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ABSTRACT

Current generative models can produce synthetic media that is visually indistinguishable from real
content. As a result, traditional detection methods rely mostly on subtle artifacts introduced during
generation. However, we show that such methods could eventually become ineffective. Anticipating
this, we suggest that the main risk lies not in whether a media sample is synthetic or real, but in
whether its semantic content is deceiving, that is, whether it distorts the information distribution in
a way that misrepresents reality. To capture this, we formally introduce the notion of deception in
the context of online media streams. Complementing standard detection approaches, we introduce
semantic calibration to mitigate deception directly by processing semantic content using captioning
and large language models, rather than relying on artifacts introduced by generative models. Our
method is explainable, transparent, and modality agnostic, providing a rigorous foundation for
developing new tools to combat online misinformation. We offer both theoretical justification and
empirical evidence for its effectiveness.

1 INTRODUCTION

Artificial intelligence has opened a new front in the war against misinformation on online platforms (Day, 2019).
Modern generative tools are now capable of producing synthetic media, sometimes called deepfakes (Ramesh et al.,
2022; Rombach et al., 2022; Saharia et al., 2022), that is indistinguishable from real content to the human eye. As a
result, detecting these digital forgeries depends increasingly on heuristics and learned methods (Mirsky & Lee, 2021;
Verdoliva, 2020; Rana et al., 2022; Heidari et al., 2024). While it may initially appear that the arms race between
generation and detection is balanced (i.e., that advances in generative capabilities can, in principle, be met with
corresponding progress in detection techniques), we show in this work that under mild assumptions, any detection
methods that rely solely on invisible artifacts (i.e., non-semantic content) could eventually become obsolete, echoing
concerns that current detection cues may not remain reliable (Wang et al., 2020; Corvi et al., 2023).

While this may seem like a discouraging conclusion, we argue that the ultimate goal is not to simply determine whether
a media sample is real or synthetic, but rather to assert if its semantic information can be trusted. Detecting synthetic
media serves only as a proxy for identifying (and potentially removing) deceptive information, based on the assumption
that real media reliably reflects true events, but synthetic media does not necessarily convey false information. For
example, refining a real but low-resolution image with superresolution tools produces a synthetic image without altering
the original semantics (Ledig et al., 2017; Saharia et al., 2023). Conversely, real content can be overrepresented or
taken out of context (so-called cheapfake (Paris & Donovan, 2019)), posing risks similar to those of synthetic media.
Additionally, the boundary between real and generated media is often blurred. For instance, studies have shown that
diffusion models can memorize and generate images from their training sets (Somepalli et al., 2023a;b). If a generated
image is a pixel-perfect replica of a real photo, should it still be considered fake?

Motivated by these observations, we present in this work an alternative, holistic perspective on the issue, by shifting
the focus from the provenance of a media sample (was it synthetically generated?) to its semantic plausibility (is it
surprising beyond credible bounds?). We refer to this property as deception, capturing the idea that deepfakes and
cheapfakes can distort the distribution of semantic information across media streams, and therefore deceive. Building
on this perspective, we introduce semantic calibration, a method designed to mitigate this risk, even in a future where
generative models are no longer detectable. Our approach first converts the semantic content of a media sample into text
using a captioning model, then applies rejection sampling in this textual space. Acceptance probabilities are computed
using two fine-tuned LLMs trained to model the semantic distributions.

Although the distinction between semantic and non-semantic content may seem arbitrary, it reflects how modern
generative models are trained (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022). Semantic content can
be understood as the conditioning signal (i.e., prompts), while non-semantic content includes the low-level details the
model autonomously fills in to generate realistic outputs. In high-dimensional modalities such as images or video,
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This image shows a male tennis player in action on a clay court . He is wearing a blue

shirt , white shorts , and white sneakers . The player is holding a red and black tennis

racket and is in the middle of a forehand swing , with his body stretched out to hit the

ball . His shadow can be seen on the ground , indicating that he is in motion . The court

appears to be well - maintained and the clay is a reddish - brown color .

This image shows two young men sitting on a couch in a living room . They are both wearing

white shirts and black ties . The man on the left is wearing glasses and is smiling at the

camera . He is holding a white mug in his hand and appears to be giving it to the other man

. There is a basket of flowers on the couch next to them . In the background , there is a

piano and a books he lf with various items on it .

Figure 1: Saliency map showcasing the explainability of semantic calibration on two test images from the COCO
dataset. We simulate a setting where sport-related activities are considered fake, i.e. q(z = sport) > pr(z = sport) = 0,
by creating a dataset Dr with no sport-related labels. Tokens highlighted in blue favor acceptance (∆i > 0) while
those highlighted in orange favor rejection (∆i < 0). For clarity, tokens belonging to the same word are merged. As
expected, the algorithm rejects the first image and accepts the second with probability ≈ 1. More importantly, it bases
its decisions on words that are intuitive for the given setting (e.g., tennis, forehand, stretched for rejection,
and sitting, couch, glasses for acceptance). For the same two images, we also plot the rolling acceptance
probabilities in Fig. 5 for three milder semantic shifts q(z = sport) > pr(z = sport) > 0.

non-semantic components such as grass patterns, cloud shapes, or water textures dominate the overall data. We estimate
in Appendix A.1 that for a small natural image, only about 3% of the information perceived by a human is semantic.
Due to this imbalance, traditional deepfake detection methods have remained largely content-agnostic, relying instead
on non-semantic artifacts for detection (Frank et al., 2020; Durall et al., 2020; Rössler et al., 2019). However, such
approaches fundamentally rely on the imperfections of current generative models, which future models may no longer
exhibit.

For these reasons, it is important to explore alternative strategies. We propose reframing deepfakes not as a binary issue
of authenticity, but as a distributional problem of semantic information, where the primary risk lies in how a media
sample shifts this distribution, regardless of whether it is real or synthetic. To the best of our knowledge, this is the
first work to formalize deception in distributional terms and to present an explainable approach for mitigating it. We
summarize our contributions as follows:

• First, under mild assumptions and drawing on classical results from hypothesis testing, we show that
traditional deepfake detection methods could eventually become obsolete if they rely purely on non-
semantic artifacts.

• Anticipating this scenario, we adopt a holistic, distributional perspective and introduce the concept of
deception: the strategic manipulation of the semantic distribution of media streams. Our analysis shows that
deepfake detection serves only as a proxy for our primary goal of reducing semantic deception.

• Finally, we introduce a method that targets deception directly by filtering media based on their semantic
content. Our approach converts media into text via a captioning model, then applies rejection sampling using
two fine-tuned LLMs modeling the semantic distributions. We further provide theoretical evidence that our
formulation is well-posed, validate our methods empirically, and explore the explainability of our approach.

2 BACKGROUND

Media stream. We consider a setting where various forms of media (e.g., images, videos, audio) are uploaded to
an online platform and redistributed to users of that platform. The core of our analysis is built on a set of random
variables that model the media stream. Specifically, X ∈ X denotes the media itself. Each media item carries semantic
content represented by a latent variable Z ∈ Z that is deterministically determined by X , i.e., Z = f(X). To simplify
our analysis, we consider that both X and Z are discrete sets (e.g., digital content). We introduce a binary variable
G ∈ {0, 1} indicating whether the media is real (G = 0) or generated (G = 1). From these random variables, we define
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the media stream p as the joint distribution

p(g, z, x) = P [G = g, Z = z,X = x] .

When the context is clear, we also use p to refer to the marginal distribution over any subset of these variables (e.g.,
p(x) = P [X = x]), and we denote by pG = P [G = 1] the prior probability of observing a generated sample in
the media stream p. We assume 0 < pG < 1. Additionally, we denote by q(x, z) = P[X = x, Z = z | G = 1] the
distribution of generated media samples and by pr(x, z) = P[X = x, Z = z | G = 0] the distribution of real media
samples. With this notation, the overall media stream distribution p can be written as the mixture

p(z, x) = pGq(z, x) + (1− pG)pr(z, x). (1)

See Appendix A.2 for a detailed summary of the notation used in this work.

Generative models. Let q(x|z) = P[X = x | Z = z,G = 1] denote the conditional generative model used to
generate synthetic media. This may correspond to a neural generative model or an ensemble of such models. These
generators are typically trained to minimize the following quantity (or a relaxed proxy):

L(q, pr) ≜ sup
z∈Z

DKL(q(x|z)∥pr(x|z)), (2)

where pr(x|z) denotes the distribution of real media that conveys semantic information z. To ensure that pr(x|z) and
q(x|z) are well-defined, we assume that pr(z), q(z) > 0 for any z. See Appendix A.3 for a discussion about the
alternative (forward) objective L(pr, q).

