needed for complex reasoning tasks. Motivated
by our findings, we propose Supervised IMplicit-CoT (SIM-CoT), a plug-and-play module that
introduces step-level supervision for implicit CoT approaches to alleviate the latent instability issue.

Under review as a conference paper at ICLR 2026

Instead of supervising only the final answer (Hao et al.,|2025)) or the trajectory (Shen et al.| [2025]),
SIM-CoT uses an auxiliary decoder to align each implicit token with its corresponding explicit
reasoning step during training. The step-level supervision for implicit tokens stabilizes optimization,
prevents collapse, and ensures that latent tokens capture meaningful reasoning content. Crucially,
because the auxiliary decoder is removed during inference, our approach incurs virtually no extra
computational cost, making it as efficient as standard implicit CoT approaches. Beyond accuracy,
stability, and efficiency, the auxiliary decoder also affords interpretability of implicit reasoning.
During training, it defines a projection from latent tokens to the explicit reasoning vocabulary,
enabling us to decode each latent step into a human-interpretable summary for verification or error
diagnosis.

Experiments show that SIM-CoT acts as a plug-and-play module that boosts both accuracy and
stability. We show that SIM-CoT can be effortlessly combined with various implicit CoT approaches
such as Coconut (Hao et al.,[2025), CODI (Shen et al.| [2025), and training-free approaches (Zhang
et al., 2025)) to further enhance reasoning performance. On GPT-2, SIM-CoT surpasses both the
strong explicit baseline (supervised fine-tuning on explicit CoT data) by 2.1%, and outperforms
existing implicit methods Coconut and CODI by 8.2% and 4.3%, respectively. The performance
trend holds as the method scales to larger models such as the LLaMA series. SIM-CoT achieves
improvements over CODI of 3.4% (LLaMA-3.2 1B), 1.5% (LLaMA-3.2 3B), and 3.0% (LLaMA-3.1
8B), in addition to a 9.0% gain over Coconut on the LLaMA-3.2 1B model. Furthermore, while
previous implicit CoT approaches (e.g., Coconut) collapse when scaled to 8 or 16 implicit tokens,
SIM-CoT remains stable and continues to boost performance.

In summary, our contributions are as follows: 1) We provide a systematic analysis of the latent insta-
bility issue of implicit CoT approaches, showing that instability and collapse arise from insufficient
supervision. 2) We introduce SIM-CoT, which applies step-level supervision to the model’s implicit
tokens. SIM-CoT not only integrates seamlessly with existing implicit CoT approaches and boosts
performance with minimal inference overhead, but also affords interpretability of implicit reasoning
by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization
of semantic roles and diagnosis. 3) Through extensive experiments, we demonstrate that SIM-CoT
not only improves accuracy in the in-domain dataset, but also generalizes effectively to out-of-domain
datasets. The performance gains are consistent across a range of LLMs, including GPT-2 and recent
LLaMA 3 models (1B, 3B, and 8B).

2 ANALYSIS OF IMPLICIT COT: THE LATENT INSTABILITY ISSUE

We first present an analysis (Fig. [1)) of the limitations in implicit latent CoT approaches. We follow
Coconut (Hao et al.|[2025) and analyze implicit latents by projecting them through the LM head and
examining the top-8 decoded tokens to understand the semantic and geometric properties.

Latent Instability Issue. Fig.|l|(a) shows the training process of Coconut when the number of
implicit latent tokens is progressively increased. Initially, as the number of latents increases from one
to four, the model’s accuracy generally improves, suggesting that using more latents can enhance
performance. However, a significant drop in accuracy occurs when the number of latents is scaled to
five, with performance collapsing to its worst point of 12.5%. The latent instability issue indicates
that the implicit reasoning approach is sensitive to the choice of the number of latent tokens, as shown
by the sharp drop and subsequent fluctuations in accuracy after adding the fifth latent.

Information Loss. Fig.[T](b) presents an analysis of how different levels of accuracy are affected by
the number of latent tokens, using accuracy metrics at three levels: number, operator, and answer. The
bar chart reveals a clear trend: as the number of latent tokens increases from 1 to 5, there is a general
decline in performance across all three metrics, especially for the operator accuracy. The strong
correlation between increased latent tokens and declining performance, particularly the sharp fall
during failure, suggests that implicit latents do not consistently capture the necessary compositional
reasoning process without more explicit, fine-grained supervision.

Shifted Distance. Fig.|I|(c) examines the geometric properties of the latent representations during
training. Two metrics are analyzed: the Latent Distance (red), which measures the average distance
between pairs of latent vectors, and the Vocab Distance (blue), which measures the average distance
from each latent vector to the center of the vocabulary embedding space. When the latent CoT model

Under review as a conference paper at ICLR 2026

Coconut @ CODI CE Loss
trajectory-level CE Loss <

only answer-level T YT ek At T s’ hthdiR—— iy ——
y . " Y implicit supervison ﬁ [
supervision I I \ ________ , T

i \ 1 \ g . Disti '_25_5_ ___ I hidden

states

‘ Large Language Model ’ [Large Language Model Large Language Model @] P

I I distill
EE e e - e

CEL CE Loss [Step prediction
SIM-CoT (Ours) ﬁ"ss
i P A N |:>Answer prediction

step-level implicit

supe-rvision I \ I \] \ I L) _1_ \ - T-* - _I _\ ? Question tokens (x)

EOS tokens
Decoder Model H, ’
Implicit CoT tokens (z)

\ T \ 1 \ T Explicit CoT tokens (y)

Answer (o)

(Large Language Model Hy

Figure 2: The framework comparison between Coconut (upper left), CODI (upper right), and our
SIM-CoT (bottom). Unlike Coconut and CODI, which apply coarse-grained supervision on answers
or trajectories, our SIM-CoT employs a decoder to align implicit latents with step-level reasoning,
enhancing performance while maintaining inference efficiency.

collapses, the latent distance decreases sharply, indicating that the latent vectors are collapsing and
becoming nearly identical, losing their distinctiveness. Simultaneously, the vocab distance increases,
showing that these collapsing latents are drifting away from the main lexical embedding space and
are no longer grounded in the fundamental token representations used by the model.

Semantic Homogenization. Fig.|l|(d) provides a qualitative analysis of the content of the latent
tokens in a normal case versus a failed model. In the normal implicit model (middle), the decoded
tokens from the latents are diverse and meaningful. In the failed implicit model (bottom), the semantic
content of the latents becomes highly homogeneous. Latent 1 and Latent 2 contain mainly numbers,
lacking operators or symbolic information needed for calculation. This shows that successful training
produces latents with step-wise reasoning, while without explicit supervision, the latent space
collapses into uniform numerical forms.

Summary. Our analysis across Fig. [T] (a-d) highlights a crucial trade-off between diversity and
stability. When the model collapses, it loses both its diversity (as the latents become too similar)
and its stability (as the latents move away from the token space), leading to catastrophic information
loss and a complete failure of the reasoning process, as shown by the sharp drop in overall accuracy.
These combined findings show that without proper guidance, the latent space degenerates, losing
its ability to represent distinct reasoning steps. These challenges motivate our proposed method,
which introduces step-level implicit supervision to stabilize the training process and enrich unique
semantic content of each latent, all while maintaining efficiency during inference.

3 METHODOLOGY

Overview. As shown in Fig. 2] early implicit reasoning studies differ mainly in supervision granular-
ity: Coconut (top left) uses answer-level supervision, while CODI (top right) introduces trajectory-
level signals via distillation. Both remain coarse and do not tell the model which latent should encode
which step. We propose SIM-CoT, which provides step-level implicit supervision: During an
implicit phase, the LLM runs for a fixed number K of reasoning steps; at each step k it takes the
last hidden state as the implicit latent z;, and appends it to the sequence as the next “token” vector.
After K steps, the model switches back to explicit decoding over the vocabulary to generate the
final answer. A decoder is used only in training to align each z; with the textual content of the k-th
reasoning step; at inference, the decoder is removed, so the runtime is essentially that of direct answer
generation plus K forward positions, which is far shorter than explicit CoT token lengths.

