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Abstract

Graph generation models have shown significant
potential across various domains. However, de-
spite their success, these models often inherit so-
cietal biases, limiting their adoption in real-world
applications. Existing research on fairness in
graph generation primarily addresses structural
bias, overlooking the critical issue of feature bias.
To address this gap, we propose FDGen, a novel
approach that defines and mitigates both feature
and structural biases in graph generation models.
Furthermore, we provide a theoretical analysis of
how bias sources in graph data contribute to dis-
parities in graph generation tasks. Experimental
results on four real-world datasets demonstrate
that FDGen outperforms state-of-the-art methods,
achieving notable improvements in fairness while
maintaining competitive generation performance.

1. Introduction
Graphs naturally appear in many real-world scenarios,
from social network analysis (Grover et al., 2019), fi-
nancial markets (Wang et al., 2023a), and recommen-
dation systems (Wang et al., 2019) to the Internet of
Things (Kong et al., 2023). In this context, deep learn-
ing on graph-structured data has attracted increasing at-
tention and inspired many graph learning frameworks in
recent years (Kang et al., 2022; Wang et al., 2024c; 2025h).
Among them, graph generation models have become cru-
cial components of the graph machine learning framework,
serving purposes such as data augmentation (Chakrabarti &
Faloutsos, 2006), anomaly detection (Akoglu et al., 2008),
and enabling privacy-preserving data sharing (Kose & Shen,
2024b). Thus, creating synthetic graphs with graph gen-
erative models becomes instrumental in applications over
interconnected systems.
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Despite showing promising results, most graph generation
models suffer from fairness issues (Wang et al., 2023c), rais-
ing ethical and societal concerns, particularly in high-stake
decision-making scenarios such as healthcare (Yu et al.,
2020), credit scoring (Shumovskaia et al., 2020), and crime
prediction (Wang et al., 2025b). Consider a credit scoring
scenario where financial institutions need synthetic data
for partner collaboration. While graph generation models
can protect individual privacy by creating synthetic graphs
from real data, they may amplify existing biases (Wang
& Zhang, 2024). For example, if the original data shows
ethnic clustering in financial relationships, the generated
graphs often strengthen these patterns, creating denser con-
nections between people of the same ethnicity. These am-
plified structural biases then affect downstream financial
decisions (Wang et al., 2025a).

To this end, preliminary efforts have been made to explore
fairness within graph generation models. For instance, Fair-
Wire (Kose & Shen, 2024b) designs a fairness regularizer
and leverages the proposed fair regularizer in a generative
model to mitigate graph structure bias. However, FairWire,
like existing fair graph generation models (Zheng et al.,
2024), focuses solely on addressing structural bias, where
nodes connect predominantly with neighboring nodes shar-
ing the same sensitive attributes. For example, in the gener-
ated graph shown in Figure 1 (b), the central male node v1,
compared with the original graph in Figure 1(a), maintains
connections with male nodes v2 and v3, adds a new connec-
tion with male node v4, and loses its original connections
with female nodes v5 and v6, leading to significantly higher
recommendation rates within sensitive groups, potentially
causing social segregation (Hofstra et al., 2017). However,
all existing methods overlook feature bias, which arises
when the generated non-sensitive attributes exhibit distri-
butional disparities across subgroups. Still in Figure 1, the
original graph in Figure 1 (a) depicts equal incomes across
gender groups, whereas the generated graph in Figure 1 (b)
shows male nodes with higher incomes than female nodes
($370,000 vs. $250,000), leading to biased downstream
applications where models trained on this synthetic data
learn to expect higher incomes from male applicants. In
addition, feature bias is closely intertwined with structural
bias, as node features propagate through the network struc-
ture. Therefore, it cannot be overlooked when aiming for
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truly fair graph structure generation.

It is therefore of social importance to account for multiple
biases to generate fair graphs, as shown in Figure 1 (c).
Specifically, v1 maintains balanced connections with both
male (v2, v3) and female neighbors (v5, v6), demonstrat-
ing equal connectivity across gender groups. Additionally,
while preserving inherent group-specific characteristics, the
node attributes, such as income, show similar distributions
across different groups, eliminating feature bias. To achieve
such fair graph generation, several challenges need to be ad-
dressed: i) Difficulty in measuring feature bias: Existing
fair graph generation models primarily address structural
bias by using statistical comparisons of inter-group con-
nectivity. However, measuring node feature bias presents a
critical challenge, as real-world graphs contain diverse types
of node features (e.g., categorical zip codes, continuous in-
come values) with different scales and distributions that can-
not be directly compared using simple statistical measures.
ii) Difficulty in mitigating multiple types of bias during
generation: Unlike independent and identically distributed
(IID) data, graph generation requires ensuring fairness in
both node features and graph structure. Furthermore, node
features influence the formation of graph structure, and the
graph structure affects the generation of node features. This
interdependence makes it challenging to design universal
fairness constraints that can effectively reduce both types of
bias simultaneously. iii) Difficulty in distinguishing group
identity information: While we aim to mitigate unfair dif-
ferences between groups, we need to preserve legitimate
group-specific characteristics. For instance, while we seek
equal treatment in non-sensitive attributes like income or
credit scores, we should maintain natural group differences
in physical characteristics (e.g., facial hair in males). The
key challenge is to distinguish between biases that require
mitigation and inherent group characteristics that should be
maintained, thereby ensuring generated graphs that are both
fair and realistic.

To tackle the aforementioned challenges, we propose a novel
framework, FDGen (short for Fair Diffusion for Graph
Generation) to ensure the fairness of the graph generation
model. To the best of our knowledge, this is the first work
to simultaneously mitigate multisource biases arising from
sensitive attributes in graph generation models. Specifi-
cally, we first carry out a theoretical analysis investigating
the sources of bias in the graph generation model. Guided
by the theoretical findings, we proposed a novel fairness
regularizer, which can be interpreted as encouraging each
node to weightily aggregate representations of other nodes
with different sensitive attributes of the central node and
weightily subtract representations of other nodes with the
same sensitive attribute, which can alleviate over- associa-
tion of the learned representation with sensitive attributes,
resulting in fair representations with good utility ensured by

smoothness. Based on this, we design a new diffusion-based
fair graph generation framework that leverages the proposed
regularizer to achieve fair graph generation.

