
Under review as submission to TMLR

LAPP: Large Language Model Feedback for Preference-
Driven Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel frame-
work for robot learning that enables efficient, customizable, and expressive behavior acqui-
sition with minimum human effort. Unlike prior approaches that rely heavily on reward en-
gineering, human demonstrations, motion capture, or expensive pairwise preference labels,
LAPP leverages large language models (LLMs) to automatically generate preference labels
from raw state-action trajectories collected during reinforcement learning (RL). These labels
are used to train an online preference predictor, which in turn guides the policy optimiza-
tion process toward satisfying high-level behavioral specifications provided by humans. Our
key technical contribution is the integration of LLMs into the RL feedback loop through
trajectory-level preference prediction, enabling robots to acquire complex skills including
subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse
set of quadruped locomotion and dexterous manipulation tasks and show that it achieves
efficient learning, higher final performance, faster adaptation, and precise control of high-
level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive
tasks such as quadruped backflips, which remain out of reach for standard LLM-generated
or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable
preference-driven robot learning.

Figure 1: Large Language Model-Assisted Preference Prediction (LAPP) takes in language behavior
instructions and generates preference feedback to guide reinforcement learning training from raw state-action
robot trajectories.

1 Introduction

Designing effective reward functions remains a fundamental challenge in training robots with reinforcement
learning (RL) (Ratner et al., 2018; Dang et al., 2023; Eschmann, 2021; Sorg et al., 2010; Evans et al., 2021;
Ng et al., 1999; Grzes & Kudenko, 2008; Devlin & Kudenko, 2012). Reward functions define the objectives
and constraints of the learning process, but are often hand-crafted through trial and error, a process that is
labor-intensive, error-prone, and difficult to scale. Poorly designed rewards can lead to suboptimal or unsafe
behaviors, making robust and expressive policy learning especially difficult in real-world robotic systems.

1

Under review as submission to TMLR

Several alternatives have been proposed to reduce this burden. Inverse RL infers reward functions from
expert demonstrations (Arora & Doshi, 2021; Ng et al., 2000; Abbeel & Ng, 2004; Zhou & Small, 2021),
but requires significant human effort and data collection. More recently, large language models (LLMs) and
vision-language models (VLMs) have been used to automate aspects of reward design (Ma et al., 2023; Yu
et al., 2023; Xie et al., 2024; Yu et al., 2024; Wang et al., 2024). These methods typically refine reward
functions by analyzing task descriptions or environment code. While promising, they often fail to capture
nuanced and high-level behavioral qualities, such as rhythmic locomotion or expressive timing, which are
hard to specify with explicit reward terms.

Another line of work bypasses explicit reward engineering by learning from human or AI preferences over
trajectory pairs (Christiano et al., 2017; Early et al., 2022; Kim et al., 2023; Wang et al., 2024; Venkataraman
et al., 2024). By querying which of two behaviors is preferable, these methods convert preferences into
supervision for training reward models. However, preference queries can be costly and cognitively demanding
for humans, and recent VLM-based methods remain limited to relatively simple tasks with low-dimensional
action spaces. These approaches also typically assume a Markovian decision process, which may not hold
for long-horizon and high-dimensional control tasks.

In this work, we propose LLM-Assisted Preference Prediction (LAPP) (Fig. 1), a novel framework that
enables robots to learn efficient, customizable, and expressive behaviors from human language specifications.
The core idea of LAPP is to leverage LLMs to generate preference labels on full state-action trajectories,
which are then used to train an online transformer-based reward predictor. This predictor produces dense,
trajectory-informed reward estimates that guide policy optimization and are continually updated with new
policy training and rollouts. Unlike prior approaches, LAPP integrates the LLM-generated feedback directly
into the RL loop, enabling closed-loop refinement of learned behaviors.

We evaluate LAPP across a suite of challenging control tasks, including quadruped locomotion and dexterous
manipulation with up to 52-dimensional action spaces. LAPP not only accelerates training and improves final
performance compared to state-of-the-art baselines, but also enables nuanced control over high-level behavior
attributes, such as gait symmetry, timing, and cadence, through simple languag inputs. LAPP also enables
faster adaptation to unseen environmental conditions. Notably, LAPP successfully solves exploration-heavy
tasks such as quadruped backflips, which were previously infeasible with human-designed, LLM-generated,
or VLM-derived reward functions.

We summarize our key contributions as follows:

1. A novel learning framework (LAPP) that uses LLM-generated preference feedback over state-action
trajectories to guide reinforcement learning with language behavior instructions.

2. A transformer-based online preference predictor that models trajectory-level feedback and integrates
it as dense supervision into the RL policy learning loop through iterative policy & reward model
improvements.

3. Empirical results showing the LAPP outperforms baselines in training speed, final performance,
adaptation efficiency, and controllability of high-level behaviors across complex robotic tasks.

4. Ablation studies dissecting architectural and algorithm design choices to reveal how trajectory-level
modeling and online reward model updates contribute to LAPP’s success.

2 Related Work

Foundation Models for Robotics. Recent advances in foundation models have spurred applications in
robotic action generation (Octo Model Team et al., 2024; Szot et al., 2023; Zitkovich et al., 2023; Tang et al.,
2023), simulation (Authors, 2024), task planning (Lin et al., 2023; Ahn et al., 2022; Singh et al., 2023; Huang
et al., 2024; Zhang et al., 2023; Hao et al., 2023; Liu et al., 2023; Ha et al., 2023; Wang et al., 2023e;a; Ding
et al., 2023; Silver et al., 2024; Xie, 2020; Huang et al., 2023; Liang et al., 2023), and sim-to-real transfer (Ma
et al., 2024). A growing line of work focuses on using language or vision-language models to automate aspects
of reward engineering (Ma et al., 2023; Yu et al., 2023; Xie et al., 2024; Yu et al., 2024) or generate training

2

Under review as submission to TMLR

environments (Liang et al., 2024; Wang et al., 2023b;d; Faldor et al., 2024; Wang et al., 2023c). However,
these approaches remain limited in specifying high-level behaviors, handling hard exploration challenges,
and scaling to high-dimensional action spaces.