Under review as a conference paper at ICLR 2026

3.1 NOTATION

Let V be the vocabulary and F € RI!VI*? the token embedding matrix. A question is z =
(x1,...,27) € VT with embedded prefix

U = (e(x1),....e(zr)), el)€ R

We run an autoregressive LLM Fj on any prefix U = (u1, ..., u,,) of d-dimensional vectors (tokens
or latents). Denote the last-layer hidden state at the final position by

Hy(U) € R%.

For supervision, the k-th textual step is sy = (yk.1,--.,Yk.L,) € VE*, and the answer is a =
(a1,...,ar,) € VLa. The auxiliary decoder has parameters ¢; the LLM has parameters 6.

3.2 IMPLICIT PHASE: LATENT CONSTRUCTION BY LAST HIDDEN STATES

We fix the number of implicit reasoning steps K in advance. Foreachstepk =1,..., K,
2 = H(U* D) eRrd, U® = gk-b) g 5 M

where @ denotes concatenation along the time axis. The implicit chain-of-thought is therefore repre-
sented as a continuous sequence of hidden states z1.x = (z1,. .., 2k), which are autoregressively
generated and appended to the context before the model switches to explicit decoding.

3.3 EXPLICIT PHASE: ANSWER DECODING OVER THE VOCABULARY

After constructing the implicit latents z;.x, the model switches to explicit decoding to generate the
final answer. Let W, € R!VI*4 be the output projection (LM head). With teacher forcing on the
partial answer a, the generation is

hr ik = Ho(UY) @ e(asy)),)

polas | T, 21.5, act) = softmax(Wo hT+K+t)at’ 3)
La

pola| @, 21.6) = [[pola | @, 215, a<). “4)

t=1
3.4 TRAINING-TIME DECODER AND STEP-LEVEL SUPERVISION
During training, a decoder py (architecturally identical to the LLM) takes only the k-th implicit latent

21, as conditioning signal and autoregressively generates the k-th textual step s, = (Y1, - - -, Yk,Ly)-
This provides step-level supervision that directly grounds zj, to its corresponding reasoning content:

K K Ly
po(stx | 21:6) = [[poCon | 26) = [T TTpoumr | 265 vk <t)- ®
k=1 k=1t=1

Parameterization. For step k, the decoder is conditioned on the implicit latent z; obtained from the
LLM. Since z; does not correspond to any token in the vocabulary, it is not included in the loss
calculation. Instead, z, is injected as an additional prefix vector that initializes the decoder’s hidden
state for step generation. Concretely, the decoder input sequence is

U;Cjec = [zk) e(yk,1)7 s 7e(yk’7Lk):|’

where e(-) denotes the embedding function of the LLM shared between both models. During training
with teacher forcing, the decoder predicts each token yy, ; autoregressively:

Do (Un,t | 2> Yr,<t) = SOftmaX(Wdec hiﬁ%)yk,ﬂ

where h?fﬁ is the decoder hidden state at position ¢ and W9 is the LM head of the decoder.

Under review as a conference paper at ICLR 2026

The training loss for step & is then
Ly,
£step,k = - Z IOg p(Z)(yk,t
t=1
which supervises only the textual step tokens. The decoder is used exclusively for this supervision
during training and is discarded at inference.

Zkayk?,<t)7

3.5 OBIECTIVES

Training involves two complementary cross-entropy losses: one for supervising the textual steps
through the decoder, and one for supervising the final answer through the base LLM.

Step-level supervision. For each implicit latent z;, the decoder py4 generates the corresponding
reasoning step Sg, = (Yr.1,- - -, Yk, L,)- Since 2, is not a vocabulary token, the loss is computed only
over the textual step tokens:
K Ly
ﬁstep = - Z Z 10gp¢(yk,t ‘ 2k yk,<t) . (6)
k=1t=1
This loss grounds each latent zj, to a specific reasoning step, ensuring that the latent sequence carries
fine-grained semantics.

Answer supervision. After K implicit steps, the LLM Fj switches back to explicit decoding to

generate the final answer a = (ay, ..., ar,). We optimize the standard language modeling loss:
La
Lansim = — Z IOgPQ(at ‘ T, 21:K, a<t>- N

t=1

Total objective. The overall loss is a weighted sum:

L=)\step Estep + Alm Eans—lm~ (8)
Gradients from Ly, propagate through the decoder into the latent representations z;.x and fur-
ther into the LLM (via Eq. equation [I)), shaping the hidden states to encode step-level reasoning.
Meanwhile, L,ns1m trains the base model to produce the final answer directly, so the decoder can be
discarded at inference time without affecting efficiency. Implementation details, inference procedures,
and diagnostic analyses are provided in Appendix [D]

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Data. We follow previous works (Deng et al., 2024} Hao et al., [2025) to use the
GSMB8Kk-Aug dataset Deng et al.| (2024)) for training implicit CoT models. The GSM8k-Aug ex-
pands the original GSMS8k training set (Cobbe et al., [2021) to 385k examples by using GPT-4
for data generation. To facilitate implicit CoT training, the GSM8k-Aug removes the reason-
ing chain of natural language, preserving only a sequence of structured mathematical expres-
sions. Each expression is logically linked to the previous step, as illustrated by the example:
<<12%3=36>><<9%2=18>><<17%2=34>><<36+18+34=88>>.

Evaluation Benchmarks. We report results on the GSM8Kk-Aug test set (Cobbe et al., 2021)), which
serves as our in-domain (ID) evaluation benchmark. To further evaluate mathematical reasoning
under a distribution shift, we also evaluate models on three out-of-domain (OOD) benchmarks: (1)
SVAMP (Patel et al., 2021}, a dataset of grade-school arithmetic word problems that introduces
simple variations to assess robustness; (2) GSM-Hard (Gao et al.,[2022), a modified version of the
GSMS8k test split where numbers are replaced with larger magnitudes to increase problem difficulty;
and (3) MultiArith (Roy & Roth, 2015), a subset of MAWPS (Koncel-Kedziorski et al., [2016))
consisting of multi-step arithmetic word problems. Please refer to the Appendix [D|for more details.

Implementation Details. We follow the training setup of previous works (Hao et al., 2025}, |Shen
et al.| 2025)), and adopt consistent hyperparameter choices for GPT-2, LLaMA 1B/3B/8B. Detailed
configurations, such as learning rates, curriculum strategies, are provided in Appendix

Under review as a conference paper at ICLR 2026

Table 1: Main results on GPT-2. We report accuracy (%) on in-domain (GSM8k-Aug) and out-of-
domain (GSM-Hard, MultiArith, SVAMP) benchmarks. Our SIM-CoT is shown to provide accuracy
gains on top of existing methods such as Coconut (Hao et al.,[2025) and CODI (Shen et al., 2025).

In-domain Out-of-domain
Method SIM-CoT GSM8k-Aug GSM-Hard MultiArith SVAMP Average # Average
Acc. (%) #Tokens Acc. (%) Acc. (%) Acc. (%) Acc. (%) Tokens

SFT-CoT 42.7 27.6 9.0 85.0 41.6 452 24.7
No-CoT 19.1 2.2 4.3 41.1 16.4 20.6 1.4
iCoT 30.1 2.2 5.7 55.5 29.4 30.2 14
C t 36.6 12.2 8.1 83.5 36.2 42.6 114
oconu v 4852 122 9.3 90.8 407 46943 114
CODI 42.0 12.2 9.4 93.0 41.7 48.0 12.6
v 42.6 (+0.6) 12.2 94 92.8 42.6 48.3 (+0.3) 12.6

Table 2: Main results on LLaMA 3.2 1B. We report accuracy (%) on in-domain (GSM8k-Aug) and
out-of-domain (GSM-Hard, MultiArith, SVAMP) benchmarks. Our SIM-CoT builds on CODI to
achieve a new SOTA in implicit reasoning while setting performance comparable to explicit CoT.