Our main contributions can be summarized as follows: i)
Problem. We formalize the fair graph generation problem
and identify unique challenges motivated by real applica-
tions. ii) Framework. We proposed a novel fairness-aware
graph generation model to mitigate structural bias and fea-
ture bias during the graph generation while guaranteeing
graph quality and enhancing fairness. iii) Experimental
Evaluation. We conduct extensive experiments on four real-
world datasets, demonstrating the superior performance of
the proposed method over other state-of-the-art fairness
methods.

2. Related Work
Synthetic Graph Generation. Generating synthetic graphs
has been a longstanding research topic (Bojchevski et al.,
2018; Kong et al., 2023), with deep generative models
proving particularly successful (Li et al., 2019). Exist-
ing approaches include one-shot methods, often based
on VAEs (Simonovsky & Komodakis, 2018; Liu et al.,
2018) or GANs (De Cao & Kipf, 2018; Bojchevski et al.,
2018), which generate all edges simultaneously from la-
tent embeddings but may degrade structural fidelity due
to independence assumptions. In contrast, autoregressive
models generate graphs by sequentially adding nodes and
edges. These approaches, implemented through recurrent
networks (Dai et al., 2020) or reinforcement learning (You
et al., 2018), capture complex structural patterns and allow
constraints during generation, but remain sensitive to node
ordering (Huang et al., 2022). More recently, diffusion-
based methods have emerged (Liu et al., 2019; Niu et al.,
2020; Chen et al., 2023; Li et al., 2023), defining a Markov
chain of diffusion steps that gradually add noise to data,
then learn to reverse the inference path to generate data
from noise (Sohl-Dickstein et al., 2015). However, fairness
remains unexplored in synthetic graph generation, limiting
these models’ use in high-stakes scenarios. This has created
a need to develop fairer graph generation methods.

Fairness-aware Graph Generation Model. Fairness is
a widely-existing issue of graph learning systems and has
received increasing research attention in recent years (Wang
et al., 2025d;c; 2024a; Wang & Zhang, 2024; Zhang et al.,
2024; Zhu et al., 2024). Despite these advances, most ex-
isting methods focus on classification tasks, leaving the do-
main of graph generation models largely unexplored (Zhang
et al., 2025). To this end, a small number of works (Rah-
man et al., 2019; Wang et al., 2023c; Zheng et al., 2024)
have started to investigate fairness in graph generation mod-
els, which can be divided into two categories: i) Fair link
prediction and ii) Fair graph structural generation. Specif-
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Figure 1. A toy example of biases in graph generation is shown, where black lines represent original edges, gray dashed lines indicate
removed inter-group edges, and orange lines denote newly added intra-group edges.

ically, fair link prediction focuses on achieving unbiased
predictions of dyadic relationships among graph nodes. For
instance, FAIRLP (Li et al., 2022) was designed to modify
the training graph to balance the distribution of intra-group
and inter-group links while preserving the network char-
acteristics of the graph. This enhancement improves the
representation of underrepresented groups to achieve fair
link prediction. Unlike fair link prediction, fair graph struc-
tural generation measures graph structural bias at the graph
level and aims to reduce the distribution difference between
the generated graph and the original graph’s inter- and intra-
group edges. For instance, FairGen (Zheng et al., 2024)
achieves fair graph structural generation by incorporating
parity constraints to minimize the difference in reconstruc-
tion loss between the generated graph and the original graph
across different subgroups. However, these methods, focus
solely on ensuring fairness in graph structure generation,
neglecting potential biases in node information generation,
which are crucial for achieving truly fair graph generation.

In contrast to existing work, this paper proposes a fair graph
generation model that addresses both graph structural bias
and feature bias, with its design informed by theoretical
analysis. In addition, the bias mitigation approach is flexible,
allowing it to be applied in both link prediction models and
generative models.

3. Notation
In this paper, we formalize the graph generation problem in
the context of an undirected graph G = (V, E ,X), it would
contain |V| nodes and |E| edges. The feature matrix for
the graph is denoted as X ∈ R|V|×d, where i-th row rep-
resents a d-dimensional feature vector of the i-th node vi.
A ∈ {0, 1}n×n is the adjacency matrix where Ai,j = 1 indi-

cates that there exists edge ei,j ∈ E between node vi and vj ,
and Ai,j = 0 otherwise. In this paper, we assume that both
ground-truth labels and sensitive attributes are binary vari-
ables for convenience. We let S ∈ {0, 1}n×1 to denote the
binary sensitive attributes, where si is the sensitive attribute
of vi. We use Sd = {∀ vi ∈ V|si = 0} denotes the deprived
group (e.g., female) and Sf = {∀ vi ∈ V|si = 1} denotes
the favored group (e.g., male). For node classification, each
node is also associated with a one-hot ground-truth node
label yi where ŷi is the label of vi. We also assume yi = 1
denotes the granted label and yi = 0 denotes the rejected
label. In addition, we let Gvi represent the ego graph of
center node vi, which includes important neighbor nodes of
the central node.

4. The Proposed Framework: FDGen
This section introduces FDGen, a framework built upon the
graph diffusion model (Kong et al., 2023) to mitigate both
structural and feature bias for fair graph generation. Given
the correlation between these biases, FDGen is developed to
adaptively mitigate them during generation, leveraging the
flexibility and tractable probability distributions of diffusion
models. Specifically, bias types in graph generation are
first defined, along with theoretical foundations for fairness
regularizers (Section 4.1). Next, we describe how FDGen
isolates sensitive information into independent components
to measure generation discrepancies and apply fairness con-
straints (Section 4.2). Finally, the FDGen model and its
training objectives are presented (Section 4.3).