Reward Signal Design for Challenging Robotic Tasks. Reward design is a crucial component of RL
(Ratner et al., 2018; Dang et al., 2023; Eschmann, 2021; Sorg et al., 2010; Evans et al., 2021; Xia et al.,
2024). To address sparse reward issues, prior works explore reward shaping (Grzes & Kudenko, 2008; Devlin
& Kudenko, 2012; Devidze et al., 2022; Marom & Rosman, 2018; Hu et al., 2020; Gupta et al., 2022; Grześ,
2017; Zou et al., 2019; Goyal et al., 2019; Memarian et al., 2021; Hussein et al., 2017; Ng et al., 1999).
However, complex agile motions, such as rapid locomotion (Margolis et al., 2024) and backflips (Tang et al.,
2021; Kim et al., 2024a), remain difficult to learn with a single reward function.

Reward design remains a bottleneck for complex RL tasks, especially when rewards are sparse, brittle, or
difficult to engineer. Prior efforts explore reward shaping (Grzes & Kudenko, 2008; Devlin & Kudenko, 2012;
Devidze et al., 2022; Marom & Rosman, 2018; Hu et al., 2020; Gupta et al., 2022; Grześ, 2017; Zou et al.,
2019; Goyal et al., 2019; Memarian et al., 2021; Hussein et al., 2017; Ng et al., 1999), curriculum learning
(Tang et al., 2021; Margolis et al., 2024; Ryu et al., 2024), and multi-objective optimization (Kim et al.,
2024a; Kyriakis & Deshmukh, 2022; Van Moffaert et al., 2013; Basaklar et al., 2022; Xu et al., 2020; Cai
et al., 2024; Abdolmaleki et al., 2020; Yang et al., 2019; Hayes et al., 2022; Huang et al., 2022). Inverse RL
methods aim to infer reward signals from demonstrations (Arora & Doshi, 2021; Ng et al., 2000; Hadfield-
Menell et al., 2016; Zakka et al., 2022; Brown et al., 2018; Kumar et al., 2023; Das et al., 2021; Abbeel &
Ng, 2004; Zhou & Small, 2021), but require curated expert data.

While recent works attempt to automate reward or curriculum generation using LLMs (Ma et al., 2023; Liang
et al., 2024), they still depend on explicit reward decompositions or low-level state supervision which can be
difficult to obtain for complex tasks and high-level behavior specifications. Our method complements these
advances by using LLMs to generate implicit preference feedback. As our experiments show, our method
achieves the best performance when combined with previous state-of-the-art reward designs.

Human-Guided Machine Learning. Integrating human guidance into machine learning has been widely
explored to improve training efficiency and model performance (Amershi et al., 2014; Gil et al., 2019; Wu
et al., 2022; Zhang et al., 2019). Various methods incorporate human demonstrations (Pomerleau, 1988;
Schaal, 1996), instructions (Zhou & Small, 2021; Saran et al., 2021), and corrections (Chai & Li, 2020; Ji
et al., 2024) to enhance imitation learning (Pomerleau, 1988; Schaal, 1996; Saran et al., 2021) or inverse RL
(Abbeel & Ng, 2004; Zhou & Small, 2021). Other works model human feedback as reward functions (Knox
& Stone, 2008; Warnell et al., 2018) or advantage functions (MacGlashan et al., 2016; Arumugam et al.,
2019) to guide RL. Recent advancements extend these algorithms to continuous action spaces (Sheidlower
et al., 2022), multi-agent scenarios (Ji et al., 2024), and real-time human feedback (Zhang et al., 2024a;b).

The most relevant works to ours are those that learn from human preferences (Wirth et al., 2017; Akrour
et al., 2011; Daniel et al., 2015; Fürnkranz et al., 2012; Ibarz et al., 2018; Wilson et al., 2012; Wirth et al.,
2016; Kim et al., 2024b; Dong et al., 2023; Liu et al., 2024; Aroca-Ouellette et al., 2024; Akrour et al., 2012;
Liu et al., 2020; Lee et al., 2021b; Knox et al., 2022; Ouyang et al., 2022; Park et al., 2022; Verma & Metcalf,
2022; Christiano et al., 2017), with applications in LLM fine-tuning (Brown et al., 2020), summarization (Wu
et al., 2021), browser-assisted question answering (Nakano et al., 2021), robotic manipulation (Hejna III &
Sadigh, 2023), and locomotion (Yuan et al., 2024). Yu et al. (2024) uses human preference to select the
reward functions generated by a LLM, while the human preference is not directly predicted as a preference
reward to guide the policy optimization.

Our work builds on reinforcement learning from human feedback (RLHF) (Christiano et al., 2017), where
human preferences are used to train MLP-based preference predictors for Markovian rewards. Later works ex-
tend this to non-Markovian settings with LSTMs (Early et al., 2022) and importance-weighted rewards using
Preference Transformers (Kim et al., 2023). However, RLHF methods require extensive human annotation,
with human annotators evaluating thousands of trajectory pairs. Recent research proposes Reinforcement
Learning from AI Feedback (RLAIF) (Bai et al., 2022; Lee et al., 2024; Wang et al., 2024; Venkatara-
man et al., 2024), replacing human annotators with AI models. However, these approaches are limited to
Markovian rewards and have only been tested in low-dimensional robotic tasks. Our work not only reduces

3

Under review as submission to TMLR

Figure 2: LAPP generates preference feedback from an LLM based on rollout trajectories pairs of raw state
and actions as well as a high-level behavior instruction. A transformer-based reward predictor is trained using
these preferences while simultaneously optimizing a robot policy to maximize a weighted sum of environment
rewards and predicted preference rewards.

annotation cost but allows for preference-driven RL in more complex task domains than those explored in
existing RLHF or RLAIF frameworks.