In-domain Out-of-domain
Method ~ SIM-CoT GSMS8k-Aug GSM-Hard MultiArith SVAMP Average # Average
Acc. (%) #Tokens Acc. (%) Acc. (%) Acc. (%) Acc. (%) Tokens

SFT-CoT 58.4 253 13.9 96.7 65.7 58.8 23.1
No-CoT 28.8 1.2 6.3 50.3 26.7 27.8 1.9
iCoT 19.0 1.2 44 39.0 40.9 28.1 1.9
Coconut 332 13.2 7.0 63.3 43.7 38.0 11.9
v 42.2 (+9.0) 13.2 9.3 87.7 439 47.0 (+9.0) 11.9
CODI 52.7 13.2 11.9 95.0 60.6 55.8 13.4
v 56.1 (+3.4) 13.2 12.7 96.2 61.5 56.8 (+1.0) 13.4

4.2 MAIN RESULTS

Baselines. We compare our SIM-CoT against five representative baselines: (1) CoT-SFT: Supervised
fine-tuning (SFT) on CoT-annotated data, where the model is trained to generate explicit intermediate
reasoning steps followed by the final answer. (2) No-CoT-SFT: Supervised fine-tuning on direct
answers only, without producing intermediate steps. (3) iCoT (Deng et al., [2024): A curriculum
learning method based on “Stepwise Internalization,” which injects CoT reasoning patterns into the
model’s internal representations, enabling it to produce more accurate direct answers during inference.
(4) Coconut (Hao et al., 2025): A curriculum learning approach that gradually replaces explicit
reasoning steps with implicit tokens until the reasoning process becomes fully implicit. This method
has shown strong empirical performance and serves as a primary baseline in our experiments. (5)
CODI (Shen et al.l 2025): A distillation-based method where explicit CoT acts as the teacher and
implicit CoT as the student. By aligning the last hidden states of the full reasoning trajectory, CODI
effectively internalizes knowledge and alleviates catastrophic forgetting.

In-Domain Math Benchmark Results. Table|l|(first column) reports GPT-2 results on GSM8k-Aug.
SIM-CoT outperforms SFT-CoT and is the first training-based approach where implicit CoT surpasses
explicit CoT. With GPT-2 using Coconut as the backbone, it achieves a +2.1 point improvement over
SFT-CoT. It also exceeds other training-based implicit reasoning models; for example, on Coconut, it
improves by +8.2 points, a relative gain of 22.4%. Moreover, when applied on top of CODI—the
current SOTA implicit reasoning method—SIM-CoT yields an additional 4-0.6 point improvement.

Table [2| (first column) shows the results when CODI is used as the backbone. In this setting, our
method achieves a substantial 3.4 point improvement. Furthermore, we are the first to achieve
performance comparable to SFT-CoT on LLaMA-1B, reaching 96% of its accuracy. Given that prior
studies (Xu et al., [2025; Shen et al., 2025) reported that curriculum learning in larger models leads to
catastrophic forgetting and that homogeneous knowledge harms model training (Zhao et al.| 2023)),
we choose CODI as the backbone because its KL-regularized objective constrains the training not to
deviate too far from the original model distribution, thereby alleviating catastrophic forgetting.

Out-of-Domain Math Benchmark Results. To evaluate the robustness of our method, we train
on GSMS8k and evaluate on out-of-domain datasets (GSM-Hard, MultiArith, and SVAMP). From
the third column of Table|l} we observe that SIM-CoT consistently outperforms SFT-CoT, with an

Under review as a conference paper at ICLR 2026

Table 3: Main results on larger LLaMA models (3B and 8B). We report accuracy (%) on in-domain
(GSM8k-Aug) and out-of-domain (GSM-Hard, MultiArith, SVAMP) benchmarks.

In-domain Out-of-domain
Model ~ Method SIM-CoT GSMSk-Aug GSM-Hard MultiArith SVAMP Average # Average
Acc. (%) #Tokens Acc. (%) Acc. (%) Acc. (%) Acc. (%) Tokens
SFT-CoT 71.5 27.7 17.0 98.3 71.0 62.1 224
LLaMA 3.2 3B No-CoT 38.3 1.2 9.5 88.7 529 50.4 1.4
CoDI 60.8 7.2 14.3 98.7 73.3 62.1 7.5
v 62.3 (+1.5) 7.2 14.6 98.8 74.9 62.8 (+0.7) 7.5
SFT-CoT 71.7 274 16.5 98.3 73.1 62.6 222
LLaMA 3.1 8B No-CoT 39.5 1.2 9.8 88.0 55.3 51.0 1.6
CcoDI 61.1 7.2 15.5 99.5 78.1 64.4 75
v 64.1 (+3.0) 7.2 16.3 100.0 794 65.2 (+0.8) 7.5
GSM8k-Aug GSM8k-Hard MultiArith SVAMP
45.0 10.0 90.0 40.0
41.0 8.8 75.0 37.0
%37.0 ’ 34.0
7.6
£ 330 60.0 31.0
é:{j 29.0 o4 45.0
SIM-CoT 52 SIM-CoT ' SIM-CoT SIM-CoT
25.0 .
Coconut Coconut Coconut Coconut
21.0 4.0 25.0 22.0
12 36 510 6-12 8-16 12 36 510 6-12 816 12 36 510 6-12 816 12 36 510 6-12 8-16
Latent-Tokens Latent-Tokens Latent-Tokens Latent-Tokens

Figure 3: Ablation study on different numbers of implicit latents. The x-axis denotes the number of
implicit latents and implicit tokens (joined with “-”), while the y-axis denotes accuracy. The blue line
corresponds to our method SIM-CoT, and the orange line corresponds to the baseline Coconut.

average improvement of +4.3 points when using Coconut as the backbone. From the third column of
Table 2] our method further improves upon the current SOTA implicit reasoning method CODI by
+1.0 point. Moreover, when scaling model size from GPT-2 to LLaMA-1B, SIM-CoT enlarges the
performance gap against iCoT, Coconut, and other baselines.

We attribute the robustness of SIM-CoT to its step-level implicit supervision. Unlike SFT-CoT,
which forces the model to mimic deterministic natural language annotations, and unlike CODI,
which applies trajectory-level alignment to a coarse-grained reasoning path, our method introduces
a moderate form of supervision. This design ensures the plausibility of each reasoning step while
preserving the diversity of reasoning trajectories, thereby improving generalization to unseen inputs.

Inference Efficiency. In terms of inference speed, our method maintains the same efficiency as
other implicit reasoning approaches on both GPT-2 and LLaMA-1B. On GPT-2, SIM-CoT not only
surpasses SFT-CoT on both in-domain and out-of-domain benchmarks, but also achieves a 2.3 x
and 2.2x speedup on Coconut, respectively. On LLaMA-1B, SIM-CoT remains comparable to
SFT-CoT in accuracy while delivering 1.9x and 1.7x speedups on in-domain and out-of-domain
benchmarks, respectively. These results demonstrate the effectiveness of our approach in retaining or
even enhancing the performance of explicit CoT while substantially reducing inference cost.

4.3 ABLATION STUDIES

Ablation on the Number of Implicit Tokens. We study the effect of varying the number of
implicit latents on GPT-2, comparing SIM-CoT with Coconut trained on GSM8k-Aug and evaluated
on GSM8k-Aug, GSM-Hard, MultiArith, and SVAMP (Fig. E[) Following Coconut, each latent
corresponds to two tokens. As shown in Fig. [5] most problems involve two to six steps with a
small proportion of harder cases, so we set the maximum number of implicit latents to 8. For each
configuration, we report the best performance, and results show that SIM-CoT provides more stable
training and achieves consistent gains over Coconut, indicating that step-level implicit supervision
scales effectively with larger latent capacity.

Ablation on Scaling to Larger Backbones. To examine robustness and scalability, we extend exper-
iments to larger LLaMA backbones, including LLaMA 3.2 3B and LLaMA 3.1 8B. Table[3]reports
results on GSM8k-Aug (in-domain) and GSM-Hard, MultiArith, and SVAMP (out-of-domain).

