

000 SIM-CoT: SUPERVISED IMPLICIT CHAIN-OF- 001 002 THOUGHT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to
012 explicit CoT reasoning in Large Language Models (LLMs), but a persistent per-
013 formance gap has limited their adoption. We identify a core **latent instability**
014 **issue** when scaling the computational budget of implicit CoT: as the number of
015 reasoning tokens increases, training often becomes unstable and collapses. Our
016 analysis shows that this instability arises from latent representations becoming
017 homogeneous and losing semantic diversity, caused by insufficient step-level super-
018 vision in current implicit CoT methods. To address this, we propose **SIM-CoT**, a
019 plug-and-play training module that introduces step-level supervision to stabilize
020 and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder
021 during training to align each implicit token with its corresponding explicit reason-
022 ing step, ensuring latent states capture distinct and meaningful information. The
023 auxiliary decoder is removed at inference, preserving the efficiency of implicit
024 CoT with no added overhead. It also provides interpretability by projecting each
025 latent token onto an explicit reasoning vocabulary, enabling per-step visualization
026 and diagnosis. SIM-CoT significantly improves both in-domain accuracy and
027 out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2% on
028 GPT-2 and CODI by +3.0% on LLaMA-3.1 8B. It further surpasses the explicit
029 CoT baseline on GPT-2 by 2.1% with 2.3 \times greater token efficiency, while closing
030 the performance gap on larger models like LLaMA-3.1 8B.
031

032 1 INTRODUCTION 033

034 “Measure what is measurable, and make measurable what is not so.” — Galileo Galilei
035

036 The strong reasoning capabilities of Large Language Models (LLMs) (OpenAI, 2024; Google, 2024;
037 Anthropic, 2024) are often unlocked through explicit Chain-of-Thought (CoT) prompting (Wei et al.,
038 2022). The explicit CoT approach enables LLMs to solve complex problems in a step-by-step
039 manner, yielding high performance in domains like mathematics and programming (Guo et al., 2025;
040 Muennighoff et al., 2025). Despite its advantages, explicit CoT also faces several limitations. For
041 instance, explicit CoT approaches must verbalize intermediate thoughts from a fixed vocabulary,
042 thereby precluding the exploration of alternative solution paths (Li et al., 2025; Zhang et al., 2025).
043 Additionally, the generation of extensive intermediate sequences significantly increases inference
044 cost and can result in redundant over-thinking steps or unnecessary verbosity (Chen et al., 2024).

045 To address the flexibility and efficiency issues of explicit CoT methods, recent **implicit CoT** ap-
046 proaches (Hao et al., 2025; Zhang et al., 2025; Li et al., 2025) have been proposed by representing
047 reasoning in a continuous latent space rather than as a sequence of discrete text tokens. The implicit
048 CoT methods allow each latent representation to encode richer information than a single explicit
049 token, often with a significantly smaller number of latents than the length of an explicit reasoning
050 chain. Early representative implicit work like Coconut (Hao et al., 2025) improves efficiency while
051 still capturing useful intermediate structure. More recent approaches, such as CODI (Shen et al.,
052 2025), further apply trajectory-level distillation from explicit reasoning paths to enhance performance.
053 Despite these advancements, a **performance gap** still exists between existing implicit CoT methods
and their explicit counterparts. The implicit CoT approaches are *fast, token-efficient but less accurate*,
which currently limits their broader application.

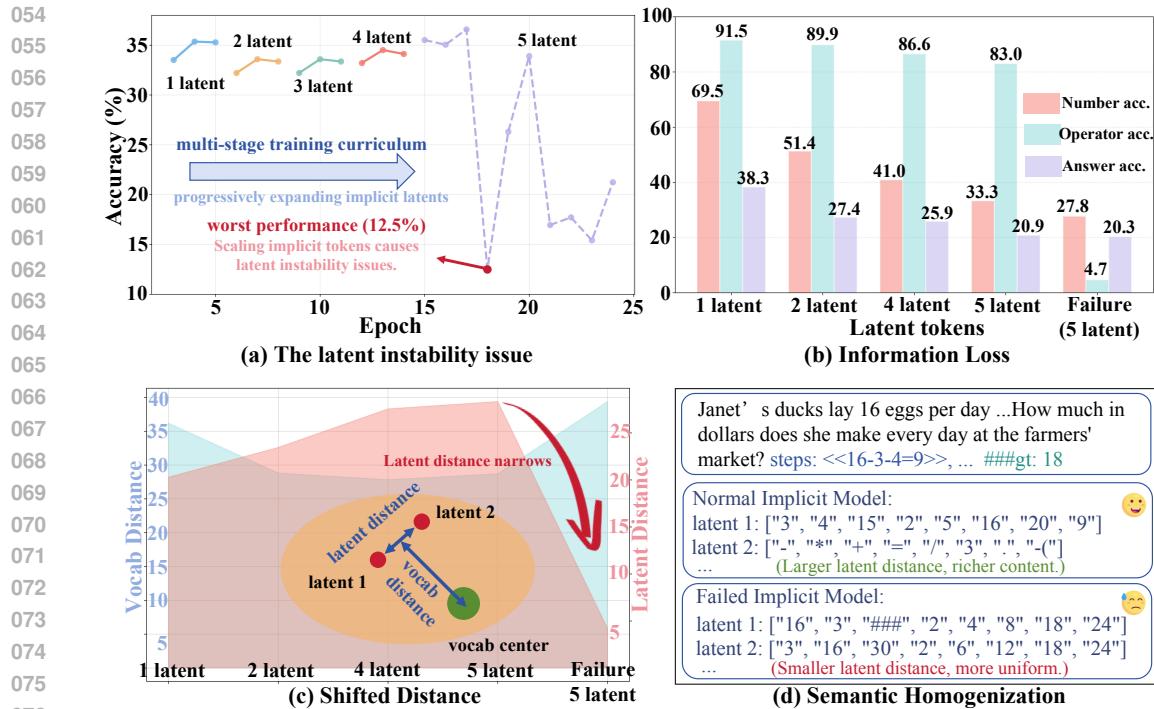


Figure 1: **(a) The latent instability issue:** while using more implicit tokens initially improves accuracy, training becomes unstable and sometimes collapses. **(b) Information Loss:** the implicit tokens of failed models (5 latent tokens) lose crucial information about operators (like $+$, $-$), which makes complex reasoning impossible. **(c) Shifted Distance:** the latent-to-latent distance of failed models shrinks and becomes too similar to each other, while the latent drifts away from the central vocabulary embedding space. **(d) Semantic Homogenization:** failed models produce similar latent representations, resulting in a narrower range of decoded tokens, mostly numbers, as opposed to the more varied content generated by a normal model.

To narrow the performance gap, inspired by the success of explicit CoT that scales computational budget for better performance, we explore a similar strategy for implicit CoT methods by increasing the number of implicit tokens. However, in Fig. 1 **(a)**, we reveal one underlying **latent instability issue** in current implicit CoT approaches. As we extend the number of implicit tokens from the default three (Hao et al., 2025) to five, the training process initially improves accuracy but becomes unstable and sometimes collapses entirely. To interpret the **latent instability issue**, we analyze implicit tokens from models trained on math reasoning data GSM8K-Aug (Deng et al., 2024). We follow previous works (Hao et al., 2025; Deng et al., 2024) to project the implicit tokens through the LM head and examine their top decoded tokens for analysis. As shown in Fig. 1 **(b)**, failed models tend to collapse into homogeneous latent states. While successful reasoning requires capturing both numerical and operator information, the implicit tokens of failed models primarily represent numbers, almost completely losing the critical operator information. Fig. 1 **(c)** further demonstrates that a model’s collapse is accompanied by two changes: a reduction in the inter-latent distance and a drift of the latent states away from the central vocabulary embedding space. The latent representations of failed models become too similar and lose their semantic connection to the tokens they are meant to represent. Fig. 1 **(d)** provides an example of the semantic homogenization. A normal model (top) maintains a large distance between its two latent tokens, allowing them to capture distinct information for numbers and operators. In contrast, a failed model (bottom)’s latent tokens become homogeneous, with both states decoding to similar information, primarily numbers.

Our observation (Fig. 1) reveals the reasons for the latent instability issue: a lack of sufficient step-level supervision for existing implicit methods to maintain the rich and varied internal representations. Without stronger guidance, the latent space collapses, losing its diversity and making it impossible to reliably encode the distinct, step-level reasoning needed for complex reasoning tasks. Motivated by our findings, we propose **Supervised IMplicit-CoT (SIM-CoT)**, a plug-and-play module that introduces step-level supervision for implicit CoT approaches to alleviate the latent instability issue.

108 Instead of supervising only the final answer (Hao et al., 2025) or the trajectory (Shen et al., 2025),
 109 SIM-CoT uses an auxiliary decoder to align each implicit token with its corresponding explicit
 110 reasoning step during training. The step-level supervision for implicit tokens stabilizes optimization,
 111 prevents collapse, and ensures that latent tokens capture meaningful reasoning content. Crucially,
 112 because the auxiliary decoder is removed during inference, our approach incurs virtually no extra
 113 computational cost, making it as efficient as standard implicit CoT approaches. Beyond *accuracy*,
 114 *stability*, and *efficiency*, the auxiliary decoder also affords *interpretability* of implicit reasoning.
 115 During training, it defines a projection from latent tokens to the explicit reasoning vocabulary,
 116 enabling us to decode each latent step into a human-interpretable summary for verification or error
 117 diagnosis.

