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Abstract

Most research in deep learning has predominantly
focused on the development of new models and
training procedures. In contrast, the exploration of
training objectives has received considerably less
attention, often limited to combinations of standard
losses. When dealing with complex structured out-
puts, the effectiveness of conventional objectives
as proxies for the true objective becomes can be
questionable. In this study, we propose that ex-
isting inference network-based methods for struc-
tured prediction, as observed in previous works
[Tu and Gimpel, 2018, Tu et al., 2020a], indirectly
learn to optimize a dynamic loss objective param-
eterized by the energy model. Based on this in-
sight, we propose a method that treats the energy
network as a trainable loss function and employs
an implicit-gradient-based technique to learn the
corresponding dynamic objective. We experiment
with multiple tasks such as multi-label classifica-
tion, entity recognition, etc. and find significant per-
formance improvements over baseline approaches.
Our results demonstrate that implicitly learning
a dynamic loss landscape proves to be an effec-
tive approach for enhancing model performance in
structured prediction tasks.

1 INTRODUCTION

Deep neural networks have achieved widespread success in a
multitude of applications such as translation [Vaswani et al.,
2017], image recognition [He et al., 2016] and many others.
This success has been enabled by the development of back-
propagation based algorithms, which provide a simple and
effective way to optimize a loss calculated on the training
set. Generally a large portion of existing work has focused
only on designing of models and optimization algorithms.

However with the increased prevalence of meta-learning,
researchers are exploring new loss objectives and training
algorithms [Wu et al., 2018, Huang et al., 2019].

Intuitively one would like to choose objectives which can dy-
namically refine the kind of signals it produces for a model
to follow, in order to guide the model towards a better solu-
tion. Oftentimes standard objectives are pretty effective at
this; however, these objectives have generally been explored
for simple predictions. When dealing with complex outputs,
there is a significant scope for improvement by designing
better training objectives. A good example is structured pre-
diction [Belanger and McCallum, 2016], where the output
includes multiple variables and it is important to model
their mutual dependence. One natural candidate is to use the
likelihood under a probabilistic model that captures this de-
pendence. Such models though cannot be used to efficiently
predict the output and require inference.

An ideal loss function in this case would naturally guide the
model towards incorporating the output correlations while
allowing a more standard feed-forward or similar predic-
tive model to quickly and efficiently produce the output.
Energy based structured prediction [Belanger and McCal-
lum, 2016] provide a natural framework in which one can
explore learned losses by using the energy itself as the train-
ing objective. Existing works [Tu and Gimpel, 2018, Tu
et al., 2020a] have looked at learning prediction networks
to directly predict structured outputs, and not on the energy-
based objective itself.

Contributions This work explores the thread of learning dy-
namic objectives for structured prediction. Using the insight
of Hazan et al. [2010], we connect the existing paradigm
of Tu et al. [2020a], Lee et al. [2021] to a surrogate loss
learning problem. This allows us to identify a key problem
with the approach of Tu et al. [2020a], Lee et al. [2021],
that it uses incorrect gradient for the surrogate objective
problem. Building on this idea, we propose to use implicit
gradients [Krantz and Parks, 2002] for learning an energy
based structured prediction model. We then use ideas from
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Christianson [1992] to compute gradients at scale for the
corresponding optimization problem. The experimental re-
sults show the effectiveness of our methods against SOTA
baselines on three tasks and nine datasets.

2 PRELIMINARIES

2.1 LEARNING A LOSS FUNCTION

We describe in this section a formulation for learning a
dynamic loss function. This loss function, which we call
auxiliary loss is used to train a model. The model trained
on this auxiliary loss is then evaluated on a different loss
function, called the primary loss. This second loss func-
tion is called primary loss because this is the ’true’ loss of
concern to the user. For example, in a standard supervised
learning setting, the primary loss could be the performance
of the model on a validation set. The goal then is to learn the
auxiliary loss in a way that the learnt model’s performance
as measured by the primary loss is optimized. If the model
is denoted by fθ with parameters θ, auxiliary loss by LAux,
and primary loss by LPrim; then this problem can be written
as:

min
LAux
LPrim(argmin

θ
LAux(θ)) (1)

Variants of the same formulation have been explored for su-
pervised learning [Huang et al., 2019, Wu et al., 2018] and
reward learning [Bechtle et al., 2019, Zheng et al., 2018].
The outer problem is technically a problem of optimization
over the space of functions. To be able to solve this com-
putationally, the auxiliary loss LAux is often parameterized
with some parameters ϕ; changing the problem to learning
ϕ.

ϕ∗ = argmin
ϕ
LPrim(θ

∗(ϕ), ϕ)

such that
θ∗(ϕ) = argmin

θ
LAux(θ, ϕ)

(2)

2.2 IMPLICIT GRADIENT METHOD

The aforementioned problem is a bi-level optimization prob-
lem. In such a case, a parameter (ϕ) that influencesLAux, can
influence the primary objective LPrim via the dependence
of the inner optimized parameters θ∗ on ϕ. The implicit
gradient method [Krantz and Parks, 2002, Dontchev and
Rockafellar, 2009] provides a way to compute the gradient
of LPrim wrt ϕ due to this implicit dependence.