Overall, SIM-CoT scales effectively to larger backbones, consistently surpassing or matching explicit
CoT on out-of-domain tasks while reducing reliance on trajectory-level supervision.

Under review as a conference paper at ICLR 2026

Table 4: Comparison of (a) LLaMA 1B with different decoders and (b) latent token distance analysis.
In (a), we evaluate the effect of using larger decoders with a 1B model on both in-domain (GSM8k-
Aug) and out-of-domain benchmarks (GSM-Hard, MultiArith, SVAMP). In (b), we report average
pairwise distances among latent tokens (Dist.) and their distances to the vocabulary center (Dist. to
VC) under different settings, including failed cases and the effect after applying SIM-CoT.

(a) LLaMA 1B with different decoders. (b) Latent token distance analysis.
In-domain Out-of-domain Setting Dist. Dist. to VC
Model
GSMB8k-Aug GSM-Hard MultiArith SVAMP 1 latent 20.30 36.20
2 latent 23.46 28.82
Baseline 527 11.9 950 60.6 4 latent 2756 o
+ 1B Decoder 56.1 12.7 96.2 61.5 5 latent 28.34 28.34
+ 3B Decoder 50.4 11.6 95.6 59.8 Fail 5 latent 4.21 39.39
+ 8B Decoder 50.0 11.7 94.2 56.8 After SIM-CoT 32.81 29.80

Table 5: Ablation study of soft thinking on LLaMA 3.2 1B. We report accuracy (%) on the in-domain
dataset (GSM8k-Aug) and out-of-domain datasets (GSM-Hard, MultiArith, and SVAMP). Adding
soft thinking consistently improves both Coconut and SIM-CoT across all benchmarks, showing its
effectiveness in enhancing implicit reasoning.

Method GSM8k-Aug GSM-Hard MultiArith SVAMP
Coconut 36.6 8.1 83.5 36.2
+ Soft Thinking 36.7 8.3 85.2 36.0
SIM-CoT 44.8 9.3 90.8 40.7
+ Soft Thinking 45.0 9.4 91.5 40.8

On LLaMA 3.2 3B, SIM-CoT improves over CODI by +1.5 points on GSM8k-Aug and +1.6
points on SVAMP, while maintaining comparable performance on GSM-Hard and MultiArith. This
demonstrates that step-level implicit supervision strengthens strong implicit reasoning baselines even
at larger scales.

On LLaMA 3.1 8B, SIM-CoT yields gains of +3.0 points on GSM8k-Aug, +1.3 on SVAMP, and
+0.8 on MultiArith relative to CODI, while maintaining stable accuracy on GSM-Hard. Compared
with SFT-CoT, it achieves higher accuracy on MultiArith (100.0 vs. 98.3) and SVAMP (79.4 vs.
73.1), while remaining similar on GSM-Hard.

Together, these results confirm that SIM-CoT scales effectively to larger backbones, providing
consistent gains across both in-domain and out-of-domain benchmarks with reduced reliance on
trajectory-level supervision.

Ablation on Different Decoder Sizes. We investigate how decoder size affects performance by
replacing the decoder of the LLaMA 1B backbone with larger versions from the same vocabulary
family and evaluating on GSM8k-Aug, GSM-Hard, MultiArith, and SVAMP. As shown in Table[ffa),
integrating a 1B-scale decoder leads to consistent improvements across all benchmarks. However,
simply scaling the decoder to larger variants (3B or 8B) does not yield additional benefits and instead
slightly reduces accuracy.

These results suggest that moderate decoder scaling can enhance reasoning ability, but excessively
large decoders may introduce optimization challenges or misalignment with the 1B backbone,
ultimately limiting generalization. A plausible explanation is that the 1B encoder and 1B decoder
originate from the same model family and thus share a more compatible representation space,
facilitating stable learning. In contrast, larger decoders (3B or 8B) may require implicit projection to
align with the 1B backbone, which can introduce representational mismatches and hinder training
stability.

Ablation on Soft Thinking. We also study the effect of integrating soft thinking (Zhang et al., 2025}
2025) with both Coconut and SIM-CoT. For clarity, the detailed experimental setup, results,
and analyses are provided in Appendix [A]

Interpretability of Implicit Reasoning. Implicit reasoning models generate continuous latent
thoughts that do not correspond to vocabulary tokens and thus cannot be directly decoded into

Under review as a conference paper at ICLR 2026

[Question] A watermelon farm produced

120 baby watermelons... and found out that

30% of the watermelons were ready for Large Language Model
harvest, so she took them home. When she

came back two weeks later, 3/4 of the _ -

remaining melons were ready, so she = e T e DT PP (O
harvested them. How many melons were not | Qutput i_é{l_s_vzgr_:_Z_ 1] s
ready to be harvested after the two weeks? q
Y : Decoder Model (Optional)
LLM Token Embed 0.3%120=36 |[(120-36)*3/4=63 [84-63=21

Figure 4: SIM-CoT case study on GSM8k. The generated implicit continuous tokens are subsequently
interpreted by our decoder, which visualizes the solution intermediate steps leading to the final output.

human-readable text. To address this, we reuse the training decoder to project each latent step
into interpretable textual space, enabling per-step visualization of latent semantics (Fig.). For
completeness, detailed descriptions and additional visualization examples are provided in Appendix|[G]

To better understand the latent space, we analyze two geometric measures: the average pairwise
distance among latent tokens (Dist.) and their distance to the vocabulary center (Dist. to VC),
summarized in Table Ekb) and Fig. |§l As the number of latent tokens increases from 1 to 5, Dist.
rises from 20.30 to 28.34, indicating improved separability. In the failed 5-latent case, however,
Dist. collapses to 4.21, showing that tokens converge to nearly identical points; SIM-CoT avoids
this collapse and increases Dist. to 32.81. For Dist. to VC, values decrease from 36.20 (1 latent) to
around 28 as more tokens are introduced, reflecting better alignment with the vocabulary manifold.
The failed 5-latent case instead spikes to 39.39, indicating drift, whereas SIM-CoT stabilizes this
measure at 29.80. Fig. [f]qualitatively confirms these patterns: normal tokens remain separated and
grounded, failed tokens collapse and drift outward, and SIM-CoT restores a structured configuration.
Overall, these analyses show that SIM-CoT improves stability while maintaining an interpretable
latent space.

5 RELATED WORK

A large body of work has studied explicit chain-of-thought (CoT) prompting, including self-

consistency (Wei et al.| 2022} Wang et al) [2023), least-to-most prompting (Zhou et al) [2023),
reflection-based reasoning (Shinn et al., 2023; Madaan et al.,2023)), and the integration of external

tools (Yao et all,[2023). Other work investigates step-level supervision to structure explicit reasoning
(Zheng et al., 2023}, [Wei et al [2025). While effective, explicit CoT increases inference cost with
longer sequences and often produces redundant steps, limiting efficiency and reasoning diversity

et all, 2025} [Zhang et al.| 2023}, [Xu et al | 2025).

Implicit CoT aims to reduce output length while retaining multi-step reasoning. Prior work explores

knowledge internalization (Deng et al.} 2024), architectural modification (Saunshi et al., 2025} |Chen

et al.| 2025}, [Cheng & Van Durme), 2024} |Su et al., 2025}, [Mohtashami et al., [2023}, |Geiping et al.,
20235)), training-free latent construction (Zhang et al., 2025} [Wu et al., 2025), and auto-regressive

latent reasoning (Xu et al, 2025} [Tan et al., [2025). Coconut applies answer-level supervision (Hao
[2025), and CODI uses trajectory-level distillation 2025). Our work introduces
step-level supervision, which distributes signals across latent steps and improves stability. See
extended discussion in Appendix [B]

6 CONCLUSION

We introduce SIM-CoT, a training-based implicit reasoning method with step-level supervision on
latent tokens. On GPT-2, SIM-CoT outperforms the strong explicit baseline SFT-CoT, while also
surpassing implicit baselines such as Coconut and CODI. When scaling to larger LLaMA backbones,
the performance achieves consistent gains over existing implicit reasoning methods and maintains
fast inference efficiency. Ablation studies further show that it improves training stability with more
latent tokens and can benefit from integration with training-free techniques such as soft thinking.
Distance analysis confirms that SIM-CoT produces latent representations that are diverse yet stable.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet!