118 Experiments show that SIM-CoT acts as a plug-and-play module that boosts both accuracy and
 119 stability. We show that SIM-CoT can be effortlessly combined with various implicit CoT approaches
 120 such as Coconut (Hao et al., 2025), CODI (Shen et al., 2025), and training-free approaches (Zhang
 121 et al., 2025) to further enhance reasoning performance. On GPT-2, SIM-CoT surpasses both the
 122 strong explicit baseline (supervised fine-tuning on explicit CoT data) by 2.1%, and outperforms
 123 existing implicit methods Coconut and CODI by 8.2% and 4.3%, respectively. The performance
 124 trend holds as the method scales to larger models such as the LLaMA series. SIM-CoT achieves
 125 improvements over CODI of 3.4% (LLaMA-3.2 1B), 1.5% (LLaMA-3.2 3B), and 3.0% (LLaMA-3.1
 126 8B), in addition to a 9.0% gain over Coconut on the LLaMA-3.2 1B model. Furthermore, while
 127 previous implicit CoT approaches (e.g., Coconut) collapse when scaled to 8 or 16 implicit tokens,
 128 SIM-CoT remains stable and continues to boost performance.

129 In summary, our contributions are as follows: **1)** We provide a systematic analysis of the latent insta-
 130 bility issue of implicit CoT approaches, showing that instability and collapse arise from insufficient
 131 supervision. **2)** We introduce SIM-CoT, which applies step-level supervision to the model’s implicit
 132 tokens. SIM-CoT not only integrates seamlessly with existing implicit CoT approaches and boosts
 133 performance with minimal inference overhead, but also affords interpretability of implicit reasoning
 134 by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization
 135 of semantic roles and diagnosis. **3)** Through extensive experiments, we demonstrate that SIM-CoT
 136 not only improves accuracy in the in-domain dataset, but also generalizes effectively to out-of-domain
 137 datasets. The performance gains are consistent across a range of LLMs, including GPT-2 and recent
 138 LLaMA 3 models (1B, 3B, and 8B).

2 ANALYSIS OF IMPLICIT COT: THE LATENT INSTABILITY ISSUE

142 We first present an analysis (Fig. 1) of the limitations in implicit latent CoT approaches. We follow
 143 Coconut (Hao et al., 2025) and analyze implicit latents by projecting them through the LM head and
 144 examining the top-8 decoded tokens to understand the semantic and geometric properties.

145 **Latent Instability Issue.** Fig. 1 **(a)** shows the training process of Coconut when the number of
 146 implicit latent tokens is progressively increased. Initially, as the number of latents increases from one
 147 to four, the model’s accuracy generally improves, suggesting that using more latents can enhance
 148 performance. However, a significant drop in accuracy occurs when the number of latents is scaled to
 149 five, with performance collapsing to its worst point of 12.5%. The latent instability issue indicates
 150 that the implicit reasoning approach is sensitive to the choice of the number of latent tokens, as shown
 151 by the sharp drop and subsequent fluctuations in accuracy after adding the fifth latent.

152 **Information Loss.** Fig. 1 **(b)** presents an analysis of how different levels of accuracy are affected by
 153 the number of latent tokens, using accuracy metrics at three levels: number, operator, and answer. The
 154 bar chart reveals a clear trend: as the number of latent tokens increases from 1 to 5, there is a general
 155 decline in performance across all three metrics, especially for the operator accuracy. The strong
 156 correlation between increased latent tokens and declining performance, particularly the sharp fall
 157 during failure, suggests that implicit latents do not consistently capture the necessary compositional
 158 reasoning process without more explicit, fine-grained supervision.

159 **Shifted Distance.** Fig. 1 **(c)** examines the geometric properties of the latent representations during
 160 training. Two metrics are analyzed: the Latent Distance (red), which measures the average distance
 161 between pairs of latent vectors, and the Vocab Distance (blue), which measures the average distance
 from each latent vector to the center of the vocabulary embedding space. When the latent CoT model

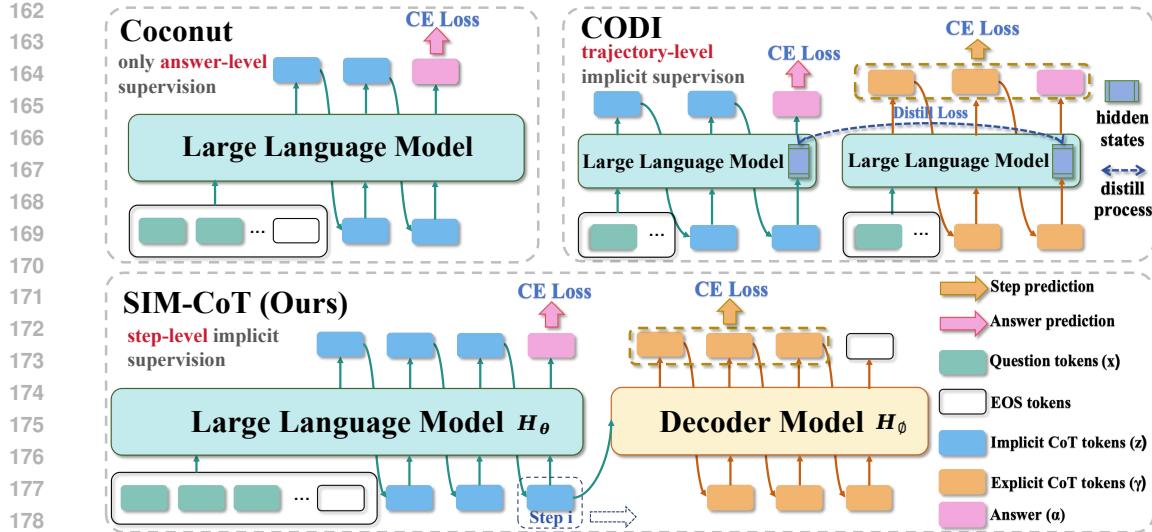


Figure 2: The framework comparison between **Coconut** (upper left), **CODI** (upper right), and our **SIM-CoT** (bottom). Unlike **Coconut** and **CODI**, which apply coarse-grained supervision on answers or trajectories, our **SIM-CoT** employs a decoder to **align implicit latents with step-level reasoning**, enhancing performance while maintaining inference efficiency.

collapses, the latent distance decreases sharply, indicating that the latent vectors are collapsing and becoming nearly identical, losing their distinctiveness. Simultaneously, the vocab distance increases, showing that these collapsing latents are drifting away from the main lexical embedding space and are no longer grounded in the fundamental token representations used by the model.

Semantic Homogenization. Fig. 1 (d) provides a qualitative analysis of the content of the latent tokens in a normal case versus a failed model. In the normal implicit model (middle), the decoded tokens from the latents are diverse and meaningful. In the failed implicit model (bottom), the semantic content of the latents becomes highly homogeneous. Latent 1 and Latent 2 contain mainly numbers, lacking operators or symbolic information needed for calculation. This shows that successful training produces latents with step-wise reasoning, while without explicit supervision, the latent space collapses into uniform numerical forms.

Summary. Our analysis across Fig. 1 (a-d) highlights a crucial trade-off between diversity and stability. When the model collapses, it loses both its diversity (as the latents become too similar) and its stability (as the latents move away from the token space), leading to catastrophic information loss and a complete failure of the reasoning process, as shown by the sharp drop in overall accuracy. These combined findings show that without proper guidance, the latent space degenerates, losing its ability to represent distinct reasoning steps. These challenges motivate our proposed method, which introduces **step-level implicit supervision** to stabilize the training process and enrich unique semantic content of each latent, all while maintaining efficiency during inference.

3 METHODOLOGY

Overview. As shown in Fig. 2, early implicit reasoning studies differ mainly in supervision granularity: **Coconut** (top left) uses answer-level supervision, while **CODI** (top right) introduces trajectory-level signals via distillation. Both remain coarse and do not tell the model which latent should encode which step. We propose **SIM-CoT**, which provides **step-level implicit supervision**: During an **implicit phase**, the LLM runs for a fixed number K of reasoning steps; at each step k it takes the **last hidden state** as the implicit latent z_k and appends it to the sequence as the next “token” vector. After K steps, the model switches back to **explicit** decoding over the vocabulary to generate the final answer. A decoder is used only in training to align each z_k with the textual content of the k -th reasoning step; at inference, the decoder is removed, so the runtime is essentially that of direct answer generation plus K forward positions, which is far shorter than explicit CoT token lengths.

216 3.1 NOTATION
217218 Let \mathcal{V} be the vocabulary and $E \in \mathbb{R}^{|\mathcal{V}| \times d}$ the token embedding matrix. A question is $x =$
219 $(x_1, \dots, x_T) \in \mathcal{V}^T$ with embedded prefix

220
$$U^{(0)} = (e(x_1), \dots, e(x_T)), \quad e(\cdot) \in \mathbb{R}^d.$$

221

222 We run an autoregressive LLM F_θ on any prefix $U = (u_1, \dots, u_m)$ of d -dimensional vectors (tokens
223 or latents). Denote the last-layer hidden state at the final position by

224
$$H_\theta(U) \in \mathbb{R}^d.$$

225

226 For supervision, the k -th textual step is $s_k = (y_{k,1}, \dots, y_{k,L_k}) \in \mathcal{V}^{L_k}$, and the answer is $a =$
227 $(a_1, \dots, a_{L_a}) \in \mathcal{V}^{L_a}$. The auxiliary decoder has parameters ϕ ; the LLM has parameters θ .228 3.2 IMPLICIT PHASE: LATENT CONSTRUCTION BY LAST HIDDEN STATES
229230 We fix the number of implicit reasoning steps K in advance. For each step $k = 1, \dots, K$,
231

232
$$z_k = H_\theta(U^{(k-1)}) \in \mathbb{R}^d, \quad U^{(k)} = U^{(k-1)} \oplus z_k, \quad (1)$$