4.1. Fair Graph Generation Regularizer

We first examine the root causes of biases in graph gener-
ation, laying the groundwork for a fairness regularization
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strategy to mitigate them. Specifically, graph generation
models are vulnerable to bias through two main mecha-
nisms: i) nodes with the same sensitive attributes tend to
form denser connections, creating structural bias, and ii) the
node feature distributions often show systematic differences
across demographic groups, leading to feature bias. In addi-
tion, these biases can be mutually reinforcing, as nodes with
similar features are more likely to connect, and connected
nodes influence each other’s feature representations. Spe-
cific to graph diffusion models, these biases can be further
amplified during generation. Specifically, a diffusion-based
graph generation model defines a forward Markov transition
kernel q

(
xt | xt−1

)
to gradually corrupt the training data

into a simple noise distribution. The model then learns a
reverse denoising transition pθ

(
xt−1 | xt

)
using a neural

network. During this reverse process, GNN-style message
passing aggregates information from neighboring nodes
to preserve both topological structure and node features.
However, this message-passing mechanism can exacerbate
existing biases through two effects: First, by smoothing rep-
resentations of connected nodes, it strengthens segregation
between different sensitive groups, amplifying graph struc-
tural bias. Second, it reinforces the association between
node representations and sensitive attributes, exacerbating
feature bias in the generated graphs.

To this end, a theoretically grounded fairness regularizer
is proposed to mitigate both structural and feature bias
simultaneously. Starting with node representation differ-
ences (hl

D), the commonly used approach is to measure
them between groups as hl

D = hl
Sd

− hl
Sf

(hl
Sd

and hl
Sf

denote the node representations for deprived and favored
groups, respectively). However, while this captures over-
all representation differences between subgroups, it fails to
account for the distinct roles of sensitive information, as
nodes with different sensitive attributes should have differ-
ent sensitive-related components while maintaining similar
sensitive-irrelevant components. To this end, we separate
node representations into sensitive-related representations
hl,S
i and sensitive-irrelevant representations hl,S

i . This sep-
aration allows us to minimize the differences in sensitive-
irrelevant components (hl,S

i ) while maintaining appropriate
differences in sensitive-related components (hl,S

i ), thereby
preserving group identity while mitigating bias, as detailed
in Definition 4.1.

Definition 4.1 (Sensitive-irrelated Representation Discrep-
ancy). Let VSd

and VSf
be two subgroups corresponding

to distinct values Sd, Sf ∈ S of a sensitive attribute, with
Sd ̸= Sf . Suppose each node vi has a non-sensitive repre-

sentation hl,S
i at layer l, intended to be independent of the

sensitive attribute S. We quantify any unintended discrep-
ancy in this non-sensitive space via the Maximum Mean
Discrepancy (MMD):

hS
(l)
D =

1

|VSd
|2

∑
vi,vj∈VSd

k
(
hS

(l)
i
, hS

(l)
j

)
+

1

|VSf
|2

∑
vi,vj∈VSf

k
(
hS

(l)
i
, hS

(l)
j

)
− 2

|VSd
| · |VSf

|
∑

vi∈VSd
vj∈VSd

k
(
hS

(l)
i
, hS

(l)
j

)

where k(·, ·) is a kernel function (e.g., RBF kernel). A large
hS

(l)
D indicates substantial divergence between VS0

and VS1

the non-sensitive channel (i.e., sub node representation).
Conversely, a small MMD implies a better alignment of
non-sensitive embeddings, reducing unfair discrimination
risk in downstream tasks. In addition, this measure can
be simplified to a direct Euclidean distance between mean
embeddings, and extends naturally to multiple sensitive
attributes.

Building on this representation separation measurement,
FDGen proceeds in three steps. First, we analyze how
representation discrepancy emerges during GNN-based ag-
gregation, establishing an upper bound to understand its
propagation through network layers (Theorem 4.2). Sec-
ond, we demonstrate how this representation discrepancy
directly influences group disparity, showing that reducing
representation differences leads to improved demographic
parity (Theorem 4.3). Finally, guided by these theoretical
insights, we propose a fairness regularizer that simultane-
ously addresses both structural and feature bias by aligning
non-sensitive representations while maintaining appropriate
group-specific differences.

We begin with the first step of analyzing representation
discrepancy. During GNN message-passing, node repre-
sentations are influenced by both their neighbors and the
network structure. Theorem 4.2 quantifies this influence by
providing an upper bound on the representation discrepancy
between sensitive groups, revealing how bias can accumu-
late across layers (proof in Appendix).

Theorem 4.2. The discrepancy hS
(l)
D between the represen-

tations of nodes in a sensitive group Sd and the rest of the
nodes at the lth GNN layer can be upper bounded by:

hS
(l)
D ≤

(
3−

(
1

|VSd
| |VSf

|2 + 1
|VSd

|2 |VSf
|
)

∑
i∈Sd, j∈Sf

k
(
hS

l−1
i

, hS
l−1
j

)) ∥∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥∥
+
∥∥∥µ(d) − µ(f)

∥∥∥
+

[
2
√
N∥W(l)∥∞

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)])
(1)

where µ denotes the mean representation of a subgroup of
nodes.

Building on Theorem 4.2, we next analyze how represen-
tation disparity influences group fairness. Theorem 4.3
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demonstrates that by minimizing sensitive-irrelevant rep-
resentation discrepancy, we can effectively reduce group
disparity in model predictions (detailed proof in Appendix).

Theorem 4.3. For a classification task, minimizing the
sensitive representation discrepancy between two sensitive
groups upper-bounds the group disparities:

∆DP =
∣∣∣ 1
|VSd

|

∑
i∈Sd

f
(
zi
)
1
− 1

|VSf
|

∑
j∈Sf

f
(
zj
)
1

∣∣∣
≤

∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣
+ L

2

(
1

|VSd
|

|VSd
|∑

i=1

∥W(l)∥hS
(l)
D + 1

|VSf
|

|VSf
|∑

j=1

∥W(l)∥hS
(l)
D

)
(2)

Based on these theoretical results, we propose a fair regu-
larizer LT that reduces MMD in sensitive-irrelevant node
representations while adjusting inter- and intra-group con-
nections:

LT = aLf + bLg

= a
(

1
|VSd

|2
∑

vi,vj∈VSd

k(h
(l),S
i ,h

(l),S
j )

+ 1
|VSf

|2
∑

vi,vj∈VSf

k(h
(l),S
i ,h

(l),S
j )

− 2
|VSd

|·|VSf
|

∑
vi∈VSd

, vj∈VSf

k(h
(l),S
i ,h

(l),S
j )

)
+ b

(
∥Einter −Ainter∥2F + ∥Eintra −Aintra∥2F

)
(3)

where Lf denotes the node-level fairness term that aligns
h
(l)

S
across sensitive subgroups, and Lg captures the dif-

ference in modeling performance between inter- and intra-
group edges, with a and b as hyperparameters that balance
their contributions. In addition, Einter and Eintra denote pre-
dicted inter- and intra-group connections, while Ainter and
Aintra indicate their ground-truth adjacency.