Preference Feedback for Robot Learning. Learning from human or AI preferences has emerged as an
alternative to explicit reward design (Christiano et al., 2017; Early et al., 2022; Kim et al., 2023; Yuan et al.,
2024). These methods train reward models using preference labels over trajectory pairs, typically annotated
by humans. While effective, annotation costs remain high.

More recent works adopt AI-generated feedback in place of human raters, such as RL-VLM-F (Wang et al.,
2024; Venkataraman et al., 2024), which uses vision-language models to rank state images. However, such
models operate under a fixed preference criterion throughout the entire policy learning process and assume
Markovian rewards, limiting them to relatively simple low-DoF tasks like CartPole or tabletop manipulation.

LAPP offers advancements in this direction in several key aspects. First, LAPP is the first work to operate
on raw state-action trajectories to provide effective preference feedback from LLMs. This method avoids
reliance on vision-based snapshots to query VLMs, which currently come with much higher costs than LLMs
and still do not yet demonstrate strong reasoning capabilities, hence limiting the task complexity they can
solve. Second, LAPP models both Markovian and non-Markovian preference rewards using transformer
architectures to allow reasoning over long temporal sequences.

Moreover, LAPP enables dynamic preference shaping by prompting LLMs to evolve their evaluation criteria
as training progresses, while prior works (Wang et al., 2024; Venkataraman et al., 2024) rank the states
with a static standard. To our knowledge, LAPP is the first method to fully automate preference alignment
via LLMs for training policies in complex and high-dimensional tasks, including quadruped backflips and
dexterous hand manipulation.

3 Preliminaries

We consider an agent interacting with an environment over a sequence of discrete timesteps in a RL framework
(Sutton & Barto, 2018). At each timestep t, the agent receives an observation ot of the current state st

4

Under review as submission to TMLR

and selects an action at based on its policy π. The environment then provides a reward rt based on the
pre-designed reward functions and transitions the agent to the next state st+1. The goal of RL is to optimize
π to maximize the expected return Rt =

∑∞
k=0 γkrt+k where γ is the discount factor.

However, designing a reward function that precisely captures high-level behavioral objectives or human
preferences remains challenging. To address this, preference-based RL learns a reward model that predicts
human preferences instead of relying on manually defined rewards. In this setting, we consider a pair of
trajectory segments (σ0, σ1) with length H: σ = {(s1, a1), ..., (sH , aH)}. A preference relation σi ≻ σj

indicates that segment σi is preferable over segment σj . Given a pair (σ0, σ1), a human or AI provides a
preference label y ∈ {0, 1, 0.5}:

y =


0 , σ0 ≻ σ1

1 , σ1 ≻ σ0

0.5 , σ0 and σ1 are equally preferable

The preference judgments are recorded in a dataset D of labeled preference triples (σ0, σ1, y).
To obtain a preference-based reward model r̂, prior works (Christiano et al., 2017; Ibarz et al., 2018; Lee
et al., 2021b;a; Hejna III & Sadigh, 2023; Park et al., 2022) adopt the Bradley-Terry model (Bradley &
Terry, 1952), assuming Markovian rewards (i.e. the reward depends only on the current state and action).
The probability of preferring one segment over another is modeled as:

P̂
[
σ1 ≻ σ2]

=
exp

∑
r̂

(
s1

t , a1
t

)
exp

∑
r̂ (s1

t , a1
t) + exp

∑
r̂ (s2

t , a2
t)

(1)

However, Markovian rewards struggle with long-horizon tasks where preferences depend on past trajectories
rather than only the current state-action pair. To address this, recent works (Kim et al., 2023; Early
et al., 2022) propose non-Markovian rewards, where r̂ considers the full preceding sub-trajectory segment
{(si, ai)}t

i=1:

P̂ [σ1 ≻ σ0] = exp r̂({(s1
i , a1

i)}t
i=1)∑

j∈{0,1} exp r̂({(sj
i , aj

i)}t
i=1)

(2)

The reward predictor r̂ is then trained via supervised learning to fit the dataset D by minimizing the
cross-entropy loss:

LCE(r̂) = −
∑

(σ1,σ2,y)∈D

(1 − y) log P̂
[
σ0 ≻ σ1]

+ y log P̂
[
σ1 ≻ σ0]

(3)

To mitigate the noisy LLM outputs, We assume that the LLM has ϵ = 15% of chance to provide preference
feedback uniformly at random. Therefore, the adjusted preference probability is:

P̂ ′ [
σ0 ≻ σ1]

= (1 − ϵ)P̂
[
σ0 ≻ σ1]

+ ϵ · 0.5, (4)

where ϵ = 0.15 is the error rate. Consequently, We have:

P̂ ′ [
σ1 ≻ σ0]

= 1 − P̂ ′ [
σ0 ≻ σ1]

. (5)

Therefore, the adjusted cross-entropy loss becomes:

LCE
ϵ (r̂) = −

∑
(σ0,σ1,y)∈D

[
(1 − y) log P̂ ′ [

σ0 ≻ σ1]
+ y log P̂ ′ [

σ1 ≻ σ0]]
= −

∑
(σ0,σ1,y)∈D

[
(1 − y) log

(
(1 − ϵ)P̂

[
σ0 ≻ σ1]

+ ϵ · 0.5
)

+ y log
(
1 −

(
(1 − ϵ)P̂

[
σ0 ≻ σ1]

+ ϵ · 0.5
))]

.

(6)

Once trained, the reward predictor r̂ can be used to guide policy optimization, where an RL algorithm
maximizes the expected return from the learned preference rewards.

5

Under review as submission to TMLR

4 LLMs-Assisted Preference Prediction

LAPP is a novel framework that enables preference-driven RL by integrating LLM-generated feedback into
the policy training loop. It consists of three main components: 1) Behavior Instruction: a prompting
strategy to elicit trajectory preferences from LLMs given language description of task objectives and preferred
behaviors; 2) Preference Predictor Training: an ensemble of transformer-based models that learn to
predict preference rewards; and 3) Preference-Driven Reinforcement Learning: a robot policy is
optimized using both environment rewards and predicted preference rewards. An overview of LAPP is
shown in Fig. 2.

