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Abstract

With the rapid development of video Multi-001
modal Large Language Models (MLLMs), a002
surge of evaluation datasets is proposed to eval-003
uate their video understanding capability. How-004
ever, due to the lack of rich events in the videos,005
these datasets may suffer from the short-cut006
bias that the answers can be easily deduced by007
a few frames, without watching the entire video.008
To address this issue, we construct an event-009
oriented long video understanding benchmark,010
Event-Bench, building upon existing datasets011
and human annotations. The benchmark in-012
cludes six event-related tasks and a total of013
2,190 test instances to comprehensively eval-014
uate the capability to understand video events.015
Additionally, we propose Video Instruction016
Merging (VIM), a low-cost method to enhance017
video MLLMs by using merged event-intensive018
video instructions, aiming to overcome the019
scarcity of human-annotated, event-intensive020
data. Extensive experiments show that the best-021
performing GPT-4o achieves an overall accu-022
racy of 53.33, significantly outperforming the023
best open-source model by 15.62. Leveraging024
the effective instruction synthesis method and025
model architecture, our VIM outperforms both026
state-of-the-art open-source video MLLMs and027
GPT-4V on Event-Bench. All the code, data,028
and models will be publicly available.029

1 Introduction030

Video understanding stands as the key capability031

of AI models to perceive the visual world like hu-032

mans. It requires models to recognize the features033

and changes in regions or objects, and to under-034

stand the overall context and storyline throughout035

the video. Building upon Large Language Mod-036

els (LLMs) (Brown et al., 2020; Touvron et al.,037

2023; Zhao et al., 2023), current Video Multimodal038

Large Language Models (Video MLLMs) (Tang039

et al., 2023; Zhang et al., 2023; Maaz et al., 2023)040

exhibit surprising video understanding capabili-041

Question:Who is ultimately responsible for the man being fired 
from his role as the robber?
Options:
(A) The director.   (B) The little girl.
(C) The man himself.   (D) Another malicious actor.☹

(a) A case from EgoSchema, which involves a single event.

(b) A case from our benchmark, which involves complex events.

Question:What can you deduce about the primary objective 
and focus within the video content?
Options:
(A) C is cooking.                           (B) C is doing laundry.
(C) C is cleaning the kitchen.        (D) C is cleaning dishes. 😊
(E) C is cleaning the bathroom.

Figure 1: The comparison of two representative exam-
ples from existing benchmarks and our Event-Bench.

ties. Concurrently, a surge of benchmarks are pro- 042

posed to evaluate their performance in different 043

video understanding scenes, e.g., contextual rea- 044

soning (Mangalam et al., 2023) and situated rea- 045

soning (Wu et al., 2021). 046

Despite these advancements, recent work has 047

found that these datasets may suffer from the short- 048

cut bias (Lei et al., 2023). It refers to the fact that 049

the answers to part of the questions could be ac- 050

curately deduced without fully reading the video, 051

which would affect the evaluation reliability. As 052

shown in Figure 1 (a), although the video lasts 053

for 3 minutes, it simply describes the behavior 054

of cleaning dishes. Therefore, questions related 055

to the video can be easily answered by viewing 056

just a single frame. Essentially, the cause of the 057

short-cut bias is the lack of rich events in the video. 058

Events are the high-level semantic concepts that hu- 059

mans perceive when observing a video (Lavee et al., 060

2009) (e.g., the moment a player makes a shot in 061

a soccer match), which are crucial to represent the 062
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unique and dynamic insights that differentiate vari-063

