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Abstract

With the rapid development of video Multi-
modal Large Language Models (MLLMs), a
surge of evaluation datasets is proposed to eval-
uate their video understanding capability. How-
ever, due to the lack of rich events in the videos,
these datasets may suffer from the short-cut
bias that the answers can be easily deduced by
a few frames, without watching the entire video.
To address this issue, we construct an event-
oriented long video understanding benchmark,
Event-Bench, building upon existing datasets
and human annotations. The benchmark in-
cludes six event-related tasks and a total of
2,190 test instances to comprehensively eval-
uate the capability to understand video events.
Additionally, we propose Video Instruction
Merging (VIM), a low-cost method to enhance
video MLLMs by using merged event-intensive
video instructions, aiming to overcome the
scarcity of human-annotated, event-intensive
data. Extensive experiments show that the best-
performing GPT-40 achieves an overall accu-
racy of 53.33, significantly outperforming the
best open-source model by 15.62. Leveraging
the effective instruction synthesis method and
model architecture, our VIM outperforms both
state-of-the-art open-source video MLLMs and
GPT-4V on Event-Bench. All the code, data,
and models will be publicly available.

1 Introduction

Video understanding stands as the key capability
of Al models to perceive the visual world like hu-
mans. It requires models to recognize the features
and changes in regions or objects, and to under-
stand the overall context and storyline throughout
the video. Building upon Large Language Mod-
els (LLMs) (Brown et al., 2020; Touvron et al.,
2023; Zhao et al., 2023), current Video Multimodal
Large Language Models (Video MLLMs) (Tang
et al., 2023; Zhang et al., 2023; Maaz et al., 2023)
exhibit surprising video understanding capabili-

Question: What can you deduce about the primary objective
and focus within the video content?
Options:

(A) C is cooking.

(C) C is cleaning the kitchen.

(E) C is cleaning the bathroom.

(B) C is doing laundry.
(D) C is cleaning dishes. &

(a) A case from EgoSchema, which involves a single event.
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Question: Who is ultimately responsible for the man being fired
from his role as the robber?

Options:
(A) The director. (B) The little girl.
(C) The man himself. (D) Another malicious actor. &

(b) A case from our benchmark, which involves complex events.

Figure 1: The comparison of two representative exam-
ples from existing benchmarks and our Event-Bench.

ties. Concurrently, a surge of benchmarks are pro-
posed to evaluate their performance in different
video understanding scenes, e.g., contextual rea-
soning (Mangalam et al., 2023) and situated rea-
soning (Wu et al., 2021).

Despite these advancements, recent work has
found that these datasets may suffer from the short-
cut bias (Lei et al., 2023). It refers to the fact that
the answers to part of the questions could be ac-
curately deduced without fully reading the video,
which would affect the evaluation reliability. As
shown in Figure 1 (a), although the video lasts
for 3 minutes, it simply describes the behavior
of cleaning dishes. Therefore, questions related
to the video can be easily answered by viewing
just a single frame. Essentially, the cause of the
short-cut bias is the lack of rich events in the video.
Events are the high-level semantic concepts that hu-
mans perceive when observing a video (Lavee et al.,
2009) (e.g., the moment a player makes a shot in
a soccer match), which are crucial to represent the



unique and dynamic insights that differentiate vari-
ous videos. Since the necessity of event-oriented
video understanding might be neglected in existing
datasets, their annotated test instances may fail to
accurately estimate human-like video understand-
ing capability.

In light of this, we present an event-oriented long
video understanding benchmark, namely Event-
Bench. 1t focuses on comprehensively evaluat-
ing video MLLMs from three levels of event un-
derstanding capabilities, i.e., atomic, composite,
and overall understanding, totally consisting of six
event-related tasks. To construct it, we design a
low-cost automatic pipeline to meticulously collect
unbiased test instances corresponding to the above
tasks from existing datasets, then unify their for-
mat and filter low-quality ones. Additionally, we
also manually craft multiple test instances based
on the event-intensive long videos from YouTube,
to improve the coverage of our benchmark on com-
plex real-world scenarios. Totally, Event-Bench
contains 2,190 samples. As shown in Table 1, our
benchmark distinguishes itself with longer time
scopes and an event-oriented focus.