4.1 Behavior Instruction: Generating Preference Labels from State-Action Trajectories

Conventional RLHF frameworks rely on human annotators to label trajectory preferences. However, this
process is labor intensive. To reduce this burden, LAPP replaces human annotators with LLMs by prompting
them to generate preference labels for pairs of trajectory segments σ0 and σ1.

Figure 3: Behavior Instruction Prompt Exam-
ple. The LLM prompt consists of three sections: (1)
defining the LLM’s role and the robotic task (blue
box), (2) specifying the state variables and some evalu-
ation criteria of preference (green box), and (3) estab-
lishing rules and semantics for generating preference
labels (purple box).

Fig. 3 illustrates an example of a behavior instruc-
tion prompt. The first part defines the LLM’s role
the robot’s goal and desired behavior (e.g., “walk
forward with a bounding gait”). The second part
provides numerical values and their descriptions of
each trajectory (e.g., base velocity, orientation, foot
contacts). The third part defines how preferences
should be evaluated and formatted.

Unlike prior work that uses video clips (Christiano
et al., 2017; Kim et al., 2023) for human anno-
tation, we feed LLMs structured numerical state-
action logs, since the current multimodal foundation
models such as GPT-4o lacks fine-grained video un-
derstanding with high costs and slow responses.

Notably, to enhance learning efficiency, we encour-
age the LLM to refer to our provided evaluation
criteria and generate adaptive evaluation criteria,
allowing the LLM to dynamically adjust its pref-
erences as training progresses. For instance, in
quadruped locomotion, early-stage training should
prioritize learning to stand, followed by developing
stable movement, and ultimately refining gait pat-
terns and command adherence. Instead of providing
these stages explicitly by humans, our prompts ask
the LLM to actively decide the important factors for
different training stages by itself.

LAPP supports batched labeling of five trajectory
pairs per prompt which can significantly reduce API
latency and token costs. the output consists of pref-
erence labels in 0, 1, 2, 3, indicating whether trajec-
tory σ0 is better, worse, equally preferable, or in-
comparable. To promote clear supervision, we encourage the LLM to avoid ambiguous labels. All labels are
stored as triples (σ0, σ1, y) in a growing preference dataset D. Details of all state-action variables used for
all tasks and full prompts can be found in Appendix A.1.

6

Under review as submission to TMLR

Algorithm 1: LAPP - Preference Predictor Training
1 Require: Ensemble of preference predictors {r̂i}, preference

predictor training dataset Dp

2 Hyperparameters: Minimum iteration Nmin, Maximum
iteration Nmax, pool of predictors number M , selected predictors
number C, overfitting scale α, LLM feedback error rate ϵ.

3 //Split into training and validation sets
4 Dtrain

p , Dval
p ← split(Dp)

5 val_loss_list← []
6 for M predictors do
7 Randomly initialize r̂i

8 for m← 0 to Nmax − 1 epochs do
9 // Sample from Dtrain

p

10 (strain
t , atrain

t) ∼ Dtrain
p

11 // Predict preference reward
12 rtrain

t = r̂i(strain
t , atrain

t)
13 // Train the preference predictor
14 Calculate loss LCE

train(rtrain
t) with Equation 6

15 r̂i ← Adam
(

r̂i,∇r̂i
LCE

train(rtrain
t)

)
16 // Sample from Dval

p

17 (sval
t , aval

t) ∼ Dval
p

18 // Predict preference reward
19 rval

t = r̂i(sval
t , aval

t)
20 Calculate loss LCE

val (rval
t) with Equation 6

21 if LCE
val (rval

t) > α · LCE
train(rtrain

t) and n > Nmin then
22 val_loss_list.append (LCE

val (rval
t))

23 continue;
24 if m == Nmax − 1 then
25 val_loss_list.append (LCE

val (rval
t))

26 // Select the C predictors with smallest validation losses
27 r̂i1 , r̂i2 , ..., r̂iC

← arg minC
r̂i∈{r̂1,...,r̂M } val_loss_list[i]

28 // Use the mean value of the selected predictors as the final
predictor

29 r̂ = mean (r̂i1 , r̂i2 , ..., r̂iC
)

30 return r̂

4.2 Preference Predictor Training: Modeling LLM Feedback

LAPP models LLM-generated preferences using either Markovian or non-Markovian reward functions, de-
pending on task complexity. For tasks like flat-ground locomotion, a Markovian reward model following the
Bradley-Terry formulation (Eq. 1) suffices. However, for more challenging tasks such as quadruped backflips
or gait cadence control, a non-Markovian reward function (Eq. 2) is necessary to capture long-term depen-
dencies in behavior. Training the predictor for non-Markovian rewards requires additional computational
resources, as it must process historical states to infer the reward at a given timestep. LAPP adopts the
appropriate reward model based on task requirements to balance the preference prediction accuracy and the
predictor training efficiency.

The preference dataset Dp = {(σ0, σ1, y)} is split into training (Dtrain
p) and validation (Dval

p) sets at a 9 : 1
ratio. We maintain an ensemble of M preference predictor networks, each trained to minimize the cross-
entropy loss (Eq. 3). To prevent overfitting, training stops early if the validation loss exceeds α times the

7

Under review as submission to TMLR

training loss and the training has gone through a minimum number of iterations Nmin. If no early stopping
is triggered, the training will finish after Nmax iterations. After training all M predictors, we select the
top C models with the lowest validation losses and compute the final preference reward as their ensemble
average. In practice, we set M = 9, C = 3, Nmin = 30, Nmax = 90, and α = 1.3. The full training procedure
is detailed in Algorithm 1. This ensemble approach can help increase robustness to LLM label noise.