ous videos. Since the necessity of event-oriented064

video understanding might be neglected in existing065

datasets, their annotated test instances may fail to066

accurately estimate human-like video understand-067

ing capability.068

In light of this, we present an event-oriented long069

video understanding benchmark, namely Event-070

Bench. It focuses on comprehensively evaluat-071

ing video MLLMs from three levels of event un-072

derstanding capabilities, i.e., atomic, composite,073

and overall understanding, totally consisting of six074

event-related tasks. To construct it, we design a075

low-cost automatic pipeline to meticulously collect076

unbiased test instances corresponding to the above077

tasks from existing datasets, then unify their for-078

mat and filter low-quality ones. Additionally, we079

also manually craft multiple test instances based080

on the event-intensive long videos from YouTube,081

to improve the coverage of our benchmark on com-082

plex real-world scenarios. Totally, Event-Bench083

contains 2,190 samples. As shown in Table 1, our084

benchmark distinguishes itself with longer time085

scopes and an event-oriented focus.086

To elicit the capability of human-like video087

understanding, it is necessary to utilize massive088

event-intensive video instruction for training video089

MLLMs (Chen et al., 2024c). However, it is costly090

to annotate sufficient high-quality video instruc-091

tions with rich events. To solve it, we aim to092

make use of existing image instructions and sim-093

ple video instructions, to compose more complex094

training data. Concretely, we first employ an adap-095

tive model architecture to handle both image and096

video inputs, enabling us to add high-quality image097

instructions for training. Second, we propose to098

merge several similar video instructions from ex-099

isting datasets into a new one, which contains all100

the events from them and are also longer and more101

complex. We conduct extensive experiments on our102

benchmark, and the results show that our method103

can perform better than all open-source models of104

comparable parameter scales, even outperforming105

GPT-4V on average (i.e., 41.64 VS. 32.65).106

Our main contributions are listed as follows:107

(1) We propose an event-oriented long video108

benchmark, Event-Bench, to evaluate the human-109

like video understanding capability;110

(2) We devise VIM, a low-cost method to im-111

prove video MLLMs using merged event-intensive112

video and high-quality image instructions;113

(3) Experiment results show the comprehensive114

Benchmark Time
Scope (s)

Open
Domain

Complex
Reasoning

Event
Oriented

MSVD-QA 0∼60 ✓ ✗ ✗
MSRVTT-QA 10∼30 ✓ ✗ ✗
TGIF-QA - ✓ ✗ ✗
ActivityNet-QA 0∼975 ✗ ✗ ✗
NeXT-QA 5∼180 ✓ ✗ ✗
STAR 2∼195 ✓ ✓ ✗
CLEVRER 5 ✗ ✓ ✗
EgoSchema 180 ✗ ✓ ✗
MVBench 5∼40 ✓ ✓ ✗
TempCompass 0∼35 ✓ ✗ ✗
MovieChat 401∼602 ✓ ✗ ✗
VIM 2∼1088 ✓ ✓ ✓

Table 1: Comparing our Event-Bench with existing
video benchmarks. Event-Bench stands out due to the
longer time scope and event-oriented design. The de-
tails are in the Appendix.

evaluation capability of Event-Bench for video 115

MLLMs and the effectiveness of VIM. 116

2 Related Work 117

2.1 Video Multimodal Large Language Model 118

Building upon the Large Language Model (LLM), 119

Multi-modal Large Language Models (MLLMs) 120

have recently obtained notable progress. Among 121

them, Video MLLMs exhibit surprising perfor- 122

mance on various tasks (Zhang et al., 2023; Maaz 123

et al., 2023; Ren et al., 2023). Typically, a Video 124

MLLM consists of a video encoder (or image en- 125

coder), a LLM, and a connector to bridge these two 126

components (Zhang et al., 2023; Li et al., 2023b; 127

Maaz et al., 2023). Based on this type of architec- 128

ture, the following works explore several ways to 129

enhance the Video MLLMs, e.g., utilizing a more 130

powerful video encoder (Lin et al., 2023), support- 131

ing long context video (Song et al., 2023; Wang 132

et al., 2024), and fine-tuning with large-scale in- 133

structions (Li et al., 2023c). In this work, we aim 134

to synthesize video instructions with more complex 135

events and explore scalable model architecture. 136

2.2 Video Understanding Benchmark 137

Previous works propose benchmarks to evaluate 138

various reasoning abilities in videos, including 139

temporal reasoning (Xiao et al., 2021), situated 140

reasoning (Wu et al., 2021), compositional rea- 141

soning (Grunde-McLaughlin et al., 2021), etc. 142

However, most videos in these benchmarks are 143

short clips and lack diversity. With the develop- 144

ment of Video MLLMs, several works collect di- 145

verse videos to evaluate these models comprehen- 146
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sively (Ning et al., 2023; Chen et al., 2023), but147