To elicit the capability of human-like video
understanding, it is necessary to utilize massive
event-intensive video instruction for training video
MLLMs (Chen et al., 2024c). However, it is costly
to annotate sufficient high-quality video instruc-
tions with rich events. To solve it, we aim to
make use of existing image instructions and sim-
ple video instructions, to compose more complex
training data. Concretely, we first employ an adap-
tive model architecture to handle both image and
video inputs, enabling us to add high-quality image
instructions for training. Second, we propose to
merge several similar video instructions from ex-
isting datasets into a new one, which contains all
the events from them and are also longer and more
complex. We conduct extensive experiments on our
benchmark, and the results show that our method
can perform better than all open-source models of
comparable parameter scales, even outperforming
GPT-4V on average (i.e., 41.64 VS. 32.65).

Our main contributions are listed as follows:

(1) We propose an event-oriented long video
benchmark, Event-Bench, to evaluate the human-
like video understanding capability;

(2) We devise VIM, a low-cost method to im-
prove video MLLMs using merged event-intensive
video and high-quality image instructions;

(3) Experiment results show the comprehensive

Benchmark Time Open Complex Event
Scope (s) Domain Reasoning Oriented
MSVD-QA 0~60 v X X
MSRVTT-QA 10~30 4 X X
TGIF-QA - v X X
ActivityNet-QA  0~975 X X X
NeXT-QA 5~180 v X X
STAR 2~195 v 4 X
CLEVRER 5 X v X
EgoSchema 180 X 4 X
MVBench 5~40 4 v X
TempCompass 0~35 v X X
MovieChat 401~602 v X X
VIM 2~1088 v v v

Table 1: Comparing our Event-Bench with existing
video benchmarks. Event-Bench stands out due to the
longer time scope and event-oriented design. The de-
tails are in the Appendix.

evaluation capability of Event-Bench for video
MLLMs and the effectiveness of VIM.

2 Related Work

2.1 Video Multimodal Large Language Model

Building upon the Large Language Model (LLM),
Multi-modal Large Language Models (MLLMs)
have recently obtained notable progress. Among
them, Video MLLMs exhibit surprising perfor-
mance on various tasks (Zhang et al., 2023; Maaz
et al., 2023; Ren et al., 2023). Typically, a Video
MLLM consists of a video encoder (or image en-
coder), a LLM, and a connector to bridge these two
components (Zhang et al., 2023; Li et al., 2023b;
Maaz et al., 2023). Based on this type of architec-
ture, the following works explore several ways to
enhance the Video MLLMs, e.g., utilizing a more
powerful video encoder (Lin et al., 2023), support-
ing long context video (Song et al., 2023; Wang
et al., 2024), and fine-tuning with large-scale in-
structions (Li et al., 2023c¢). In this work, we aim
to synthesize video instructions with more complex
events and explore scalable model architecture.

2.2 Video Understanding Benchmark

Previous works propose benchmarks to evaluate
various reasoning abilities in videos, including
temporal reasoning (Xiao et al., 2021), situated
reasoning (Wu et al., 2021), compositional rea-
soning (Grunde-McLaughlin et al., 2021), etc.
However, most videos in these benchmarks are
short clips and lack diversity. With the develop-
ment of Video MLLMs, several works collect di-
verse videos to evaluate these models comprehen-



sively (Ning et al., 2023; Chen et al., 2023), but
most videos in these benchmarks are no more than
1 minute. Following works like Egoschema (Man-
galam et al., 2023) and MovieChat (Song et al.,
2023) collect long videos and create questions
based on them. Despite this, the videos and ques-
tions in these benchmarks either do not involve
complex reasoning in the event or are not open-
domain. Therefore, we present an event-oriented
long video understanding benchmark with diverse
videos to comprehensively evaluate the model’s
ability to understand complex event narratives.

3 Event-oriented Benchmark

We propose Event-Bench, an event-oriented long
video understanding benchmark for evaluating ex-
isting video MLLMs. It consists of massive videos,
each paired with multi-choice questions from vari-
ous event-related sub-tasks. Thus, we first establish
a hierarchical task taxonomy for our benchmark
and collect the data according to it.

3.1 Hierarchical Task Taxonomy

We organize our benchmark into three categories
according to the number of events in a video, each
of which comprises several sub-tasks.

Atomic Events Understanding. This task aims
to evaluate the model’s understanding of an atomic
event (e.g., an action of a human or object) in the
video, which is one of the most basic video under-
standing capabilities.

* Event Description. For this sub-task, we col-
lect question-answering pairs to evaluate whether
the model can accurately recognize and describe a
specific atomic event in the video, e.g., “What did
the person do with the towel?”