233

234 where \oplus denotes concatenation along the time axis. The implicit chain-of-thought is therefore represented
235 as a continuous sequence of hidden states $z_{1:K} = (z_1, \dots, z_K)$, which are autoregressively
236 generated and appended to the context before the model switches to explicit decoding.237 3.3 EXPLICIT PHASE: ANSWER DECODING OVER THE VOCABULARY
238239 After constructing the implicit latents $z_{1:K}$, the model switches to explicit decoding to generate the
240 final answer. Let $W_o \in \mathbb{R}^{|\mathcal{V}| \times d}$ be the output projection (LM head). With teacher forcing on the
241 partial answer $a_{<t}$, the generation is
242

243
$$h_{T+K+t} = H_\theta(U^{(K)} \oplus e(a_{<t})), \quad (2)$$

244

245
$$p_\theta(a_t | x, z_{1:K}, a_{<t}) = \text{softmax}(W_o h_{T+K+t})_{a_t}, \quad (3)$$

246

247
$$p_\theta(a | x, z_{1:K}) = \prod_{t=1}^{L_a} p_\theta(a_t | x, z_{1:K}, a_{<t}). \quad (4)$$

248

249 3.4 TRAINING-TIME DECODER AND STEP-LEVEL SUPERVISION
250251 During training, a decoder p_ϕ (architecturally identical to the LLM) takes only the k -th implicit latent
252 z_k as conditioning signal and autoregressively generates the k -th textual step $s_k = (y_{k,1}, \dots, y_{k,L_k})$.
253 This provides **step-level** supervision that directly grounds z_k to its corresponding reasoning content:

254
$$p_\phi(s_{1:K} | z_{1:K}) = \prod_{k=1}^K p_\phi(s_k | z_k) = \prod_{k=1}^K \prod_{t=1}^{L_k} p_\phi(y_{k,t} | z_k, y_{k,<t}). \quad (5)$$

255

256 *Parameterization.* For step k , the decoder is conditioned on the implicit latent z_k obtained from the
257 LLM. Since z_k does not correspond to any token in the vocabulary, it is not included in the loss
258 calculation. Instead, z_k is injected as an additional prefix vector that initializes the decoder’s hidden
259 state for step generation. Concretely, the decoder input sequence is

260
$$U_k^{\text{dec}} = [z_k; e(y_{k,1}), \dots, e(y_{k,L_k})],$$

261

262 where $e(\cdot)$ denotes the embedding function of the LLM shared between both models. During training
263 with teacher forcing, the decoder predicts each token $y_{k,t}$ autoregressively:

264
$$p_\phi(y_{k,t} | z_k, y_{k,<t}) = \text{softmax}(W^{\text{dec}} h_{k,t}^{\text{dec}})_{y_{k,t}},$$

265

266 where $h_{k,t}^{\text{dec}}$ is the decoder hidden state at position t and W^{dec} is the LM head of the decoder.

270 The training loss for step k is then
 271

$$272 \quad \mathcal{L}_{\text{step},k} = - \sum_{t=1}^{L_k} \log p_\phi(y_{k,t} \mid z_k, y_{k,<t}),$$

274 which supervises only the textual step tokens. The decoder is used exclusively for this supervision
 275 during training and is discarded at inference.
 276

277 **3.5 OBJECTIVES**
 278

279 Training involves two complementary cross-entropy losses: one for supervising the textual steps
 280 through the decoder, and one for supervising the final answer through the base LLM.
 281

282 **Step-level supervision.** For each implicit latent z_k , the decoder p_ϕ generates the corresponding
 283 reasoning step $s_k = (y_{k,1}, \dots, y_{k,L_k})$. Since z_k is not a vocabulary token, the loss is computed only
 284 over the textual step tokens:

$$285 \quad \mathcal{L}_{\text{step}} = - \sum_{k=1}^K \sum_{t=1}^{L_k} \log p_\phi(y_{k,t} \mid z_k, y_{k,<t}). \quad (6)$$

287 This loss grounds each latent z_k to a specific reasoning step, ensuring that the latent sequence carries
 288 fine-grained semantics.
 289

290 **Answer supervision.** After K implicit steps, the LLM F_θ switches back to explicit decoding to
 291 generate the final answer $a = (a_1, \dots, a_{L_a})$. We optimize the standard language modeling loss:
 292

$$293 \quad \mathcal{L}_{\text{ans-lm}} = - \sum_{t=1}^{L_a} \log p_\theta(a_t \mid x, z_{1:K}, a_{<t}). \quad (7)$$

295 **Total objective.** The overall loss is a weighted sum:
 296

$$297 \quad \mathcal{L} = \lambda_{\text{step}} \mathcal{L}_{\text{step}} + \lambda_{\text{lm}} \mathcal{L}_{\text{ans-lm}}. \quad (8)$$

298 Gradients from $\mathcal{L}_{\text{step}}$ propagate through the decoder into the latent representations $z_{1:K}$ and further
 299 into the LLM (via Eq. equation 1), shaping the hidden states to encode step-level reasoning.
 300 Meanwhile, $\mathcal{L}_{\text{ans-lm}}$ trains the base model to produce the final answer directly, so the decoder can be
 301 discarded at inference time without affecting efficiency. Implementation details, inference procedures,
 302 and diagnostic analyses are provided in Appendix D.
 303

304 **4 EXPERIMENT**

305 **4.1 EXPERIMENTAL SETUP**
 306

307 **Training Data.** We follow previous works (Deng et al., 2024; Hao et al., 2025) to use the
 308 **GSM8k-Aug** dataset Deng et al. (2024) for training implicit CoT models. The GSM8k-Aug expands
 309 the original GSM8k training set (Cobbe et al., 2021) to 385k examples by using GPT-4
 310 for data generation. To facilitate implicit CoT training, the GSM8k-Aug removes the reasoning
 311 chain of natural language, preserving only a sequence of structured mathematical expressions.
 312 Each expression is logically linked to the previous step, as illustrated by the example:
 313 <<12 * 3=36>><<9 * 2=18>><<17 * 2=34>><<36+18+34=88>>.

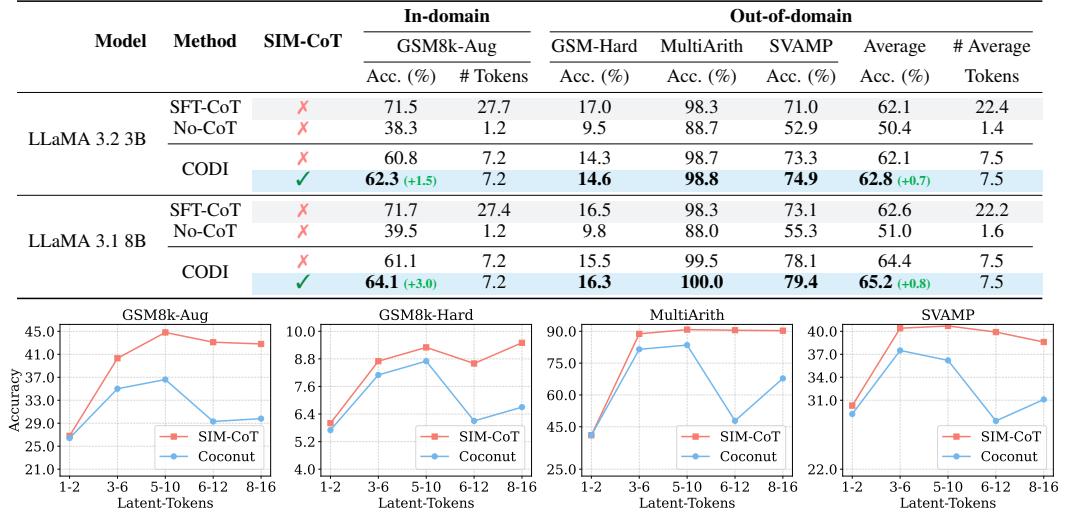
314 **Evaluation Benchmarks.** We report results on the **GSM8k-Aug** test set (Cobbe et al., 2021), which
 315 serves as our in-domain (ID) evaluation benchmark. To further evaluate mathematical reasoning
 316 under a distribution shift, we also evaluate models on three out-of-domain (OOD) benchmarks: (1)
 317 **SVAMP** (Patel et al., 2021), a dataset of grade-school arithmetic word problems that introduces
 318 simple variations to assess robustness; (2) **GSM-Hard** (Gao et al., 2022), a modified version of the
 319 GSM8k test split where numbers are replaced with larger magnitudes to increase problem difficulty;
 320 and (3) **MultiArith** (Roy & Roth, 2015), a subset of MAWPS (Koncel-Kedziorski et al., 2016)
 321 consisting of multi-step arithmetic word problems. Please refer to the Appendix D for more details.
 322

323 **Implementation Details.** We follow the training setup of previous works (Hao et al., 2025; Shen
 324 et al., 2025), and adopt consistent hyperparameter choices for GPT-2, LLaMA 1B/3B/8B. Detailed
 325 configurations, such as learning rates, curriculum strategies, are provided in Appendix C.
 326

324
 325
 326
 327
 328 Table 1: **Main results on GPT-2.** We report accuracy (%) on *in-domain* (GSM8k-Aug) and *out-of-domain* (GSM-Hard, MultiArith, SVAMP) benchmarks. Our SIM-CoT is shown to provide accuracy
 329 gains on top of existing methods such as Coconut (Hao et al., 2025) and CODI (Shen et al., 2025).

330 331 332 333 334 335 336 Method	337 338 339 SIM-CoT	340 341 342 343 344 345 346 347 348 In-domain		349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801				

378 Table 3: Main results on larger LLaMA models (3B and 8B). We report accuracy (%) on **in-domain**
 379 (GSM8k-Aug) and **out-of-domain** (GSM-Hard, MultiArith, SVAMP) benchmarks.