4.3 Preference-Driven Reinforcement Learning

Algorithm 2: LAPP
1 Require: Robot behavior prompt prompt, preference generator

LLM LLM , environment E, policy π, preference predictor r̂,
preference predictor training dataset Dp, preference data buffer
Bp

2 Hyperparameters: Policy optimization epoch number N ,
preference predictors update interval epoch number M , per
epoch trajectories pairs collection number K, per epoch rollouts
number S, steps in each epoch T , preference reward scale β

3 Initialization: Randomly initialize π, r̂.
Dp ← {zeros triplei}

|Dp|
i=1 , Bp ← {zeros triplei}M∗K

i=1 .
4 // Collect initial preference dataset
5 Rollout π and sample |Dp| trajectories pairs {(σ0

i , σ1
i)}|Dp|

i=1 .
6 {yi}

|Dp|
i=1 ∼ LLM

(
{σ0

i , σ1
i }

|Dp|
i=1 , prompt

)
7 Dp ← {(σ0

i , σ1
i , yi)}

|Dp|
i=1

8 Update r̂ with Algorithm 1.
9 obs ∼ E.reset() // reset E, get initial observation

10 for i← 0 to N − 1 epochs do
11 //rollout π in E
12 for T steps do
13 a ∼ π(obs) // sample action from policy
14 rE ∼ E(obs) // get environment reward rE

15 rp ∼ r̂(obs) // predict preference reward rp

16 r = β · rp + rE // calculate weighted sum
17 Update π with PPO algorithm (Schulman et al., 2017)
18 // Sample K pairs from S rollouts
19 {(σ0

k, σ1
k)}K

k=1 ∼ {σs}S
s=1

20 // Push into the preference data buffer
21 Push {(σ0

k, σ1
k, None)}K

k=1 into Bp

22 // Update the preference dataset
23 if (i+1) % M == 0 then
24 // Generate preference labels
25 {yk}M∗K

k=1 ∼ LLM
(
{(σ0

k, σ1
k)}M∗K

k=1 , prompt
)

26 // Place preference labels into the buffer
27 Bp ← {(σ0

k, σ1
k, yi)}M∗K

k=1
28 // Update preference dataset
29 Dp ← {triplek|triplek ∈ Dp}

|Dp|
k=M∗K+1 ∪Bp

30 // Update preference predictor
31 Update r̂ with Algorithm 1.
32 Bp ← {}

33 return π

8

Under review as submission to TMLR

LAPP continuously aligns robot behaviors with high-level task specifications throughout RL training by
iteratively updating both the preference predictor and the policy network. Unlike previous RLHF approaches
(Christiano et al., 2017; Kim et al., 2023) that train static preference models, LAPP dynamically refines
preferences during training.

Initially, the policy generates rollout trajectory pairs {σ0
i , σ1

i }, which are evaluated by the LLM to generate
preference labels {yi}. To mitigate noisy outputs which could pose potential risks to training stability, we
sample 15 preference labels for each trajectory pair and calculate the mode of them as the final selected
preference labels {yi}. The labeled data is stored in an initial preference dataset Dp = {(σ0

i , σ1
i , yi)}

|Dp|
i=1 ,

which is used to train the initial preference predictor via Algorithm 1.
During RL training, the reward at each timestep is computed as a weighted sum of the predicted preference
reward rp and the environment reward rE defined by built-in explicit reward functions in our evaluation
suites:

r = βrp + rE (7)

where β balances their contributions. We set the β to be 1.0 in all the tasks except the Backflip. The
Backflip task has some reward items with large scales, so the β is set to 50.0 to ensure the effective influence
of the preference rewards. We encode the key objectives from the environment rewards into LLM prompts
as human languages to have LLM understand the key objectives of the task, such as following the speed
commands for locomotion. Additionally, LAPP prompts LLMs to provide effective feedback on high-level
behavior specifications that are difficult or impossible to ground into environment reward functions, such
as“having a natural trotting gait”. The policy is optimized using PPO (Schulman et al., 2017), while new
trajectory pairs are continuously collected. Every M epochs, newly collected trajectories are evaluated by
the LLM, added to Dp, and used to retrain the preference predictor. LAPP only uses the latest labeled
trajectories to retrain the preference predictor. As shown in our ablation studies, this design provides higher
performance than including all past trajectories. LAPP’s online preference learning allows the policy to
progressively align with LLM preferences based on its dynamic evaluation criteria according to different
learning stages. The full RL procedure is detailed in Algorithm 2, and the environment rewards rE of all
the tasks can be found in Appendix A.2.

4.4 Network Architectures

The preference predictor is a transformer network (Waswani et al., 2017) based on the GPT architecture
(Radford, 2018) with 6 masked self-attention layers. Inputs are embedded into a 128-dimensional space with
sinusoidal positional encodings and processed by 8-headed attention layers. Each block includes a 2-layer
MLP with GELU activations (Hendrycks & Gimpel, 2016) and layer normalization (Ba, 2016) to the output
tensor from the last self-attention block. A final decoder outputs a scalar reward.

For Markovian rewards, the input sequence length is 1 and the casual mask in the self-attention layer is
removed. For non-Markovian rewards, the input sequence length is 8, with zero-padding applied for shorter
trajectories.

For quadruped tasks, the policy is an MLP with layers [512, 256, 128] and ELU activations (Clevert, 2015),
outputting 12 target joint angles. A PD controller computes the torque commands. For dexterous manipu-
lation, we use the same MLP architecture. The output is a 52-dimensional joint displacement vector for two
26-DoF Shadow Hands (ShadowRobot, 2005).

5 Experiments

We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks to assess its
ability to:

1. improve both training efficiency and task performance,

2. enable high-level behavior control via language instructions, and

9

Under review as submission to TMLR

3. solve highly challenging tasks that are very difficult or even infeasible with traditional reward engi-
neering.