For the problem given in Equation 2, under certain regularity
conditions, LPrim is a differentiable function of ϕ and its

gradient is given by:

∂LPrim

∂ϕ
=

∂(LPrim(θ
∗(ϕ), ϕ))

∂ϕ︸ ︷︷ ︸
Explicit gradient

−

[
∂

∂ϕ

∂

∂θ
(LAux(θ, ϕ))

] [
∂

∂θ

∂

∂θ
(LAux(θ, ϕ))

]−1
∂(LPrim(θ

∗(ϕ), ϕ)

∂θ︸ ︷︷ ︸
Implicit Gradient

(3)

The existence of gradient follows from Theorem 2G.9 in
Dontchev and Rockafellar [2009]. The derivation of the
Equation 3 is presented in the Appendix. As can be seen
from the above equation, the true gradient has two terms:
a standard component ∂ϕLPrim and the implicit component
due to the the dependence of optimal θ on ϕ. We will some-
times abuse terminology to call this term as implicit or meta
gradient.

3 STRUCTURED PREDICTION WITH
DYNAMIC LOSS

In this section we provide a brief overview of structured
prediction, before we present a bi-level optimization based
method for structured prediction. Unlike standard classifica-
tion, structured prediction deals with predicting a multivari-
ate structured output such as multi-label outputs, semantic
labeling etc.

In this work we consider a structured prediction task as
learning a mapping from an input spaceX to a exponentially
large label space: Y . The quality of a predicted output is
determined by the score function s : Y ×Y → R. The score
function is used to compare the gold output y ∈ Y with
another output y′ ∈ Y and can be interpreted as a measure
of how good y′ is compared to y. Some common scoring
functions are BLEU used for translation [Papineni et al.,
2002], Hamming Distance for comparing strings, and F1-
score for multilabel classification tasks [Kong et al., 2011].

While in principle, a powerful enough neural network can
learn to directly predict the structured output; in practice
they often not perform well due to a) ignoring the dependen-
cies between the labels and b) not using or optimizing for
the task loss.

Energy Based Structured Prediction Energy-based
structured prediction aims to alleviate these challenges by
proposing to learn an energy network Eϕ : X × Ȳ → R
which provides the energy for pairs of inputs x and the out-
puts y. Here Ȳ refers to a suitable relaxation of Y ∈ {0, 1}L
to a continuous space: Ȳ ∈ [0, 1]L. The energy network
is trained to assign the correct output y lower energy than
incorrect outputs. At test time, predictions are recovered
for an input x by finding the structure y with the lowest
energy [Belanger and McCallum, 2016]. Training energy



models this way requires inference during training to pro-
duce high scoring negative samples negative ȳ. With such
negative samples, a common practice is to use SSVM loss
[Tsochantaridis et al., 2004].

min
ϕ

[s(ȳ, y)− Eϕ(x, ȳ + Eϕ(x, y)]+︸ ︷︷ ︸
I

(4)

SPEN [Belanger and McCallum, 2016] propose using gra-
dient based inference to find ȳ, which makes training and
inference slow. To make this eff Tu and Gimpel [2018],
Tu et al. [2020a] propose using inference networks Fθ and
Aθ to directly predict the output. Fθ is the cost-augmented
inference network that is used only during training i.e. its
output is used as ȳ in 4. As such Fθ is trained to maximize
4 with respect to ȳ. On the other hand, the goal of Aθ is to
predict the output during testing, and as such Aθ is trained
to minimize the energy.

3.1 USING ENERGY AS PROXY LOSS

An ideal predictor would be directly minimizing the struc-
tured loss s. However, due to the nature of many real-life
structured losses (like BLEU, F1, IoU), and due to the often
discrete nature of the output space, performing such an infer-
ence is intractable. A natural alternative then is using deep
networks to build a proxy or surrogate loss. In fact, the clas-
sic cost sensitive hinge/margin loss used in Tsochantaridis
et al. [2004] (i.e. 4) is a convex surrogate of the true cost
[Hazan et al., 2010]. Similarly the value network method
of Gygli et al. [2017] aims to learn a differentiable energy
network which directly predicts the score/task-loss of an
output. This suggests that the training of the energy network
in energy-based structured prediction methods an indirect
way to learn a surrogate loss function. This can also be seen
by the fact that the energy function E appears additively in
the training objective for the inference net A.