Composite Events Understanding. It focuses
on understanding the relation between two atomic
events in a video, from the following two aspects.

» Temporal Reasoning. We collect question-
answer pairs that require to perform reasoning
based on the understanding of the temporal order
for two events in the video, e.g., “What did the man
do after putting down the towel”.

* Causal Reasoning. This sub-task focuses on
the casual relation between two events in the video,
especially for explaining the reason why an event
happened, e.g., “Why did the man open the box”.

Overall Understanding. It requires understand-
ing the relations across all events in the video, to
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Figure 2: The data in Event-Bench are sourced from
existing datasets or human annotations, involving three
stages: format unification, biased data filtering, and
inconsistent data filtering.
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Table 2: The statistic of Event-Bench. Each header is
the abbreviation of the corresponding sub-tasks.

capture the high-level overall information from it.
We design the following three sub-tasks:

* Contextual Reasoning. This sub-task aims to
perform reasoning based on the overall context in
the video, where the model needs to summarize the
content from a series of events, e.g., “Describe the
overarching process is conducting in the lab”.

* Episodic Reasoning. For a video, we also con-
sider its contained episodes (i.e., stories) about the
characters and objects across all the events, where
the model need to characterize high-level seman-
tics to answer complex questions, e.g., “What led
to Bean deciding to quickly leave the restaurant”.

* Counter-intuitive Reasoning. For this sub-task,
the videos involve counter-intuitive elements (e.g.,
magical spells), and the model needs to identify
the abnormal details to answer corresponding ques-
tions, e.g., “Why the video is magical”.

3.2 Data Construction

Our benchmark consists of data collected from ex-
isting datasets and newly human-annotated internet
videos. The overall construction process is illus-
trated in Figure 2.

3.2.1 Construction Based on Existing Datasets

As there exist multiple open-source VideoQA
datasets, we aim to collect useful instances from
them to compose our event-oriented benchmark.



Atomic Event Understanding

Event Description

Question: Which object was tidied up by
the person?
Options:

&

cat bit the hands?
Options:

Question: What did the human do when the

Composite Event Understanding

Tempora[ Reasoning

Question: Why did the man in green point his
hand at the man in white while he is talking?
Options:

A. The closet/cabinet. B. The broom. A. Look at bird. B. Push it. A. To seek his help. B. To express agreement.
C. The blanket. D. The table. C. Play with cat. D. Stand still. C. To smile. D. To show him the view.
Overall Understanding
Contextual Reasoning Ep isodic Reasoning Counter-intuitive Reasoning

1

TR |

Question: Describe the overarching process ¢
is conducting in the laboratory, focusing on
the purpose of his actions. ¢ stands for the
camera wearer.

Options:

A. C is cleaning and tidying the laboratory.

B. C is preparing for a presentation.

C. C is inventorying supplies in stock.

D. C is conducting an experiment to test the
growth of seedlings.

Options:

distraction.
in her bag.

suddenly.

« !l
\

Question: What led to Bean deciding to
quickly leave the restaurant?

A. The waiter brought him more seafood.
B. The lady's phone rang, causing a

C. He saw the lady discovering the oysters

D. The lady's phone conversation ended

Question: Why is the video magical?
Options:

A. The man throws the microphone onto the
table, and it shatters into four shiny diamonds.
B. The man throws the microphone onto the
table, and it transforms into a bouquet of
flowers.

C. The man throws the microphone onto the
table, and it changes into a small silver rabbit.
D. The man throws the microphone onto the
table, and it disappears, replaced by four
silver pacifiers.

Figure 3: Overview of our Event-Bench. Our benchmark includes six sub-tasks across three event understanding
abilities: atomic event understanding, composite event understanding, and overall understanding. The ground-truth

answer is highlighted in red.

Specifically, we select the instances from four
datasets, i.e., STAR (Wu et al., 2021), NeXT-
QA (Xiao et al., 2021), EgoSchema (Mangalam
et al., 2023), and FunQA (Xie et al., 2023), owing
to their diverse domains and rich annotations. How-
ever, after human review, we find three key issues
in these instances: (1) different data formats and
evaluation settings; (2) biased short-cut questions
requiring no video understanding; (3) inconsistency
between the answers and the video content. To
address them, we develop the corresponding three-
stage pipeline to preprocess the data.

Format Unification. We first convert all open-
ended questions into multi-choice questions using
GPT-4, where the prompt is “Please change this
task into a 4-way multi-choice question based on
their descriptions”. The generated questions are
further examined and revised by human annotators.