Figure 4: Simulation Tasks. (a) Quadruped locomotion. The robot learns to walk forward across various
terrains following given velocity commands. The terrains include the flat plane, stairs pyramids, discrete
obstacles, slope pyramids, and wave-pattern hills. (b) Dexterous manipulation. Each dexterous hand has
26 degrees of freedoms. Kettle requires the robot to pick up the kettle with one hand, and the cup with
another hand, and then pour water into the kettle. Hand Over requires one hand to pass a ball to another
hand. Swing Cup requires two hands to hold the cup and rotate it for 180◦. (c) Quadruped backflip. The
robot jumps in the air and rotate backwards for 360◦, and then land on the ground.

Additionally, we conduct ablation studies to analyze key design choices in LAPP, identifying the factors
contributing to its performance gains. Finally, we deploy the trained policies on a physical quadruped robot
across various terrains and tasks to demonstrate LAPP’s real-world applicability.

We use GPT-4o mini (Achiam et al., 2023) (gpt-4o-mini-2024-07-18 variant) as the LLM backbone for
LAPP. A full training run for each policy (5000 epochs) costs approximately $2.5 to $3, which is significantly
lower than the $40 to $50 required for the larger GPT-4o variant, while still achieving satisfactory results.
Since LAPP involves frequent online LLM queries, its ability to succeed with a smaller and cheaper LLM
is crucial for broader practical adoption. For the Eureka baseline, we use GPT-4o (gpt-4o-2024-08-06
variant) to ensure a faithful reproduction of its full capabilities from the original work. Each evolutionary
reward search with Eureka costs approximately $3.

5.1 Baselines

PPO. This baseline uses a well-tuned Proximal Policy Optimization (PPO) implementation (Rudin et al.,
2022; Schulman et al., 2017). In each task, PPO is trained with the same environment reward functions
as LAPP. These reward functions are directly adopted from state-of-the-art policies designed by expert
robot learning researchers, representing the current best outcomes from human reward engineering. For a
fair comparison, PPO shares all hyperparameters with LAPP. The only difference is that PPO does not
incorporate preference rewards, allowing us to isolate and analyze the effect of LAPP’s preference-guided
learning design.

Eureka. Evolution-driven Universal Reward Kit for Agents (Eureka) (Ma et al., 2023) is a recent LLM-
based approach for automated reward function design. It prompts an LLM with reward design guidelines
and environment source code to generate executable Python reward functions. Eureka then performs an
evolutionary search to refine the reward function over multiple iterations based on observed training per-
formance. By following the original implementation, we conduct 5 evolutionary search iterations with 16

10

Under review as submission to TMLR

Figure 5: Training Efficiency. Training with LAPP converges faster in the Plane, Stairs, Obstacles, Hand
Over, Swing Cup and Kettle tasks, while also exhibiting more stable performance post-convergence in Swing
Cup. In the Slope and Wave tasks, LAPP performs similarly to baselines as these tasks are relatively easier
for exploration, converging quickly for all algorithms.

reward samples per iteration. Out of the 80 = 16× 5 reward functions, the best-discovered reward function
is then used to train the policy with PPO using the same hyperparameters as the PPO baseline.

5.2 Simulation Experiments

Tasks: We evaluate LAPP on five quadruped locomotion tasks, three dexterous manipulation tasks, and one
quadruped backflip task, as shown in Fig. 4. The Unitree Go2 robot (Robotics, 2023) is used for quadruped
experiments, while the Shadow Dexterous Hand (ShadowRobot, 2005; Andrychowicz et al., 2020) is used for
dexterous manipulation. The locomotion and manipulation tasks are established RL benchmarks from prior
works (Ma et al., 2023; 2024; Rudin et al., 2022). The quadruped backflip task is an extremely challenging
control problem, previously studied in multi-objective RL (Kim et al., 2024a). While some RLHF studies
have explored backflips, they have primarily used the Hopper model in Gym-Mujoco (Christiano et al., 2017;
Kim et al., 2023), which is significantly easier due to its lower degrees of freedom (3 DoFs) with no real-world
physical counterpart.

The quadruped locomotion tasks are derived from massively parallel RL experiments in Rudin et al. (2022)’s
prior work. As shown in Fig. 4(a), we evaluate LAPP on five terrain types including a flat plane, stairs
pyramids, discrete obstacles, slope pyramids, and a periodic wave terrain (with periodic wave-pattern hills).

The dexterous manipulation tasks are from the Bidexterous Manipulation (Dexterity) benchmark (Chen
et al., 2022) and are also evaluated in Eureka (Ma et al., 2023). As shown in Fig. 4 (b), we evaluate LAPP
on the Kettle, Hand Over, and Swing Cup tasks. Kettle requires one hand to hold a kettle and pour water
into a cup held in the other hand. Hand Over requires to hand over a ball from one hand to another hand.
Swing Cup requires the two hands to collaborate to turn a cup for 180◦.

Finally, the quadruped backflip task (Fig. 4 (c)) requires the Unitree Go2 robot to perform a 360◦ backward
rotation mid-air and land successfully. Unlike Hopper-based backflip tasks in prior RLHF studies (Christiano
et al., 2017; Kim et al., 2023), which focus on low DoFs and lightweight dynamics, our setup utilizes the
Go2’s official simulator (Robotics, 2023), incorporating realistic physical parameters, which makes the task
significantly more challenging for RL.

11

Under review as submission to TMLR

Lapp improves training efficiency. Fig. 5 shows the learning curves of LAPP, Eureka, and PPO across
five locomotion tasks and three dexterous manipulation tasks. Locomotion tasks are evaluated with a fixed
velocity command of 1.0 m/s (Stairs) or 1.5 m/s (other terrains). For manipulation tasks, we report success
rate progression throughout training.

Figure 6: Convergence Success Rate. LAPP
achieves higher success rates in Kettle, Hand Over,
and Swing Cup after the training converges. It shows
that the preference rewards can continuously refine the
robot motions to improve the performance beyond the
reach of explicit reward shaping.