Surrogate loss learning can be formulated as a bi-level op-
timization with the outer optimization over loss function
parameters ϕ constantly updating itself to provide better
feedback to the prediction model (as discussed in Section
2). Under this view the margin loss based training can be
interpreted as the following bi-level objective:

min
ϕ
LPrim(θ(ϕ), ϕ) s.t. θ(ϕ) = argmin

θ
LAux(ϕ, θ)

where

LAux(θ, ϕ) = −(s(Fθ(x), y)+Eϕ(x, Fθ(x))+λEϕ(x,Aθ(x)))

and

LPrim(θ, ϕ) = [s(Fθ(x), y)− Eϕ(x, Fθ(x)) + Eϕ(x, y)]+

+ λ[−Eϕ(x,Aθ(x) + Eϕ(x, y)]+

The interpretation of the training procedure is that at each
step, the inference network is trained to predict an incorrect
ȳ with low energy and then the energy network is updated
to guide the inference network to a newer solution. Next
we note that under a well trained E one does not need
two different networks A,F , and so we combine the two
of them in the same network. To train this model, we use
gradient descent based optimization, however, instead of
backpropagating through the gradient steps, we use the im-
plicit gradient method to obtain the gradients of ϕ.

Under our interpretation, the procedure of Tu et al. [2020a],
Lee et al. [2021] uses biased gradients during update of ϕ.
Specifically since they only use ∂ϕLPrim(θ, ϕ), their gradi-
ent for ϕ misses the second term (labeled implicit gradient)
in Equation 3, which captures the influence due to the im-
plicit dependence of θ on ϕ. Specifically the presence of the
mixed derivatives serve the purpose of mapping changes in
ϕ and θ into each other. The presence of the inverse Hessian
in the missing term provides insight into why the bi-level
approach can be superior. Note that the condition number
of the Hessian is a useful measure of the hardness of an op-
timization and an ill-conditioned Hessian would cause the
missing term to explode, something which the adversarial
training process of Tu et al. [2020a] ignores. We present a
more detailed discussion of this in the Appendix.

One can observe that in the above optimization for θ, the ob-
served outputs y only appear directly in the score function s.
If s is not differentiable (which is usually the case), updates
to Aθ relies on the function E. However, during initial steps
of training, Eϕ would not yet have learned to score the true
output correctly. Thus the model Aθ will receive poor su-
pervision. To alleviate this issue, we add direct supervision
from output y in LAux. In this case we use the output of Aθ

to construct a distribution which is updated via the cross
entropy (CE)/ log-likelihood (MLE) loss.

While one can use different parameters θ, θ′ to parameterize
the F,A networks respectively, for a well trained energy
model these networks are not very dissimilar in behaviour.
Furthermore, Tu et al. [2020a] also found sharing parameters
between F and A helpful. Hence we also consider these as
the same network. Putting these changes (i.e. merging of
inference networks and addition of MLE loss) together we
get the following auxiliary objective:

LAux = LMLE(y,Aθ(x)) + λEϕ(x,Aθ(x)) (5)

where LMLE is a log-likelihood/cross-entropy based loss
and λ is a hyperparameter.1

Remark 1. Unlike standard meta-learning problems, where
the outer parameter ϕ is used as the initialization point of

1If we replace F by A in LAux objective above both energy
based terms become same; next since s is not-directly optimizable
we replace it for supervision with LMLE



the model, here we can directly use the learned inference
network Aθ for prediction. However, one can refine the
final θ on a validation set, or attempt to refine the output of
network Aθ(x) via gradient descent on the energy Eϕ. We
do not use the validation set for further refinement in our
experiments.

Remark 2. While ideally the inference networks would be
predicting binary vectors, in practice they are used to predict
soft examples. The energy function can then be updated both
on the real valued vectors or by obtaining hard outputs via
sampling, rounding or other methods.

3.2 SCALABLE COMPUTATION OF THE
IMPLICIT-GRADIENT

An astute reader might note that computing the gradi-
ent given in Equation 3 directly requires the Hessians
∂
∂θ

∂
∂θ (LAux(θ, ϕ)) and ∂

∂ϕ
∂
∂θ (LAux(θ, ϕ)). While comput-

ing the Hessians can be compute-intensive if the dimension-
ality of the parameters θ, ϕ is large; computing the inverse
Hessian is prohibitively more so. An alternative method is
to differentiate through the optimization procedure, however
that severely limits the number of optimization steps one
can conduct. Moreover truncated optimization will induce
its own biases [Vollmer et al., 2016].

Fortunately, we do not need to compute any of the two matri-
ces. Instead we only need the vector product of these hessian
matrices (HVP) with the gradient ∂(LPrim(θ

∗(ϕ),ϕ)
∂θ . Efficiently

doing such operations is a well researched area with nu-
merous methods [Christianson, 1992, Vázquez et al., 2011,
Song and Vicente, 2022]. The given expression can be trans-
formed into first computing a HVP with the cross-Hessian
∂
∂ϕ

∂
∂θ (LAux(θ, ϕ)), and then into an inverse-Hessian vector

product (iHVP) with the Hessian ∂
∂θ

∂
∂θ (LAux(θ, ϕ)). For

the inverse Hessian, we use the von-Neumann expansion
method suggested in Lorraine et al. [2020]. This allows one
to convert iHVP with a matrix H to product to a polynomial
in HVP using the same matrix H (details in the Appendix).
Once every requisite operation has been turned to HVP, we
can use auto-differentiation on perturbed parameters (i.e.
finite step divided difference approximation).