In summary, LT aims to align non-sensitive representations
across different groups, while pushing the predicted graph
edges to better match intra-group and inter-group statistics.
LT , integrated into FDGen, thus functions to mitigate both
structural and feature biases in the generated graphs.

4.2. Identifying Sensitive-irrelevant Representations

Equipped with the proposed fairness regularizer (Section
4.1), we now present how to disentangle node representa-
tions so as to isolate the components independent of sensi-
tive attributes, thus enabling us to measure graph generation
discrepancies and enforce fair graph generation regularizers.
This process involves two main tasks: i) Decomposing each
node representation into multiple components, where each

component corresponds to a latent factor (e.g., “age”, “oc-
cupation”), and ii) Identifying which components capture
sensitive attribute-related information and which are largely
free from it.

In the first task, we aim to decompose the node embedding
into multiple components, each representing a latent factor.
When performing this task, using all neighbors to recon-
struct the node component should be avoided, as only a
subset carries useful information for the specific channel.
For instance, if the latent factor is “family”, neighbors denot-
ing close family members should have higher weight, while
unrelated neighbors should be down-weighted. To achieve
such selective neighbor usage, we extend GAT-like attention
into a multi-channel setting via a neighbor-assigner mecha-
nism. Specifically, we assume that if two nodes vi and vj
exhibit higher similarity in the cth component space, then
factor c is more likely to be responsible for their connection.
For each channel c ∈ {1, 2, . . . , Nc}, we compute the edge
weight (ωc

vi,vj ) between nodes vi and vj using dot-product
attention to measure their similarity in channel c:

ωc
vi,vj =

exp((hc
vi)

Thc
vj )∑

vj∈N (vi)
exp((hc

vi)
Thc

vj )
(4)

where N (vi) denote the neighbors of vi. Using these edge
weights (ωc

vi,vj ), we adaptively aggregate information from
relevant neighbors for each component. The aggregation
process to obtain hl+1

vi,c (the cth channel representation of
node vi at layer l + 1) is defined as follows:

hl+1
vi,c = σ

( ∑
(vj)∈N̂(vi)

ωc
(vi,vj)

ϕ
(
hl
vj ,c, h

l
vi,c

))
(5)

where σ(·) is a non-linear activation. By focusing on rel-
evant neighbors in each channel, the aggregation in Equa-
tion (5) encourages hl+1

vi,c to cluster nodes that share similar
characteristics under factor c.

However, although the above mechanism decomposes the
node embedding into multiple channels, it does not guaran-
tee that these channels themselves are mutually independent.
For instance, channel c1 = “age” might still be correlated
with channel c2 = “nursing home”. To address this, a dis-
entangled constraint which adopts a distance covariance
regularizer (Matteson & Tsay, 2017) that penalizes inter-
channel correlations is proposed as follows:

Ld =

Nc∑
c1=1

Nc∑
c2=c1+1

dCov2
(
Zc1 , Zc2

)√
dCov2

(
Zc1 , Zc1

)
dCov2

(
Zc2 , Zc2

)
(6)
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where Nc denote the number of channels and Zk denotes
the set of node embeddings in channel c (e.g., Zc1 =
{h(c1,1), h(c1,2), . . . , h(c1,Nc1 )

}) and cov(·) is the distance
covariance.

With the decomposed channels, the second task identifies
which channel captures sensitive attribute information. The-
orem 4.4 demonstrates that in fully disentangled representa-
tions, only one channel can be associated with each sensitive
attribute.

Theorem 4.4. Suppose we have m channel representations
{hc1 , hc2 , . . . , hcNc

} that are fully disentangled, meaning
each channel is strictly independent from every other. For-
mally, I

(
hci ; hcj

)
= 0, ∀ i ̸= j. Then, at most one channel

can capture the sensitive attribute.

Hence, once we identify which channel is sensitive-related,
the remaining channels can be treated as sensitive-attribute-
independent. To this end, we train a channel-level discrimi-
nator that tries to predict a node’s sensitive label ysi from
each channel embedding. Specifically, for channel k, we
feed hk

vi into a classifier to produce the predicted probability
ŷsi,k of the sensitive label, and define the classification loss
as follows:

LD = − 1

|VL|
∑

vi∈VL

Nc∑
c=1

[
ysi log

(
ŷsi,c

)
+

(
1− ysi

)
log

(
1− ŷsi,c

)]
(7)

where ysi is the ground truth sensitive attribute label for
node vi, and ŷsi,c is the prediction sensitive attribute. Chan-
nels that yield high classification accuracy for ysi are
deemed sensitive-related, while those with low accuracy
are considered non-sensitive. Consequently, the fairness
regularizer (Section 4.1) can be applied specifically to the
sensitive-irrelevant components, ensuring minimal distribu-
tional discrepancy across different groups in the generated
graphs.