LAPP demonstrates faster convergence in flat-plane,
stairs, and discrete obstacle locomotion, as well as
all manipulation tasks, achieving higher final success
rates. These tasks pose non-trivial exploration chal-
lenges, where LAPP accelerates learning by dynam-
ically adjusting preference rewards. This flexibil-
ity prioritizes different behaviors at different train-
ing stages, so that policy exploration can be guided
more effectively. In contrast, Eureka struggles with
reward balancing, as it relies on a static reward func-
tion throughout the training process. While this
ensures a well-calibrated reward function, it often
results in inferior performance compared to LAPP.

Interestingly, in the Hand Over task, Eureka con-
verges slower than PPO with human-designed re-
wards. This occurs because Eureka’s evolutionary
search optimizes for final performance as the fitness
score rather than training efficiency. Therefore, this
method can help improve the policy performance, but it may not help with training efficiency.

For relatively easier tasks like Slope and Wave, LAPP exhibits similar performance to baselines. This is
because randomized robot initialization on smooth slopes can naturally lead to sliding motions to facilitate
early exploration of velocity tracking rewards. As a result, all methods converge within 300 epochs in these
tasks, suggesting no significant advantage for LAPP in environments where task exploration is inherently
easier.

Lapp achieves higher convergence performance. Although well-designed reward functions from human
experts or LLMs can effectively train quadruped robots to follow velocity commands across various terrains,
they often fail to reach optimal performance in more complex dexterous manipulation tasks such as Kettle,
Hand Over, and Swing Cup. As shown in Fig. 6, LAPP significantly improves success rates over PPO desipte
sharing the same environment reward functions, increasing from 92% to 99% in Kettle, 91% to 97% in Hand
Over, and 96% to 99% in Swing Cup. These gains stem from the continuous motion refinement enabled by
LAPP’s dynamically updated preference predictor.

Compared to Eureka, LAPP achieves a 6% higher success rate in Kettle and a 5% improvement in Hand
Over. In the Swing Cup task, both LAPP and Eureka reach near-optimal 99% success rates, but LAPP
converges faster and maintains more stable performance over extended training epochs as in Fig. 5.

LAPP enables behavior control via instruction. Traditional RL can train robots to complete tasks
but cannot typically control how they perform them in a way that aligns with high-level human preferences.
Can LAPP guide robot behaviors using high-level specifications in the behavior instruction prompt? To
investigate this question, we design two experiments: 1) enforcing a bounding gait in quadruped forward
locomotion, and 2) controlling gait cadence to be either higher or lower in quadruped forward locomotion.

A bounding gait requires the quadruped’s front and rear feet to make simultaneous ground contact in pairs.
To quantify how closely a robot’s gait adheres to this pattern, we adopt a synchronization error definition
as in Eq. 8:

sync_error = 1
N

N∑
t=1

(|FLt − FRt|+ |RLt − RRt|) , (8)

12

Under review as submission to TMLR

Figure 7: Bounding Gait Pattern Control. (a) Feet synchronization error calculated with Eq. 8. LAPP
achieves the lowest synchronization error, indicating its closest adherence to a bounding gait. (b) Step
trajectories of the robots. LAPP synchronizes both front and rear feet, while Eureka aligns only the rear
feet, and PPO fails to produce a bounding gait. (c) Motion frames of the robots.

where FLt, FRt, RLt, and RRt represent front left feet, front right feet, rear left feet, rear right feet contacts
at time t. These are binary values: 1 if the foot is in contact with the ground and 0 if it is in the air. A
lower synchronization error indicates a gait pattern closer to bounding.

As shown in Fig. 7 (a), LAPP trains the robot to achieve a bounding gait with the lowest synchronization
error. While Eureka also encourages a bounding gait through reward shaping, its synchronization error
remains higher than LAPP. PPO fails to enforce a bounding gait effectively.

Figure 8: Gait Cadence Control. (a) Step trajectories under different cadence instructions. LAPP
effectively modulates step frequency based on the high-level prompts by following faster and slower gaits.
Eureka can adjust the cadence slightly, but it is less effective.(b) Step cadence comparison. LAPP provides
precise control over cadence, while Eureka has limited effect. (c) Motion frames illustrating cadence variation.
Robots with high cadence take quick and shallow steps, while those with low cadence take larger and higher
steps.
To further illustrate gait patterns, Fig. 7 (b) presents the step trajectories of all methods, where each
dot represents a foot contacting the ground. LAPP successfully trains the robot to synchronize its front
and rear feet, ensuring that both front feet land simultaneously, followed by both rear feet. In contrast,
Eureka achieves partial synchronization, aligning only the rear feet. PPO fails to learn a bounding gait with
unsynchronized foot contacts.

Fig. 7 (c) provides motion frames of the robots trained with LAPP and the baselines. These visualizations
complement the trajectory plots, clearly demonstrating that LAPP exhibits stronger behavior control through
effective implicit reward shaping to follow the high-level gait patterns.

We also evaluate LAPP’s ability to control step cadence through high-level instructions. In this experiment,
the behavior instruction prompt specifies a preference for either faster or slower stepping frequency. We
compare the effectiveness of LAPP and Eureka in enforcing these behaviors. Eureka is also prompted to

13

Under review as submission to TMLR

Figure 9: Quadruped Robot Backflip. LAPP successfully trains the Unitree Go2 robot to acomplish the
backflip task. No baseline including PPO, curriculum learning, or Eureka is able to solve this task.

generate reward functions that encourage the desired cadence. During testing, all robots follow a velocity
command of 1.5 m/s. As shown in Fig. 8 (a), with a high-cadence instruction, LAPP achieves 4.54 steps/sec,
significantly exceeding Eureka (3.06 steps/sec) and PPO (2.78 steps/sec). Similarly, with a low-cadence
instruction, LAPP produces 1.67 steps/sec, notably lower than Eureka (2.38 steps/sec) and PPO (2.78
steps/sec). While Eureka can influence cadence through reward shaping, its effect is far weaker than LAPP’s.