390 Figure 3: Ablation study on different numbers of implicit latents. The x-axis denotes the number of
 391 implicit latents and implicit tokens (joined with “-”), while the y-axis denotes accuracy. The blue line
 392 corresponds to our method SIM-CoT, and the orange line corresponds to the baseline Coconut.

401 average improvement of +4.3 points when using Coconut as the backbone. From the third column of
 402 Table 2, our method further improves upon the current SOTA implicit reasoning method CODI by
 403 +1.0 point. Moreover, when scaling model size from GPT-2 to LLaMA-1B, SIM-CoT enlarges the
 404 performance gap against iCoT, Coconut, and other baselines.

405 We attribute the robustness of SIM-CoT to its step-level implicit supervision. Unlike SFT-CoT,
 406 which forces the model to mimic deterministic natural language annotations, and unlike CODI,
 407 which applies trajectory-level alignment to a coarse-grained reasoning path, our method introduces
 408 a moderate form of supervision. This design ensures the plausibility of each reasoning step while
 409 preserving the diversity of reasoning trajectories, thereby improving generalization to unseen inputs.

410 **Inference Efficiency.** In terms of inference speed, our method maintains the same efficiency as
 411 other implicit reasoning approaches on both GPT-2 and LLaMA-1B. On GPT-2, SIM-CoT not only
 412 surpasses SFT-CoT on both in-domain and out-of-domain benchmarks, but also achieves a $2.3 \times$
 413 and $2.2 \times$ speedup on Coconut, respectively. On LLaMA-1B, SIM-CoT remains comparable to
 414 SFT-CoT in accuracy while delivering $1.9 \times$ and $1.7 \times$ speedups on in-domain and out-of-domain
 415 benchmarks, respectively. These results demonstrate the effectiveness of our approach in retaining or
 416 even enhancing the performance of explicit CoT while substantially reducing inference cost.

417 4.3 ABLATION STUDIES

418 **Ablation on the Number of Implicit Tokens.** We study the effect of varying the number of
 419 implicit latents on GPT-2, comparing SIM-CoT with Coconut trained on GSM8k-Aug and evaluated
 420 on GSM8k-Aug, GSM-Hard, MultiArith, and SVAMP (Fig. 3). Following Coconut, each latent
 421 corresponds to two tokens. As shown in Fig. 5, most problems involve two to six steps with a
 422 small proportion of harder cases, so we set the maximum number of implicit latents to 8. For each
 423 configuration, we report the best performance, and results show that SIM-CoT provides more stable
 424 training and achieves consistent gains over Coconut, indicating that step-level implicit supervision
 425 scales effectively with larger latent capacity.

426 **Ablation on Scaling to Larger Backbones.** To examine robustness and scalability, we extend experiments
 427 to larger LLaMA backbones, including LLaMA 3.2 3B and LLaMA 3.1 8B. Table 3 reports
 428 results on GSM8k-Aug (in-domain) and GSM-Hard, MultiArith, and SVAMP (out-of-domain).

429 Overall, SIM-CoT scales effectively to larger backbones, consistently surpassing or matching explicit
 430 CoT on out-of-domain tasks while reducing reliance on trajectory-level supervision.

432 Table 4: Comparison of (a) LLaMA 1B with different decoders and (b) latent token distance analysis.
 433 In (a), we evaluate the effect of using larger decoders with a 1B model on both in-domain (GSM8k-
 434 Aug) and out-of-domain benchmarks (GSM-Hard, MultiArith, SVAMP). In (b), we report average
 435 pairwise distances among latent tokens (Dist.) and their distances to the vocabulary center (Dist. to
 436 VC) under different settings, including failed cases and the effect after applying SIM-CoT.

437 (a) LLaMA 1B with different decoders.

438

Model	In-domain		Out-of-domain	
	GSM8k-Aug	GSM-Hard	MultiArith	SVAMP
Baseline	52.7	11.9	95.0	60.6
+ 1B Decoder	56.1	12.7	96.2	61.5
+ 3B Decoder	50.4	11.6	95.6	59.8
+ 8B Decoder	50.0	11.7	94.2	56.8

439 (b) Latent token distance analysis.

440

Setting	Dist.	Dist. to VC
1 latent	20.30	36.20
2 latent	23.46	28.82
4 latent	27.56	27.83
5 latent	28.34	28.34
Fail 5 latent	4.21	39.39
After SIM-CoT	32.81	29.80

441 Table 5: Ablation study of soft thinking on LLaMA 3.2 1B. We report accuracy (%) on the in-domain
 442 dataset (GSM8k-Aug) and out-of-domain datasets (GSM-Hard, MultiArith, and SVAMP). Adding
 443 soft thinking consistently improves both Coconut and SIM-CoT across all benchmarks, showing its
 444 effectiveness in enhancing implicit reasoning.

445

Method	GSM8k-Aug	GSM-Hard	MultiArith	SVAMP
Coconut	36.6	8.1	83.5	36.2
+ Soft Thinking	36.7	8.3	85.2	36.0
SIM-CoT	44.8	9.3	90.8	40.7
+ Soft Thinking	45.0	9.4	91.5	40.8

446 On **LLaMA 3.2 3B**, SIM-CoT improves over CODI by +1.5 points on GSM8k-Aug and +1.6
 447 points on SVAMP, while maintaining comparable performance on GSM-Hard and MultiArith. This
 448 demonstrates that step-level implicit supervision strengthens strong implicit reasoning baselines even
 449 at larger scales.

450 On **LLaMA 3.1 8B**, SIM-CoT yields gains of +3.0 points on GSM8k-Aug, +1.3 on SVAMP, and
 451 +0.8 on MultiArith relative to CODI, while maintaining stable accuracy on GSM-Hard. Compared
 452 with SFT-CoT, it achieves higher accuracy on MultiArith (100.0 vs. 98.3) and SVAMP (79.4 vs.
 453 73.1), while remaining similar on GSM-Hard.

454 Together, these results confirm that SIM-CoT scales effectively to larger backbones, providing
 455 consistent gains across both in-domain and out-of-domain benchmarks with reduced reliance on
 456 trajectory-level supervision.

457 **Ablation on Different Decoder Sizes.** We investigate how decoder size affects performance by
 458 replacing the decoder of the LLaMA 1B backbone with larger versions from the same vocabulary
 459 family and evaluating on GSM8k-Aug, GSM-Hard, MultiArith, and SVAMP. As shown in Table 4(a),
 460 integrating a 1B-scale decoder leads to consistent improvements across all benchmarks. However,
 461 simply scaling the decoder to larger variants (3B or 8B) does not yield additional benefits and instead
 462 slightly reduces accuracy.

463 These results suggest that moderate decoder scaling can enhance reasoning ability, but excessively
 464 large decoders may introduce optimization challenges or misalignment with the 1B backbone,
 465 ultimately limiting generalization. A plausible explanation is that the 1B encoder and 1B decoder
 466 originate from the same model family and thus share a more compatible representation space,
 467 facilitating stable learning. In contrast, larger decoders (3B or 8B) may require implicit projection to
 468 align with the 1B backbone, which can introduce representational mismatches and hinder training
 469 stability.

470 **Ablation on Soft Thinking.** We also study the effect of integrating soft thinking (Zhang et al., 2025;
 471 Wu et al., 2025) with both Coconut and SIM-CoT. For clarity, the detailed experimental setup, results,
 472 and analyses are provided in Appendix A.

473 **Interpretability of Implicit Reasoning.** Implicit reasoning models generate continuous latent
 474 thoughts that do not correspond to vocabulary tokens and thus cannot be directly decoded into

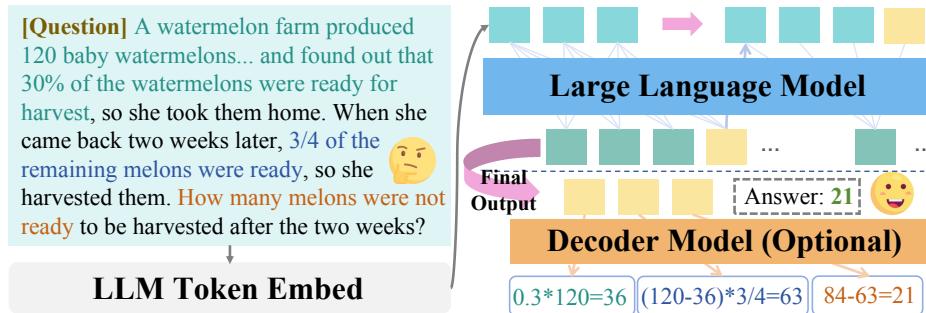


Figure 4: SIM-CoT case study on GSM8k. The generated implicit continuous tokens are subsequently interpreted by our decoder, which visualizes the solution intermediate steps leading to the final output.

human-readable text. To address this, we reuse the training decoder to project each latent step into interpretable textual space, enabling per-step visualization of latent semantics (Fig. 4). For completeness, detailed descriptions and additional visualization examples are provided in Appendix G.

To better understand the latent space, we analyze two geometric measures: the average pairwise distance among latent tokens (Dist.) and their distance to the vocabulary center (Dist. to VC), summarized in Table 4(b) and Fig. 6. As the number of latent tokens increases from 1 to 5, Dist. rises from 20.30 to 28.34, indicating improved separability. In the failed 5-latent case, however, Dist. collapses to 4.21, showing that tokens converge to nearly identical points; SIM-CoT avoids this collapse and increases Dist. to 32.81. For Dist. to VC, values decrease from 36.20 (1 latent) to around 28 as more tokens are introduced, reflecting better alignment with the vocabulary manifold. The failed 5-latent case instead spikes to 39.39, indicating drift, whereas SIM-CoT stabilizes this measure at 29.80. Fig. 6 qualitatively confirms these patterns: normal tokens remain separated and grounded, failed tokens collapse and drift outward, and SIM-CoT restores a structured configuration. Overall, these analyses show that SIM-CoT improves stability while maintaining an interpretable latent space.