most videos in these benchmarks are no more than148

1 minute. Following works like Egoschema (Man-149

galam et al., 2023) and MovieChat (Song et al.,150

2023) collect long videos and create questions151

based on them. Despite this, the videos and ques-152

tions in these benchmarks either do not involve153

complex reasoning in the event or are not open-154

domain. Therefore, we present an event-oriented155

long video understanding benchmark with diverse156

videos to comprehensively evaluate the model’s157

ability to understand complex event narratives.158

3 Event-oriented Benchmark159

We propose Event-Bench, an event-oriented long160

video understanding benchmark for evaluating ex-161

isting video MLLMs. It consists of massive videos,162

each paired with multi-choice questions from vari-163

ous event-related sub-tasks. Thus, we first establish164

a hierarchical task taxonomy for our benchmark165

and collect the data according to it.166

3.1 Hierarchical Task Taxonomy167

We organize our benchmark into three categories168

according to the number of events in a video, each169

of which comprises several sub-tasks.170

Atomic Events Understanding. This task aims171

to evaluate the model’s understanding of an atomic172

event (e.g., an action of a human or object) in the173

video, which is one of the most basic video under-174

standing capabilities.175

• Event Description. For this sub-task, we col-176

lect question-answering pairs to evaluate whether177

the model can accurately recognize and describe a178

specific atomic event in the video, e.g., “What did179

the person do with the towel?”180

Composite Events Understanding. It focuses181

on understanding the relation between two atomic182

events in a video, from the following two aspects.183

• Temporal Reasoning. We collect question-184

answer pairs that require to perform reasoning185

based on the understanding of the temporal order186

for two events in the video, e.g., “What did the man187

do after putting down the towel”.188

• Causal Reasoning. This sub-task focuses on189

the casual relation between two events in the video,190

especially for explaining the reason why an event191

happened, e.g., “Why did the man open the box”.192

Overall Understanding. It requires understand-193

ing the relations across all events in the video, to194

GPT-4V

LLaVA-NeXT InternLM-XC

Gemini-1.5-ProGPT-4V

Internet Videos

Final Benchmark

Format Unification

Existing Dataset

Human Annotation

Biased Data Filtering

Inconsistent Data Filtering

Figure 2: The data in Event-Bench are sourced from
existing datasets or human annotations, involving three
stages: format unification, biased data filtering, and
inconsistent data filtering.

Atomic Composite Overall TotalED TR CR CIR CU ER

468 400 400 227 395 300 2190

Table 2: The statistic of Event-Bench. Each header is
the abbreviation of the corresponding sub-tasks.

capture the high-level overall information from it. 195

We design the following three sub-tasks: 196

• Contextual Reasoning. This sub-task aims to 197

perform reasoning based on the overall context in 198

the video, where the model needs to summarize the 199

content from a series of events, e.g., “Describe the 200

overarching process is conducting in the lab”. 201

• Episodic Reasoning. For a video, we also con- 202

sider its contained episodes (i.e., stories) about the 203

characters and objects across all the events, where 204

the model need to characterize high-level seman- 205

tics to answer complex questions, e.g., “What led 206

to Bean deciding to quickly leave the restaurant”. 207

• Counter-intuitive Reasoning. For this sub-task, 208

the videos involve counter-intuitive elements (e.g., 209

magical spells), and the model needs to identify 210

the abnormal details to answer corresponding ques- 211

tions, e.g., “Why the video is magical”. 212

3.2 Data Construction 213

Our benchmark consists of data collected from ex- 214

isting datasets and newly human-annotated internet 215

videos. The overall construction process is illus- 216

trated in Figure 2. 217

3.2.1 Construction Based on Existing Datasets 218

As there exist multiple open-source VideoQA 219

datasets, we aim to collect useful instances from 220

them to compose our event-oriented benchmark. 221
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Question: Which object was tidied up by
the person?
Options:
A. The closet/cabinet. B. The broom.
C. The blanket. D. The table.

Atomic Event Understanding
Event Description

Question:Why did the man in green point his
hand at the man in white while he is talking?
Options:
A. To seek his help. B. To express agreement.
C. To smile. D. To show him the view.

Question: What did the human do when the
cat bit the hands?
Options:
A. Look at bird. B. Push it.
C. Play with cat. D. Stand still.

Temporal Reasoning Causal Reasoning

Question: Describe the overarching process c 
is conducting in the laboratory, focusing on 
the purpose of his actions. c stands for the 
camera wearer.
Options:
A. C is cleaning and tidying the laboratory.
B. C is preparing for a presentation.
C. C is inventorying supplies in stock.
D. C is conducting an experiment to test the 
growth of seedlings.

Question:Why is the video magical?
Options:
A. The man throws the microphone onto the 
table, and it shatters into four shiny diamonds.
B. The man throws the microphone onto the 
table, and it transforms into a bouquet of 
flowers.
C. The man throws the microphone onto the 
table, and it changes into a small silver rabbit.
D. The man throws the microphone onto the 
table, and it disappears, replaced by four 
silver pacifiers.

Contextual Reasoning Counter-intuitive Reasoning

Overall Understanding

Question:What led to Bean deciding to 
quickly leave the restaurant?
Options:
A. The waiter brought him more seafood.
B. The lady's phone rang, causing a 
distraction.
C. He saw the lady discovering the oysters 
in her bag.
D. The lady's phone conversation ended 
suddenly.

Episodic Reasoning

Figure 3: Overview of our Event-Bench. Our benchmark includes six sub-tasks across three event understanding
abilities: atomic event understanding, composite event understanding, and overall understanding. The ground-truth
answer is highlighted in red.