4.3. Fair Graph Generative Process

This section presents the proposed fair graph generative
model, FDGen, which incorporates both the fairness regular-
ization constraint and the disentangled conditioning mecha-
nism. The overall process is divided into two stages: i) the
forward diffusion process, where the graph is gradually cor-
rupted to obtain noisy samples, and ii) the reverse diffusion
process, where we reconstruct the graph in a fairness-aware
and disentangled manner. We will then describe each part
in detail:

Forward diffusion process. During the forward diffusion
process, FDGen constructs noisy versions of the input graph
by successively absorbing (masking) individual nodes and
their edges according to a Markov chain. Specifically, rather

than merely masking edges, FDGen learns a node ordering
network that, at each diffusion step t, selects a node vi to
absorb. In an autoregressive fashion, the node decay or-
dering σ is sampled from qϕ(σ | G0 = {X0, A0}), where
qϕ(· | G0) is a conditional probability distribution over pos-
sible node orderings σ. Here, X0 and A0 denote the initial
node features and graph structure at time step 0. At subse-
quent time steps, t, Xt, and At represent the node features
and graph structure after absorbing one node. This process
continues iteratively until the entire graph is absorbed. To
systematically select which nodes to absorb at each step, the
diffusion ordering network follows a recurrent structure:

qϕ(σ | G0) =
∏
t

qϕ
(
σt | G0, σ(<t)

)
(8)

At each step t, the probability of selecting σt depends on
the original graph G0 and all previously chosen nodes σ(<t).
We employ a GNN to encode graph structure, incorporating
positional encodings to represent the partial ordering. After
running the GNN, we obtain an updated embedding hd

i for
each node vi. The probability of selecting the next node
qϕ(σt | G0, σ(<t)) is then computed using a softmax over
node embeddings:

qϕ(σt | G0, σ(<t)) =
exp

(
hd
i

)∑
i′ /∈σ(<t)

exp
(
hd
i′

) (9)

Through this approach, FDGen learns an ordering strategy
that efficiently masks nodes during forward diffusion.

Reverse diffusion process: During the reverse diffusion
process, our goal is to reconstruct both the node features X0

and the adjacency A0 from their noisy versions Xt and At.
Specifically, let G0:n represent all the intermediate states
of the graph from G0 to Gn, and let qϕ(σ1:n | G0) be the
forward node-decay ordering network. To this end, FDGen
uses maximum likelihood estimation, which optimizes the
denoising model while guiding the denoising order through
variational inference, leading to higher-quality generated
graphs. The variational lower bound (VLB) of the likelihood
of G0 is:

log pθ(G0) = log
(∫

p(G0:n)
q(G1:n | G0)

q(G1:n | G0)
dG1:n

)
≥ Eqϕ(σ1:n|G0)

∑
t

log pθ
(
Gt | Gt+1

)
− KL

(
qϕ(σ1:n | G0)

∥∥ pθ′(σ1:n | Gn)
)
(10)

Due to node permutation invariance (Kong et al., 2023),
there is no need to learn a separate reverse node-generation
ordering, allowing the omission of the KL term in the varia-
tional lower bound and leading to a simplified objective. The
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training objective (LP), which is minimized using stochastic
gradient descent, is thus defined as:

LP = −Eσ1:n∼qϕ(σ1:n|G0)

∑
t

log pθ
(
Gt | Gt+1

)
= −nEσ1:n∼qϕ(σ1:n|G0) Et∼Un log pθ

(
Oπ(>t)

σt
| Gt+1

)
(11)

where t is drawn uniformly from {1, . . . , n} and O
π(>t)
σt

indicates the node vσt and its edges with any previously
unmasked nodes {σt+1, . . . , σn}.

While Equation 11 guides the model to learn a generative
process that reconstructs node features and edges, it does
not explicitly address bias nor disentanglement. To ensure
fairness across different groups and decompose node repre-
sentations into multiple channels (Section 4.2), for a node
vi, the node embedding at the lth layer follows Equation 5.

Building on this, we integrate the proposed fairness con-
straint into the denoising network pθ(Gt | Gt+1). Specifi-
cally, we use Lf to reduce feature discrepancies among dif-
ferent sensitive groups and Lg to constrain inter-group and
intra-group edge biases. Hence, we augment the likelihood
term in Equation 11 with these fairness and disentanglement
losses. During each reverse diffusion step, the aggregator
(Equation 5) updates node embeddings split by channel, and
we measure fairness and disentanglement on the resulting
representations. Thus, the final training objective is:

Ltotal = LP + λ1 Lf + λ2 Lg + λ3 Ld + λ4 LD (12)

where Ltrain ensures node and edge reconstruction, Lf and
Lg mitigate bias in node features and topology, and Ld

with LD enforces disentangled channels and isolates the
sensitive attribute. Note that FDGen preserves S throughout
training and sampling (i.e., S is initialized according to
its original distribution at inference time) so that FDGen
can capture how sensitive attributes correlate with graph
structure without amplifying undesirable biases.

5. Experiment
Datasets. Four real-world fairness datasets, namely Cora,
Citeseer, Photo, and Computer, are used in our experiments.
We provide a short overview of these datasets as follows: In
the Cora and Citeseer datasets (Sen et al., 2008), nodes rep-
resent papers, edges capture citation relationships between
papers, node features are bag-of-words vectors of keywords,
and labels indicate the research field of the papers. The
Photo and Computer datasets (Shchur et al., 2018) are seg-
ments of the Amazon co-purchase graph, where nodes rep-
resent products, edges show that two products are frequently

purchased together, node features are bag-of-words vectors
derived from product reviews, and labels correspond to the
product category. Table 1 summarizes the statistics of these
datasets.

Table 1. Summary of the datasets used in the experiments.
Dataset Cora Citeseer Photo Computer

# Nodes 2,708 3,327 7,650 13,752

# Edges 10,556 9,228 238,163 491,722

# Features 1,433 3,703 745 767

# Average
Degree 3.89 2.77 31.13 35.75

Sensitive
Attribute Topic Topic Product

Categories
Product

Categories

Baselines. We compare the proposed method with the
following baselines: GRAPHARM (Kong et al., 2023),
FairAdj (Li et al., 2021), FG2AN (Wang et al., 2023c),
FairGen (Zheng et al., 2024) and FairWire (Kose & Shen,
2024b).