Biased Data Filtering. Inspired by existing
work (Chen et al., 2024b), we filter the short-cut

questions that can be answered by only a single
frame of the video, which are biased test data for
evaluating video understanding capability. Con-
cretely, we employ three Image-based MLLMs
(i.e., GPT-4V (OpenAl, 2023), LLaVA-NeXT-
34B (Liu et al., 2024a), InternLM-XComposer2-
4kHD (Dong et al., 2024)) on collected data and
remove those can be accurately answered using
only one frame. Such a way can leverage the short-
cut bias to identify and remove the biased data.

Inconsistent Data Filtering. Finally, given the
video and question from an instance, we utilize two
powerful MLLMs, i.e., GPT-4V and Gemini-1.5-
Pro' to produce the answers. If their answers are
the same but different from the human-annotated
one, we regard the instance as an inconsistent sam-
ple and filter it out.

'We sample 16 frames for GPT-4V and 1fps for Gemini-
Pro-1.5 as the representation of the video.



3.2.2 Annotation Based on Internet Videos

Although the processed instances from existing
datasets are diverse and high-quality, we find that
their videos generally contain relatively fewer
events and their questions mostly neglect the
episodic reasoning capability, which is important
for testing the understanding capability of the over-
all video storyline. Therefore, we collect multiple
videos from YouTube, whose storylines contain
rich body language information, and then annotate
questions and answers for the episodic reasoning
task. Considering the complexity of the episodic
reasoning task, we decompose its annotation pro-
cess into three stages to simplify it: caption annota-
tion, question generation, and answer check.

Caption Annotations. We ask human annotators
to write the captions for every 30 seconds of a video.
To ensure the quality, we first utilize Gemini-Pro-
1.5 and GPT-4 to synthesize 10 questions per video,
and ask human annotators to answer the questions
by writing detailed captions. Note that the synthetic
questions may contain errors, yet can still guide the
whole annotation process to control the quality.

Question Generation. To reduce the human an-
notation cost, we utilize GPT-4 to generate the
question-answer pairs for the episodic reasoning
task, according to the annotated captions. We uti-
lize the following prompt with detailed guidelines
(in Appendix) to guarantee their consistency with
the captions: “Based on the following descrip-
tions, please ask 10 diverse questions about the
plot and events of the video. While executing this
task, please adhere to the following guidelines: ...

>

Answer Check. We ask human annotators to an-
swer the generated question without giving the cor-
responding answer generated by GPT-4, and then
compare their answers for checking. If they are
the same, we add them to our benchmark. Other-
wise, we invite more human annotators to check
the question and vote on the final answer. Note
that we also ask the human annotators to select
the time interval in the video that corresponds to
the question-related event, which is also used to
estimate the annotation reliability.

3.3 Data Statistics

Our benchmark comprises a total of 2,190 video
question-answer pairs on 6 tasks corresponding
to different event understanding abilities, where
each task has 172~400 test samples for evaluation.

Merge

X = Z
ing of the video impact the

Visual Tokens

Figure 4: Overview of our method. We devise an in-
struction merging strategy to obtain instructions with
more events based on existing data, and employ an adap-
tive model architecture supporting both image and video
as the input.

Owing to the hierarchical task taxonomy, we can
freely estimate the capability of models at different
levels. Besides, as the benchmark is built based on
diverse data sources, its contained videos can well
cover the diverse domains in the real world and own
varying lengths. These characteristics enable our
benchmark to provide a comprehensive evaluation
of existing video MLLMs. We show the cases in
our benchmark in Figure 3.

4 Methodology

In this section, we introduce Video Instruction
Merging (VIM) to enhance the performance of
video MLLMs on event-oriented long video under-
standing tasks. Previous approaches primarily uti-
lize video instruction tuning (Li et al., 2023b; Maaz
et al., 2023; Zhang et al., 2023), which typically
require extensive human effort to annotate massive
video instructions. To address this, our proposed
VIM integrates several similar video instructions
from existing datasets into a new event-intensive
one as additional training data. We also adopt a
scalable visual processor in our video MLLM that
interprets video as sequences of images, thereby
handling both image and video inputs. This archi-



tecture allows us to combine existing high-quality
image instructions with the newly created merged
video instructions for training. The overall archi-
tecture of our approach is illustrated in Figure 4.