Specifically, we select the instances from four222

datasets, i.e., STAR (Wu et al., 2021), NeXT-223

QA (Xiao et al., 2021), EgoSchema (Mangalam224

et al., 2023), and FunQA (Xie et al., 2023), owing225

to their diverse domains and rich annotations. How-226

ever, after human review, we find three key issues227

in these instances: (1) different data formats and228

evaluation settings; (2) biased short-cut questions229

requiring no video understanding; (3) inconsistency230

between the answers and the video content. To231

address them, we develop the corresponding three-232

stage pipeline to preprocess the data.233

Format Unification. We first convert all open-234

ended questions into multi-choice questions using235

GPT-4, where the prompt is “Please change this236

task into a 4-way multi-choice question based on237

their descriptions”. The generated questions are238

further examined and revised by human annotators.239

Biased Data Filtering. Inspired by existing240

work (Chen et al., 2024b), we filter the short-cut241

questions that can be answered by only a single 242

frame of the video, which are biased test data for 243

evaluating video understanding capability. Con- 244

cretely, we employ three Image-based MLLMs 245

(i.e., GPT-4V (OpenAI, 2023), LLaVA-NeXT- 246

34B (Liu et al., 2024a), InternLM-XComposer2- 247

4kHD (Dong et al., 2024)) on collected data and 248

remove those can be accurately answered using 249

only one frame. Such a way can leverage the short- 250

cut bias to identify and remove the biased data. 251

Inconsistent Data Filtering. Finally, given the 252

video and question from an instance, we utilize two 253

powerful MLLMs, i.e., GPT-4V and Gemini-1.5- 254

Pro1 to produce the answers. If their answers are 255

the same but different from the human-annotated 256

one, we regard the instance as an inconsistent sam- 257

ple and filter it out. 258

1We sample 16 frames for GPT-4V and 1fps for Gemini-
Pro-1.5 as the representation of the video.
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3.2.2 Annotation Based on Internet Videos259

Although the processed instances from existing260

datasets are diverse and high-quality, we find that261

their videos generally contain relatively fewer262

events and their questions mostly neglect the263

episodic reasoning capability, which is important264

for testing the understanding capability of the over-265

all video storyline. Therefore, we collect multiple266

videos from YouTube, whose storylines contain267

rich body language information, and then annotate268

questions and answers for the episodic reasoning269

task. Considering the complexity of the episodic270

reasoning task, we decompose its annotation pro-271

cess into three stages to simplify it: caption annota-272

tion, question generation, and answer check.273

Caption Annotations. We ask human annotators274

to write the captions for every 30 seconds of a video.275

To ensure the quality, we first utilize Gemini-Pro-276

1.5 and GPT-4 to synthesize 10 questions per video,277

and ask human annotators to answer the questions278

by writing detailed captions. Note that the synthetic279

questions may contain errors, yet can still guide the280

whole annotation process to control the quality.281

Question Generation. To reduce the human an-282

notation cost, we utilize GPT-4 to generate the283

question-answer pairs for the episodic reasoning284

task, according to the annotated captions. We uti-285

lize the following prompt with detailed guidelines286

(in Appendix) to guarantee their consistency with287

the captions: “Based on the following descrip-288

tions, please ask 10 diverse questions about the289

plot and events of the video. While executing this290

task, please adhere to the following guidelines: ...”291

Answer Check. We ask human annotators to an-292

swer the generated question without giving the cor-293

responding answer generated by GPT-4, and then294

compare their answers for checking. If they are295

the same, we add them to our benchmark. Other-296

wise, we invite more human annotators to check297

the question and vote on the final answer. Note298

that we also ask the human annotators to select299

the time interval in the video that corresponds to300

the question-related event, which is also used to301

estimate the annotation reliability.302

3.3 Data Statistics303

Our benchmark comprises a total of 2,190 video304

question-answer pairs on 6 tasks corresponding305

to different event understanding abilities, where306

each task has 172∼400 test samples for evaluation.307

Description: People floating in the water with life jackets on…

Description: A woman wearing a life jacket and holding a stick…

Merged Instruction: How does the setting of the video impact the 
activities taking place?

Video A:

Video B:

Merged 
Video:

M
er

ge

Large Language Model

Q-Former

Visual Tokens

Image 
Encoder

Visual Input

Plain Video

Image

Merged Video

Video Instruction Merging

Model Architecture

/

Figure 4: Overview of our method. We devise an in-
struction merging strategy to obtain instructions with
more events based on existing data, and employ an adap-
tive model architecture supporting both image and video
as the input.