Deceptive vs neutral media stream. We say that a media stream p is deceptive if p(z) ̸= pr(z). This directly implies
the following factorization (illustrated in Fig. 2):

p(z, x) = pGq(x|z)q(z) + (1− pG)pr(x|z)pr(z).

Conversely, if no dependency is assumed between the generation label G and the semantic content Z, such that there is
no edge between G and Z in Fig. 2, we refer to the resulting media stream as neutral. To quantify the deviation from
neutrality, we define the deception of a media stream p as

δ(p | pr) ≜ DKL(p(z) ∥ pr(z)). (3)

Reducing deception. One objective of content moderation is to reduce the deception of a media stream p using a
decision rule ϕ(x) = P[Fϕ = 1 | X = x], where Fϕ = 1 means that the content is flagged as deceptive. Moderation
then happens by removing flagged content, which results in the filtered media stream

pϕ(g, z, x) = P [G = g, Z = z,X = x | Fϕ = 0] , (4)

Using the convexity of the KL divergence (Cover & Thomas, 2006), we show in Appendix A.4.1 that

δ(pϕ | pr)︸ ︷︷ ︸
direct objective (ours)

≤ pϕGδ(q
ϕ | pr) + (1− pϕG)δ(p

ϕ
r | pr)︸ ︷︷ ︸

proxy objective (deepfake detection)

, (5)

where the superscript ϕ indicates conditioning on Fϕ = 0 (e.g., pϕG = P[G = 1 | Fϕ = 0], see Appendix A.2 for more
details on the notation). From Eq. (5), one can identify two avenues to decrease the deception of pϕ. The first is to
build a decision rule that minimizes the right-hand side of the inequality by reducing pϕG while keeping pϕr (z) close to
pr(z) such that δ(pϕr | pr) ≈ 0. This is precisely the aim of traditional deepfake detectors that rely on non-semantical
cues. However, as we show in the next section, this paradigm could become ineffective if generative models continue to
improve. In addition, minimizing the right-hand side of Eq. (5) is only a proxy to the primary objective, which is to
minimize δ(pϕ | pr) directly. Therefore, we propose exploring a more direct alternative in this paper, which is to bring
pϕ(z) closer to pr(z) without explicitly targeting pϕG.

Limits of deepfake detection. We frame deepfake detection as a binary hypothesis testing problem where the
classification error is captured by the indicator variable Eϕ = 1{Fϕ ̸= G}. Given a media stream p, the objective of
deepfake detection is to find a decision rule ϕ that maximizes the expected accuracy P[Eϕ = 0]. See Fig. 2 for a detailed
view of how deepfake detection integrates with the media stream p. As conditional generative models continue to
improve their ability to replicate reality, it is reasonable to assume that, for any ϵ > 0, a generator q will eventually exist
such that L(q, pr) ≤ ϵ. Based on this assumption, we derive a fundamental lower bound on the maximal achievable
accuracy of any decision rule.
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Theorem 1. Let q(z, x) = q(x | z)q(z) be such that L(q, pr) ≤ ϵ. Then

sup
ϕ

P [Eϕ = 0] ≤ max{pG, 1− pG}

(
1 +

√
ϵ+ δ(q | pr)

2

)
. (6)

See Appendix A.4.3 for the full proof. This bound highlights that as generative models improve (i.e., ϵ → 0), the
accuracy of any detector becomes primarily limited by the deception of the media stream. Consequently, it will
become increasingly difficult to construct semantic-agnostic decision rules ϕ that perform well across arbitrary semantic
distributions q(z) (i.e., such that pϕG ≪ pG).

3 METHOD

Z

G

X Fϕ

Ẑ

Eϕ

Media Stream Calibration

Detection

Figure 2: Bayesian network showing the fac-
torization of both deepfake detection and se-
mantic calibration. Observed variables are
shown in gray.

Calibration. Our goal is to design a decision rule ϕ that filters a
deceptive media stream p into a neutral stream pϕ, as per Eq. (4), such
that δ(pϕ | pr) ≈ 0. We refer to this process as semantic calibration.
The main challenge is that we do not sample directly from pr, but from
p. However, for samples x ∼ p, we assume access to estimates of both
p(z) and pr(z), where z = f(x) denotes the semantic content of x (see
below for details on how f(x), p(z), and pr(z) are approximated in
practice). When a media x with semantics z = f(x) is sampled from
the full stream p, we accept it with probability pr(z)/Mp(z), where M ≥
M∗ ≜ supz′∈Z pr(z

′)/p(z′). Using this rejection sampling procedure, it
can be shown that pϕ(z) = pr(z) (see Appendix A.4.4).

Computing M∗. The constant M∗ is well-defined only if the support
of p(z) is contained within the support of pr(z). Moreover, computing
M∗ directly appears intractable, as it would require evaluating the ratio pr(z)/p(z) for every possible semantic repre-
sentation z. Fortunately, in our setting, p(z) is a mixture of q(z) and pr(z) as per Eq. (1). This implies that for any
z such that pr(z) > 0, we also have p(z) > 0 (assuming pG < 1). In fact, it can be shown that M∗ ≤ 1/(1−pG) (see
Appendix A.4.5). Hence, choosing M ≥ 1/(1−pG) ensures that pϕ(z) = pr(z). If pG is unknown, a conservative
estimate p̂G ≥ pG can be used instead.

Estimating pr(z)/p(z). While X is observed, Z is latent and it remains unclear how to compute the ratio pr(z)/p(z)
for a given (x, z) ∼ p. Since z is the semantical information of a media, we propose to approximate it using a textual
representation (i.e. a finite series of n tokens Ẑ = Ẑ1Ẑ1Ẑ2 · · · Ẑn). To that end, we use a captioning model f̂ to estimate
f . Ideally, ẑ = f̂(x) captures all semantic information a human would perceive in media x (formally, we aim for
H(Z | Ẑ) = 0, where H(Z | Ẑ) denotes the entropy of Z given Ẑ). To achieve this, the model should be biased toward
generating detailed captions. This reduces the risk of omitting semantically relevant details. However, because the
mapping z 7→ ẑ is one-to-many, the ratios pr(ẑ)/p(ẑ) might differ from pr(z)/p(z). Fortunately, under the assumption
of perfect generation, i.e., q(x|z) = pr(x|z) for any z, we show that both ratios are equal (see Appendix A.4.6).

Estimating pr(ẑ)/p(ẑ). Once ẑ = f̂(x) is computed, we estimate pr(ẑ) and p(ẑ) using language models πθr (ẑ) and
πθ(ẑ) that were auto-regressively trained on the captioned data from the real and full media streams (Dr, respectively
D). See Section 6 for more details on how D and Dr can be constructed in practice. Finally, we perform rejection
sampling in the space of textual approximations ẑ, using the ratio πθr (ẑ)/πθ(ẑ) to approximate pr(z)/p(z). For
numerical stability, we compute this ratio in log-space and only consider a subset of tokens Iρ(ẑ) ⊆ {1, · · · , |ẑ|}
determined by a parameter ρ (see Section 4), leading to the following definition:

r(ẑ;πθ, πθr , ρ) ≜ exp

 ∑
i∈Iρ(ẑ)

[log πθr (ẑi | ẑ<i)− log πθ(ẑi | ẑ<i)]

 ≈ pr(ẑ)

p(ẑ)
. (7)

Proposed method. Given any media sample x, a captioning model f̂ , two language models πθ and πθr , and a
conservative estimate p̂G ≥ pG, we define the decision rule

ϕ(x;πθ, πθr , f̂ , p̂G, ρ) ≜ min
{
(1− p̂G) · r(f̂(x);πθ, πθr , ρ), 1

}
, (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where the clipping ensures the output remains a valid probability by accounting for numerical and approximation errors.
Then, when a media sample x is uploaded to the media stream, we sample Fϕ ∼ Bernoulli(ϕ(x;πθ, πθr , f̂ , p̂G)), and
filter out x when Fϕ = 1.

4 EXPERIMENTS

Figure 3: Filtering performance across ρ values. We use
ρ = 0.75 for text and image, ρ = 1 for audio.