4.1 Video Instruction Merging

Existing video instruction datasets suffer from
the issues of lacking rich events (Heilbron et al.,
2015), e.g., 1.41 on average for Video-ChatGPT-
100K (Maaz et al., 2023). Thus, inspired by the
mix-up strategy (Zhang et al., 2018), we propose to
merge several simple video instructions to obtain
a complex one with more events. Concretely, for
each video and its corresponding instruction, we
first find its most similar ones and then merge them
into a new sample.

Similar Video Selection. We select the most sim-
ilar video instructions to merge, to ensure the co-
herence of the synthetic new one. Specifically, we
concatenate the input question and answer into one
sentence [g;; a;], and convert it into the text em-
bedding h; via state-of-the-art BGE model (Chen
et al., 2024a). Then, the embedding is regarded as
the semantic representation of the whole instruc-
tion, and we compute its cosine similarity to other
instructions for selecting the k£ — 1 nearest ones:

- h/h;
=i 1

In this way, we can divide the entire video instruc-
tion dataset D into |D|/k subsets.

Instruction Merging. For instructions within
each similar video subset {v;, ¢;, a; }¥_,, we merge
them into a new one. We first temporally concate-
nate every video as a new one v/, then ask Chat-
GPT ? to generate a new question ¢’ and answer a’
for the merged video given their original questions
and answers. The process can be formulated as:

v = [or; v .5 Ukl 2)
q,a = ChatGPT (pp, q1,--.,a1,...),
where [; ;] is the concatenation process and py, is
the prompt for ChatGPT.
Zhttps://chatgpt.com/

Prompt for Instruction Merging

The user will give you k question-answer pairs
about a video. These pairs have similar semantics
but are different in some details. Your task is to
create a new question-answer pair based on them,
which requires the tester to watch all the videos to
answer. The new question should be about the sim-
ilarities and differences among these videos. The
question should be diverse and the corresponding
answer should be as detailed as possible...

. v

4.2 Adaptive Model Architecture

Our model architecture is composed of a scalable
visual processor and an LLM. The scalable visual
processor consists of a reusable image encoder and
a cross-modal connector. For video input, we first
uniformly sample n frames from it, then separately
feed them into the visual processor and concatenate
the result visual tokens as the video representations,
while image input is treated as in regular Image
MLLMs. Therefore, our model can flexibly handle
inputs of different sequence lengths (e.g., a single
image, short videos, or long videos).

In practice, we adopt EVACLIP (Fang et al.,
2023) as the image encoder. For the cross-modal
connector, we adopt a pre-trained Q-Former (Li
et al., 2023a) to reduce the number of resulting vi-
sual tokens of input videos. The visual tokens are
then concatenated with the embedding of question
q as the input of the LLM:

LLM([Hfl,...,an;el,...,eL]), (3)

where [Hy ,--- ,Hy ] are the visual tokens and
[e1,e2, -+ ,er] are the text tokens. Since our
model can handle both image and video inputs,
we also add some high-quality image instructions
to our training data, which helps the LLM better
align with and understand the visual input.

S Experiment

5.1 Experimental Setup

Implementation Details. We utilize EVA-
CLIP (Fang et al., 2023) as the image encoder,
Vicuna-v1.1 (Chiang et al., 2023) as the LLM, and
initialize the Q-Former from InstructBLIP (Dai
et al., 2023). We extrapolate the maximum length
of Vicuna-v1l.1 from 2,048 to 4,096 so that it
can receive 64 frames as the input. As for the
training data, we utilize 100K instructions from
Video-ChatGPT (Maaz et al., 2023), 40K instruc-
tions from Something-Something-2 (Goyal et al.,
2017), 34K instructions from NExT-QA (Xiao