5 RELATED WORK

A large body of work has studied explicit chain-of-thought (CoT) prompting, including self-consistency (Wei et al., 2022; Wang et al., 2023), least-to-most prompting (Zhou et al., 2023), reflection-based reasoning (Shinn et al., 2023; Madaan et al., 2023), and the integration of external tools (Yao et al., 2023). Other work investigates step-level supervision to structure explicit reasoning (Zheng et al., 2023; Wei et al., 2025). While effective, explicit CoT increases inference cost with longer sequences and often produces redundant steps, limiting efficiency and reasoning diversity (Li et al., 2025; Zhang et al., 2025; Xu et al., 2025).

Implicit CoT aims to reduce output length while retaining multi-step reasoning. Prior work explores knowledge internalization (Deng et al., 2024), architectural modification (Saunshi et al., 2025; Chen et al., 2025; Cheng & Van Durme, 2024; Su et al., 2025; Mohtashami et al., 2023; Geiping et al., 2025), training-free latent construction (Zhang et al., 2025; Wu et al., 2025), and auto-regressive latent reasoning (Xu et al., 2025; Tan et al., 2025). Coconut applies answer-level supervision (Hao et al., 2025), and CODI uses trajectory-level distillation (Shen et al., 2025). Our work introduces step-level supervision, which distributes signals across latent steps and improves stability. See extended discussion in Appendix B.

6 CONCLUSION

We introduce SIM-CoT, a training-based implicit reasoning method with step-level supervision on latent tokens. On GPT-2, SIM-CoT outperforms the strong explicit baseline SFT-CoT, while also surpassing implicit baselines such as Coconut and CODI. When scaling to larger LLaMA backbones, the performance achieves consistent gains over existing implicit reasoning methods and maintains fast inference efficiency. Ablation studies further show that it improves training stability with more latent tokens and can benefit from integration with training-free techniques such as soft thinking. Distance analysis confirms that SIM-CoT produces latent representations that are diverse yet stable.

540 REFERENCES
541

542 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>.

544 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking of 01-like llms. [arXiv preprint arXiv:2412.21187](https://arxiv.org/abs/2412.21187), 2024.

548 Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic depth scaling to foster adaptive internal thinking. [arXiv preprint arXiv:2502.13842](https://arxiv.org/abs/2502.13842), 2025.

551 Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through 552 dense representations. [arXiv preprint arXiv:2412.13171](https://arxiv.org/abs/2412.13171), 2024.

554 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, 555 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve 556 math word problems. [arXiv preprint arXiv:2110.14168](https://arxiv.org/abs/2110.14168), 2021.

557 Yuntian Deng, Yeqin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize 558 cot step by step. [ArXiv](https://arxiv.org/abs/2405.14838), abs/2405.14838, 2024.

560 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and 561 Graham Neubig. Pal: Program-aided language models. [arXiv preprint arXiv:2211.10435](https://arxiv.org/abs/2211.10435), 2022.

562 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, 563 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent 564 reasoning: A recurrent depth approach. [arXiv preprint arXiv:2502.05171](https://arxiv.org/abs/2502.05171), 2025.

566 Google. Our next-generation model: Gemini 1.5, 2024. URL <https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024>.

569 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 570 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms 571 via reinforcement learning. [arXiv preprint arXiv:2501.12948](https://arxiv.org/abs/2501.12948), 2025.

572 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhitong Hu, Jason Weston, and Yuandong Tian. 573 Training large language models to reason in a continuous latent space. In [COLM](https://colm.csail.mit.edu), 2025.

574 Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS: 575 A math word problem repository. In [NAACL](https://naacl.org/naacl2016), 2016.

577 Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, and 578 Rex Ying. Implicit reasoning in large language models: A comprehensive survey. [arXiv preprint 579 arXiv:2509.02350](https://arxiv.org/abs/2509.02350), 2025.

580 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 581 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-Refine: Iterative refinement with 582 self-feedback. In [NeurIPS](https://neurips.cc), 2023.

584 Meta. Llama 3.2: Revolutionizing edge ai and vision with open, cus- 585 tomizable models, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices>.

587 Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: More tokens with 588 attention make up for less depth. In [WANT@ NeurIPS](https://want.csail.mit.edu) 2023, 2023.

590 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 591 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time 592 scaling. [arXiv preprint arXiv:2501.19393](https://arxiv.org/abs/2501.19393), 2025.

593 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o>.

594 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve simple
 595 math word problems? In [NAACL](#), 2021.

596

597 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 598 models are unsupervised multitask learners. [OpenAI Technical Report](#), 2019.

599 Subhro Roy and Dan Roth. Solving general arithmetic word problems. In [EMNLP](#), 2015.

600

601 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
 602 latent thoughts: On the power of looped transformers. [arXiv preprint arXiv:2502.17416](#), 2025.

603

604 Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
 605 chain-of-thought into continuous space via self-distillation. [arXiv preprint arxiv:2502.21074](#),
 606 2025.

607

608 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 609 Language agents with verbal reinforcement learning. In [NeurIPS](#), 2023.

610

611 DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
 612 assorted: Mixing latent and text tokens for improved language model reasoning. [arXiv preprint
 613 arXiv:2502.03275](#), 2025.

614

615 Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently,
 616 think fast: Dynamic latent compression of llm reasoning chains. [arXiv preprint arXiv:2505.16552](#),
 617 2025.

618

619 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, and Denny Zhou. Self-
 620 consistency improves chain of thought reasoning in language models. In [ICLR](#), 2023.

621

622 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
 623 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
 624 [NIPS](#), 2022.

625

626 Ting-Ruen Wei, Haowei Liu, Xuyang Wu, and Yi Fang. A survey on feedback-based multi-step
 627 reasoning for large language models on mathematics. [arXiv preprint arXiv:2502.14333](#), 2025.

628

629 Junhong Wu, Jinliang Lu, Zixuan Ren, Ganqiang Hu, Zhi Wu, Dai Dai, and Hua Wu. Llms have a
 630 heart of stone: Demystifying the soft thinking ability of large reasoning models. [arXiv preprint
 631 arXiv:2508.03440](#), 2025.

632

633 Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. SoftCoT: Soft chain-of-thought for efficient
 634 reasoning with llms. In [ACL](#), 2025.

635

636 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 637 ReAct: Synergizing reasoning and acting in language models. In [ICLR](#), 2023.

638

639 Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
 640 and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
 641 space. [arXiv preprint arXiv:2505.15778](#), 2025.

642

643 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 644 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
 645 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
 646 Ji-Rong Wen. A survey of large language models. [arXiv preprint arXiv:2303.18223](#), 2023. URL
 647 <http://arxiv.org/abs/2303.18223>.

648

649 Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
 650 improves reasoning in large language models. [arXiv preprint arXiv:2304.09797](#), 2023.

651

652 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
 653 Ed Chi, and Quoc V. Le. Least-to-most prompting enables complex reasoning in large language
 654 models. In [NeurIPS](#), 2023.

655

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

USAGE OF LARGE LANGUAGE MODELS

In this paper, we used LLMs only for minor language polishing and formatting, without generating ideas, analyses, or experimental results.

OUTLINE

In this appendix, we provide additional analyses and supporting materials to complement the main text. In Sec. A, we present experiments on combining soft thinking with SIM-CoT, including setup, results, and a detailed formulation with pseudocode. In Sec. B, we provide an overview of related work in explicit and implicit chain-of-thought reasoning. In Secs. C and D, we describe our implementation, hyperparameter configurations, **boundary conditions for implicit token alignment**, **training overhead** and training/inference procedures, including benchmark and dataset details. In Sec. E, we introduce the SIM-CoT training procedure and provide pseudocode for step-level supervision. In Sec. F, we offer geometric diagnostics of the latent space, analyzing inter-latent distances and distance to the vocabulary center. In Sec. G, we discuss interpretability analysis, including latent visualization and summary findings. Finally, we provide declarations on LLM usage and additional case studies on GSM8k to further illustrate the reasoning process and visualization choices.

A ADDITIONAL ANALYSIS ON SOFT THINKING

Soft thinking (Zhang et al., 2025; Wu et al., 2025) is a training-free method for implicit reasoning in which the latent space is represented as a weighted average over the vocabulary embedding space. In contrast, SIM-CoT learns latent representations directly from data during training. To our knowledge, no prior work has evaluated a combination of these two approaches; our experiments provide the first such evaluation.

A.1 SETUP

We apply the proposed soft thinking mechanism on top of both Coconut and SIM-CoT, while adopting GPT-2 as the backbone model. To assess the effectiveness of this approach, we perform evaluations on a diverse set of mathematical reasoning benchmarks. The in-domain evaluation is carried out on GSM8k-Aug, which provides augmented training and testing samples closely aligned with the original GSM8k distribution. To further examine generalization beyond the training domain, we include three out-of-domain benchmarks: GSM-Hard, which contains more challenging arithmetic problems with subtle variations in reasoning steps; MultiArith, which evaluates performance on multi-step arithmetic operations requiring careful sequencing of addition, subtraction, multiplication, and division; and SVAMP, which focuses on variations of elementary word problems designed to test robustness to superficial changes in problem statements.

A.2 RESULTS

Table 5 (b) reports the results. Adding soft thinking improves accuracy in most cases. For Coconut, improvements are observed on GSM-Hard (+0.2) and MultiArith (+1.7), with a slight decrease on SVAMP (-0.2). For SIM-CoT, soft thinking consistently enhances performance: GSM8k-Aug (+0.2), GSM-Hard (+0.1), MultiArith (+0.7), and SVAMP (+0.1).