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. ArXiv, abs/2405.14838, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Google. Our next-generation model: Gemini 1.5, 2024. URL https://blog.google/
technology/ai/google—gemini—-next—generation-model-february—-2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian.
Training large language models to reason in a continuous latent space. In COLM, 2025.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In NAACL, 2016.

Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, and
Rex Ying. Implicit reasoning in large language models: A comprehensive survey. arXiv preprint
arXiv:2509.02350, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-Refine: Iterative refinement with
self-feedback. In NeurIPS, 2023.

Meta. Llama 3.2: Revolutionizing edge ai and vision with open, cus-
tomizable models, 2024. URL https://ai.meta.com/blog/
llama—-3-2-connect-2024-vision—-edge—-mobile-devices.

Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: More tokens with
attention make up for less depth. In WANT @ NeurIPS 2023, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAl. Hello gpt-40, 2024. URL https://openai.com/index/hello-gpt—-4o0.

11

https://www.anthropic.com/news/claude-3 -5-sonnet
https://www.anthropic.com/news/claude-3 -5-sonnet
https://blog.google/techno logy/ai/google-gemini-next-generation-model-february-2024
https://blog.google/techno logy/ai/google-gemini-next-generation-model-february-2024
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices
https://openai.com/index/hello-gpt-4o

Under review as a conference paper at ICLR 2026

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In NAACL, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Technical Report, 2019.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In EMNLP, 2015.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025.

Zhenyi Shen, Hanqgi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arxiv:2502.21074,
2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In NeurIPS, 2023.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently,
think fast: Dynamic latent compression of 1lm reasoning chains. arXiv preprint arXiv:2505.16552,
2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. In ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
NIPS, 2022.

Ting-Ruen Wei, Haowei Liu, Xuyang Wu, and Yi Fang. A survey on feedback-based multi-step
reasoning for large language models on mathematics. arXiv preprint arXiv:2502.14333, 2025.

Junhong Wu, Jinliang Lu, Zixuan Ren, Ganqiang Hu, Zhi Wu, Dai Dai, and Hua Wu. Llms have a
heart of stone: Demystifying the soft thinking ability of large reasoning models. arXiv preprint
arXiv:2508.03440, 2025.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. SoftCoT: Soft chain-of-thought for efficient
reasoning with llms. In ACL, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In ICLR, 2023.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
space. arXiv preprint arXiv:2505.15778, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. URL
http://arxiv.org/abs/2303.18223.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Ed Chi, and Quoc V. Le. Least-to-most prompting enables complex reasoning in large language
models. In NeurIPS, 2023.

12

http://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2026

APPENDIX

USAGE OF LARGE LANGUAGE MODELS

In this paper, we used LLMs only for minor language polishing and formatting, without generating
ideas, analyses, or experimental results.

OUTLINE

In this appendix, we provide additional analyses and supporting materials to complement the main text.
In Sec.[A] we present experiments on combining soft thinking with SIM-CoT, including setup, results,
and a detailed formulation with pseudocode. In Sec.[B] we provide an overview of related work in
explicit and implicit chain-of-thought reasoning. In Secs. [Cland [D} we describe our implementation,
hyperparameter configurations, boundary conditions for implicit token alignment, training overhead
and training/inference procedures, including benchmark and dataset details. In Sec. [E| we introduce
the SIM-CoT training procedure and provide pseudocode for step-level supervision. In Sec. [F] we
offer geometric diagnostics of the latent space, analyzing inter-latent distances and distance to the
vocabulary center. In Sec. |G} we discuss interpretability analysis, including latent visualization and
summary findings. Finally, we provide declarations on LLM usage and additional case studies on
GSMB&k to further illustrate the reasoning process and visualization choices.

A ADDITIONAL ANALYSIS ON SOFT THINKING

Soft thinking (Zhang et al., 2025} |[Wu et al., |2025) is a training-free method for implicit reasoning in
which the latent space is represented as a weighted average over the vocabulary embedding space. In
contrast, SIM-CoT learns latent representations directly from data during training. To our knowledge,
no prior work has evaluated a combination of these two approaches; our experiments provide the first
such evaluation.

A.1 SETUP

We apply the proposed soft thinking mechanism on top of both Coconut and SIM-CoT, while adopting
GPT-2 as the backbone model. To assess the effectiveness of this approach, we perform evaluations
on a diverse set of mathematical reasoning benchmarks. The in-domain evaluation is carried out
on GSM8k-Aug, which provides augmented training and testing samples closely aligned with the
original GSM8k distribution. To further examine generalization beyond the training domain, we
include three out-of-domain benchmarks: GSM-Hard, which contains more challenging arithmetic
problems with subtle variations in reasoning steps; MultiArith, which evaluates performance on
multi-step arithmetic operations requiring careful sequencing of addition, subtraction, multiplication,
and division; and SVAMP, which focuses on variations of elementary word problems designed to test
robustness to superficial changes in problem statements.

A.2 RESULTS

Table 5] (b) reports the results. Adding soft thinking improves accuracy in most cases. For Coconut,
improvements are observed on GSM-Hard (+0.2) and MultiArith (+1.7), with a slight decrease on
SVAMP (-0.2). For SIM-CoT, soft thinking consistently enhances performance: GSM8k-Aug (+0.2),
GSM-Hard (+0.1), MultiArith (+0.7), and SVAMP (+0.1).

A.3 FORMULATION

Let z € R? denote a continuous latent token, and F € RIVI*? be the embedding matrix of the
vocabulary V. Our goal is to enrich the representational capacity of z by incorporating soft thinking,
which allows the latent space to draw information not only from its continuous representation but
also from the semantic structure of the vocabulary. The process can be described in three steps.

13

Under review as a conference paper at ICLR 2026

Step 1. Vocabulary distribution. The continuous latent token z is first mapped into a probability
distribution over the vocabulary space:

p = softmax(Wz),

where W € RIVI*4 is the output projection matrix and p € RIVI is the resulting distribution. This
step can be viewed as interpreting the latent token in terms of vocabulary-level semantics, where each
token in V is assigned a likelihood according to its relevance to z.

Step 2. Soft-thinking embedding. Using the distribution p, we compute a weighted mixture of
vocabulary embeddings:
Zsoft = ETP = va Ev»
veV

where F), is the embedding vector corresponding to token v. This operation can be seen as construct-
ing a “’soft token” that captures multiple semantic hypotheses simultaneously, instead of committing
to a single discrete vocabulary token. As a result, zy, provides richer and smoother information than
a hard token lookup.

Step 3. Combination. Finally, we combine the original continuous latent z with the soft-thinking
embedding zof:
7 =az+ stofta

where & = continuous_weight and 8 = soft_weight are hyperparameters that balance the
contribution of the continuous and soft-thinking components. This formulation allows 2’ to retain
the model’s learned continuous representations while also grounding them in the vocabulary space.
Intuitively, the continuous part encourages compact reasoning within the latent space, whereas the
soft-thinking component brings in semantic priors from the vocabulary, leading to more stable and
interpretable reasoning.

The pseudocode implementation of the above process is presented as follows.

Algorithm 1 Soft Thinking with Continuous Tokens

Require: Continuous latent z, embedding matrix F, weights «, 8

1: if 3 > 0 then

2: Compute logits: [< Wz

3: Convert to probabilities: p < softmax(l)
4: Form soft embedding: zg s < ETp

5: Update latent: 2" < az + Bzoft

6: else

7: 2z

8: end if

9: return 2’

A.4 ANALYSIS

The results demonstrate that soft thinking complements training-based implicit reasoning. The hybrid
latent 2’ integrates semantics learned through training and distributional information from vocabulary
mixing, which enables the model to explore diverse intermediate states rather than committing
to a single deterministic path. This leads to improvements in both in-domain and out-of-domain
benchmarks. Our findings suggest that combining training-free construction with training-based
supervision provides gains beyond either approach in isolation.