Evaluation Metrics. We evaluate FDGen’s performance
across two aspects: 1) Node Classification Performance:
We use accuracy and F1 scores to evaluate node classifi-
cation utility, along with ∆DP (Dwork et al., 2012) and
∆EO (Hardt et al., 2016) to assess prediction fairness. 2)
Generated Graph Quality: Following (Kong et al., 2023), we
measure generation quality using maximum mean discrep-
ancy (MMD) between generated and input graphs, specifi-
cally computing MMD for degree distribution and clustering
coefficient. To evaluate graph structural fairness, we pro-
pose metrics, fair degree distribution and fair clustering co-
efficient, that measure disparity between subgroups. These
are computed as: f(GSd

, G̃Sd
) − f(GSf

, G̃Sf
), where f(·)

denotes the MMD value for degree distribution or clustering
coefficient, and G̃ represents the generated graph.

5.1. Experiment Results

Graph Generation Results. We evaluate our generative
models in terms of both quality and fairness, with results
shown in Figure 2. FDGen demonstrates strong perfor-
mance in graph generation, achieving comparable or better
quality than baseline methods while significantly improving
fairness metrics. The strong performance can be attributed
to two key factors. First, FDGen maintains group identity
information through decomposition learning while reducing
differences in sensitive-irrelevant attributes. This approach
enables FDGen to achieve fairness with minimal compro-
mise to synthetic graph quality compared to other fairness-
aware baselines. Second, by simultaneously addressing both
structural and feature bias, FDGen better mitigates group dif-
ferences in generated graphs compared to existing methods
that focus solely on structural bias. Overall, these experi-
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Figure 2. Graph generation results on Cora, Citeseer, Photo and
Computer datasets.

mental results demonstrate that FDGen effectively improves
fairness while maintaining graph generation quality.

Table 2. Node classification results on the Cora dataset.
Cora dataset ACC (%) ∆DP (%) ∆EO(%)

Original-GCN 82.43 ± 0.34 27.01 ± 1.38 25.21 ± 1.13
GRAPHARM-GCN 81.03 ± 0.23 25.21 ± 1.38 21.31 ± 1.43
FairAdj-GCN 77.77 ± 1.64 17.13 ± 6.36 13.96 ± 2.24
FG2AN-GCN 78.10 ± 0.81 18.66 ± 4.30 14.05 ± 0.32
FairGen-GCN 79.54 ± 1.56 14.16 ± 0.89 13.35 ± 1.24
FairWire-GCN 78.21 ± 1.03 14.76 ± 0.24 13.65 ± 0.51

FDGen-GCN 80.05 ± 1.03 13.88 ± 0.24 11.95 ± 0.37

Node Classification Results. We evaluate both the accuracy
and fairness of node classification using generated graphs.
For this evaluation, we use GCN as our base model, training
it on generated graphs and testing its predictive performance.
Using the Cora dataset as a case study, Table 2 shows the
comparison between FDGen and baseline methods on the
node classification task. The results demonstrate that graphs
generated by FDGen consistently lead to better classifier
performance in terms of both accuracy and fairness. This
improvement stems from FDGen’s ability to mitigate both
structural and feature bias during graph generation, thus re-
ducing bias propagation from raw graph data to downstream
tasks.

Ablation Study. To verify the effectiveness of our proposed
modules, we conduct an ablation study examining two vari-
ants of FDGen. First, we analyze the impact of identifying
sensitive-irrelevant representations by creating FDGen-WD,
which applies fair regularization directly to complete node
representations. As shown in Figure 3, FDGen-WD shows

Figure 3. Ablation study results for FDGen, FDGen-WD, and
FDGen-WS.

reduced graph generation quality compared to the complete
FDGen model. This decline in performance occurs because
eliminating group identity information reduces the authen-
ticity of generated graphs.

Second, we study the effect of mitigating only feature
bias by creating FDGen-WS. Results in Figure 3 show
that FDGen-WS achieves worse fairness compared to the
complete FDGen model. While nodes may have similar
sensitive-irrelevant attributes, their connections remain influ-
enced by sensitive-related information, leading to increased
connectivity between nodes sharing sensitive attributes and
introducing structural bias. However, FDGen-WS main-
tains better graph generation quality than FDGen-WD. Over-
all, these findings underscore the necessity of our design
choices.

6. Conclusion
Generating synthetic graphs that capture structural charac-
teristics of real data has gained increasing attention as a
solution to scalability and privacy challenges in real-world
networks. However, fairness in graph generation models
remains an important yet understudied problem. This work
addresses this gap by investigating bias in graph data and
proposing FDGen, a framework that mitigates both struc-
tural and feature bias. Our theoretically grounded fairness
regularizer effectively reduces identified bias factors, as
demonstrated through extensive experiments comparing FD-
Gen with both fairness-agnostic and fairness-aware base-
lines on real and synthetic graphs. These results establish a
foundation for developing fair graph generation models and
open possibilities for future work on a comprehensive study
of graph learning.
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A. Proof of Theorem 4.2
To simplify the notation, we use hl to denote the input representations, and hl+1 to denote the output representations. The
considered disparity measure follows as:

hS
(l)
D = MMD

(
{hS

l
i | vi ∈ VSd

}, {hS
l
i | vi ∈ VSf

}
)

(13)

Expand under the RBF kernel function: k(x, y) = exp
(
−γ∥x− y∥2

)
, we can get:

hS
(l)
D =

1

|VSd
|2

∑
vi,vj∈VSd

k
(
hl
Si
, hl

Sj

)
+

1
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)
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|
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Sj

)
(14)

Building on this, and given that Graph Attention Networks (GAT) adopt the message passing by assigning different weights
to neighbor nodes as:

h
(l)
i =

∑
vj∈N (i)

a
(l−1)
ij h

(l−1)
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(l−1)
ij =

exp
(
e
(l−1)
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)
∑

vj∈N (i) exp
(
e
(l−1)
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) (15)

Hence, we can re-write the disparity as follows:
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Given that each node u ∈ Sd, the node representation h
(l)
u subject to µ

(d)
i −∆l ⪯ h

(l)
u ⪯ µ

(d)
i +∆l (Kose & Shen, 2024a),

where the parameter ∆l serves as a per-layer tolerance indicating how far the representation is allowed to deviate from µ
(d)
i

along each coordinate. If u instead belongs to Sf , a parallel condition applies with µ
(f)
i ±∆l, anchoring h