Atomic Composite Overall
Event Temporal  Causal Av Counter Contextual Episodic Av Avg.
Description | Reasoning Reasoning & Reasoning Reasoning Reasoning &
Open-Source Image MLLMs
LLaVA-NeXT (7B) 13.68 14.75 9.75 12.25 14.98 9.11 7.30 9.97 | 11.59
IXC2-4KHD (7B) 26.07 27.50 32.50  30.00 9.25 12.15 17.67 13.23(22.10
Open-Source Video MLLMs
LLaMA-VID-long (7B) 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.04
LLaMA-VID (13B) 1.92 1.75 0.00 0.88 3.08 0.00 4.00 2.06 | 1.60
Video-LLaVA (7B) 12.82 5.50 0.00 2.75 6.17 2.78 7.20 5.05 | 5.87
Video-LLaMA (7B) 15.81 9.00 6.25 6.63 0.09 2.28 0.67 1.22 | 6.68
Video-ChatGPT (7B)* 9.83 9.50 15.00 12.25 14.98 12.66 10.00 12.37 | 11.78
MovieChat (7B)* 16.88 16.00 14.50 15.25 18.06 13.16 20.33 16.70 | 16.21
PLLaVA (7B) 34.62 40.00 40.50  40.25 17.62 15.19 11.00 14.42|28.17
VideoChat2 (7B) 33.76 37.75 4775 42775 16.74 15.70 14.67 15.6229.41
PLLaVA (13B) 39.53 42.50 43.00 42.75 25.56 22.78 17.00  21.58|33.15
ST-LLM (7B) 47.22 48.75 59.50 54.13 9.69 25.32 16.67 18.66 | 37.71
VIM (7B) (Ours) 48.08 51.25 61.25 56.25 2291 32.66 18.67  25.71|41.64
Proprietary MLLMs

GPT-4V 29.70 35.00 40.00  37.50 36.56 28.35 27.00  29.93]32.65
Gemini-1.5-Pro 48.50 47.50 4175 44.63 52.86 32.15 38.67 39.37|43.24
GPT-40 54.27 56.75 58.25 57.5 63.44 50.13 37.33 49.24 | 53.33

Table 3: Experiment results on Event-Bench. For the Image MLLMs, we extract the frame in the middle of the
video as the input. For the Video MLLMs, we uniformly sample {8, 16, 32} frames as the input and report the best
performance. *Video-ChatGPT samples 100 frames, while MovieChat samples 1fps from the video.

et al.,, 2021), 10K from Vript Caption (Yang,
2024), 100K visual instructions randomly sampled
from LLaVA665K (Liu et al., 2023a), and 32K
instructions synthesized in Section 4.1. In the
training process, we freeze the image encoder and
the Q-Former, only updating the parameters of the
LLM. We train our model on 8 Nvidia A100 (80G)
GPUs for 1 epoch and complete within 12 hours.

Baseline Models. We select several SOTA
MLLMs as baselines. For open-source models, we
select 2 Image MLLMs (LLaVA-NeXT (Liu et al.,
2024a) and InternLM-XComposer2-4kHD (Dong
et al.,, 2024)) and 7 Video MLLMs (Video-
LLaMA, Video-ChatGPT (Maaz et al., 2023),
MovieChat (Song et al., 2023), LLaMA-VID (Li
et al., 2023d), VideoChat2 (Li et al., 2023c), Video-
LLaVA (Lin et al., 2023) and ST-LLM (Liu et al.,
2024b)). For proprietary models, we select GPT-
40, Gemini-1.5-Pro (Reid et al., 2024), and GPT-
4V (OpenAl, 2023).

Evaluation Protocols. We follow the evaluation
strategy proposed in MMBench (Liu et al., 2023b)
to evaluate these models. Specifically, we first use
regular expression to extract the options from the
model’s response. If successful, we use this as the
prediction and compare it with the ground truth.

—— ST-LLM (7B) GPT-40

—— Ours (7B)

—e— PLLaVA (13B)
VideoChat2 (7B)
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Figure 5: The relationship between the performance and
the number of input frames.

Otherwise, we utilize GPT-4-turbo to judge if the
prediction is correct. Besides, to ensure the consis-
tency of models’ responses on multiple choice ques-
tions, we adopt the circular evaluation strategy (Liu
et al., 2023b). Specifically, we ask the models each
question N (NN is the number of choices) times
and only consider the answer correct if the models
provide the correct answer in every round.

5.2 Main Results

The performance of the models is illustrated in
Table 3. We discuss the result and present the key
findings from the following perspective:

Overall Performance. As is shown in Table 3,
both Image MLLMs and Video MLLMs ex-



hibit poor performance on these event reasoning
tasks. For the Image MLLMs, LLaVA-NeXT and
InternLM-XComposer2-4kHD could not achieve
satisfying performance conditioned on only one
frame, which proves the effectiveness of our data
filtering strategies in building our benchmark. Sur-
prisingly, most Video MLLMs even underperform
these two Image MLLMs, implying their weak
ability to understand complex events in the videos.
From the perspective of task, we can observe that
overall understanding is more challenging than
composite event understanding and atomic event
understanding. Especially in our newly annotated
episodic reasoning task, the most powerful Gemini-
1.5-Pro and GPT-40 only achieve 38.67 and 37.33.