B RELATED WORK

Explicit chain-of-thought reasoning. Chain-of-thought (CoT) prompting enables large language
models (LLMs) to generate intermediate reasoning steps before producing the final answer (Wei et al.|
2022). This approach has been widely studied and extended in many directions. Self-consistency
samples multiple reasoning paths and selects the majority answer to improve reliability (Wang et al.,

14

Under review as a conference paper at ICLR 2026

2023). Least-to-most prompting decomposes a complex question into simpler sub-problems and
solves them in order (Zhou et al.,|2023). Reflection-based reasoning allows the model to revise or
verify its own intermediate steps, leading to better correctness (Shinn et al.| |2023; Madaan et al.,
2023)). Other works focus on using external tools or symbolic solvers together with explicit reasoning,
which further improves accuracy in mathematics and program synthesis (Yao et al.,2023). Methods
such as progressive-hint prompting (Zheng et al., [2023)) and step-level feedback (Wei et al., [2025))
study how supervision can be incorporated into explicit reasoning to make reasoning more structured.
Despite these advances, explicit CoT has clear drawbacks. Because it generates long token sequences,
inference cost grows rapidly with reasoning length, and many intermediate steps are redundant or
irrelevant to the final answer. Moreover, since explicit reasoning is restricted to tokens from a fixed
vocabulary, it often commits to a single trajectory and shows limited reasoning diversity (L1 et al.,
2025; Zhang et al., 2025} | Xu et al., 2025)).

Implicit chain-of-thought reasoning. Implicit CoT performs multi-step computation in a continuous
latent space instead of emitting long textual traces, reducing decoded length while keeping internal
structure. Prior work follows four practical routes. First, knowledge internalization trains models to
carry out reasoning internally by progressively removing explicit traces or by using dedicated control
embeddings; examples include iCoT-SI (Deng et al., 2024), which removes steps during training to
internalize reasoning. Second, architectural modification controls compute by reusing or skipping
layers, or by adding light recurrence, so models can refine hidden states without lengthening outputs
(Saunshi et al., 2025} |Chen et al., [2025; |Cheng & Van Durme, 2024; |Su et al., |2025; Mohtashami
et al., [2023} |Geiping et al.l 2025). Third, training-free methods construct continuous latents directly
from the model’s probability distribution over the vocabulary; Soft Thinking mixes embeddings by
probability to form “concept” tokens that explore alternative paths without updating weights, which
improves efficiency and diversity but does not bind each latent to step-level semantics (Zhang et al.|
2025; [Wu et al.,[2025).

The fourth route, auto-regressive latent reasoning, updates and concatenates latent states in place of
some token-level decoding and is the most relevant to our work (Xu et al., 2025} Tan et al.| [2025)).
Coconut applies answer-level supervision—training on the final answer while leaving intermediate
latents weakly constrained (Hao et al.l 2025). CODI adds trajectory-level distillation by aligning
an implicit trajectory with an explicit CoT trace, narrowing the gap to explicit CoT but giving only
coarse guidance to intermediate steps (Shen et al., 2025). However, the implicit token length in CODI
is fixed during training, which limits its flexibility and makes it less suitable for scaling to variable
or longer reasoning chains. Our framework remains in the auto-regressive setting but changes the
supervision: during training, each latent is aligned with its corresponding textual step (step-level
supervision), distributing learning signals across the full latent chain to improve stability and semantic
fidelity of intermediate states; at inference, the decoder is discarded, ensuring that the decoding cost
remains identical to that of standard implicit CoT methods (e.g., Coconut).

C IMPLEMENTATION AND TRAINING DETAILS

We provide the full hyperparameter settings, training procedures, and additional analysis used in our
experiments. Unless otherwise specified, we use the AdamW optimizer with 5; = 0.9, 83 = 0.999,
and weight decay of 0.1. Batch size is set to 128 for GPT-2 and LLaMA 1B, and 64 for LLaMA 3B
and 8B. Early stopping is applied with a patience of 3 epochs. We now describe the training setups
for Coconut, CODI, and our SIM-CoT.

C.1 COCONUT TRAINING SETUP

Following |Hao et al.|(2025)), GPT-2 and LLaMA 1B (Radford et al.,[2019; Metal, 2024) are trained
with a fixed learning rate of 1 x 10~%. One implicit latent corresponds to two implicit tokens. A
curriculum is applied: every three epochs, one explicit reasoning step is replaced by an implicit latent
until the maximum number of latent steps is reached. After this expansion, training continues for 15
additional epochs.

15

Under review as a conference paper at ICLR 2026

C.2 CODI TRAINING SETUP

For larger backbones such as LLaMA 3B and LLaMA 8B, we adopt task-specific hyperparameter
settings to ensure stable training. In particular, we use a learning rate of 3 x 10~* for LLaMA 3B
and train for 8 epochs, while for LLaMA 8B the learning rate is reduced to 1 x 10~* with 6 training
epochs. These choices are motivated by the increased sensitivity of larger models to optimization
dynamics, where smaller learning rates and fewer epochs help to prevent overfitting and instability.

When reproducing CODI on GPT-2 and LLaMA 1B, we strictly follow the configurations reported
by . Specifically, we use a learning rate of 3 x 10~ with 40 epochs for GPT-2, and
a learning rate of 8 x 10~ with 10 epochs for LLaMA 1B. Adopting these settings ensures that our
results are directly comparable to prior work and isolates the effect of our proposed method, rather
than confounding it with differences in optimization schedules.

C.3 SUMMARY OF HYPERPARAMETERS

Table 6: Training hyperparameters across different models.

Model Method LR Epochs
GPT-2 Coconut 1 x 10~* 15 + curriculum
LLaMA 1B Coconut 1 x 10=* 15 + curriculum
GPT-2 CODI 3x10°3 40
LLaMA IB CODI 8x 1074 10
LLaMA3B CODI 3 x10~¢ 8
LLaMASB CODI 1x 1074 6

C.4 TRAINING-TIME OVERHEAD

We analyze the computational overhead introduced during training by the auxiliary decoder. Since
the auxiliary decoder has the same architecture and number of parameters as the original decoder, and
it participates in an additional forward pass during training, the overall parameter count and memory
usage are approximately doubled compared with the implicit baselines Coconut and CODI.

To quantify the training-time overhead, Table[7]reports the wall-clock training hours of SIM-CoT and
the corresponding implicit models under identical hardware settings (H800). Across different model
scales, SIM-CoT introduces only a moderate increase in training time, ranging from approximately 2
hours for smaller backbones to around 16 hours for larger ones.

Table 7: Training hours of SIM-CoT compared with implicit baselines under identical hardware
(H800).

Model Training Hours
Coconut GPT ~180h
SIM-CoT (Coconut GPT) ~192h
CODI GPT ~16h
SIM-CoT (CODI GPT) ~18.2h
CODI 1B ~16.5h
SIM-CoT (CODI 1B) ~18.5h
CODI 3B ~34h
SIM-CoT (CODI 3B) ~42h
CODI 8B ~71h
SIM-CoT (CODI 8B) ~87h

These results show that the additional computational cost introduced by SIM-CoT remains modest
relative to the improvements in stability and accuracy it provides.

16

Under review as a conference paper at ICLR 2026

C.5 BOUNDARY CONDITIONS IN IMPLICIT TOKEN—STEP ALIGNMENT

Since the model produces a fixed number of implicit tokens (/) independent of the length of the
ground-truth reasoning chain, we formalize the boundary conditions that govern how these tokens
are aligned with textual reasoning steps. Let the annotated reasoning contain /N steps. Under this
formulation, two boundary cases emerge:

Case 1: N > K (Longer reasoning chains). When the reasoning chain contains more steps than
latent tokens, a direct one-to-one alignment is impossible. We adopt a many-to-one strategy: the first
K — 1 latent tokens are aligned individually to the first K — 1 reasoning steps, while the final token
zx receives supervision from the concatenation of the remaining steps (steps K through N). This
boundary condition ensures that information from longer chains is preserved rather than truncated.