(l)
u around the

group mean µ
(f)
i . Building on this, we assume the node representation within a controlled region near its respective group’s

mean. Hence, we can define the h
(l)
i as:
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Building on this, for nodes vi ∈ Sd, we have:
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We can do similar for Sf .
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We define the upper bound of the consequent representation discrepancy on node representation between two sensitive
groups as follows:
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(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]
≤

(
1
Nd

∑
i∈Sd

∑
u∈Ni∩Sopp(vi)

a
(l−1)
iu + 1

Nf

∑
j∈Sf

∑
u∈Nj∩Sopp(vj)

a
(l−1)
ju

)
+ 1

−
(

1
Nd N2

f
+ 1

N2
d Nf

) ∑
i∈Sd

∑
j∈Sf

k
(
h
(l−1)
i ,h

(l−1)
j

) ∥∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥∥
+
∥∥∥µ(d) − µ(f)

∥∥∥+
[
2
√
N∥W(l)∥∞

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]
≤

(
3 −

(
1

Nd N2
f
+ 1

N2
d Nf

) ∑
i∈Sd

∑
j∈Sf

k
(
h
(l−1)
i ,h

(l−1)
j

))∥∥∥µ(d)
l−1 − µ

(f)
l−1

∥∥∥
+
∥∥∥µ(d) − µ(f)

∥∥∥+
[
2
√
N∥W(l)∥∞

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]

(19)

Noting that each node representation hi can be decomposed as hi = hiS ⊕ hSi (sensitive vs. non-sensitive part), we obtain
the analogous upper bound for the sensitive-irrelevant representation h

(l)

S,D
. Hence, the representation discrepancy between

different sensitive groups in the non-sensitive subspace is also bounded by:

h
(l)

S,D
≤

(
3−

( 1

|VSd
| |VSf

|2
+

1

|VSd
|2 |VSf

|
) ∑
i∈Sd, j∈Sf

k(hl−1

S,i
, hl−1

S,j
)
)∥∥µ(d)

l−1 − µ
(f)
l−1

∥∥+
∥∥µ(d) − µ(f)

∥∥
+

[
2
√
N∥W(l)∥∞

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)] (20)

which concludes the proof.
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B. Proof of Theorem 4.3
For binary classification, statistical parity is defined as: ∆SP = |P (ŷ = 1|s = 0) − P (ŷ = 1|s = 1)|. We consider the
binary classification task and examine the properties of the Softmax function in this context. Let P1 and P2 represent the
probabilities of class 1 (c1) and class 2 (c2), respectively. The function Softmax(·) is Lipschitz continuous with a Lipschitz
constant L. Due to this Lipschitz continuity, the difference in output probabilities can be bounded by the difference in input
vectors:

∥f(hi)− f(hj)∥ = |P1 − P2|+ |(1− P1)− (1− P2)|
= 2|P1 − P2| ≤ L∥hi − hj∥

(21)

where hi is the node representation for ∀vi ∈ Sd and hj is the node representation for ∀vj ∈ Sf .

Building on this, we can rewrite the statistical parity as follows:

∆DP =

∣∣∣∣ 1

Nd

∑
i∈Sd

f
(
zi
)
1
− 1

Nf

∑
j∈Sf

f
(
zj
)
1

∣∣∣∣ (22)

where zi = W lh
(l)
i , and W (l) is the weight matrix at layer l.

As we discuss above, from Equation 21 and using node vi from the group Sd as an example, we can get:

2
∣∣ f(zi)1 − f(zµ(d))1

∣∣ ≤ L ∥zi − zµ(d)∥ (23)

Therefore, we can rewrite it as:

f
(
zµ(d)

)
1
− L

2 ∥zi − zµ(d)∥ ≤ f
(
zi
)
1

≤ f
(
zµ(d)

)
1
+ L

2 ∥zi − zµ(d)∥ (24)

Let zi = W(l)h
(l)
i for node i, and zµ(d) = W(l)µ

(d)
l , zµ(f) = W(l)µ

(f)
l be the group means in logits space.

f(zµ(d))1 − f(zµ(f))1 − 1
Nd

Nd∑
i=1

L
2 ∥zi − zµ(d)∥ − 1

Nf

Nf∑
j=1

L
2 ∥zj − zµ(f)∥

≤ 1
Nd

∑
i∈Sd

f(zi)1 − 1
Nf

∑
j∈Sf

f(zj)1 ≤

f(zµ(d))1 − f(zµ(f))1 +
1
Nd

Nd∑
i=1

L
2 ∥zi − zµ(d)∥+ 1

Nf

Nf∑
j=1

L
2 ∥zj − zµ(f)∥

Consider the hD we obtained:

∥zi − zµ(d)∥ = ∥W(l)(h
(l)
i − µ

(d)
i )∥

≤ ∥W(l)∥

[(
3−

( 1

NdN2
f

+
1

N2
dNf

) ∑
p∈Sd

∑
q∈Sf

k(h(l−1)
p ,h(l−1)

q )
)
∥µ(d)

l−1 − µ
(f)
l−1∥

+ ∥µ(d) − µ(f)∥+
[
2
√
N

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]] (25)

and we can get similiar for ∥zi − zµ(f)∥.
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Building on this, we re-express the upper bound.

∆DP =

∣∣∣∣ 1

Nd

∑
i∈Sd

f(zi)1 − 1

Nf

∑
j∈Sf

f(zj)1

∣∣∣∣
≤

[
f(zµ(d))1 − f(zµ(f))1

]
+

L

2

( 1

Nd

Nd∑
i=1

∥zi − zµ(d)∥+
1

Nf

Nf∑
j=1

∥zj − zµ(f)∥
) (26)

Here we have combined the group center difference
[
f(zµ(d))1 − f(zµ(f))1

]
with the Lipschitz offset 1

Nd

∑
∥zi − zµ(d)∥+

1
Nf

∑
∥zj − zµ(f)∥, factoring out L

2 .