Overview. We conduct a series of experiments to
evaluate the effectiveness of our decision rule for
mitigating deception in media streams. To simu-
late the case where generation is perfect, we rely
exclusively on real text, image, and audio datasets,
therefore ensuring L(q, pr) = 0. Firstly, we quan-
titatively evaluate our semantic calibration method.
This allows us to work with known semantic distribu-
tions and precisely control distributional shifts. We
create these synthetic shifts using labeled datasets
and compute deception based on changes in label
distributions. Secondly, since real-world scenarios
typically lack access to such ground-truth labels, we
demonstrate that our method offers high explainabil-
ity and transparency, making it practical even when
deception cannot be directly measured.

Tractable semantic distributions. To create a setting where deception can be evaluated, we use the labeled categorical
datasets listed below and assume that the latent semantic variable Z corresponds to the class label. The semantic
distribution p(z) is therefore the distribution over these labels, which allows us to create a setting where deception is
tractable. We construct two versions of each dataset: one for training the general model πθ(ẑ), denoted by D, and
one for training the real model πθr (ẑ), denoted by Dr. Semantic distortion is introduced by reweighting the label
frequencies in Dr. For each dataset, we set target class proportions and fill the real training set using as much data as
possible without exceeding the specified counts. We generate multiple distorted versions per dataset, each corresponding
to a different label distribution. The severity of each shift is quantified using δ(p | pr).

Datasets. Our experiments span three modalities: text, image, and audio. For text, we use AG-News (Zhang
et al., 2015), labeled across four categories, and a custom dataset from eight distinct books from Project Guten-
berg (Project Gutenberg, 2025), where semantically split phrases are labeled by book origin. For images, we use
CIFAR-10 (Krizhevsky, 2009) (10 classes), CIFAR-100 (Krizhevsky, 2009) (100 classes), a coarse-labeled Ima-
geNet (Deng et al., 2009) subset (20 custom coarse classes), and a COCO (Lin et al., 2014a) subset with a binary coarse
labeling. For audio, we use VGGSound (Chen et al., 2020) (14 custom coarse classes) and UrbanSound8k (Salamon
et al., 2014) (10 original classes). A detailed description of each dataset and labeling scheme for each experiment can
be found in Appendix A.5. We generate image captions using the Florence (Yuan et al., 2021) model for all datasets.
For audio, we use Qwen-Audio (Chu et al., 2023) to caption UrbanSound8k and reuse AudioSetCaps (Mei et al., 2023)
captions for VGGSound. The exact prompts used to caption the different modalities can be found in Appendix A.6.
Each original dataset is first split 80/20 into general training and test subsets, and the general training set is then further
split 80/20 into training (D and Dr) and validation subsets.

Training. Our pipeline begins by translating media into text where applicable (e.g., images via the Florence captioning
model (Yuan et al., 2021), audio via Qwen-Audio (Chu et al., 2023)). We then fine-tune two GPT-2 Small models
(Radford et al., 2019) (124M parameters), one on D and one on Dr, both initialized from pre-trained weights. Smaller
LLMs are easier to train for our objective, especially given the limited training data. Both models are trained for
5 epochs using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 2e−5, a linear scheduler, and 1000
warmup steps. The checkpoint with the best validation loss is selected. Full implementation details can be found in
Appendix A.7.

Inference. During inference, we evaluate the likelihood ratio of each text or caption ẑ = f̂(x) from the general test
set using both models πθ(ẑ) and πθr (ẑ), following Eq. (7). To reduce noise from low-impact tokens and focus on the
most informative parts of the sequence, we apply a top-ρ filtering strategy over the log-probability differences, inspired
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Figure 4: Visualization of the filtered distribution pϕ(z) compared to the real distribution pr(z) and the general
distribution p(z). The plots show the moderate shift scenario for three datasets CIFAR-10, AG-News, and VGG-Sound,
each representing a different modality. The positions along the horizontal axis correspond to class labels, ordered
by increasing frequency under pr(z). We observe that pϕ(z) generally lies between p(z) and pr(z), but most closely
resembles the latter.

by nucleus sampling (Holtzman et al., 2020). Formally, let

∆i ≜ log πθr (ẑi | ẑ<i)− log πθ(ẑi | ẑ<i), (9)

and let ω be a permutation of {1, 2, · · · , |ẑ|} such that |∆ω(1)| ≥ |∆ω(2)| ≥ · · · ≥ |∆ω(|ẑ|)|. We define kρ as the
smallest k such that

∑k
j=1 |∆ω(j)| ≥ ρ ·

∑|ẑ|
i=1 |∆i|, and we use Iρ(ẑ) ≜ {ω(j) | 1 ≤ j ≤ kρ} in Eq Eq. (7). This

limits the computation to tokens that contribute most to the distributional shift, improving robustness in long captions.
See Fig. 3 for an analysis of the optimal ρ value for each modality. Finally, we simply use our decision rule in Eq. (8) to
compute the probability of flagging the media sample.

5 RESULTS

Quantitative. We present the main results of our experiments in Table 1. For each dataset, we evaluate performance
across four levels of semantic shift (defined as the deception of the unfiltered general distribution δ(p | pr)), including a
baseline serving as a no-shift control. For the baselines, we observe that calibration introduces little to no deception
(≤ 0.103, which, for comparison, is less than half the level observed in the most deceptive mild-shift setting), confirming
that the method does not introduce unwanted semantic bias when none exists. As the semantic shift increases (from
mild to severe), our method consistently reduces deception across all datasets and modalities, with reductions ranging
from 64% to as high as 99%. Calibration is especially effective for long-text modalities (text and images) and remains
robust for more compact representations like audio captions.

Qualitative. To complement scalar metrics and provide an intuitive understanding of what different levels of deception
represent, we visually compare in Fig. 4 the filtered and real distributions pϕ and p, respectively. These plots show
that our method reliably aligns the filtered distributions with the intended targets, across all modalities and even under
strong semantic shifts. We emphasize that for all results presented in Table 1 and Fig. 4, labels are only used to measure
deception reduction. They are never used during training, reflecting the fact that Z is latent, as illustrated in Fig. 2. This
demonstrates the potential of our approach to filter media streams based on intractable latent semantic distributions.

Explainability. The qualitative and quantitative results presented above are made possible by a simplified, controlled
setting where the semantic space Z is small, discrete, and where the distributions pr(z) and p(z) are known. In
real-world applications, these semantic distributions are intractable, making direct quantitative evaluation of deception
impossible. Nonetheless, our approach provides high explainability and transparency, offering actionable insights
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Table 1: Semantic calibration performance across various datasets and semantic shifts, measured by the deception
reduction (δ(p|pr)−δ(pϕ|pr))/δ(p|pr). Errors in italics indicate standard deviation over 1000 inference runs (for a single
training run), while errors in underline indicate standard deviation over 3 training runs (for a single inference run). We
report training errors for severe shifts only to save computation, as similar errors were observed across other shifts. We
use the conservative estimate p̂G = 1− |Dr|/|D|. The shifts shown in blue can be visualized in Fig. 4.

Dataset |Dr| p̂G Shift δ(p | pr) δ(pϕ | pr) Reduction

Te
xt

(ρ
=

0
.7
5

)

AG-News 38.4k 0.60 Baseline 0.000 0.001 ± 0.000 -
|Z| = 4 48.0k 0.50 Mild 0.239 0.014 ± 0.002 94.14%

|D| = 96.0k 40.8k 0.58 Moderate 0.351 0.051 ± 0.001 85.47%
E[|Ẑ|] = 52.1 34.3k 0.64 Severe 0.603 0.006 ± 0.002 / 0.005 99.00%

Gutenberg 1640 0.60 Baseline 0.000 0.103 ± 0.009 -
|Z| = 8 2576 0.27 Mild 0.254 0.052 ± 0.005 79.52%

|D| = 4096 1728 0.58 Moderate 0.563 0.071 ± 0.010 87.39%
E[|Ẑ|] = 109.4 1288 0.69 Severe 0.860 0.014 ± 0.003 / 0.008 98.37%

Im
ag

e
(ρ

=
0
.7
5

)

COCO 17.6k 0.60 Baseline 0.000 0.000 ± 0.000 -
|Z| = 2 11.5k 0.74 Mild 0.678 0.141 ± 0.007 79.20%

|D| = 44.0k 9.5k 0.78 Moderate 1.379 0.042 ± 0.004 96.95%
E[|Ẑ|] = 100.3 9.0k 0.80 Severe 1.926 0.009 ± 0.002 / 0.003 99.53%