Case 2: N < K (Shorter reasoning chains). When the reasoning chain is shorter than the number
of latent tokens, the first /V latent tokens align one-to-one with the available reasoning steps. The
remaining latent tokens (zn+1 to zx) are aligned with the final answer. This encourages the model
to utilize its surplus latent capacity to refine the target solution.

These boundary rules guarantee that each implicit token is assigned a semantically meaningful
supervision signal, regardless of how the reasoning length compares with the fixed latent budget K.
They also provide stability during training by preventing both supervision sparsity (when N < K)
and information loss (when N > K).

D TRAINING AND INFERENCE DETAILS

Curriculum for K. We use a curriculum schedule to gradually increase the number of implicit
steps. Each latent corresponds to two implicit tokens. Let K, denote the maximum number of
latents. Starting from K (*) = 0, the number of implicit steps after epoch e is

KO = min(Ko, | £]).

where Ae is the update interval in epochs. Once K () reaches K pax, it remains fixed for the
remainder of training.

Inference and Efficiency. At inference time, the auxiliary decoder is removed and only the base
model is executed:

U = [e(x1),...,e(xp)], fork=1,....,K: 2z, = Hg(U(k_l)), UR = k=1 gz,

and after K implicit steps the model switches back to explicit decoding to generate the final answer
sequence a as in Eq. equationd] The total decoding length is 7'+ K + L,, where T is the input
length, K the number of implicit steps, and L, the answer length. In practice, the cost is comparable
to other implicit reasoning methods because K is moderate. In tasks where explicit CoT requires long
trajectories (Lot > K), the implicit formulation reduces decoding positions, providing efficiency
gains without loss of reasoning accuracy.

Benchmark Detail. SVAMP (Simple Variations on Arithmetic Math Word
Problems) is a benchmark dataset designed to test the robustness of math word problem solvers to
superficial changes. It contains 1,000 elementary-level arithmetic word problems (grade 4 and below),
each involving a single unknown and solvable by an arithmetic expression with no more than two
operators. The problems are transformations of existing datasets (such as MAWPS and ASDiv-A)
with controlled variations in wording, structure, and number values to reduce artifacts and superficial
cues. SVAMP’s average number of reasoning steps required is around 1.2, similar to the base datasets,
but model performance drops significantly when tested on SVAMP, showing that many models rely
on heuristic patterns rather than deep understanding.

17

Under review as a conference paper at ICLR 2026

GSMB8K Reasoning Step Distribution

150000 - . Figure 5: Distribution of reasoning
2 125000 | [] steps in the GSM8K-Aug training
< lodk dataset. Most problems involve two
£ 1000007 to four steps, with a long-tail of harder
§ 750001 cases. For visualization, step counts
& 50000 48k with fewer than 200 problems are omit-
g 25000 4 - teq, Fhough all examples are used in
. : : : : B e o training.
1 2 3 4 5 6 7 8
Number of Steps

GSM-Hard (Gao et al.,[2022) is a more challenging variant of the GSM8K dataset, intended to
test models’ ability to cope with harder numerical values. It retains the same problem statements
as the original GSMS8K, but replaces many of the numbers with larger and less common numerical
values, making superficial arithmetic computation and reasoning harder. The dataset has about 1,319
examples (matching the GSM8K test set size).

MultiArith (Roy & Roth, |2015)) is a dataset of multi-step arithmetic word problems designed to
challenge systems to correctly sequence multiple operations. It contains 600 problems collected
from educational sources, each solvable by one equation involving two or more of the four basic
operations (addition, subtraction, multiplication, division). The problems require reasoning over
multiple sentences to extract and combine numeric quantities, understand the implied operations,
and compute the result. MultiArith has been widely used as a benchmark for evaluating arithmetic
reasoning generalization, particularly for models that go beyond single-operation problems. Analyses
show that many models struggle on these examples compared to simpler datasets, highlighting the
importance of handling compositional and sequential numerical reasoning.

Training Data. GSMB8K-Aug (Deng et al.| [2024) is the only training corpus we use. It is an
augmented dataset derived from GSM8K (Cobbe et al.,|2021), expanding the original 8.5k training
problems to roughly 385k examples through paraphrasing, numerical resampling, and synthetic
generation with GPT-4. The distribution of reasoning steps in GSM8K-Aug is illustrated in Fig. [5]
where the majority of problems require two to four steps, while a long-tail of six or more steps
persists. This balance of common and complex instances makes GSM8K-Aug particularly suitable
for training models that need to generalize across reasoning difficulty levels.

E SIM-COT TRAINING IMPLEMENTATION

We provide pseudocode for the SIM-CoT training process, which illustrates how continuous latent
embeddings are aligned with explicit supervision at the step level. In particular, each reasoning step
in the explicit chain is mapped to a corresponding latent representation, and the training objective
enforces consistency between the predicted latent tokens and the ground-truth step annotations. This
design ensures that the model learns to represent intermediate reasoning steps in a compact latent
space while still retaining interpretability through explicit alignment. By supervising at the step
level rather than only at the final answer or trajectory level, SIM-CoT enables finer control over the
reasoning process and reduces instability that often arises when scaling to longer chains or larger
numbers of implicit tokens.

F GEOMETRIC DIAGNOSTICS OF THE LATENT SPACE

We analyze the geometry of latent representations with two metrics.

Inter-latent distance.

) 2
DlSt(Zl:K) = m 1<i<zj<K sz - ZJHQ (9)

A larger value indicates better separation, reducing the risk of collapse.

18

Under review as a conference paper at ICLR 2026

Algorithm 2 SIM-CoT Training Procedure

Require: Batch size b, number of thoughts C, continuous embeddings Z, tokenized inputs X,
embedding matrix E
1: for each thoughtt =1,...,C do
2 for each sample i = 1,...,bdo
3 Extract continuous embeddings z; ; from Z
4: Obtain token embeddings e; ; from E(X; ;)
5: Concatenate embeddings: h; ; < [2i1; €;.¢]
6.
7
8

Build attention mask m; ¢ up to EOS
Assign position ids p; ¢
: Prepare labels y; ; with masked tokens set to —100
9: end for
10: end for
11: Pad and stack {h, m, p, y} to maximum sequence length
12: Prepare 4D attention mask: M < PrepareMask (M)
13: Forward pass: O ExplainableLLM(H, M, P)
14: Extract logits: L + O.logits
15: Shift logits and labels: L' « L[:,: —1], Y/ + Y[, 1]
16: Compute cross-entropy loss: ¢ = CrossEntropy(L’, Y”)
17: Normalize ¢ over valid positions
Ensure: Final training loss £

FE,, denote the mean embedding. Then,

Distance to vocabulary center. Let u = ITlfl Y vey

| X
DistVC(z1.x) = 74 Z sz — ,qu. (10)
k=1

Moderate values indicate that latents remain close enough to the lexical manifold for stability, while
avoiding collapse toward the center. These diagnostics are not used in training but serve as indicators
of diversity and stability in the learned latent space.

G ADDITIONAL DETAILS FOR INTERPRETABILITY ANALYSIS

G.1 MAKING IMPLICIT REASONING VISIBLE

Continuous thoughts produced by implicit reasoning models are represented as latent embeddings
that do not correspond to discrete vocabulary tokens, and therefore cannot be directly decoded by a
tokenizer. This makes it difficult to interpret how the model internally organizes multi-step reasoning.
To address this, we reuse the decoder that was employed for step-level supervision during training,
and apply it at inference time to map each latent embedding into a human-readable token sequence.

As illustrated in Figure 4} the process begins with a natural language problem (e.g., a math word
problem) that is embedded and passed into the large language model. The model generates a sequence
of implicit latent tokens, which capture intermediate reasoning steps in continuous space. These latent
tokens are then fed into the optional decoder, which translates them into interpretable expressions.
Each latent corresponds to one reasoning step, and the autoregressive generation order encodes the
dependency structure across steps.