Owing to the hierarchical task taxonomy, we can 308

freely estimate the capability of models at different 309

levels. Besides, as the benchmark is built based on 310

diverse data sources, its contained videos can well 311

cover the diverse domains in the real world and own 312

varying lengths. These characteristics enable our 313

benchmark to provide a comprehensive evaluation 314

of existing video MLLMs. We show the cases in 315

our benchmark in Figure 3. 316

4 Methodology 317

In this section, we introduce Video Instruction 318

Merging (VIM) to enhance the performance of 319

video MLLMs on event-oriented long video under- 320

standing tasks. Previous approaches primarily uti- 321

lize video instruction tuning (Li et al., 2023b; Maaz 322

et al., 2023; Zhang et al., 2023), which typically 323

require extensive human effort to annotate massive 324

video instructions. To address this, our proposed 325

VIM integrates several similar video instructions 326

from existing datasets into a new event-intensive 327

one as additional training data. We also adopt a 328

scalable visual processor in our video MLLM that 329

interprets video as sequences of images, thereby 330

handling both image and video inputs. This archi- 331
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tecture allows us to combine existing high-quality332

image instructions with the newly created merged333

video instructions for training. The overall archi-334

tecture of our approach is illustrated in Figure 4.335

4.1 Video Instruction Merging336

Existing video instruction datasets suffer from337

the issues of lacking rich events (Heilbron et al.,338

2015), e.g., 1.41 on average for Video-ChatGPT-339

100K (Maaz et al., 2023). Thus, inspired by the340

mix-up strategy (Zhang et al., 2018), we propose to341

merge several simple video instructions to obtain342

a complex one with more events. Concretely, for343

each video and its corresponding instruction, we344

first find its most similar ones and then merge them345

into a new sample.346

Similar Video Selection. We select the most sim-347

ilar video instructions to merge, to ensure the co-348

herence of the synthetic new one. Specifically, we349

concatenate the input question and answer into one350

sentence [qi; ai], and convert it into the text em-351

bedding hi via state-of-the-art BGE model (Chen352

et al., 2024a). Then, the embedding is regarded as353

the semantic representation of the whole instruc-354

tion, and we compute its cosine similarity to other355

instructions for selecting the k − 1 nearest ones:356

Cos(i, j) =
h⊤
i hj

|hi| ∗ |hj |
. (1)357

In this way, we can divide the entire video instruc-358

tion dataset D into |D|/k subsets.359

Instruction Merging. For instructions within360

each similar video subset {vi, qi, ai}ki=1, we merge361

them into a new one. We first temporally concate-362

nate every video as a new one v′, then ask Chat-363

GPT 2 to generate a new question q′ and answer a′364

for the merged video given their original questions365

and answers. The process can be formulated as:366

v′ = [v1; v2; . . . ; vk],

q′, a′ = ChatGPT(pm, q1, . . . , a1, . . . ),
(2)367

where [; ; ] is the concatenation process and pm is368

the prompt for ChatGPT.369

2https://chatgpt.com/

Prompt for Instruction Merging

The user will give you k question-answer pairs
about a video. These pairs have similar semantics
but are different in some details. Your task is to
create a new question-answer pair based on them,
which requires the tester to watch all the videos to
answer. The new question should be about the sim-
ilarities and differences among these videos. The
question should be diverse and the corresponding
answer should be as detailed as possible...

370

4.2 Adaptive Model Architecture 371

Our model architecture is composed of a scalable 372

visual processor and an LLM. The scalable visual 373

processor consists of a reusable image encoder and 374

a cross-modal connector. For video input, we first 375

uniformly sample n frames from it, then separately 376

feed them into the visual processor and concatenate 377

the result visual tokens as the video representations, 378

while image input is treated as in regular Image 379

MLLMs. Therefore, our model can flexibly handle 380

inputs of different sequence lengths (e.g., a single 381

image, short videos, or long videos). 382

In practice, we adopt EVACLIP (Fang et al., 383

2023) as the image encoder. For the cross-modal 384

connector, we adopt a pre-trained Q-Former (Li 385

et al., 2023a) to reduce the number of resulting vi- 386

sual tokens of input videos. The visual tokens are 387

then concatenated with the embedding of question 388

q as the input of the LLM: 389

LLM([Hf1 , . . . ,Hfn ; e1, . . . , eL]), (3) 390

where [Hf1 , · · · ,Hfn ] are the visual tokens and 391

[e1, e2, · · · , eL] are the text tokens. Since our 392

model can handle both image and video inputs, 393

we also add some high-quality image instructions 394

to our training data, which helps the LLM better 395

align with and understand the visual input. 396

5 Experiment 397

5.1 Experimental Setup 398

Implementation Details. We utilize EVA- 399

CLIP (Fang et al., 2023) as the image encoder, 400

Vicuna-v1.1 (Chiang et al., 2023) as the LLM, and 401

initialize the Q-Former from InstructBLIP (Dai 402

et al., 2023). We extrapolate the maximum length 403

of Vicuna-v1.1 from 2,048 to 4,096 so that it 404

can receive 64 frames as the input. As for the 405

training data, we utilize 100K instructions from 406

Video-ChatGPT (Maaz et al., 2023), 40K instruc- 407

tions from Something-Something-2 (Goyal et al., 408

2017), 34K instructions from NExT-QA (Xiao 409

6



Atomic Composite Overall
Avg.Event

Description
Temporal
Reasoning

Causal
Reasoning Avg. Counter

Reasoning
Contextual
Reasoning

Episodic
Reasoning Avg.