CIFAR-10 16.0k 0.60 Baseline 0.000 0.015 ± 0.003 -
|Z| = 10 13.4k 0.67 Mild 0.237 0.009 ± 0.002 96.20%

|D| = 40.0k 20.0k 0.50 Moderate 0.347 0.009 ± 0.002 96.95%
E[|Ẑ|] = 93.0 11.5k 0.71 Severe 0.781 0.059 ± 0.006 / 0.001 92.45%

CIFAR-100 16.0k 0.60 Baseline 0.000 0.073 ± 0.007 -
|Z| = 100 14.3k 0.64 Mild 0.216 0.076 ± 0.007 64.81%
|D| = 40.0k 14.2k 0.65 Moderate 0.403 0.080 ± 0.007 80.34%
E[|Ẑ|] = 91.6 15.2k 0.62 Severe 0.818 0.144 ± 0.012 / 0.003 80.15%
ImageNet 32.5k 0.60 Baseline 0.000 0.020 ± 0.003 -
|Z| = 20 23.2k 0.71 Mild 0.272 0.073 ± 0.003 73.16%

|D| = 81.3k 21.0k 0.74 Moderate 0.526 0.106 ± 0.003 79.85%
E[|Ẑ|] = 98.4 12.6k 0.85 Severe 0.796 0.083 ± 0.006 / 0.003 89.87%

A
ud

io
(ρ

=
1

)

Urbansound8k 1984 0.60 Baseline 0.000 0.011 ± 0.003 -
|Z| = 10 2296 0.54 Mild 0.202 0.055 ± 0.006 72.77%

|D| = 4960 2128 0.57 Moderate 0.616 0.188 ± 0.014 69.48%
E[|Ẑ|] = 15.1 2160 0.56 Severe 0.825 0.221 ± 0.019 / 0.005 73.21%

VGG-Sound 58.3k 0.60 Baseline 0.000 0.002 ± 0.000 -
|Z| = 14 35.5k 0.76 Mild 0.300 0.082 ± 0.003 72.67%

|D| = 145.6k 32.0k 0.78 Moderate 0.639 0.091 ± 0.003 85.76%
E[|Ẑ|] = 13.1 29.1k 0.80 Severe 0.927 0.152 ± 0.004 / 0.005 83.48%

even when exact semantic distributions cannot be computed. This constitutes a strong advantage compared to more
opaque media stream moderation algorithms. More precisely, we can gain fine-grained insight into the impact of each
word by analyzing the per-token log-probability differences ∆i. This makes it possible to identify which parts of the
caption are semantically more typical of the real distribution versus the general one, shedding light on how our filtering
algorithm makes its rejection decisions. For instance, Fig. 1 presents a token-level saliency map for two COCO images,
highlighting the semantic cues the algorithm relies on to make its decisions. Additional figures can be found in the
Appendix A.10. Additionally, Fig. 5 illustrates how the severity of the semantic shift affects rejection behavior, with
milder shifts leading to more uncertain acceptance or rejection decisions, as expected.

6 DISCUSSION AND LIMITATIONS

Relation to out-of-distribution (OOD) detection. OOD detection is the binary task of determining whether a
sample comes from a reference distribution. When operating in the semantic space Z , OOD methods typically rely
on pr(z), classifying a media sample x with semantics z = f(x) as OOD whenever pr(z) < τ for a given threshold
τ > 0 (methods that do not use pr are quite disconnected from our setting). If x is observed twice, it is expected that
the detection mechanism will come up with the same conclusion. Each sample x is treated independently and the
actual distribution of x is typically of no concern. Semantic calibration, on the other hand, is interested in the ratio
pr(z)/p(z), with p(z) being a reference distribution. If both pr(z) and p(z) are small but similar, then calibration
might accept the media x, whereas an OOD detector might reject the sample due to its low semantic probability.
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Figure 5: Rolling acceptance probabilities for the two images shown in Fig. 1, in a setting where sport-related content
is overrepresented in the general distribution, i.e., q(z = sport) > pr(z = sport). Rolling probabilities are computed
using Eq. (8) with ρ = 0.75, applying a truncated sum in the ratio from Eq. (7). Each image is evaluated under three
shift severities in the no-sport/sport scenario. Orange lines show results for the tennis player, while blue lines show
results for the two men celebrating. The general distribution p(z) is 80% no sport, 20% sport.

Table 2: Detection performance of Eq. (8) on misinforma-
tion datasets: ISOT (Ahmed et al., 2017), LIAR (Wang,
2017) and FAKE TFG (Álvarez Hervás, 2022).

Dataset Accuracy Recall Precision F1

ISOT 0.998 0.999 0.997 0.998
LIAR 0.869 0.851 0.952 0.887
Fake TFG 0.972 0.977 0.972 0.974

However, there is a special case in which semantic calibra-
tion coincides with OOD detection, namely when pr and
q have disjoint support. In that case, pz = (1− pG)pr(z)
for samples in the support of pr, and p(z) = pGq(z)
otherwise (see Eq. (1)). Setting M = 1/(1−pG) as men-
tioned in Section 3, the ratio pr(z)/(Mp(z)) is either 1
(for z in the support of pr) or 0 (for z in the support of
q). Our filtering rule in Eq. (8) becomes therefore de
facto an exact binary, detection rule. This special case
is precisely the setting of misinformation datasets, as in-
formation is either real or fake, but cannot be both (i.e.
disjoint support). In Table 2 we present the detection performance of our framework based on our decision rule on a
few misinformation datasets. The results confirm that our approach generalizes to semantic detection tasks on real data.

Semantic calibration is not deepfake detection. We emphasize that our approach is not designed to perform deepfake
detection. In broad terms, deepfake detection can be seen as an OOD detection task in the media space X . In contrast,
semantic calibration functions exclusively in the semantic latent space Z , a choice motivated by the fundamental
limitations highlighted in Theorem 1. By design, media samples that have the same semantic information are treated
equally by semantic calibration, regardless of there truthfulness (generated vs real). Our method is therefore not
intended as a replacement for existing detection systems, but rather as a complementary framework. An illustrative
example highlighting the difference is shown in Appendix A.11.

Semantic calibration is not fact-checking. Our approach mitigates deception by measuring deviations from a
reference distribution of semantic content, rather than verifying factual correctness. This has several inherent limitations.
On one hand, it can flag content that appears abnormally surprising, even if it is factually accurate. Conversely, it
may allow content that is factually incorrect to pass undetected if its semantic profile aligns with patterns previously
observed in real data. For these reasons, fact-checking should be addressed separately.

Reliance on a trusted dataset Dr. Another central limitation of our method lies in its reliance on Dr to approximate
the distribution of real content pr. This assumes that the reference distribution is both representative and sufficiently
comprehensive, a strong assumption in dynamic or underrepresented domains. However, this challenge can be mitigated
by periodically updating Dr with new, vetted content, and by retraining or fine-tuning the reference model πθr . We
refer to pr as the “real” distribution, but this is not meant to define what is objectively real. Instead, pr should represent
a distribution that is broadly regarded as desirable, but we do not address how such a reference distribution is selected.
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We have primarily focused our analysis on reducing deception in the context of misinformation (hence the term “real”),
but our approach is adaptable to other objectives. For example, one could construct Dr to reflect the preferences of
a specific media consumer, so that the filtered media stream aligns with their interests. Alternatively, Dr could be
designed to represent a politically balanced distribution, such as 50% of content from progressive sources and 50%
from conservative ones. While we did not explore these directions in our experiments, we believe they offer promising
avenues for future work, particularly in addressing online polarization.

Reliance on foundation models. Our method inherits the limitations of current captioning and language models,
which may reduce the reliability of decisions in certain scenarios. Nonetheless, it employs off-the-shelf captioning
models without fine-tuning, demonstrating robustness. Furthermore, benchmarks such as CapArena Cheng et al. (2025)
show that advanced VLMs like GPT-4o can match or exceed human performance in detailed captioning. Future work
should focus on enhancing these models for semantic calibration.