A.3 FORMULATION

Let $z \in \mathbb{R}^d$ denote a continuous latent token, and $E \in \mathbb{R}^{|\mathcal{V}| \times d}$ be the embedding matrix of the vocabulary \mathcal{V} . Our goal is to enrich the representational capacity of z by incorporating soft thinking, which allows the latent space to draw information not only from its continuous representation but also from the semantic structure of the vocabulary. The process can be described in three steps.

702 **Step 1. Vocabulary distribution.** The continuous latent token z is first mapped into a probability
 703 distribution over the vocabulary space:

704
$$p = \text{softmax}(Wz),$$

706 where $W \in \mathbb{R}^{|\mathcal{V}| \times d}$ is the output projection matrix and $p \in \mathbb{R}^{|\mathcal{V}|}$ is the resulting distribution. This
 707 step can be viewed as interpreting the latent token in terms of vocabulary-level semantics, where each
 708 token in \mathcal{V} is assigned a likelihood according to its relevance to z .

710 **Step 2. Soft-thinking embedding.** Using the distribution p , we compute a weighted mixture of
 711 vocabulary embeddings:

712
$$z_{\text{soft}} = E^T p = \sum_{v \in \mathcal{V}} p_v E_v,$$

714 where E_v is the embedding vector corresponding to token v . This operation can be seen as constructing
 715 a "soft token" that captures multiple semantic hypotheses simultaneously, instead of committing
 716 to a single discrete vocabulary token. As a result, z_{soft} provides richer and smoother information than
 717 a hard token lookup.

718 **Step 3. Combination.** Finally, we combine the original continuous latent z with the soft-thinking
 719 embedding z_{soft} :

721
$$z' = \alpha z + \beta z_{\text{soft}},$$

722 where $\alpha = \text{continuous_weight}$ and $\beta = \text{soft_weight}$ are hyperparameters that balance the
 723 contribution of the continuous and soft-thinking components. This formulation allows z' to retain
 724 the model's learned continuous representations while also grounding them in the vocabulary space.
 725 Intuitively, the continuous part encourages compact reasoning within the latent space, whereas the
 726 soft-thinking component brings in semantic priors from the vocabulary, leading to more stable and
 727 interpretable reasoning.

728 The pseudocode implementation of the above process is presented as follows.

730 **Algorithm 1** Soft Thinking with Continuous Tokens

731 **Require:** Continuous latent z , embedding matrix E , weights α, β
 732 1: **if** $\beta > 0$ **then**
 733 2: Compute logits: $l \leftarrow Wz$
 734 3: Convert to probabilities: $p \leftarrow \text{softmax}(l)$
 735 4: Form soft embedding: $z_{\text{soft}} \leftarrow E^T p$
 736 5: Update latent: $z' \leftarrow \alpha z + \beta z_{\text{soft}}$
 737 6: **else**
 738 7: $z' \leftarrow z$
 739 8: **end if**
 740 9: **return** z'

741
 742 A.4 ANALYSIS

744 The results demonstrate that soft thinking complements training-based implicit reasoning. The hybrid
 745 latent z' integrates semantics learned through training and distributional information from vocabulary
 746 mixing, which enables the model to explore diverse intermediate states rather than committing
 747 to a single deterministic path. This leads to improvements in both in-domain and out-of-domain
 748 benchmarks. Our findings suggest that combining training-free construction with training-based
 749 supervision provides gains beyond either approach in isolation.

750
 751 B RELATED WORK

752 **Explicit chain-of-thought reasoning.** Chain-of-thought (CoT) prompting enables large language
 753 models (LLMs) to generate intermediate reasoning steps before producing the final answer (Wei et al.,
 754 2022). This approach has been widely studied and extended in many directions. Self-consistency
 755 samples multiple reasoning paths and selects the majority answer to improve reliability (Wang et al.,

2023). Least-to-most prompting decomposes a complex question into simpler sub-problems and solves them in order (Zhou et al., 2023). Reflection-based reasoning allows the model to revise or verify its own intermediate steps, leading to better correctness (Shinn et al., 2023; Madaan et al., 2023). Other works focus on using external tools or symbolic solvers together with explicit reasoning, which further improves accuracy in mathematics and program synthesis (Yao et al., 2023). Methods such as progressive-hint prompting (Zheng et al., 2023) and step-level feedback (Wei et al., 2025) study how supervision can be incorporated into explicit reasoning to make reasoning more structured. Despite these advances, explicit CoT has clear drawbacks. Because it generates long token sequences, inference cost grows rapidly with reasoning length, and many intermediate steps are redundant or irrelevant to the final answer. Moreover, since explicit reasoning is restricted to tokens from a fixed vocabulary, it often commits to a single trajectory and shows limited reasoning diversity (Li et al., 2025; Zhang et al., 2025; Xu et al., 2025).

Implicit chain-of-thought reasoning. Implicit CoT performs multi-step computation in a continuous latent space instead of emitting long textual traces, reducing decoded length while keeping internal structure. Prior work follows four practical routes. First, **knowledge internalization** trains models to carry out reasoning internally by progressively removing explicit traces or by using dedicated control embeddings; examples include iCoT-SI (Deng et al., 2024), which removes steps during training to internalize reasoning. Second, **architectural modification** controls compute by reusing or skipping layers, or by adding light recurrence, so models can refine hidden states without lengthening outputs (Saunshi et al., 2025; Chen et al., 2025; Cheng & Van Durme, 2024; Su et al., 2025; Mohtashami et al., 2023; Geiping et al., 2025). Third, **training-free** methods construct continuous latents directly from the model’s probability distribution over the vocabulary; Soft Thinking mixes embeddings by probability to form “concept” tokens that explore alternative paths without updating weights, which improves efficiency and diversity but does not bind each latent to step-level semantics (Zhang et al., 2025; Wu et al., 2025).

The fourth route, **auto-regressive latent reasoning**, updates and concatenates latent states in place of some token-level decoding and is the most relevant to our work (Xu et al., 2025; Tan et al., 2025). Coconut applies **answer-level** supervision—training on the final answer while leaving intermediate latents weakly constrained (Hao et al., 2025). CODI adds **trajectory-level** distillation by aligning an implicit trajectory with an explicit CoT trace, narrowing the gap to explicit CoT but giving only coarse guidance to intermediate steps (Shen et al., 2025). However, the implicit token length in CODI is fixed during training, which limits its flexibility and makes it less suitable for scaling to variable or longer reasoning chains. Our framework remains in the auto-regressive setting but changes the supervision: during training, each latent is aligned with its corresponding textual step (**step-level** supervision), distributing learning signals across the full latent chain to improve stability and semantic fidelity of intermediate states; at inference, the decoder is discarded, ensuring that the decoding cost remains identical to that of standard implicit CoT methods (e.g., Coconut).

C IMPLEMENTATION AND TRAINING DETAILS

We provide the full hyperparameter settings, training procedures, and additional analysis used in our experiments. Unless otherwise specified, we use the AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and weight decay of 0.1. Batch size is set to 128 for GPT-2 and LLaMA 1B, and 64 for LLaMA 3B and 8B. Early stopping is applied with a patience of 3 epochs. We now describe the training setups for Coconut, CODI, and our SIM-CoT.

C.1 COCONUT TRAINING SETUP

Following Hao et al. (2025), GPT-2 and LLaMA 1B (Radford et al., 2019; Meta, 2024) are trained with a fixed learning rate of 1×10^{-4} . One implicit latent corresponds to two implicit tokens. A curriculum is applied: every three epochs, one explicit reasoning step is replaced by an implicit latent until the maximum number of latent steps is reached. After this expansion, training continues for 15 additional epochs.

810 C.2 CODI TRAINING SETUP
811

812 For larger backbones such as LLaMA 3B and LLaMA 8B, we adopt task-specific hyperparameter
813 settings to ensure stable training. In particular, we use a learning rate of 3×10^{-4} for LLaMA 3B
814 and train for 8 epochs, while for LLaMA 8B the learning rate is reduced to 1×10^{-4} with 6 training
815 epochs. These choices are motivated by the increased sensitivity of larger models to optimization
816 dynamics, where smaller learning rates and fewer epochs help to prevent overfitting and instability.

817 When reproducing CODI on GPT-2 and LLaMA 1B, we strictly follow the configurations reported
818 by Shen et al. (2025). Specifically, we use a learning rate of 3×10^{-3} with 40 epochs for GPT-2, and
819 a learning rate of 8×10^{-4} with 10 epochs for LLaMA 1B. Adopting these settings ensures that our
820 results are directly comparable to prior work and isolates the effect of our proposed method, rather
821 than confounding it with differences in optimization schedules.

822 C.3 SUMMARY OF HYPERPARAMETERS
823824 Table 6: Training hyperparameters across different models.
825

826 Model	827 Method	828 LR	829 Epochs
828 GPT-2	829 Coconut	1×10^{-4}	15 + curriculum
829 LLaMA 1B	830 Coconut	1×10^{-4}	15 + curriculum
830 GPT-2	831 CODI	3×10^{-3}	40
831 LLaMA 1B	832 CODI	8×10^{-4}	10
832 LLaMA 3B	833 CODI	3×10^{-4}	8
833 LLaMA 8B		1×10^{-4}	6

834 C.4 TRAINING-TIME OVERHEAD
835

836 We analyze the computational overhead introduced during training by the auxiliary decoder. Since
837 the auxiliary decoder has the same architecture and number of parameters as the original decoder, and
838 it participates in an additional forward pass during training, the overall parameter count and memory
839 usage are approximately doubled compared with the implicit baselines Coconut and CODI.

840 To quantify the training-time overhead, Table 7 reports the wall-clock training hours of SIM-CoT and
841 the corresponding implicit models under identical hardware settings (H800). Across different model
842 scales, SIM-CoT introduces only a moderate increase in training time, ranging from approximately 2
843 hours for smaller backbones to around 16 hours for larger ones.