3.3 PRIMARY LOSS DESIGN

An advantage of breaking this problem as a bi-level opti-
mization is that unlike [Tu et al., 2020a] where the objectives
being used for training ϕ, θ are by construction adversarial,
we can now use different objectives for our primary and
auxiliary losses. We implicitly already used this fact when
we added the binary cross entropy loss to LAux, and wrote
slightly different form for LAux in Equation 5. However
we also have the freedom to choose the primary loss LPrim
which can result in different behaviour for the models. In
fact structured prediction literature has explored variety of

losses for training energy models. We mention a few of
these which we work use as LPrim in our experiments. Some
of these have also been explored for structured prediction
by Lee et al. [2021]. In this section we shall often use ȳ to
denote an element from Y which is distinct from the true
output y.

Hinge/SSVM Loss. Early structured prediction models
were often trained with a version of the hinge loss adjusted
for the score function [Tsochantaridis et al., 2004]. In cur-
rent parlance it is also known as margin loss. This is one of
the components of the loss used in [Tu et al., 2020a]. It is
given by the following equation:

LSSVM = [s(ȳ, y)− Eϕ(x, ȳ) + Eϕ(x, y)]+

DVN Loss. A natural candidate for learning energy network
is to use it as a differentiable proxy for the score function
s. This can be done by match the energy values to the task
loss i.e. E(x, ȳ) ≈ s(ȳ, y). [Gygli et al., 2017] proposed to
normalize the score function s and use a cross entropy loss
to match the energy E with it.

LDVN =− s(ȳ, y) log(−Eθ(x, ȳ))

− (1− s(ȳ, y)) log(1 + Eθ(x, ȳ))

Contrastive Divergence. Literature in probabilistic infer-
ence have proposed various losses to do maximum likeli-
hood estimate of energy models [Gutmann and Hyvärinen,
2010]. A common loss for such training is the contrastive-
divergence [Hyvärinen and Dayan, 2005] based loss which
uses samples to approximate the log-likelihood of the model.
We use a similar loss augmented with the score function s
as shown below.

LCD = log
exp(−Eϕ(x, y))

K∑
k=0

exp(−Eϕ(x, ȳk) + s(ȳk, y)))

where ȳ1..K refers to K possible negative (non-true output)
samples and ȳ0 = y.

Noise-Contrastive Loss. We also experiment with a mod-
ified version of the LCD loss above which inspires from
noise contrastive estimation [Ma and Collins, 2018]. Lee
et al. [2021] have also used this version to train structured
energy networks.

LNCE = log
exp(−Eϕ(x, y)− logP (y|x))

K∑
k=0

exp(−Eϕ(x, ȳk) + s(ȳk, y))− logP (ȳk|x))

where ȳ1..K once again refers to K possible negative (non-
true output) samples and ȳ0 = y. P (ȳk|x) is the probability
of the value ȳk as estimated by the predictive inference net



under the assumption that its components are independent
i.e. P (ȳk|x) =

∏
i Pϕ(ȳ

i
k|x)

During training ȳ in the aforementioned objectives gets re-
placed by the prediction of the inference net Aθ(x). When
multiple values are required (such as for LCD) we ob-
tain them samples by interpreting the continuous output
of Aθ(x)j as a Bernoulli random variables, and drawing
samples from the corresponding distribution.
Remark 3. Learnt loss functions have been used in literature
for the outer objective [Bechtle et al., 2019]. However, these
are also loss objectives used to train the prediction model
(LAux in our notation). In this work, predictions are obtained
from the inference network Aθ, which is trained by optimiz-
ing the energy function E. Hence we call E dynamic loss
in the latter sense.

Now we are in a position to state our exact proposal to
train structured prediction models. Our proposed method
is summarized in Algorithm 1. The network E is trained
by an energy-learning-based objective to learn a landscape
that incorporates signal from the task loss and reflects the
dependencies among output variables. An energy optimum
is indicative of a good prediction satisfying high similarity
with the true output while respecting statistical dependence
between labels. The inference net gets trained to predict an
optima of the energy E. The algorithm updates the inference
networks in the direction of reducing energy and the energy
serves as a surrogate loss.