Broader impact. The main risk of our method lies in the choice of the reference dataset Dr, as any bias it contains
will affect the filtered media stream. To mitigate this, we recommend transparent selection and public release of the
datasets Dr and D, the captioning model f̂ , and the two fine-tuned LLMs πθ and πθr . If implemented responsibly, our
approach could enable content moderation that is explainable, transparent, and scalable. Additionally, while our results
primarily demonstrate the effectiveness of our approach for filtering media streams, it is unlikely that this would be its
first application in practice. A more practical use would be to apply it as a flagging algorithm in content moderation,
offering moderators (or even other moderation algorithms) a new method to assess the danger in new media samples.

7 RELATED WORK

Fundamental limits of deepfake detection. While the limitations of deepfake detection are well-documented
(Dolhansky et al., 2020; Wen et al., 2022; Hussain et al., 2021; Ikram et al., 2024), to the best of our knowledge, very
few studies have attempted to establish theoretical bounds on deepfake detection performance limits in the context
of online media streams. Most similar to our approach, Agarwal & Varshney (2019) frame deepfake detection as
a hypothesis testing problem, deriving performance bounds based on robust statistics. Their analysis, however, is
primarily focused on the context of generative adversarial networks (Goodfellow et al., 2014). Our work extends this
line of reasoning by providing a theoretical bound applicable to a more general setting, independent of the specific
generative model architecture, further motivating the need for alternative approaches as generative capabilities advance.
To the best of our knowledge, we are the first to explicitly distinguish the semantic and non-semantic information in a
media sample within the context of online media forensics.

Content Moderation. Automated content moderation has evolved from transformer-based classifiers with lightweight
toxicity heads (Lees et al., 2022), to multimodal fusion architectures combining text and image encoders with cross-
modal contrastive training (Yuan et al., 2023), and more recently to instruction-tuned multimodal assistants that directly
answer whether content violates guidelines and generate explanations (Wu et al., 2024). In parallel, LLMs have
opened new avenues for addressing problematic content through semantic understanding, being applied to automated
fact-checking (Vykopal et al., 2024; Kotonya & Toni, 2020; Hu et al., 2024) and policy compliance classification
(Kumar et al., 2024). These methods assess veracity against external knowledge, evaluate internal consistency, or
identify hate speech, harassment, and other violations based on semantics rather than surface keywords. Complementary
works study robustness through out-of-distribution detection, for instance by adjusting likelihoods from generative
models with input complexity measures to better separate in- and out-of-distribution data (Serrà et al., 2020). While
effective for detecting policy violations, factual errors, or distributional anomalies, these approaches typically focus on
discrete factuality (“Is this claim true?”) or policy compliance (“Does this post violate rules?”) and do not address the
distributional aspect of deception as we define it, at least not directly. Our work aims to fill this gap.

8 CONCLUSION

This work offers a new perspective on media integrity by shifting the focus from detecting individual deepfakes to
identifying broader semantic distortions. As generative models improve, low-level artifacts may disappear, but the
risk of misleading content remains. We propose semantic calibration as a lightweight, interpretable method that
complements existing deepfake detectors by targeting distributional shifts explicitly. Beyond deception reduction,
this approach could also be used for alternative goals such as personalized filtering, balanced media streams, scalable
moderation, and more. It lays the groundwork for information systems that prioritize what content communicates,
rather than how it was created.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

All datasets used in our experiments (see Section 4) are publicly available and can be accessed through our HuggingFace
repository (Appendix A.7.2), with full preprocessing details provided in Appendix A.5. The prompts used for the
captioning models are listed in Appendix A.6. All scripts, including those for LLM fine-tuning, captioning, and
rejection sampling, are available in our GitHub repository (Appendix A.7.1), which also contains all hyperparameter
configurations. Compute resources and hardware details are reported in Appendix A.8. Finally, the fine-tuned models
corresponding to each experiment are released via our HuggingFace repository (Appendix A.7.2).
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A APPENDIX

A.1 SEMANTIC VS NON-SEMANTIC INFORMATION

Figure 6: Two synthetic images with identical semantic
information, generated by Reve.art (2025).

We estimate how much of an image’s information is se-
mantic. Consider a small 256×256 RGB image com-
pressed near the perceptual threshold (≈ 0.3 bits per
pixel, as achieved by state-of-the-art methods Mentzer
et al. (2020)), and suppose the semantic content of such
an image can be expressed in 100 English words (this
is a conservative estimate, given that the average cap-
tion in human-annotated datasets like MS-COCO Lin
et al. (2014b) is only about 10 words). Using Shan-
non’s estimate of roughly 1.3 bits per character and an
average of 4.5 characters per word Shannon (1951), this
amounts to ≈ 600 bits of semantic information, only
about 600/(2562×0.3) ≈ 3% of the image’s total perceptual
information. Figure 6 shows two synthetic images that
convey the same semantic information:

A male lion lying on open savannah grassland, resting under a tree positioned to its right. Additional trees are visible
in the distant background. (24 words)

While minor differences are visible (e.g., the lion’s head orientation or the exact distance of background trees), these
can also be considered non-semantic, as they would likely go unnoticed if only one image were shown. Indeed, a human
asked to caption a single image in Figure 6 would typically not mention such details, as they are not central to the
perceived meaning of the scene. Similarly, one would most likely not specify the orientation of the lion’s head while
prompting a generative model.

A.2 NOTATION

A.2.1 VARIABLES

We define the following random variables shown in Figure 2:

• X ∈ X : Observed variable representing the media of interest (e.g., text, images, video, audio, etc.).
• Z ∈ Z: Latent variable representing all the semantic information present in a media X .

• Ẑ ∈ Ẑ: Observed variable representing the textual representation of the semantic information present in a
media X , extracted using a deterministic captioning model f̂ such that Ẑ = f̂(X).

• G ∈ {0, 1}: Latent variable indicating if X is generated (G = 1) or is real (G = 0).
• Fϕ ∈ {0, 1}: Observed variable indicating whether X is flagged (Fϕ = 1) or not (Fϕ = 0). The subscript ϕ

indicates the dependence on the decision rule ϕ(x) ≜ P[Fϕ = 1 | X = x].
• Eϕ ∈ {0, 1}: Latent error variable (i.e., E = 1{Fϕ ̸= G}) with 1 the indicator variable.

A.2.2 DISTRIBUTIONS

Let
p(g, z, x, ĝ, e) = P

[
G = g, Z = z,X = x, Ĝ = ĝ, E = e

]
denote the joint probability distribution of the above random variables. When the context is clear, we will also use p to
refer to the marginal distribution over any subset of these variables (e.g., p(x) = P [X = x]). We denote conditioning
on G = 1 (generated media) by using q in place of p, and conditioning on G = 0 (real media) by using pr instead of p.
In addition, we use the superscript pϕ to indicate conditioning on Fϕ = 0 (filtered stream). More precisely:

• pr(x) = P [X = x|G = 0]: The distribution of the real media samples.
• pr(x|z) = P [X = x|Z = z,G = 0]: The distribution of real media that have semantic information z.
• q(x) = P [X = x|G = 0]: The distribution of the fake media samples.
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• q(x|z) = P [X = x|Z = z,G = 1]: The distribution induced by the conditional generative model, typically a
neural network (we assume that we can sample from it), for media samples that have semantic information z.

• pr(z) = P [Z = z|G = 0]: The distribution of latent semantics information found in the real media samples.
• q(z) = P [Z = z|G = 1]: The distribution of latent semantic information specified by users when generating

a media.
• pϕ(z) = P [Z = z | Fϕ = 0]: The distribution of latent semantics information found in the filtered media

samples.
• pϕr (z) = P [Z = z | G = 0, Fϕ = 0]: The distribution of latent semantics information of the real media

samples found in the filtered media stream.
• qϕ(z) = P [Z = z | G = 1, Fϕ = 0]: The distribution of latent semantics information of the generated media

samples found in the filtered media stream.

In addition, we define pG ≜ P[G = 1] and pϕG ≜ P[G = 1 | F = 0] to shorten notation, and we recall the definition of
the conditional entropy

H(Z | Ẑ) = −
∑
ẑ∈Ẑ

P
[
Ẑ = ẑ

]∑
z∈Z

P
[
Z = z | Ẑ = ẑ

]
logP

[
Z = z | Ẑ = ẑ

]
.