844 Table 7: Training hours of SIM-CoT compared with implicit baselines under identical hardware
845 (H800).
846

847 Model	848 Training Hours
848 Coconut GPT	$\sim 180\text{h}$
849 SIM-CoT (Coconut GPT)	$\sim 192\text{h}$
850 CODI GPT	$\sim 16\text{h}$
851 SIM-CoT (CODI GPT)	$\sim 18.2\text{h}$
852 CODI 1B	$\sim 16.5\text{h}$
853 SIM-CoT (CODI 1B)	$\sim 18.5\text{h}$
854 CODI 3B	$\sim 34\text{h}$
855 SIM-CoT (CODI 3B)	$\sim 42\text{h}$
856 CODI 8B	$\sim 71\text{h}$
857 SIM-CoT (CODI 8B)	$\sim 87\text{h}$

858 These results show that the additional computational cost introduced by SIM-CoT remains modest
859 relative to the improvements in stability and accuracy it provides.

864

865

866

C.5 BOUNDARY CONDITIONS IN IMPLICIT TOKEN-STEP ALIGNMENT

867

868

869

870

871

Since the model produces a fixed number of implicit tokens (K) independent of the length of the ground-truth reasoning chain, we formalize the boundary conditions that govern how these tokens are aligned with textual reasoning steps. Let the annotated reasoning contain N steps. Under this formulation, two boundary cases emerge:

872

873

874

Case 1: $N > K$ (Longer reasoning chains). When the reasoning chain contains more steps than latent tokens, a direct one-to-one alignment is impossible. We adopt a *many-to-one* strategy: the first $K - 1$ latent tokens are aligned individually to the first $K - 1$ reasoning steps, while the final token z_K receives supervision from the concatenation of the remaining steps (steps K through N). This boundary condition ensures that information from longer chains is preserved rather than truncated.

875

876

877

878

879

880

Case 2: $N < K$ (Shorter reasoning chains). When the reasoning chain is shorter than the number of latent tokens, the first N latent tokens align one-to-one with the available reasoning steps. The remaining latent tokens (z_{N+1} to z_K) are aligned with the final answer. This encourages the model to utilize its surplus latent capacity to refine the target solution.

881

882

883

884

These boundary rules guarantee that each implicit token is assigned a semantically meaningful supervision signal, regardless of how the reasoning length compares with the fixed latent budget K . They also provide stability during training by preventing both supervision sparsity (when $N < K$) and information loss (when $N > K$).

885

886

D TRAINING AND INFERENCE DETAILS

887

888

Curriculum for K . We use a curriculum schedule to gradually increase the number of implicit steps. Each latent corresponds to two implicit tokens. Let K_{\max} denote the maximum number of latents. Starting from $K^{(0)} = 0$, the number of implicit steps after epoch e is

$$K^{(e)} = \min\left(K_{\max}, \left\lfloor \frac{e}{\Delta e} \right\rfloor\right),$$

where Δe is the update interval in epochs. Once $K^{(e)}$ reaches K_{\max} , it remains fixed for the remainder of training.

889

890

Inference and Efficiency. At inference time, the auxiliary decoder is removed and only the base model is executed:

891

892

$$U^{(0)} = [e(x_1), \dots, e(x_T)], \quad \text{for } k = 1, \dots, K : z_k = H_{\theta}(U^{(k-1)}), \quad U^{(k)} = U^{(k-1)} \oplus z_k,$$

893

894

and after K implicit steps the model switches back to explicit decoding to generate the final answer sequence a as in Eq. equation 4. The total decoding length is $T + K + L_a$, where T is the input length, K the number of implicit steps, and L_a the answer length. In practice, the cost is comparable to other implicit reasoning methods because K is moderate. In tasks where explicit CoT requires long trajectories ($L_{\text{CoT}} \gg K$), the implicit formulation reduces decoding positions, providing efficiency gains without loss of reasoning accuracy.

895

896

897

898

899

Benchmark Detail. SVAMP (Patel et al., 2021) (Simple Variations on Arithmetic Math Word Problems) is a benchmark dataset designed to test the robustness of math word problem solvers to superficial changes. It contains 1,000 elementary-level arithmetic word problems (grade 4 and below), each involving a single unknown and solvable by an arithmetic expression with no more than two operators. The problems are transformations of existing datasets (such as MAWPS and ASDiv-A) with controlled variations in wording, structure, and number values to reduce artifacts and superficial cues. SVAMP’s average number of reasoning steps required is around 1.2, similar to the base datasets, but model performance drops significantly when tested on SVAMP, showing that many models rely on heuristic patterns rather than deep understanding.

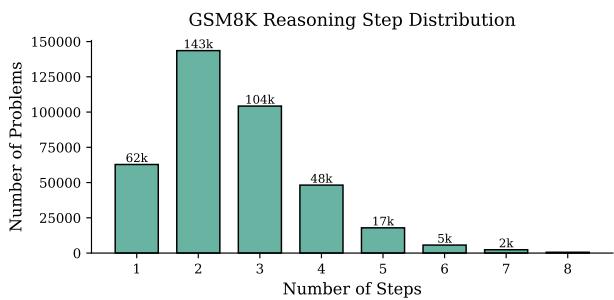


Figure 5: Distribution of reasoning steps in the GSM8K-Aug training dataset. Most problems involve two to four steps, with a long-tail of harder cases. For visualization, step counts with fewer than 200 problems are omitted, though all examples are used in training.

GSM-Hard (Gao et al., 2022) is a more challenging variant of the GSM8K dataset, intended to test models’ ability to cope with harder numerical values. It retains the same problem statements as the original GSM8K, but replaces many of the numbers with larger and less common numerical values, making superficial arithmetic computation and reasoning harder. The dataset has about 1,319 examples (matching the GSM8K test set size).

MultiArith (Roy & Roth, 2015) is a dataset of multi-step arithmetic word problems designed to challenge systems to correctly sequence multiple operations. It contains 600 problems collected from educational sources, each solvable by one equation involving two or more of the four basic operations (addition, subtraction, multiplication, division). The problems require reasoning over multiple sentences to extract and combine numeric quantities, understand the implied operations, and compute the result. MultiArith has been widely used as a benchmark for evaluating arithmetic reasoning generalization, particularly for models that go beyond single-operation problems. Analyses show that many models struggle on these examples compared to simpler datasets, highlighting the importance of handling compositional and sequential numerical reasoning.

Training Data. **GSM8K-Aug** (Deng et al., 2024) is the only training corpus we use. It is an augmented dataset derived from GSM8K (Cobbe et al., 2021), expanding the original 8.5k training problems to roughly 385k examples through paraphrasing, numerical resampling, and synthetic generation with GPT-4. The distribution of reasoning steps in GSM8K-Aug is illustrated in Fig. 5, where the majority of problems require two to four steps, while a long-tail of six or more steps persists. This balance of common and complex instances makes GSM8K-Aug particularly suitable for training models that need to generalize across reasoning difficulty levels.

E SIM-COT TRAINING IMPLEMENTATION

We provide pseudocode for the SIM-CoT training process, which illustrates how continuous latent embeddings are aligned with explicit supervision at the step level. In particular, each reasoning step in the explicit chain is mapped to a corresponding latent representation, and the training objective enforces consistency between the predicted latent tokens and the ground-truth step annotations. This design ensures that the model learns to represent intermediate reasoning steps in a compact latent space while still retaining interpretability through explicit alignment. By supervising at the step level rather than only at the final answer or trajectory level, SIM-CoT enables finer control over the reasoning process and reduces instability that often arises when scaling to longer chains or larger numbers of implicit tokens.

F GEOMETRIC DIAGNOSTICS OF THE LATENT SPACE

We analyze the geometry of latent representations with two metrics.

Inter-latent distance.

$$\text{Dist}(z_{1:K}) = \frac{2}{K(K-1)} \sum_{1 \leq i < j \leq K} \|z_i - z_j\|_2. \quad (9)$$

A larger value indicates better separation, reducing the risk of collapse.

972 **Algorithm 2** SIM-CoT Training Procedure

973 **Require:** Batch size b , number of thoughts C , continuous embeddings Z , tokenized inputs X ,
 974 embedding matrix E

975 1: **for** each thought $t = 1, \dots, C$ **do**

976 2: **for** each sample $i = 1, \dots, b$ **do**

977 3: Extract continuous embeddings $z_{i,t}$ from Z

978 4: Obtain token embeddings $e_{i,t}$ from $E(X_{i,t})$

979 5: Concatenate embeddings: $h_{i,t} \leftarrow [z_{i,t}; e_{i,t}]$

980 6: Build attention mask $m_{i,t}$ up to EOS

981 7: Assign position ids $p_{i,t}$

982 8: Prepare labels $y_{i,t}$ with masked tokens set to -100

983 9: **end for**

984 10: **end for**

985 11: Pad and stack $\{h, m, p, y\}$ to maximum sequence length

986 12: Prepare 4D attention mask: $\hat{M} \leftarrow \text{PrepareMask}(M)$

987 13: Forward pass: $\hat{O} \leftarrow \text{ExplainableLLM}(H, \hat{M}, P)$

988 14: Extract logits: $L \leftarrow \hat{O}.\text{logits}$

989 15: Shift logits and labels: $L' \leftarrow L[:, :-1]$, $Y' \leftarrow Y[:, 1:]$

990 16: Compute cross-entropy loss: $\ell = \text{CrossEntropy}(L', Y')$

991 17: Normalize ℓ over valid positions

992 **Ensure:** Final training loss ℓ

993
 994 *Distance to vocabulary center.* Let $\mu = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} E_v$ denote the mean embedding. Then,

995
 996
$$\text{DistVC}(z_{1:K}) = \frac{1}{K} \sum_{k=1}^K \|z_k - \mu\|_2. \quad (10)$$

997
 998

999 Moderate values indicate that latents remain close enough to the lexical manifold for stability, while
 1000 avoiding collapse toward the center. These diagnostics are not used in training but serve as indicators
 1001 of diversity and stability in the learned latent space.