Comparisons of Different Models. From the
perspective of model, most open-source models
obtain comparable performance as the proprietary
models in the atomic and composite understanding
tasks, with some models even outperforming GPT-
4V (e.g., ST-LLM, PLLaVA, and VideoChat2).
However, the gap is enlarged in the overall un-
derstanding task, where all the open-source models
lag behind the proprietary models. Among the
open-source models, our model achieves the best
performance across almost all the tasks. The only
exception is that MovieChat achieves the best on
the episodic reasoning task and PLLaVA (13B) is
slightly better than ours on the counter-intuitive rea-
soning task. This is because MovieChat samples
more frames and PLLaVA (13B) utilizes a larger
LLM and more training data. However, our model
still obtains the best accuracy on average.

5.3 Analysis

Number of Frames. Due to the limit of con-
text length in LLMs, most video MLLMs sample
frames from the whole video uniformly as the in-
put. Intuitively, increasing the number of frames
would help the model better understand the video,
thus achieving better performance. We select the
best four open-source models and one proprietary
model and display the relationship between their
performance and the number of input frames in Fig-
ure 5. We can observe that more input frames lead
to better performance for GPT-4o0. For example,
the performance of GPT-40 in the temporal rea-
soning task is boosted from 47.50 to 56.75 when
the number of input frames increases from 8 to
32. However, the open-source models do not al-
ways benefit from more input frames. Most models

Atomic Composite Overall Avg.

Ours 48.08 56.25 25.71 41.64
- w/0 mixup 43.16 51.63 2439 38.90
- w/o image 46.15 51.75 24.08 38.90
- random merge 45.94 54.25 25.38 40.32

Table 4: Ablation study of VIM on Event-Bench.

achieve the best performance when given 16 or 24
frames while increasing to 32 frames will lead to
performance degradation. As a comparison, VIM is
still boosting when the number of frames increases
from 16 to 32, demonstrating its scalability.

Training Strategy. We study the effect of the in-
struction merging strategy and the benefit of adding
image data in our training process. First, the result
in Table 4 shows that removing the merging strat-
egy significantly hurt the performance on all tasks.
Secondly, selecting videos with similar semantics
leads to better performance than random selection,
which highlights that the coherence of events in
a video is quite important. As for the effect of
image data, we could observe that removing im-
age instructions from our training data causes a
performance decrease on all the tasks. This not
only shows that image instruction could compen-
sate for the lack of high-quality video data, but also
demonstrates the compatibility and scalability of
our model architecture.

6 Conclusion

In this work, we built an event-oriented long
video understanding benchmark based on exist-
ing datasets and human annotation, namely Event-
Bench. We created six event-related tasks, and col-
lected totally 2,190 test instances in Event-Bench
to comprehensively evaluate the capability of un-
derstanding events within the videos. Then, we
devised an efficient training strategy to improve
video MLLMs to alleviate the problems of lack-
ing human-annotated event-intensive video instruc-
tions. We revised the model architecture to support
using high-quality image-based instruction, and
merged several simple video instructions into an
event-intensive new one, to extend our training
dataset. Extensive experiments have shown that
our Event-Bench can provide a systematic compar-
ison across the different kinds of capabilities for
existing video MLLMs, and point out the major
shortcomings of open-source MLLMs. Besides,
our approach can outperform state-of-the-art open-
source video MLLMs on average, even GPT-4V.



7 Limitation

First, events are not only represented by visual
modality, but also by other modalities in the real
world(e.g., textual, audio, and speech). They con-
vey important information in the video and com-
plement the visual modality. As an initial explo-
ration, we only consider the visual modality in
Event-Bench. In the future, we will also add other
modalities to our benchmark. Second, we only use
500K video instructions during training the Video
MLLM due to the limited computation resources.
However, the experimental results show that includ-
ing more high-quality video instructions and image
instructions has a positive impact on the model per-
formance. In the future, we will scale the training
data and model size to obtain better performance.
Third, although the method we propose to merge
video instructions is low-cost and effective, the
quality is still lower than human annotations. In
the future, we will construct more event-intensive
training data through human annotation.
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A Appendix
A.0.1 Data Statistics.

Our benchmark comprises a total of 2,190 video
question-answer pairs on 6 tasks corresponding to
different event understanding abilities, where each
task has 172-400 test samples for evaluation.