A.3 FORWARD OBJECTIVE

The objective in Eq. equation 2 is defined using the backward KL divergence. An alternative (but arguably harder)
training objective is to minimize the forward KL divergence L(pr, q), which encourages the generator to replicate
all the variability present in real media. However, for our analysis, Theorem 1 also holds if one assume L(pr, q) ≤ ϵ
instead of L(q, pr) ≤ ϵ. For clarity, we only focus on the reverse KL, as it does not penalize the generator for missing
low-probability modes of pr, and thus tends to be easier to minimize. Indeed, training a generator that only generates
convincing media samples is arguably easier than training a generator that can generate any type of real media.

A.4 PROOFS

This section presents the derivations supporting the main results of the paper.

A.4.1 CONVEXITY OF KL DIVERGENCE

We first recall that KL divergence is convex in its first argument for discrete distributions Cover & Thomas (2006). Let
p1, p2, and p3 be distributions over a discrete space Z , and let λ ∈ [0, 1] such that pλ(z) = λp1(z) + (1− λ)p2(z).
We have

DKL(pλ(z) ∥ p3(z)) =
∑
z∈Z

pλ(z) log
pλ(z)

p3(z)

=
∑
z∈Z

[
λp1(z) + (1− λ)p2(z)

]
log

λp1(z) + (1− λ)p2(z)

p3(z)

≤ λ
∑
z∈Z

p1(z) log
p1(z)

p3(z)
+ (1− λ)

∑
z∈Z

p2(z) log
p2(z)

p3(z)

= λDKL(p1(z) ∥ p3(z)) + (1− λ)DKL(p2(z) ∥ p3(z)),

where the inequality follows from Jensen’s inequality applied pointwise to the convex function x 7→ x log(x/p3(z)).
We can now prove the desired inequality. From the definition of pϕ in Eq. equation 4, we have

pϕ(z) = pϕG qϕ(z) + (1− pϕG) p
ϕ
r (z).

Applying the convexity of KL divergence with λ = pϕG, p1 = qϕ and p2 = pϕr , we obtain

DKL(p
ϕ(z) ∥ pr(z)) ≤ pϕG DKL(q

ϕ(z) ∥ pr(z)) + (1− pϕG)DKL(p
ϕ
r (z) ∥ pr(z)).

By definition of δ in Eq. equation 3, this yields

δ(pϕ | pr) ≤ pϕGδ(q
ϕ | pr) + (1− pϕG)δ(p

ϕ
r | pr).
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A.4.2 DIVERGENCE CHAIN RULE

We now establish the following intermediate result that will be instrumental in proving Theorem 1:

DKL(q(x)∥pr(x)) ≤ L(q, pr) +DKL(q(z)∥pr(z)). (10)

Starting from the definition, and observing that q(x) = q(z, x) and pr(x) = pr(z, x) for z = f(x) (since f is
deterministic, meaning each media item x maps to a unique semantic representation z = f(x)), and letting X (z) ≜
x ∈ X | f(x) = z, we have

DKL(q(x)∥pr(x)) =
∑
x∈X

q(x) log
q(x)

pr(x)

=
∑
z∈Z

∑
x∈X (z)

q(x) log
q(z, x)

pr(z, x)

=
∑
z∈Z

∑
x∈X (z)

q(z)q(x|z) log q(z)q(x|z)
pr(z)pr(x|z)

=
∑
z∈Z

∑
x∈X (z)

q(z)q(x|z) log q(z)

pr(z)
+
∑
z∈Z

∑
x∈X (z)

q(z)q(x|z) log q(x|z)
pr(x|z)

=
∑
z∈Z

q(z) log
q(z)

pr(z)

 ∑
x∈X (z)

q(x|z)

+
∑
z∈Z

q(z)

 ∑
x∈X (z)

q(x|z) log q(x|z)
pr(x|z)


=
∑
z∈Z

q(z) log
q(z)

pr(z)

(∑
x∈X

q(x|z)

)
+
∑
z∈Z

q(z)

(∑
x∈X

q(x|z) log q(x|z)
pr(x|z)

)

=
∑
z∈Z

q(z) log
q(z)

pr(z)
+
∑
z∈Z

q(z)DKL(q(x|z)∥pr(x|z))

= DKL(q(z)∥pr(z)) + Ez∼q(z)[DKL(q(x|z)∥pr(x|z))],

where we used the fact that q(x | z) = pr(x | z) = 0 for z ̸= f(x), and adopted the standard information-theoretic
convention 0 log

(
0
0

)
≡ 0 to extend the sums from X (z) to X . By definition, we have

Ez∼q(z)[DKL(q(x|z)∥pr(x|z))] ≤ sup
z∈Z

DKL(q(x|z)∥pr(x|z)) = L(q, pr).

Combining both results, we directly obtain Eq. 10.

A.4.3 LIMIT OF DEEPFAKE DETECTION

First, we can express the probability of error of any decision rule ϕ as

P [Eϕ = 1] = P [Fϕ = 0, G = 1] + P [Fϕ = 1, G = 0] . (11)

Using the factorization provided in Figure 2, we can expand each term as follows:

P [Fϕ = 0, G = 1] =
∑
x∈X

P [Fϕ = 0, G = 1, X = x]

=
∑
x∈X

P [G = 1]P [X = x | G = 1]P [Fϕ = 0, X = x]

=
∑
x∈X

pGq(x)(1− ϕ(x)).
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Additionally,

P [Fϕ = 1, G = 0] =
∑
x∈X

P [Fϕ = 1, G = 0, X = x]

=
∑
x∈X

P [G = 0]P [X = x | G = 0]P [Fϕ = 1, X = x]

=
∑
x∈X

(1− pG)pr(x)ϕ(x).

Substituting both expressions in Eq. equation 11:

P [Eϕ = 1] = P [Fϕ = 0, G = 1] + P [Fϕ = 1, G = 0]

=
∑
x∈X

[pGq(x)(1− ϕ(x)) + (1− pG)pr(x)ϕ(x)]

≥
∑
x∈X

min{pG q(x), (1− pG) pr(x)}. (12)

Recall that a+ b− |b− a| = 2min{a, b} for any a, b ≥ 0. Given any x, z and setting

a = pGq(x) and b = (1− pG)pr(x),

we can write

min{pGq(x), (1− pG)pr(x)} =
1

2
[pGq(x) + (1− pG)pr(x)− |(1− pG)pr(x)− pGq(x)|] .

Summing over x, we obtain

∑
x∈X

min{pG q(x), (1− pG) pr(x)} =
1

2

[
1−

∑
x∈X

|(1− pG) pr(x)− pG q(x)|

]
. (13)

Next, note that the total variation distance between two distributions p(x) and q(x) is defined as TV[p(x), q(x)] =
1
2

∑
xX |p(x)− q(x)|. The key step is to relate the sum in the right-hand side of Eq. equation 13 to TV[p(x), q(x)]. To

that end, we identify two cases:

• If pG ≤ 1− pG (i.e., pG ≤ 1
2 ), then

|(1− pG) pr(x)− pG q(x)| = |pG(pr(x)− q(x)) + (1− 2pG) pr(x)|
≤ |pG(pr(x)− q(x))|+ |(1− 2pG) pr(x)|
= pG|pr(x)− q(x)|+ (1− 2pG) pr(x),

where we have used the triangular inequality. Summing over x:∑
x∈X

|(1− pG) pr(x)− pG q(x)| ≤
∑
x∈X

pG|pr(x)− q(x)|+
∑
x∈X

(1− 2pG) pr(x)

= 2pGTV[pr(x), q(x)] + (1− 2pG).

Therefore: ∑
x∈X

min{pG q(x), (1− pG) pr(x)} =
1

2

[
1−

∑
x∈X

|(1− pG) pr(x)− pG q(x)|

]

≥ 1

2
[1− 2pGTV[pr(x), q(x)]− (1− 2pG)]

= pG − pGTV[pr(x), q(x)]

= min{pG, 1− pG}(1− TV[pr(x), q(x)]).
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• If pG ≥ 1− pG (i.e., pG ≥ 1
2 ), then

|(1− pG) pr(x)− pG q(x)| = |(1− pG) [pr(x)− q(x)] + (1− 2pG) q(x)|
≤ |(1− pG) [pr(x)− q(x)]|+ |(1− 2pG) q(x)|
= (1− pG)|pr(x)− q(x)|+ (2pG − 1) q(x).