1002 **G ADDITIONAL DETAILS FOR INTERPRETABILITY ANALYSIS**

1003 **G.1 MAKING IMPLICIT REASONING VISIBLE**

1004
 1005 Continuous thoughts produced by implicit reasoning models are represented as latent embeddings
 1006 that do not correspond to discrete vocabulary tokens, and therefore cannot be directly decoded by a
 1007 tokenizer. This makes it difficult to interpret how the model internally organizes multi-step reasoning.
 1008 To address this, we reuse the decoder that was employed for step-level supervision during training,
 1009 and apply it at inference time to map each latent embedding into a human-readable token sequence.

1010
 1011 As illustrated in Figure 4, the process begins with a natural language problem (e.g., a math word
 1012 problem) that is embedded and passed into the large language model. The model generates a sequence
 1013 of implicit latent tokens, which capture intermediate reasoning steps in continuous space. These latent
 1014 tokens are then fed into the optional decoder, which translates them into interpretable expressions.
 1015 Each latent corresponds to one reasoning step, and the autoregressive generation order encodes the
 1016 dependency structure across steps.

1017
 1018 For example, in the GSM8k case study shown in the figure, the first latent is decoded as $0.3 \times 120 = 36$,
 1019 representing the number of watermelons harvested initially. The second latent builds upon this result
 1020 to compute $120 - 36 = 84$, the remaining melons. The third latent then calculates $\frac{3}{4} \times 84 = 63$, and
 1021 the final latent derives the answer $84 - 63 = 21$. For clarity and to save space, the figure merges
 1022 the second and third steps into a single box, but the actual implicit reasoning unfolds across four
 1023 distinct latent steps. This sequence of decoded latents mirrors the logic of explicit chain-of-thought
 1024 reasoning, while being produced implicitly within the latent space.

1025 By projecting implicit tokens into interpretable space, we gain direct visibility into how the model
 1026 structures multi-step reasoning. This not only enables analysis of the correctness and consistency of

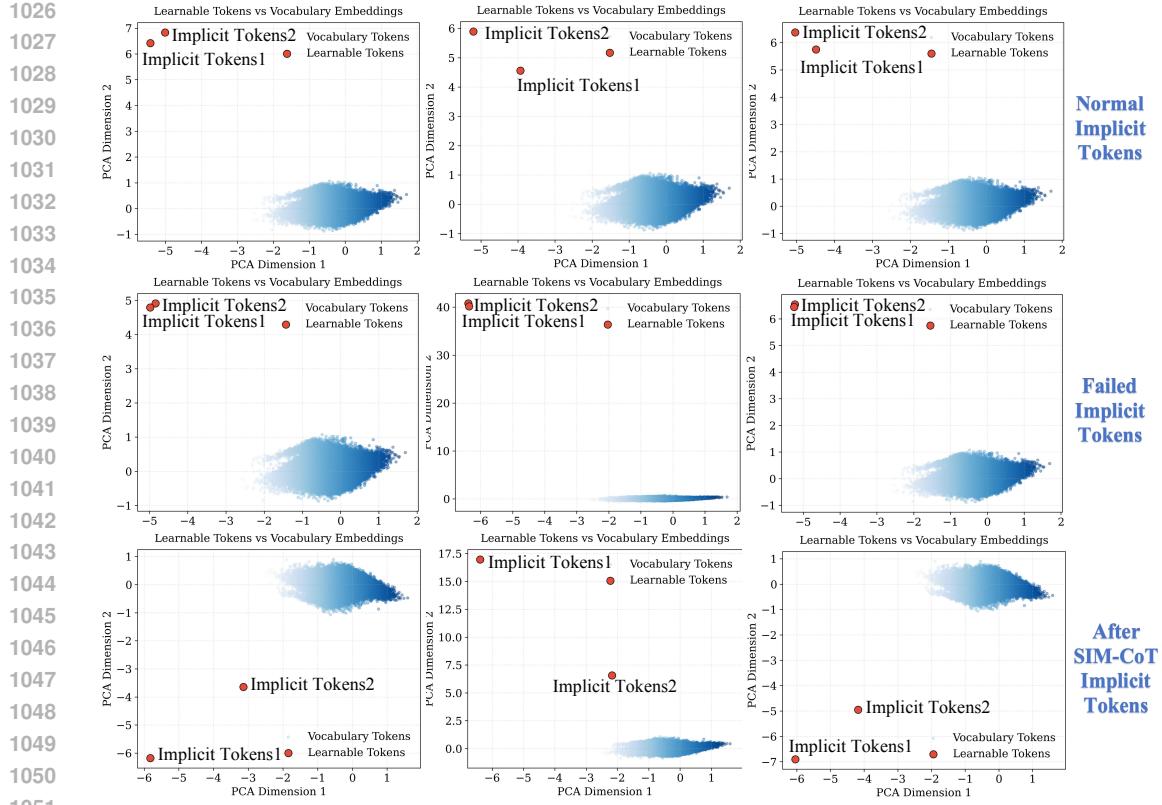


Figure 6: Visualization of distances among implicit tokens and their distances to the vocabulary center. The first row shows normal implicit tokens with well-separated representations, the second row illustrates failed implicit tokens where distances collapse and drift away from the vocabulary center, and the third row presents implicit tokens after applying SIM-CoT, which restores both separation and stability in the latent space.

intermediate steps, but also highlights the dependencies across steps that underlie the final prediction. The visualization confirms that SIM-CoT can encode semantically meaningful and logically ordered reasoning steps in its latent space, bridging the gap between implicit and explicit reasoning.

G.2 SUMMARY

Overall, the results demonstrate that SIM-CoT establishes a balance between **diversity** and **stability** in the latent space. Larger inter-latent distances mitigate representation collapse, while moderate distances to the vocabulary center prevent excessive drift. This equilibrium supports stable implicit reasoning and provides robustness when scaling to more latent tokens.

H ADDITIONAL CASE STUDIES ON GSM8K

In practice, implicit reasoning continues to produce latent tokens even after the correct answer has been reached. These trailing latents no longer introduce new steps but simply repeat the final prediction. For clarity, we omit such redundant tokens in the visualizations. As a result, only the latents that correspond to meaningful intermediate steps are displayed in Figure 7, while those mapping directly to the final answer are hidden. This choice improves readability without changing the underlying reasoning process.

Notably, the decoded reasoning steps consistently match the semantic structure of explicit chain-of-thought annotations, while being generated implicitly within the latent space. The final predictions align with the ground-truth answers, demonstrating that SIM-CoT is capable of encoding interpretable and step-ordered reasoning without requiring explicit supervision at inference time.

1080
1081
1082
1083
1084
1085

[Question] Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and Seattle have together if Seattle has 20 sheep? 🤔 ### Answer: 260

$$4*20=80 \text{ latent1} \rightarrow 2*80=160 \text{ latent2} \rightarrow 160+80+20=260 \text{ latent3} \text{ 😊}$$

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

[Question] Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks? 🤔 ### Answer: 7

$$3*7=21 \text{ latent1} \rightarrow 21*4=84 \text{ latent2} \rightarrow 84/12=7 \text{ latent3} \text{ 😊}$$

1097
1098
1099
1100
1101
1102
1103

[Question] Billy sells DVDs. He has 8 customers on Tuesday. His first 3 🤔 customers buy one DVD each. His next 2 customers buy 2 DVDs each. His last 3 customers don't buy any DVDs. How many DVDs did Billy sell on Tuesday?

Answer: 7

$$3*1=3 \text{ latent1} \rightarrow 2*2=4 \text{ latent2} \rightarrow 3+4=7 \text{ latent3} \text{ 😊}$$

1104
1105
1106
1107
1108
1109

[Question] Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and $\frac{3}{4}$ of the building is occupied. What's the total number of unoccupied units in the building? 🤔 ### Answer: 30

$$15*8=120 \text{ latent1} \rightarrow 120*\frac{3}{4}=90 \text{ latent2} \rightarrow 120-90=30 \text{ latent3} \text{ 😊}$$

1110
1111
1112
1113
1114
1115
1116

[Question] Poppy is solving a 1000-piece jigsaw puzzle. She places a quarter of the pieces on the board, then her mom places a third of the remaining pieces. How many jigsaw pieces are left to be placed? 🤔 ### Answer: 500

$$1000/4=250 \text{ latent1} \rightarrow 1000-250=750 \text{ latent2} \rightarrow 750/3=250 \text{ latent3} \rightarrow 750-250=500 \text{ latent4} \text{ 😊}$$

1117
1118
1119
1120
1121
1122
1123
1124

[Question] The marching band is ordering new uniforms. Each uniform comes with a hat that costs \$25, a jacket that costs three times as much as the hat, and pants that cost the average of the costs of the hat and jacket. How much does each uniform cost total? 🤔 ### Answer: 150

$$25*3=75 \text{ latent1} \rightarrow 25+75=100 \text{ latent2} \rightarrow 100/2=50 \text{ latent3} \rightarrow 100+50=150 \text{ latent4} \text{ 😊}$$

1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 7: Additional SIM-CoT case studies on GSM8k. Each example illustrates how implicit latent tokens correspond to intermediate reasoning steps. Arrows indicate the dependency relations across steps, while colored spans in the question highlight the textual evidence that supports each step. The decoded sequence of latent steps produces the correct final answer, which matches the ground-truth label.