Algorithm 1 Implicit Gradient for structured prediction

Require: Energy Network Eϕ, Inference Network Aθ,
Regularization λ, Training Data D = xi, yi,
Inner/Outer Iterations Tinner, Touter
Sample θ0, ϕ0 randomly
for t ∈ Touter iterations do

Obtain sample x, y from D
θp ← θt
for p ∈ Tinner iterations do

Compute LAux(θp, ϕt)
θp ← θp − η∇LAux(θp, ϕt)

end for
θt ← θp
Compute LPrim(θt, ϕt)
Compute g = d

dϕLPrim(θt, ϕt) via Equation 3
ϕt+1 ← ϕt − ηg
θt+1 ← θt

end for
Return resulting model Aθ

3.4 CONNECTION TO DYNAMIC LOSSES

A key distinction between our proposed method, employ-
ing the LSSVM loss, and the InfNet+ approach suggested
by Tu et al. [2020a] lies in the utilization of the implicit

gradients/bi-level optimization method instead of alterna-
tive independent optimization. It is worth noting that when
training via independent optimization, the parameters ϕ
are updated on ∂ϕLPrim. However, Equation 3 reveals that
∂ϕLPrim represents only one component of the true gradient,
as it incorporates an additional term (Line 1 of Equation 3).
This additional term captures the indirect influence of θ on
LPrim, as θ is also dependent on ϕ.

As such standard energy based training methods, use biased
gradients which can lead to improper solutions to the under-
lying problem. However, by utilizing the correct gradient,
the energy optimization (ϕ) becomes explicitly aware of
and receives feedback from the inner optimization process
of the inference network. To emphasize th distinction this
causes from the standard training procedure of energy-based
models (EBMs) described by Tu et al. [2020a], consider a
scenario where the energy parameters E have fully opti-
mized LPrim (e.g., through margin loss). Suppose that at the
current parameters θ of the inference net A, the energy of the
output E(x,A(x)) has a singular hessian ∂2

θEϕ(x,Aθ(x)).
Since the condition number of the Hessian often serves as
a reliable indicator of the difficulty of convex optimization
(e.g., gradient descent-based optimization becomes slow
in the presence of a flat surface), it is reasonable to infer
that finding the optimal y is challenging within the current
energy landscape.

Under the standard EBM training, as the updates solely
depend on ∂ϕLPrim, the energy network remains oblivi-
ous to the difficulty associated with predicting y. Conse-
quently, when LPrim approaches optimality, the energy net-
work ceases to receive updates. Conversely, in our frame-
work, the update to the energy function is not solely deter-
mined by ∂ϕLPrim. It is important to note that the first term
in Equation 3 relies on the inverse Hessian of the loss with
respect to θ. Therefore, if the Hessian of the inference net-
work exhibits ill-conditioning, a significant gradient for the
energy network emerges. This enables the energy function
to discover a landscape that is adapted to the behavior of the
inference network.

In this sense, our energy function behaves akin to a learned
dynamic loss [Wu et al., 2018, Bechtle et al., 2019], actively
adjusting itself to the prediction network’s behavior.

4 EXPERIMENTS

Multi-Label Classification We use the following multi-
label classification datasets for testing our model: bibtex
[Katakis et al., 2008], delicious [Tsoumakas et al., 2008],
eurlexev [Mencia and Fürnkranz, 2008]. The performance
metric is F1 score , which is also the score function used
for training our models. The max-likelihood loss LMLE in
this case is given by the multi-label binary cross entropy
(MBCE). We use the output of A as a vector of Bernoulli



Method Dataset
BibTex Delicious Eurlexev Bookmark

Slow

SPEN 43.12 26.56 41.75 34.4
NCE 20.12 16.97 19.50 -
DVN 42.73 29.71 31.90 37.1
ALEN 46.4 - - 38.3
GSPEN 48.6 - - 40.7

Fast

MBCE 42.47 30.12 43.25 33.8
iALEN 42.8 - - 37.2
LSSVM 44.55 30.34 42.50 37.9
LDVN 44.94 28.87 42.35 38.1
LCD 45.76 34.50 42.9 38.5†
LNCE 46.21† 35.12 43.49 38.5†

Table 1: Performance of our approach with different ob-
jectives (SSVM,CD,NCE) compared to standard multi-
label classification (MBCE) and energy based models
(SPEN,DVN,NCE). Our implicit gradient trained model
significantly outperforms the other approaches. . † denotes
statistically significant

variables, and MBCE is then just the sum of logistic losses
over the individual components of y.

LMLE =

L∑
j=1

−yj log((Aθ(x))
j)− (1− yj) log(1− (Aθ(x))

j)

For fair comparison with earlier works on these datasets,
we used the energy network design of Belanger and Mc-
Callum [2016]. The corresponding energy function Eϕ is
parameterized as:

Eϕ = yTWb(x) + vTσ(My)

where the parameters ϕ comprise of {W, v,M, b}. Network
b is defined by a multilayer perceptron. A similar multilayer
perceptron from the basis of the inference network Aθ.

We experiment with SPEN [Belanger et al., 2017], DVN
[Gygli et al., 2017], and an energy model trained by NCE
loss [Gutmann and Hyvärinen, 2010, Ma and Collins, 2018].
As a baseline we also present the results of an MLP trained
by standard multi-label binary cross entropy, and ALEN,
iALEN [Pan et al., 2020] and GSPEN [Graber and Schwing,
2019]. For our proposed implicit training method, we exper-
iment with different objectives for inner-optimization LPrim
as described in the section: “Primary Loss Design”. Our
results are presented in Table 1.