Summing over x:∑
x∈X

|(1− pG) pr(x)− pG q(x)| =
∑
x∈X

|(1− pG) pr(x)− pG q(x)|

≤
∑
x∈X

(1− pG)|pr(x)− q(x)|+
∑
x∈X

(2pG − 1) q(x)

= 2(1− pG)TV[pr(x), q(x)] + (2pG − 1).

Therefore: ∑
x∈X

min{pG q(x), (1− pG) pr(x)} =
1

2

[
1−

∑
x∈X

|(1− pG) pr(x)− pG q(x)|

]

≥ 1

2
[1− 2(1− pG)TV[pr(x), q(x]− (2pG − 1)]

= (1− pG)− (1− pG)TV[pr(x), q(x)]

= min{pG, 1− pG}(1− TV[pr(x), q(x)]).

Since both cases yield the same bound, we can substitute it in Eq. equation 12 to obtain

inf
ϕ

P [Eϕ = 1] ≥ min{pG, 1− pG}(1− TV[pr(x), q(x)]).

Using Pinsker’s inequality TV[p(x), q(x)] ≤
√

1
2DKL(q(x)∥pr(x)), we can write

inf
ϕ

P [Eϕ = 1] ≥ min{pG, 1− pG}(1− TV[pr(x), q(x)])

≥ min{pG, 1− pG}

(
1−

√
1

2
DKL(q(x)∥pr(x))

)
(14)

≥ min{pG, 1− pG}

(
1−

√
L(q, pr) +DKL(q(z)∥pr(z))

2

)
,

≥ min{pG, 1− pG}

(
1−

√
ϵ+ δ(q | pr)

2

)
,

where we substituted our result from Eq. equation 10 in the second-to-last step, and then used the assumption that
L(q, pr) ≤ ϵ along with the definition from Eq. equation 3. Finally, we conclude the proof as follows:

sup
ϕ

P [Eϕ = 0] = 1− inf
ϕ

P [Eϕ = 1]

≤ 1−min{pG, 1− pG}

(
1−

√
ϵ+ δ(q | pr)

2

)

= 1−min{pG, 1− pG}+min{pG, 1− pG}
√

ϵ+ δ(q | pr)
2

≤ max{pG, 1− pG}+max{pG, 1− pG}
√

ϵ+ δ(q | pr)
2

.

Note that we could have derived a similar bound with the alternative objective L′(q, pr) discussed in Ap-
pendix A.3 (defined with the forward KL divergence) if we had used the alternative form of Pinsker’s inequality
TV[p(x), q(x)] ≤

√
1/2DKL(p(x)∥q(x)) in Eq. equation 14.
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A.4.4 REJECTION SAMPLING

We show that the semantics distribution of accepted samples pϕ(z) is exactly pr(z). Let F ∈ {0, 1} be a random
variable indicating if a sample with semantical information Z is flagged (i.e., rejected). We have:

pϕ(z) = P [Z = z | F = 0]

=
P [Z = z, F = 0]

P [F = 0]

=
P [Z = z]P [F = 0 | Z = z]∑

z′∈Z P [F = 0, Z = z′]

=
p(z) · pr(z)

Mp(z)∑
z′∈Z p(z′) · pr(z′)

Mp(z′)

=
pr(z)∑

z′∈Z pr(z′)

= pr(z)

Thus, rejection sampling produces samples exactly from the desired distribution pr(z). Note that P [F = 0] = 1
M ,

meaning that, on average, only one out of every M media sample is accepted.

A.4.5 UPPER BOUND FOR M∗

Assuming that p(z) > 0 for any z and pG > 0, and defining Z+ ≜ {z ∈ Z | pr(z) > 0}, we can derive an upper
bound on M∗ as follows:

M∗ = sup
z∈Z

pr(z)

p(z)

= sup
z∈Z+

pr(z)

p(z)

= sup
z∈Z+

pr(z)

pGq(z) + (1− pG)pr(z)

= sup
z∈Z+

 1

(1− pG) + pG · q(z)
pr(z)


≤ 1

1− pG
.

This concludes the proof.

A.4.6 RATIO APPROXIMATION

First, since we assume that the captioning model f̂ is such that H(Z | f̂(X)) = 0, we know that there exists a
deterministic function g : Ẑ → Z such that Z = g(f̂(X)). Assuming that the conditional generative model perfectly
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captures reality (i.e., q(x′ | z) = pr(x
′ | z) for any x′, z), we have:

pr(ẑ)

p(ẑ)
=

∑
x′∈X (ẑ) pr(x

′)∑
x′∈X (ẑ) p(x

′)
X (ẑ) ≜ {x | f̂(x) = ẑ}

=

∑
x′∈X (ẑ) pr(f(x

′), x′)∑
x′∈X (ẑ) p(f(x

′), x′)
p(r)(x

′) = p(r)(z
′, x′) for z′ ≜ f(x′)

=

∑
x′∈X (ẑ) pr(g(f̂(x

′)), x′)∑
x′∈X (ẑ) p(g(f̂(x

′)), x′)
f(x′) = g(f̂(x′))

=

∑
x′∈X (ẑ) pr(g(ẑ), x

′)∑
x′∈X (ẑ) p(g(ẑ), x

′)
f̂(x′) = ẑ for x′ ∈ X (ẑ)

=

∑
x′∈X (ẑ) pr(z, x

′)∑
x′∈X (ẑ) p(z, x

′)
z = g(ẑ)

=

∑
x′∈X (ẑ) pr(x

′ | z)pr(z)∑
x′∈X (ẑ) p(x | z)p(z)

=

∑
x′∈X (ẑ) pr(x

′ | z)pr(z)∑
x′∈X (ẑ)(pGq(x

′ | z) + (1− pG)pr(x′ | z))p(z)
Fig. 2

=

∑
x′∈X (ẑ) pr(x

′ | z)pr(z)∑
x′∈X (ẑ) pr(x

′ | z)p(z)
q(x′ | z) = pr(x

′ | z)

=
pr(z)

p(z)
.

This concludes the proof.

A.5 DATASETS AND LABELING DETAILS

We describe the datasets used in our experiments, including their construction, preprocessing, and the labeling schemes
relevant for evaluating semantic calibration under distributional shift. Note that the numbers reported in Table 1 for
|D| are 80% of those reported for the training set below since 20% of the training data is kept as validation (and thus
excluded in D and Dr). See Appendix A.7.2 for details about the exact semantic splits.

AG News. We use a subset of the AG News dataset Zhang et al. (2015), where each instance is created by concatenating
the article’s title and description. This subset is limited to the four most common categories: World, Sports, Business,
and Sci/Tech. It consists of 120,000 samples in the training set and 6,700 samples in the test set. The original four-class
categorization is retained for our experiments.

Gutenberg. This dataset is derived from eight books sourced from the Project Gutenberg archive Project Gutenberg
(2025): Pride and Prejudice, Frankenstein, The Great Gatsby, The Odyssey, Moby Dick, Meditations, Oliver Twist, and
War and Peace. Each text is segmented into semantically coherent spans of 50–100 words using nltk.tokenize,
followed by post-processing (trimming or merging) to enforce the desired range. Tokens matching non-linguistic
patterns such as “--”, “ ”, and various brackets are removed. To ensure balance, we sample uniformly across books,
resulting in a dataset where each book contributes equally. The final dataset is split stochastically into 5,120 and 1,280
samples for training and testing, respectively. Phrases are labeled by their book of origin.

COCO. We use a subset of the Microsoft COCO dataset Lin et al. (2014a), which contains images annotated with
objects from 80 predefined categories. From the original dataset, we select the first 68,800 images and generate captions
using Florence Yuan et al. (2021). We further split the dataset 55,000 training samples and 13,800 test samples. Samples
are assigned a binary label based on the presence of objects typically associated with physical activity: bicycle, frisbee,
snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket. Images with at least one
such object are assigned a label of 1, and 0 otherwise.
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CIFAR-10. The CIFAR-10 dataset Krizhevsky (2009) contains 60,000 images drawn from 10 distinct object types,
uniformly distributed. We use the standard training and test splits of 50,000 and 10,000 images, respectively. We define
the semantic shifts using the original 10 labels and caption the images using Florence Yuan et al. (2021).

CIFAR-100. CIFAR-100 Krizhevsky (2009) extends the structure of CIFAR-10 to 100 fine-grained object types
grouped under 20 supercategories. Each fine-grained type appears with uniform frequency (1%), and coarse-level
groupings appear at 5%. We use the canonical training/test split of 50,000 and 10,000 samples. To conduct distribution
shifts we use coarse labels, whereas evaluation is performed on the lower-level semantics of fine labels, which makes
the task more challenging.