Open-Source Image MLLMs

LLaVA-NeXT (7B) 13.68 14.75 9.75 12.25 14.98 9.11 7.30 9.97 11.59
IXC2-4KHD (7B) 26.07 27.50 32.50 30.00 9.25 12.15 17.67 13.23 22.10

Open-Source Video MLLMs

LLaMA-VID-long (7B) 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
LLaMA-VID (13B) 1.92 1.75 0.00 0.88 3.08 0.00 4.00 2.06 1.60
Video-LLaVA (7B) 12.82 5.50 0.00 2.75 6.17 2.78 7.20 5.05 5.87
Video-LLaMA (7B) 15.81 9.00 6.25 6.63 0.09 2.28 0.67 1.22 6.68
Video-ChatGPT (7B)* 9.83 9.50 15.00 12.25 14.98 12.66 10.00 12.37 11.78
MovieChat (7B)* 16.88 16.00 14.50 15.25 18.06 13.16 20.33 16.70 16.21
PLLaVA (7B) 34.62 40.00 40.50 40.25 17.62 15.19 11.00 14.42 28.17
VideoChat2 (7B) 33.76 37.75 47.75 42.75 16.74 15.70 14.67 15.62 29.41
PLLaVA (13B) 39.53 42.50 43.00 42.75 25.56 22.78 17.00 21.58 33.15
ST-LLM (7B) 47.22 48.75 59.50 54.13 9.69 25.32 16.67 18.66 37.71
VIM (7B) (Ours) 48.08 51.25 61.25 56.25 22.91 32.66 18.67 25.71 41.64

Proprietary MLLMs

GPT-4V 29.70 35.00 40.00 37.50 36.56 28.35 27.00 29.93 32.65
Gemini-1.5-Pro 48.50 47.50 41.75 44.63 52.86 32.15 38.67 39.37 43.24
GPT-4o 54.27 56.75 58.25 57.5 63.44 50.13 37.33 49.24 53.33

Table 3: Experiment results on Event-Bench. For the Image MLLMs, we extract the frame in the middle of the
video as the input. For the Video MLLMs, we uniformly sample {8, 16, 32} frames as the input and report the best
performance. *Video-ChatGPT samples 100 frames, while MovieChat samples 1fps from the video.

et al., 2021), 10K from Vript Caption (Yang,410

2024), 100K visual instructions randomly sampled411

from LLaVA665K (Liu et al., 2023a), and 32K412

instructions synthesized in Section 4.1. In the413

training process, we freeze the image encoder and414

the Q-Former, only updating the parameters of the415

LLM. We train our model on 8 Nvidia A100 (80G)416

GPUs for 1 epoch and complete within 12 hours.417

Baseline Models. We select several SOTA418

MLLMs as baselines. For open-source models, we419

select 2 Image MLLMs (LLaVA-NeXT (Liu et al.,420

2024a) and InternLM-XComposer2-4kHD (Dong421

et al., 2024)) and 7 Video MLLMs (Video-422

LLaMA, Video-ChatGPT (Maaz et al., 2023),423

MovieChat (Song et al., 2023), LLaMA-VID (Li424

et al., 2023d), VideoChat2 (Li et al., 2023c), Video-425

LLaVA (Lin et al., 2023) and ST-LLM (Liu et al.,426

2024b)). For proprietary models, we select GPT-427

4o, Gemini-1.5-Pro (Reid et al., 2024), and GPT-428

4V (OpenAI, 2023).429

Evaluation Protocols. We follow the evaluation430

strategy proposed in MMBench (Liu et al., 2023b)431

to evaluate these models. Specifically, we first use432

regular expression to extract the options from the433

model’s response. If successful, we use this as the434

prediction and compare it with the ground truth.435
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Figure 5: The relationship between the performance and
the number of input frames.

Otherwise, we utilize GPT-4-turbo to judge if the 436

prediction is correct. Besides, to ensure the consis- 437

tency of models’ responses on multiple choice ques- 438

tions, we adopt the circular evaluation strategy (Liu 439

et al., 2023b). Specifically, we ask the models each 440

question N (N is the number of choices) times 441

and only consider the answer correct if the models 442

provide the correct answer in every round. 443

5.2 Main Results 444

The performance of the models is illustrated in 445

Table 3. We discuss the result and present the key 446

findings from the following perspective: 447

Overall Performance. As is shown in Table 3, 448

both Image MLLMs and Video MLLMs ex- 449
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hibit poor performance on these event reasoning450