From the experiments, it is clear that our implicit train-
ing approach is superior to most current approaches of
using energy based models for structured prediction. Our
implicit gradient method gives a boost of upto 5 F1 points
depending on the primary loss objective and the dataset. Fur-
thermore, we also note that (LSSVM , SPEN) and (LDVN ,
DVN) use the same loss and energy function, and the dif-
ference in results is attributable to our proposed implicit

Method RCV AAPD
Mi-F1 Ma-F1 Mi-F1 Ma-F1

SGM 86.9 - 70.2 -
BERT-CE 87.1 66.7 74.1 57.2
OCD - - 72.1 58.5
Seq2Seq 87.9 66.0 69.0 54.1
SeqTag 87.7 68.7 73.1 58.5
LACO 88.2 69.1 74.7 59.1
LNCE 88.5† 68.9 75.6† 59.8†

Table 2: Performance of our model on large scale multi-
label classification against existing models (SGM, OCD,
Seq2Seq, BERT-CE, LACO). Our implicit gradient trained
model significantly outperforms or matches other ap-
proaches. † denotes statistically significanct scores

training of the inference network. Next, we also note that
the only model that outperforms our proposed method is
GraphSPEN/GSPEN, which lacks scalability. For example
the running-time of GSPEN on Bib (which is our small-
est dataset) is more than 6 times our approach. This is due
to the need of computationally hard constrained inference
in GSPEN and makes it infeasible on the larger datasets
that we experiment with in the next section. Finally we see
that the noise contrastive objective outperforms the other
methods, and so we focus on this objective in our other
experiments.

Large Scale Multi-label Modelling . To demonstrate that
our approach is more scalable and general, we apply our
approach on two large text based datasets RCV1 [Lewis
et al., 2004] and AAPD [Yang et al., 2018]. Existing models
on these datasets instead rely on standard max likelihood
training. The dependence between labels is usually modeled
by novel architectures [Zeng et al., 2021], transforming the
problem into sequence prediction (SGM) [Yang et al., 2018]
or by adding regularization terms to improve representa-
tion (LACO) [Zhang et al., 2021]. There are no available
energy based baselines on these tasks, partly because of in-
tractability of inference required for energy based structured
prediction. We use models from the aforementioned works
as baselines, and use a similar architecture to the smaller
MLC task for our energy model, except that our feature net-
works use pretrained BERT models. We also compare to the
state of the art LACO model that uses BERT to learn label
embeddings [Zhang et al., 2021], the seq2seq approach of
Nam et al. [2017] and Tsai and Lee [2020] which is a RNN
based auto-regressive decoder. Our results are presented
in Table 2. It is clear that using energy based method sig-
nificantly outperforms BERT based models and edges out
ahead of other methods which explicitly focus on modeling
label dependence.

Named Entity Recognition . For our experiments we
work with the commonly used CoNLL 2003 English dataset



Models NER NER+
BILSTM 84.9 89.1
SPEN 85.1 88.6
InfNet 85.2 89.3
InfNet+ 85.3 89.7
LSSVM 85.4 89.6
LNCE 85.7 90.3†

Table 3: Test results for NER and NER+ for different energy
based models. SSVM and NCE refers to our implicit gradi-
ent models. † indicates statistical significance

[Tjong Kim Sang and De Meulder, 2003]. Similar to previ-
ous work [Ratinov and Roth, 2009], we consider 17 NER
labels, and evaluate the results based on the F1 score. Follow-
ing Tu and Gimpel [2018], we design the energy network
Eϕ and the inference network Aθ based on Glove based
word embeddings [Pennington et al., 2014]. The text embed-
dings are then provided to bi-LSTMs to form the features
b(x) for the energy function. If we denote by b(x, t) the
bi-LSTM output at step t, then the energy is :

Eϕ(x, y) =

T∑
t=1

L∑
j=1

yt,jU
⊤
j b(x, t) +

T∑
t=1

y⊤t−1Wyt (6)

The parameters ϕ compose of the matrix W and the per label
parameter Uj , along with the LSTM parameters. Similarly
Aθ(x) can be written as a linear MLP over b(x).

We run our models with two different input feature sets.
For the NER version, the input consists of only words
and their Glove embeddings. NER+ configuration also pro-
vides POS tags and chunk information. As baselines we
use SPEN [Belanger et al., 2017], InfNet[Tu and Gimpel,
2018], InfNet+[Tu et al., 2020a] and a cross entropy trained
BILSTM baseline. Our results in Table 3 show that implicit
models outperform other existing models. Note in partic-
ular that our model with SSVM loss is very similar to the
InfNet+[Tu et al., 2020a] (with the same losses etc.). The
difference between these is a) the final layer in the inference
networks F,A are not shared in Infnet+ but are in ours and
b) the training procedure is different due to using implicit
gradients. If both these models are trained correctly then
their final performance should be consistent which seems to
be the case. Finally similar to the previous experiments, we
see improved performance with contrastive losses.