ImageNet. We sample the first 127,000 images from the ILSVRC-2012 ImageNet dataset Deng et al. (2009) and
generate captions using Florence Yuan et al. (2021). The resulting set is partitioned into training 101,600 training
samples and 25,400 test samples. To introduce a higher-level semantic structure, we map the original 673 fine-grained
labels to a custom taxonomy of 20 coarse categories (see Appendix A.7.2 for details). These coarse labels are used to
induce structured semantic variation and evaluate calibration behavior under abstraction.

UrbanSound8k. We use the full UrbanSound8k dataset Salamon et al. (2014), which consists of audio recordings
from 10 acoustic event categories (e.g., dog bark, children playing, gun shot, etc.). As the dataset does not include an
official train/test split, we partition it ourselves using an 80/20 random split. Each audio sample is captioned using
Qwen-Audio Chu et al. (2023) with the prompt: ”Describe this audio.” The resulting captions are used to evaluate
semantic calibration in the auditory modality.

VGG Sound. We construct this dataset from the original VGG Sound collection Chen et al. (2020) by mapping its
309 fine-grained acoustic categories to a custom taxonomy of 14 coarse labels (see Appendix A.7.2 for details). To
avoid redundant computation, we reuse the natural language captions provided in Mei et al. (2023), specifically the
model’s answer-1 to question-1 for each sample.

A.6 CAPTIONING MODEL PROMPTS.

• Text Modality: no prompt is necessary since no captioning model is used. Text samples are used directly as
input.

• Image Modality: we pass the standard prompt: <MORE DETAILED CAPTION> to Florence Yuan et al.
(2021).

• Audio Modality: we pass the prompt: "Describe the sounds in this clip" for VGGSound
and "Describe this audio" for UrbanSound8k.

A.7 REPRODUCIBILITY

A.7.1 CODE AND IMPLEMENTATION

All code necessary to reproduce our experiments is available at

https://github.com/BeyondDeepFakeDetection/Beyond-Deep-Fake-Detection.

The repository includes:

• The scripts that were used for image and audio captioning, and to semantically split books into phrases.

• The script used to generate distorted distribution datasets given the general dataset.

• The LLM fine-tuning script, with all hyperparameters matching those reported in the main text.

• The JSON files with custom low- to high-level label mappings, that were used in the dataset engineering part.

• The script used to compute the per-token and total probability of a text under a fine-tuned LLM.

• A standalone implementation of our semantic calibration pipeline, with:

– Rebalancing of the probability mass using ρ.
– Online filtering mechanism using rejection sampling.
– Performance metrics computation (e.g. Deception Reduction).
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A.7.2 DATASETS AND FINE-TUNED MODELS

All datasets and fine-tuned models utilized in our experiments are publicly accessible via our Hugging Face repository:

https://huggingface.co/BeyondDeepFakeDetection.

Each dataset includes:

• the general training set,

• the general test set,

• the baseline split training set,

• the mild split training set,

• the moderate split training set,

• the severe split training set.

Each fine-tuned model has been trained on its corresponding training split and is ready to be deployed.

A.8 COMPUTE RESOURCES

We detail the compute requirements for each component of our pipeline to support reproducibility.

• LLM fine-tuning (GPT-2 Small): Fine-tuning GPT-2 (124M parameters) on a dataset of ∼ 50k samples such
as COCO no sports, for 5 epochs, was completed in less than 2 hours on a single NVIDIA RTX 2080 GPU.

• Florence captioning model inference: Caption generation using Microsoft’s large Florence model was
performed on an NVIDIA RTX A6000 GPU (48GB VRAM). Processing a dataset of 10k images requires
approximately 2.5 hours.

• Qwen-Audio captioning inference: Audio captioning with Qwen-Audio was run on an NVIDIA RTX A6000.
Captioning the UrbanSound8k dataset (8.6k rows) required approximately 2.5 hours.

• LLM inference (per-token log probabilities): For each test dataset, we computed token-wise log probabilities
using a fine-tuned GPT-2 model. Inference over the evaluation set took less than ∼15 minutes even on our
largest datasets (> 35k rows) using a single NVIDIA RTX 2080 GPU.

• Rejection sampling process: Our semantic calibration mechanism performs 1000 independent rejection
sampling runs to compute statistics (mean, std) for distribution alignment. This process is CPU-only, completes
in under 5 minutes even for the largest datasets and has negligible compute cost.

A.9 ADDITIONAL FIGURES

Below we present two additional figures that complement Figure 4 from the main text. These provide further insight
into the behavior of the distributions under different dataset shift scenarios. To further illustrate the dynamics of our
method in an online setting, we provide a live animation available in the GitHub repository listed in App. A.7.1.

Figure 7: Comparison of the filtered distribution pϕ(z), the real distribution pr(z), and the general distribution
p(z) under a severe shift scenario. Results are shown for the UrbanSound8K and Gutenberg datasets. Class labels on
the horizontal axis are ordered by increasing frequency in pr(z).
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Figure 8: Visualization of the filtered distribution pϕ(z), the real distribution pr(z), and the general distribution
p(z) under a baseline shift scenario. Shown are results for AG-NEWS, COCO (no-sports), and CIFAR-10. Class labels
along the horizontal axis are ordered by increasing frequency under pr(z). Our approach introduces minimal distortion,
as expected for baseline scenarios.

A.10 ADDITIONAL EXPLAINABILITY FIGURES

Figure 9: Saliency map showcasing the explainability of semantic calibration on two test images from the COCO
dataset. Tokens highlighted in blue favor acceptance (∆i > 0) while those highlighted in orange favor rejection
(∆i < 0). As expected, words highlighted in orange intuitively favor rejection (e.g., baseball, batter, catcher,
umpire) and those in blue favor acceptance (e.g. sitting, conversation, porch).
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Figure 10: Rolling acceptance probabilities for the two images shown in Fig. 9

Figure 11: Saliency map showcasing the explainability of semantic calibration on two test images from the COCO
dataset. Tokens highlighted in blue favor acceptance (∆i > 0) while those highlighted in orange favor rejection
(∆i < 0). As expected, words highlighted in orange intuitively favor rejection (e.g., skateboard, forward) and
those in blue favor acceptance (e.g. television, screen, entertainment).

Figure 12: Rolling acceptance probabilities for the two images shown in Fig. 11
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Figure 13: Saliency map showcasing the explainability of semantic calibration on two test images from the COCO
dataset. Tokens highlighted in blue favor acceptance (∆i > 0) while those highlighted in orange favor rejection
(∆i < 0). As expected, words highlighted in orange intuitively favor rejection (e.g., surfer, wetsuit, surfboard)
and those in blue favor acceptance (e.g. sitting, plate, fork).

Figure 14: Rolling acceptance probabilities for the two images shown in Fig. 13
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A.11 SEMANTIC CALIBRATION VERSUS DEEPFAKE DETECTION

Figure 15: We illustrate an unfiltered media stream containing images of dogs, cats, and horses. The stream induces a
non-uniform distribution p, as 2 of the 4 cat images (50%) are deepfakes (marked with the evil emoji). Suppose the
deepfake detector is imperfect, as Theorem 1 suggests any detector may eventually be, and removes only 1 of the 2
fake cat images. The filtered distribution therefore remains skewed relative to the desired target. In contrast, applying
our semantic calibration framework in the latent semantic space correctly adjusts the distribution pr by removing two
cat instances regardless of whether they are fake or real. This example shows that our method is not a conventional
deepfake detector: even when detection fails, semantic calibration rebalances manipulated media streams toward the
target distribution.

26


	Introduction
	Background
	Method
	Experiments
	Results
	Discussion and limitations
	Related work
	Conclusion
	Appendix
	Semantic vs non-semantic information
	Notation
	Variables
	Distributions

	Forward objective
	Proofs
	Convexity of KL divergence
	Divergence chain rule
	Limit of deepfake detection
	Rejection sampling
	Upper bound for M*
	Ratio approximation

	Datasets and labeling details
	Captioning model prompts.
	Reproducibility
	Code and implementation
	Datasets and fine-tuned models

	Compute resources
	Additional figures
	Additional Explainability Figures
	Semantic Calibration versus DeepFake Detection