A.0.2 Ablation Study

Number of Merged Videos. In Section 4.1, we
select k samples and merge them into a new one,
where a larger k indicates more events happen-
ing in the new video. We experiment with k =
{1,2,3,4} (k = 1 indicates no merge operation)
and depict the corresponding performance in Fig-
ure 7. We could observe that increasing the number
of events from 2 to 3 and 4 hurts performance on all
the tasks, but is still better than the model trained
on a single video.
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Figure 6: The dataset distribution of our benchmark.
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Figure 7: Performance comparison w.r.t the number of
selected videos during video instruction merging.



Open Complex Hierarchical Multiple

Benchmark Time Scope (s) Annotation Domain Reasoning Events Scenes
MSVD-QA (Xu et al., 2017) 0~60 Auto v X X X
MSRVTT-QA (Xu et al., 2017) 10~30 Auto v X X X
TGIF-QA (Jang et al., 2017) - Auto+Human v X X X
ActivityNet-QA (Yu et al., 2019) 0~975 Human X X X X
NeXT-QA (Xiao et al., 2021) 5~180 Human v X X X
STAR (Wu et al., 2021) 2~195 Auto v v X X
CLEVRER (Yi et al., 2020) 5 Auto X v X X
EgoSchema (Mangalam et al., 2023) 180 Auto X v X X
MVBench (Li et al., 2023¢) 5~40 Auto v v X X
TempCompass (Liu et al., 2024c) 0~35 Auto+Human v X X X
MovieChat (Song et al., 2023) 401~602 Human v X X v
Ours 2~1088 Auto+Human v v v v

Table 5: Comparison with previous video understanding benchmarks.

Atomic Composite Overall
Event Temporal  Causal Counter-intuitive Contextual Episodic
Description Reasoning Reasoning Reasoning Reasoning Reasoning
1 frame LLaVA-NeXT (7B) 13.68 14.75 9.75 14.98 9.11 7.3
IXC2-4KHD (7B) 26.07 27.5 325 9.25 12.15 17.67
8 frame LLaMA-VID (7B) 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 1.92 1.75 0.00 3.08 0.00 4
Video-LLaVA (7B) 12.82 55 0.00 6.17 278 72
Video-LLaMA2 (7B) 15.81 9 6.25 0.09 2.28 0.67
VideoChat2 (7B) 31.2 37.25 47.25 14.98 15.44 12.67
ST-LLM (7B) 47.22 48.75 59.5 9.69 25.32 16.67
GPT-4V 29.27 32.75 41.25 42.29 24.81 24
GPT-40 48.08 47.5 55.5 63 48.86 34
16 frame LLaMA-VID (7B) 0.21 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 1.06 1.13 0.25 3.08 0.00 5
Video-LLaMA2 (7B) 11.11 3.25 6 0.88 3.04 0.33
PLLaVA 34.62 40 40.5 17.62 15.19 11
VideoChat2 (7B) 34.19 38.25 46.25 17.18 17.22 12.67
ST-LLM (7B) 47.65 50.00 56.5 11.45 26.84 14.67
GPT-4V 29.7 35 40.00 36.56 28.35 27
GPT-40 52.99 55 58.25 63 49.11 32.67
32 frame LLaMA-VID (7B) 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 0.85 0.75 0.00 3.08 0.00 3
Video-LLaMA2 (7B) 9.19 4.75 3.75 2.2 1.77 1.33
VideoChat2 (7B) 33.76 37.75 47.75 16.74 15.7 14.67
ST-LLM (7B) 46.79 46.25 55.25 10.13 26.33 16
GPT-4V 23.72 25.75 33 40.09 20.51 20.67
GPT-40 54.27 56.75 58.25 63.44 50.13 37.33
more frames MovieChat (7B) 16.88 16 14.5 18.06 13.16 20.33
Video-ChatGPT (7B) 9.83 9.5 15 14.98 12.66 10.00
Gemini-1.5-Pro 48.5 47.5 41.75 52.86 32.15 38.67

Table 6: Detailed experimental results with more frames as input.



	Introduction
	Related Work
	Video Multimodal Large Language Model
	Video Understanding Benchmark

	Event-oriented Benchmark
	Hierarchical Task Taxonomy
	Data Construction
	Construction Based on Existing Datasets
	Annotation Based on Internet Videos

	Data Statistics

	Methodology
	Video Instruction Merging
	Adaptive Model Architecture

	Experiment
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Limitation
	Appendix
	Data Statistics.
	Ablation Study