Citation Field Extraction . We also run our model on the
citation-field extraction task [Seymore et al., 1999]. This is
an information extraction task where the goal is to segment
a citation text into its constituents such as Author, Title, etc.
We use the extended Cora citation dataset Seymore et al.
[1999] used in Rooshenas et al. [2019]. The citation texts
have a max length of 118 tokens, which can be labeled with
one of 13 tags.

We explore this task in the indirectly semi-supervised struc-
tured prediction of Rooshenas et al. [2019]. In this setting,
we have a few labeled points, and are also given rules based
rewards for the unlabeled samples. However, the citation
reward loss is based on domain knowledge and is noisy. For
the task loss, we use token-level accuracy to supplement the
reward function. Similarly, the model performance is mea-
sured on token-level accuracy. We run this task with 1000
unlabeled and 5, 10, and 50 labeled data points. We compare
against GE, RSPEN and SGSPEN [Rooshenas et al., 2019],
DVN [Gygli et al., 2017] and our method. Our results are
presented in Table 4.

GE RSPEN DVN SGSPEN Ours(LNCE)
5 54.7 55.0 57.4 53.0 58.9
10 57.9 65.0 60.9 62.4 67.8
50 68.0 81.5 79.4 82.6 82.9

Table 4: Comparing performance of our approach on the
semi-supervised setting for the citation-field extraction task.
Our implicit gradient trained model significantly outper-
forms the other approaches.

Ablations The key difference between existing methods
like Lee et al. [2021], Tu et al. [2020a] and ours is that in
our approach the energy function is updated via the ’true’
gradient (Equation 3) while these approaches use alternate
optimization and hence use only the explicit gradient term
of Equation 6. To demonstrate that these works are less
effective due to using biased gradients, we compare our
approach to such models in Table 5. For this experiment
we focus on the smaller multi-label classification task and
experiment with all four objectives discussed earlier. The
results show our method to be consistely superior likely
because the implicit gradient term provides explicit infor-
mation to the energy network Eϕ not only via the output
samples of the inference net Aθ, but also via the Hessian of
the parameters ϕ.

Time Comparisons In Table 6, we provide the training
time and inference time comparison of our method against
other methods like SPEN and DVN on multi-label classi-
fication datasets. As can be seen the inference time of our
proposed method is much better than gradient descent based
methods of SPEN and DVN. Moreover , the SOTA GSPEN
method of Graber and Schwing [2019] takes more than 13s
( > 6 times our approach) for one pass over the bib dataset,
highlighting its inefficiency which makes using it infeasible
on larger tasks.

Additional Experiments We also conduct experiments
with role labeling, POS tagging and image segmentation.
These results are available in the supplementary material.



Method Objective Dataset
BibTex Delicious Eurlexev

Non-Implicit

LSSVM 43.15 28.91 42.10
LDVN 42.59 30.17 42.15
LCD 43.3 31.09 42.79
LNCE 43.2 33.08 42.19

Ours

LSSVM 44.55 30.34 42.50
LDVN 44.94 28.87 42.35
LCD 45.76 34.50 42.92
LNCE 46.21 35.12 43.49

Table 5: Ablation study of our method using implicit gradi-
ents to tune the loss against the SEAL method. Our proposal
consistently outperforms as the implicit gradient tunes the
energy network towards a loss surface more amenable for
the inference net .

Training Time Inference Time
Bib Eurlexev Bib Eurlexev

SPEN 28.2 134.5 3.8 24.5
DVN 32.1 128.7 3.8 24.6
Ours 27.7 45.6 1.8 12.1

Table 6: Training and inference time (sec/epoch) compar-
ison of our approach against SPEN and DVN. Since the
number of parameter update steps for our approach is dif-
ferent per epoch than other models, we have normalized
training time/epoch by the number of parameter updates.

5 RELATED WORK

Implicit Gradients Implicit gradients are a powerful tech-
nique with a wide range of applications. Recently they have
been used for applications like few-shot learning [Rajes-
varan et al., 2019, Lee et al., 2019] and building differen-
tiable optimization layers in neural-networks [Amos and
Kolter, 2017, Agrawal et al., 2019]. These techniques also
arise naturally in other problems related to differentiating
through optimizers [Vlastelica et al., 2019], such as general
hyper-parameter optimization [Lorraine et al., 2020]. For
more detailed review of implicit gradients we refer the read-
ers to Dontchev and Rockafellar [2009], Krantz and Parks
[2002]. Implicit gradient methods have been used for energy
based learning of MRFs [Tappen et al., 2007, Samuel and
Tappen, 2009]. These works have been further extended to
use finite-difference methods. While, our work is similar
in that it focuses on using implicit gradients for learning
energy based models; we focus on structured prediction
tasks.