tasks. For the Image MLLMs, LLaVA-NeXT and451

InternLM-XComposer2-4kHD could not achieve452

satisfying performance conditioned on only one453

frame, which proves the effectiveness of our data454

filtering strategies in building our benchmark. Sur-455

prisingly, most Video MLLMs even underperform456

these two Image MLLMs, implying their weak457

ability to understand complex events in the videos.458

From the perspective of task, we can observe that459

overall understanding is more challenging than460

composite event understanding and atomic event461

understanding. Especially in our newly annotated462

episodic reasoning task, the most powerful Gemini-463

1.5-Pro and GPT-4o only achieve 38.67 and 37.33.464

Comparisons of Different Models. From the465

perspective of model, most open-source models466

obtain comparable performance as the proprietary467

models in the atomic and composite understanding468

tasks, with some models even outperforming GPT-469

4V (e.g., ST-LLM, PLLaVA, and VideoChat2).470

However, the gap is enlarged in the overall un-471

derstanding task, where all the open-source models472

lag behind the proprietary models. Among the473

open-source models, our model achieves the best474

performance across almost all the tasks. The only475

exception is that MovieChat achieves the best on476

the episodic reasoning task and PLLaVA (13B) is477

slightly better than ours on the counter-intuitive rea-478

soning task. This is because MovieChat samples479

more frames and PLLaVA (13B) utilizes a larger480

LLM and more training data. However, our model481

still obtains the best accuracy on average.482

5.3 Analysis483

Number of Frames. Due to the limit of con-484

text length in LLMs, most video MLLMs sample485

frames from the whole video uniformly as the in-486

put. Intuitively, increasing the number of frames487

would help the model better understand the video,488

thus achieving better performance. We select the489

best four open-source models and one proprietary490

model and display the relationship between their491

performance and the number of input frames in Fig-492

ure 5. We can observe that more input frames lead493

to better performance for GPT-4o. For example,494

the performance of GPT-4o in the temporal rea-495

soning task is boosted from 47.50 to 56.75 when496

the number of input frames increases from 8 to497

32. However, the open-source models do not al-498

ways benefit from more input frames. Most models499

Atomic Composite Overall Avg.

Ours 48.08 56.25 25.71 41.64
- w/o mixup 43.16 51.63 24.39 38.90
- w/o image 46.15 51.75 24.08 38.90
- random merge 45.94 54.25 25.38 40.32

Table 4: Ablation study of VIM on Event-Bench.

achieve the best performance when given 16 or 24 500

frames while increasing to 32 frames will lead to 501

performance degradation. As a comparison, VIM is 502

still boosting when the number of frames increases 503

from 16 to 32, demonstrating its scalability. 504

Training Strategy. We study the effect of the in- 505

struction merging strategy and the benefit of adding 506

image data in our training process. First, the result 507

in Table 4 shows that removing the merging strat- 508

egy significantly hurt the performance on all tasks. 509

Secondly, selecting videos with similar semantics 510

leads to better performance than random selection, 511

which highlights that the coherence of events in 512

a video is quite important. As for the effect of 513

image data, we could observe that removing im- 514

age instructions from our training data causes a 515

performance decrease on all the tasks. This not 516

only shows that image instruction could compen- 517

sate for the lack of high-quality video data, but also 518

demonstrates the compatibility and scalability of 519

our model architecture. 520

6 Conclusion 521

In this work, we built an event-oriented long 522

video understanding benchmark based on exist- 523

ing datasets and human annotation, namely Event- 524

Bench. We created six event-related tasks, and col- 525

lected totally 2,190 test instances in Event-Bench 526

to comprehensively evaluate the capability of un- 527

derstanding events within the videos. Then, we 528

devised an efficient training strategy to improve 529

video MLLMs to alleviate the problems of lack- 530

ing human-annotated event-intensive video instruc- 531

tions. We revised the model architecture to support 532

using high-quality image-based instruction, and 533

merged several simple video instructions into an 534

event-intensive new one, to extend our training 535

dataset. Extensive experiments have shown that 536

our Event-Bench can provide a systematic compar- 537

ison across the different kinds of capabilities for 538

existing video MLLMs, and point out the major 539

shortcomings of open-source MLLMs. Besides, 540

our approach can outperform state-of-the-art open- 541

source video MLLMs on average, even GPT-4V. 542
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7 Limitation543

First, events are not only represented by visual544

modality, but also by other modalities in the real545

world(e.g., textual, audio, and speech). They con-546

vey important information in the video and com-547

plement the visual modality. As an initial explo-548

ration, we only consider the visual modality in549

Event-Bench. In the future, we will also add other550

modalities to our benchmark. Second, we only use551

500K video instructions during training the Video552

MLLM due to the limited computation resources.553

However, the experimental results show that includ-554

ing more high-quality video instructions and image555

instructions has a positive impact on the model per-556

formance. In the future, we will scale the training557

data and model size to obtain better performance.558

Third, although the method we propose to merge559

video instructions is low-cost and effective, the560

quality is still lower than human annotations. In561

the future, we will construct more event-intensive562

training data through human annotation.563
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A Appendix847