We note that

∥zi − zµ(d)∥ = ∥W(l)(h
(l)
i − µ

(d)
l )∥ ≤ ∥W(l)∥

∥∥h(l)
i − µ

(d)
l

∥∥ (27)

Similarly for zj − zµ(f) . According to (1), we know

∥∥h(l)
i − µ

(d)
l

∥∥ ≤
(
3−

(
1

Nd N2
f
+ 1

N2
d Nf

)∑
p∈Sd

∑
q∈Sf

k
(
h(l−1)
p ,h(l−1)

q

))
∥µ(d)

l−1 − µ
(f)
l−1∥ (28)

+ ∥µ(d) − µ(f)∥+
[
2
√
N∥W(l)∥∞

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]

By Theorem 4.2, ∥h(l)
i − µ

(d)
l ∥ is itself bounded by a term involving ∥µ(d)

l−1 − µ
(f)
l−1∥, plus L ∥∆(l−1)∥ and C ∥∆z∥. Thus,

∥zi − zµ(d)∥ ≤ ∥W(l)∥
[(

3−
(

1
Nd N2

f
+ 1

N2
d Nf

) ∑
p∈Sd

∑
q∈Sf

k
(
h(l−1)
p ,h(l−1)

q

))
∥µ(d)

l−1 − µ
(f)
l−1∥ (29)

+ ∥µ(d) − µ(f)∥+
[
2
√
N

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)]
Similarly for ∥zj − zµ(f)∥. Plugging these bounds into (24) and summing over vi ∈ Sd, vj ∈ Sf yields:

∆DP ≤
∣∣f(zµ(d))1 − f(zµ(f))1

∣∣
+

L

2
∥W(l)∥

[
1

Nd

Nd∑
i=1

((
3−

(
1

Nd N2
f
+ 1

N2
d Nf

)
∑
p,q

k(h(l−1)
p ,h(l−1)

q )
)
∥µ(d)

l−1 − µ
(f)
l−1∥

+∥µ(d) − µ(f)∥+
[
2
√
N

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)])
+

1

Nf

Nf∑
j=1

((
3−

(
1

Nd N2
f
+ 1

N2
d Nf

)
∑
p,q

k(h(l−1)
p ,h(l−1)

q )
)
∥µ(d)

l−1 − µ
(f)
l−1∥

+∥µ(d) − µ(f)∥+
[
2
√
N

(
∆l + ∥µ(d)

l − µ
(f)
l ∥

)])]

(30)

We can rewrite it as:
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∆DP =
∣∣∣ 1
Nd

∑
i∈Sd

f(zi)1 − 1
Nf

∑
j∈Sf

f(zj)1

∣∣∣
≤

∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣ + L
2

(
1
Nd

Nd∑
i=1

∥zi − zµ(d)∥+ 1
Nf

Nf∑
j=1

∥zj − zµ(f)∥
)

≤
∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣ + L
2

(
1
Nd

Nd∑
i=1

∥W(l)∥hS
(l)
D + 1

Nf

Nf∑
j=1

∥W(l)∥hS
(l)
D

)
=

∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣ + L
2 ∥W

(l)∥hS
(l)
D

(
Nd

Nd
+

Nf

Nf

)
=

∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣ + L ∥W(l)∥ hS
(l)
D

(31)

Building on this analysis, we can derive an upper bound for the bias caused by sensitive-irrelevant node representations
disparity.

∆DP =
∣∣∣ 1
|VSd

|

∑
i∈Sd

f
(
zi
)
1
− 1

|VSf
|

∑
j∈Sf

f
(
zj
)
1

∣∣∣
≤

∣∣∣f(zµ(d))1 − f(zµ(f))1

∣∣∣
+ L

2

(
1

|VSd
|

|VSd
|∑

i=1

∥W(l)∥hS
(l)
D + 1

|VSf
|

|VSf
|∑

j=1

∥W(l)∥hS
(l)
D

) (32)

This completes the proof.

C. Proof of Theorem 4.4
Assume there exist two distinct channels hci and hcj (i ̸= j) that both encode the sensitive attribute S. That is, I(hci ;S) > 0
and I(hcj ;S) > 0.

Hence, we can write
hci = fi(S) + εi, hcj = fj(S) + εj (33)

for some non-trivial functions fi(·), fj(·) and noise terms εi, εj .

Because both channels depend on S, we have

I
(
hci ; hcj

)
= I

(
fi(S) + εi; fj(S) + εj

)
≥ I

(
fi(S); fj(S)

)
> 0 (34)

which contradicts the independence assumption I(hci ;hcj ) = 0.

Therefore, under the requirement that all channels remain mutually independent, at most one channel can capture S.

D. Experimental Settings
Baselines

We compare FDGen with five state-of-the-art methods: performance-driven GRAPHARM (Kong et al., 2023) and fairness-
aware models including FairAdj (Li et al., 2021), FG2AN (Wang et al., 2023c), FairGen (Zheng et al., 2024), and
FairWire (Kose & Shen, 2024b). A brief overview of these baselines is as follows:

• GRAPHARM: GRAPHARM is an autoregressive diffusion-based model for graph generation that directly operates in
the discrete graph space by sequentially masking one node and its edges until the graph is empty. It employs a learned
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node ordering strategy for more accurate likelihood approximation and achieves faster generation than existing graph
diffusion models by limiting the number of diffusion steps to the number of nodes in the graph.

• FairAdj: FairAdj updates the normalized adjacency matrix to better satisfy dyadic fairness, which requires that link
predictions be independent of the sensitive attributes from both vertices. This approach lessens the statistical gap
between intra-group and inter-group link predictions while preserving as much predictive accuracy as possible.

• FG2AN: FG2AN is a fair graph generative model that addresses both node-level and structural fairness in creating
synthetic graphs through adversarial training. It introduces tailored fairness metrics and a meta-strategy that reduces
computational costs while handling multiple types of bias in the data.

• FairGen: FAIRGEN is a deep generative model that integrates label guidance and fairness objectives to produce
synthetic graphs under limited labeled data. It uses a self-paced learning strategy and a novel context sampling
approach to progressively learn the behaviors of protected and unprotected groups while preserving class memberships.

• FairWire: FairWire is a diffusion-based fair graph generation framework that uses a new fairness regularizer, to reduce
structural bias in link prediction and synthetic graph creation. It captures the connections between synthetic sensitive
attributes and the graph topology, allowing fair model training without revealing real sensitive data.
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