For example, in the GSM8k case study shown in the figure, the first latent is decoded as 0.3x 120 = 36,
representing the number of watermelons harvested initially. The second latent builds upon this result
to compute 120 — 36 = 84, the remaining melons. The third latent then calculates % x 84 = 63, and
the final latent derives the answer 84 — 63 = 21. For clarity and to save space, the figure merges
the second and third steps into a single box, but the actual implicit reasoning unfolds across four
distinct latent steps. This sequence of decoded latents mirrors the logic of explicit chain-of-thought

reasoning, while being produced implicitly within the latent space.

By projecting implicit tokens into interpretable space, we gain direct visibility into how the model
structures multi-step reasoning. This not only enables analysis of the correctness and consistency of

19

Under review as a conference paper at ICLR 2026

Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings
o ®Implicit Tokens2 Vocabulary Tokens 61 @ Implicit Tokens2 vocabulary Tokens 6l ® Implicit Tokens2 vocabulary Tokens
6 — .1 @ Learnable Tokens 5 @ Learnable Tokens ° @ Learnable Tokens
Implicit Tokens1 . 5| Implicit Tokens!
~ ~ 4 Implicit Tokensl 3,
= = P
g
K £, : \ Normal
g g ..
S £ g Implicit
a =] =]
22) 22 Tokens
g £ 1 g
1 1
’ '. 0 0
-1 -1 -1
5 4 3 2 1 o0 1 2 5 -4 -3 -2 -1 0 1 2 5 4 3 2 1 o0 1 2
PCA Dimension 1 PCA Dimension 1 PCA Dimension 1
Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings
51 @Implicit Tokens2 vocabulary Tokens | 401 ®Implicit Tokens2 vocabulary Tokens @Implicit Tokens2 vocabulary Tokens
Implicit Tokens] e Learnable Tokens Implicit Tokensl e Learnable Tokens 61 Implicit Tokens] ¢ rearnable Tokens
4
5
N <30 &
s 3 = S 4
5 g
g Z Z Failed
2 2 £20 g3 .
H H g, Implicit
S o b g Tokens
= i 10 &
P
0 1 0 ’
-1 0 —— -1
5 4 3 2 -1 0 1 2 % 5 -4 3 2 -1 0 1 2 5 4 3 2 -1 0 1 2
Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings Learnable Tokens vs Vocabulary Embeddings
175 =
1 @ Implicit Tokensl vocabulary Tokens 1
o h 15.0 @ Learnable Tokens o “
o <125 -l
= =
g g 10.0 g2 After
i-2 g 2
5 g -
g £ 75 g-3 SIM-CoT
a3 . . 8 .. a Imbplicit
S, e Implicit Tokens2 S 50 TImplicit Tokens2 5t phic
= = M5 o Implicit Tokens2 Tokens
25
=5
Vocabulary Tokens . -6 Tt Vocabulary Tokens
-61 o Implicit Tokens]® Learnable Tokens 00 - __ | Implicit Tokensl ¢ 1 oarnabie Tokens
-6 -5 -4 -3 -2 -1 0 1 -6 -5 -4 -3 -2 -1 [1 -6 -5 -4 -3 -2 -1 0 1
PCA Dimension 1 PCA Dimension 1 PCA Dimension 1

Figure 6: Visualization of distances among implicit tokens and their distances to the vocabulary
center. The first row shows normal implicit tokens with well-separated representations, the second
row illustrates failed implicit tokens where distances collapse and drift away from the vocabulary
center, and the third row presents implicit tokens after applying SIM-CoT, which restores both
separation and stability in the latent space.

intermediate steps, but also highlights the dependencies across steps that underlie the final prediction.
The visualization confirms that SIM-CoT can encode semantically meaningful and logically ordered
reasoning steps in its latent space, bridging the gap between implicit and explicit reasoning.

G.2 SUMMARY

Overall, the results demonstrate that SIM-CoT establishes a balance between diversity and stability
in the latent space. Larger inter-latent distances mitigate representation collapse, while moderate
distances to the vocabulary center prevent excessive drift. This equilibrium supports stable implicit
reasoning and provides robustness when scaling to more latent tokens.

H ADDITIONAL CASE STUDIES ON GSMS8K

In practice, implicit reasoning continues to produce latent tokens even after the correct answer
has been reached. These trailing latents no longer introduce new steps but simply repeat the final
prediction. For clarity, we omit such redundant tokens in the visualizations. As a result, only the
latents that correspond to meaningful intermediate steps are displayed in Figure [7] while those
mapping directly to the final answer are hidden. This choice improves readability without changing
the underlying reasoning process.

Notably, the decoded reasoning steps consistently match the semantic structure of explicit chain-of-
thought annotations, while being generated implicitly within the latent space. The final predictions
align with the ground-truth answers, demonstrating that SIM-CoT is capable of encoding interpretable
and step-ordered reasoning without requiring explicit supervision at inference time.

20

Under review as a conference paper at ICLR 2026

[Question] Toulouse has twice as many sheep as Charleston. Charleston has 4
times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and
Seattle have together if Seattle has 20 sheep? (=i# ### Answer: 260

4*20=80 — 2*¥80=160 |_, 160+80+20=260
latent1 latent2 latent3 2

[Question] Claire makes a 3 egg omelet every morning for breakfast. How many
dozens of eggs will she eat in 4 weeks? ### Answer: 7

3*7=21 .l 21*4=84 —) 84/12=7
latentl latent2 latent3

[Question] Billy sells DVDs. He has 8 customers on Tuesday. His first3 =

customers buy one DVD each. His next 2 customers buy 2 DVDs each. His last 3

customers don't buy any DVDs. How many DVDs did Billy sell on Tuesday?
Answer: 7

3*1=3 . 2%2=4 . 3+4=7
latent1 latent2 latent3

[Question] Richard lives in an apartment building with 15 floors. Each floor
contains 8 units, and 3/4 of the building is occupied. What's the total number of
unoccupied units In the building? ### Answer: 30

15*¥8=120 || 120%3/4=90 |_,| 120-90=30
latentl latent2 latent3

[Question] Poppy is solving a 1000-piece jigsaw puzzle. She places a quarter of
the pieces on the board, then her mom places a third of the remaining pieces. How
many jigsaw pieces 7= ### Answer: 500

1000/4=250 |_,| 1000-250=750 |—,| 750/3=250 |_,
latentl latent2 latent3 latent4

-

[Question] The marching band is ordering new uniforms. Each uniform comes

with a hat that costs $25, a jacket that costs three times as much as the hat, and

pants that cost the average of the costs of the hat and jacket. How much does
?7E ### Answer: 150

25*3=75 _, 25+75=100 |— 100/2=50 —
latentl latent2 latent3 latent4

-

Figure 7: Additional SIM-CoT case studies on GSM8k. Each example illustrates how implicit latent
tokens correspond to intermediate reasoning steps. Arrows indicate the dependency relations across
steps, while colored spans in the question highlight the textual evidence that supports each step. The
decoded sequence of latent steps produces the correct final answer, which matches the ground-truth
label.

21

	Introduction
	Analysis of Implicit COT: the Latent Instability Issue
	Methodology
	Notation
	Implicit Phase: Latent Construction by Last Hidden States
	Explicit Phase: Answer Decoding over the Vocabulary
	Training-time Decoder and Step-level Supervision
	Objectives

	experiment
	Experimental Setup
	Main Results
	Ablation Studies

	Related Work
	Conclusion
	Additional Analysis on Soft Thinking
	Setup
	Results
	Formulation
	Analysis

	Related Work
	Implementation and Training Details
	Coconut Training Setup
	CODI Training Setup
	Summary of Hyperparameters
	Training-Time Overhead
	Boundary Conditions in Implicit Token–Step Alignment

	Training and Inference Details
	SIM-CoT Training Implementation
	Geometric Diagnostics of the Latent Space
	Additional Details for Interpretability Analysis
	Making Implicit Reasoning Visible
	Summary

	Additional Case Studies on GSM8k