A.0.1 Data Statistics.848

Our benchmark comprises a total of 2,190 video849

question-answer pairs on 6 tasks corresponding to850

different event understanding abilities, where each851

task has 172-400 test samples for evaluation.852

A.0.2 Ablation Study853

Number of Merged Videos. In Section 4.1, we854

select k samples and merge them into a new one,855

where a larger k indicates more events happen-856

ing in the new video. We experiment with k =857

{1, 2, 3, 4} (k = 1 indicates no merge operation)858

and depict the corresponding performance in Fig-859

ure 7. We could observe that increasing the number860

of events from 2 to 3 and 4 hurts performance on all861

the tasks, but is still better than the model trained862

on a single video.863
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Benchmark Time Scope (s) Annotation Open
Domain

Complex
Reasoning

Hierarchical
Events

Multiple
Scenes

MSVD-QA (Xu et al., 2017) 0∼60 Auto ✓ ✗ ✗ ✗
MSRVTT-QA (Xu et al., 2017) 10∼30 Auto ✓ ✗ ✗ ✗
TGIF-QA (Jang et al., 2017) - Auto+Human ✓ ✗ ✗ ✗
ActivityNet-QA (Yu et al., 2019) 0∼975 Human ✗ ✗ ✗ ✗
NeXT-QA (Xiao et al., 2021) 5∼180 Human ✓ ✗ ✗ ✗
STAR (Wu et al., 2021) 2∼195 Auto ✓ ✓ ✗ ✗
CLEVRER (Yi et al., 2020) 5 Auto ✗ ✓ ✗ ✗
EgoSchema (Mangalam et al., 2023) 180 Auto ✗ ✓ ✗ ✗
MVBench (Li et al., 2023c) 5∼40 Auto ✓ ✓ ✗ ✗
TempCompass (Liu et al., 2024c) 0∼35 Auto+Human ✓ ✗ ✗ ✗
MovieChat (Song et al., 2023) 401∼602 Human ✓ ✗ ✗ ✓
Ours 2∼1088 Auto+Human ✓ ✓ ✓ ✓

Table 5: Comparison with previous video understanding benchmarks.

Atomic Composite Overall

Event
Description

Temporal
Reasoning

Causal
Reasoning

Counter-intuitive
Reasoning

Contextual
Reasoning

Episodic
Reasoning

1 frame LLaVA-NeXT (7B) 13.68 14.75 9.75 14.98 9.11 7.3
IXC2-4KHD (7B) 26.07 27.5 32.5 9.25 12.15 17.67

8 frame LLaMA-VID (7B) 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 1.92 1.75 0.00 3.08 0.00 4
Video-LLaVA (7B) 12.82 5.5 0.00 6.17 2.78 7.2
Video-LLaMA2 (7B) 15.81 9 6.25 0.09 2.28 0.67
VideoChat2 (7B) 31.2 37.25 47.25 14.98 15.44 12.67
ST-LLM (7B) 47.22 48.75 59.5 9.69 25.32 16.67
GPT-4V 29.27 32.75 41.25 42.29 24.81 24
GPT-4o 48.08 47.5 55.5 63 48.86 34

16 frame LLaMA-VID (7B) 0.21 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 1.06 1.13 0.25 3.08 0.00 5
Video-LLaMA2 (7B) 11.11 3.25 6 0.88 3.04 0.33
PLLaVA 34.62 40 40.5 17.62 15.19 11
VideoChat2 (7B) 34.19 38.25 46.25 17.18 17.22 12.67
ST-LLM (7B) 47.65 50.00 56.5 11.45 26.84 14.67
GPT-4V 29.7 35 40.00 36.56 28.35 27
GPT-4o 52.99 55 58.25 63 49.11 32.67

32 frame LLaMA-VID (7B) 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-VID (13B) 0.85 0.75 0.00 3.08 0.00 3
Video-LLaMA2 (7B) 9.19 4.75 3.75 2.2 1.77 1.33
VideoChat2 (7B) 33.76 37.75 47.75 16.74 15.7 14.67
ST-LLM (7B) 46.79 46.25 55.25 10.13 26.33 16
GPT-4V 23.72 25.75 33 40.09 20.51 20.67
GPT-4o 54.27 56.75 58.25 63.44 50.13 37.33

more frames MovieChat (7B) 16.88 16 14.5 18.06 13.16 20.33
Video-ChatGPT (7B) 9.83 9.5 15 14.98 12.66 10.00
Gemini-1.5-Pro 48.5 47.5 41.75 52.86 32.15 38.67

Table 6: Detailed experimental results with more frames as input.
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