Structured Prediction In recent years energy based mod-
els have become prominent in the field [Belanger and Mc-
Callum, 2016, Rooshenas et al., 2019, Tu and Gimpel, 2019].
These models essentially relax the output space to a con-
tinuous version on which an energy function is learnt for

scoring the outputs. Structured prediction energy networks
[Belanger et al., 2017, Rooshenas et al., 2019] pair up such
energy based models with gradient-based inference for pre-
diction. The training methods for these models have gener-
ally relied on generalized version of structural SVM learning
[Tsochantaridis et al., 2004], with repeated cost augmented
inference being done to adapt the energy models landscape.
Due to the difficulty of prediction and instability in training
such models Tu and Gimpel [2018] propose an approach
called InfNet which directly performs the inference step
instead of using gradient descent or other optimization pro-
cedures. Our work directly builds upon recent research on
energy based structured prediction [Tu et al., 2020a, Lee
et al., 2021]. The most important difference between these
works and ours is the bi-level optimization formulation and
use of implicit gradients. To the best of our knowledge no
work in structured prediction literature uses implicit gradi-
ent based methods. Secondly, most works either use cost-
augmented inference during training [Rooshenas et al., 2019,
Belanger and McCallum, 2016] or use the inference network
and energy network in an adversarial game [Belanger et al.,
2017, Tu and Gimpel, 2018]. The former increases inference
time significantly while the latter uses incorrect gradients.
ALEN [Pan et al., 2020] propose augmenting the deep en-
ergy model of a SPEN with adversarial loss. To handle
structural constraints and have direct control over correla-
tions between output variables, Graber and Schwing [2019]
incorporate classical inference into SPENs.

An important difference of our method differs from these
methods is that we ’meta-learn’ the energy function as a
trainable objective and can be applied to adjust training of
these models as well. Moreover models like GraphSPEN
which incorporate constrained inference are not scalable.
Our approach side-steps this issue by using an Inference
Network [Tu and Gimpel, 2018] approach. Finally ideas
from energy based learning have been used in translation
[Tu et al., 2020b, Edunov et al., 2017] and text generation
[Deng et al., 2020].

Learning Dynamic and Surrogate Losses Surrogate loss
learning was formulated as a multi-level optimization by
Colson et al. [2007]. Our work uses the insight of Hazan
et al. [2010], to interpret learning a structured energy model
as a surrogate loss learning problem and uses the bi-level
optimization framework to solve the corresponding task.
Modern works such as that of Wu et al. [2018], Huang et al.
[2019], Bechtle et al. [2019] have attempted to learn dy-
namic losses for standard classification and regression tasks.
Other works such as Sung et al. [2017], Houthooft et al.
[2018] have also proposed learning a reward function for
optimization. While the goal of these works and ours is sim-
ilar in that we try to ’learn’ an objective loss for increasing
a model performance, there are multiple key differences
between them. First, these works do not look at the im-
plicit gradient. Instead they rely on ‘unrolling’ one/few-step



gradient updates in the inner optimization and then back-
propagate through those updates. This leads to improper
characterization of the model/optimizee parameters induced
by the learned loss. Secondly, in the supervised learning
based applications the model tries to boost a validation set
performance, while in our case we are optimizing the pre-
diction on the training examples via the task loss function
available in the structured prediction setting.

Meta Learning Our method has some algorithmic simi-
larities with learning to learn methods [Schmidhuber, 1987].
This is due to the general nature of bi-level objectives which
has been adapted for learning hyper-parameters [Franceschi
et al., 2018], learning policies for parameter update [Maclau-
rin et al., 2015, Franceschi et al., 2017, Meier et al., 2018]
and meta-learning Rajesvaran et al. [2019]. The key idea in
meta-learning is to make the model ’aware’ of the ’learning
process’ [Schmidhuber, 1987, Thrun and Pratt, 2012]. How-
ever meta-learning is commonly used for learning model
parameters θ that can be easily adapted to new tasks Men-
donca et al. [2019], Gupta et al. [2018], multi-task transfer
learning [Metz et al., 2019]; while we aim to learn a loss
function.

6 CONCLUSION

Summary The primary goal of our work is to learn dynamic
losses for model optimization using implicit gradients, in
a setting with complex outputs such as in structured pre-
diction. This work uses a bi-level optimization framework
for structured prediction that uses a dynamic loss. Then we
use implicit gradients to optimize an energy-based model
in our proposed framework. We also explore possible de-
signs of these dynamic objectives. Our experiments show
our approach outperforms or achieves similar results to
existing approaches. Our method tends to be more stable
than existing approaches based on inference networks and
gradient-based inference.

Limitations and Social Impact Our contributions are
mostly restricted to inference network based structured pre-
diction; and our experiments are mostly textual datasets.
Structured prediction has also been explored in domains like
generative modelling, but our experiments are of little in-
sight into those areas. Moreover, even though our approach
trains better than other energy based methods, they are still
more sensitive to hyperparameters than standard autoregres-
sive models. We do not foresee any negative societal impact
from this work.
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