The step trajectories in Fig. 8 (b) further highlight LAPP’s superior cadence control. Compared to all other
methods, LAPP produces the densest step trajectory under a high-cadence instruction and the sparsest
trajectory under a low-cadence instruction. Qualitatively, Fig. 8 (c) presents motion frames illustrating the
impact of cadence control. With fast cadence, LAPP trains the robot to take small and rapid steps with
minimal foot lift. Conversely, with slow cadence, the robot takes larger strides, keeping its feet in the air for
extended periods.

Notably, this experiment uses the non-Markovian reward model from Eq. 2. We set the transformer preference
predictor’s input sequence length to 8. To control the step cadence, the preference predictor needs to consider
the history states of the feet contacts to determine the latent reward value of the current state.

LAPP solves challenging tasks. Quadruped backflips have long been considered a challenging RL prob-
lem due to the need for precise whole-body coordination, complex dynamics, and controlled landing. Some
previous RLHF works have trained a Hopper model to perform a backflip in the Gym-Mujoco simulator
(Arumugam et al., 2019), but the Hopper has only three joints, is lightweight, and lacks a real-world coun-
terpart.

Figure 10: Backflip rotate angle. LAPP
successfully enables the quadruped robot to
complete backflips with full 360◦ rotation.
In contrast, PPO and Eureka fail to gen-
erate sufficient rotation, highlighting the
advantage of preference-driven learning in
solving highly complex and dynamic tasks.

A recent multi-objective RL (MORL) approach solves the
quadruped backflip by dividing the motion into five stages, de-
signing a separate handcrafted reward function for each stage
(Kim et al., 2024a). However, this method requires significant
expert knowledge, as practitioners must manually define stage
transitions and fine-tune rewards for each specific robot.

In contrast, LAPP solves the backflip without intensive human
labor for preference feedback or manual reward tuning. We
train a Unitree Go2 robot using a weighted combination of a
human-designed environment reward and a predicted prefer-
ence reward. Our process still requires an initial warm-up to
encourage the exploration, but we limit our process with simple
reward designs for each step. Specifically, we first pre-train the
robot to jump vertically. We then randomly initialize the robot
in the air. We also reduce the robot’s weight during training
but restore its real-world weight for testing.

As shown in Fig. 9 and Fig. 10, LAPP successfully trains the
robot to jump, rotate backward 360◦, and land safely. We also
evaluate PPO and Eureka on the same task, using identical
exploration strategies (i.e., pre-training to jump, random air
initialization, and reduced training weight). PPO follows the same human-designed backflip reward as
LAPP but lacks a preference reward, while Eureka generates its own reward function via GPT-4o. Neither
PPO nor Eureka succeeds in training the robot for a full backflip. Instead, PPO learns to jump and oscillate

14

Under review as submission to TMLR

the robot’s torso up and down but struggles to flip for over 180◦ with an average maximum rotation of
49.0◦. Despite the iterative reward search mechanism of Eureka, it produces similar behavior to PPO with
an average maximum rotation of 52.8◦. These results demonstrate that explicit reward engineering struggles
to capture the complex dynamics of a backflip, while LAPP’s preference-driven learning and the adaptive
online predictor updates enable successful learning of this highly dynamic capability. We believe that LAPP
can shed light on automatically solving many difficult tasks in the near future that are previously unsolvable
by conventional RL.

Figure 11: Transfer Learning. For the Plane loco-
motion task, the robot is transferred to a new environ-
ment with different friction and restitution. The solid
curves show that LAPP enables the robot to adapt
to the new environment faster. Compared with the
dashed curves, transfer learning is generally faster than
training from scratch.

LAPP enables faster transfer learning. We
evaluate the transfer learning performance of LAPP.
For the Plane task with a forward speed command
of 1.5 m/s, the Go2 robot is first trained on a flat
ground with static friction of 1.0, dynamic friction
of 1.0, and a restitution of 0.0. Then, it is trans-
ferred to a different flat ground with static friction
of 0.01, dynamic friction of 0.01, and a restitution
of 0.9. We fine-tune the policy from the source envi-
ronment in the target environment with LAPP and
other baselines. As shown in Fig. 11, the robot
speed drops to about 0.9 m/s due to the more slip-
pery ground surface, and LAPP trains the robot to
adapt to this new environment faster than the other
two baselines. The dashed curves show the learning
processes of the robots trained in the target environ-
ment from scratch. The results show that transfer
learning with a pre-trained policy in a different en-
vironment is much faster than training from scratch, and LAPP trains the robot to adapt faster than other
baselines.

5.3 Ablation Study

We carry out the ablation study to analyze the contributions of two key design decisions of LAPP: 1)
updating the preference predictor with the latest rollout trajectories instead of trajectories sampled from the
full RL process, and 2) adopting a transformer architecture for the reward predictor network instead of a
simple MLP.

To investigate the first design choice, we introduce LAPP (full process), which stores all rollout trajectories in
a pool and samples from the entire RL process rather than only the latest epochs (set to 500 epochs in LAPP).
The dataset size remains identical between LAPP and LAPP (full process), ensuring a controlled comparison.
However, unlike LAPP, this variant may use trajectory data from early training, which potentially introduces
biases to suboptimal policy rollouts. Note that we do not use the full trajectory pool for predictor training,
as its continuous expansion would slow down online updates.

For the second ablation, LAPP (MLP) replaces the transformer-based predictor with an MLP, limiting it
to Markovian preference rewards (Eq. 1). In contrast, LAPP supports both Markovian and non-Markovian
rewards (Eq. 2), which are essential for modeling tasks like step cadence control and backflips.

We compare the performance of LAPP and its two ablations in the simulation tasks in Sec. 5.2. Fig. 12
(a) shows that replacing the transformer with an MLP reduces training speed across most locomotion tasks
except for the Slope and Wave tasks, which are relatively simple and lead to similar performance of LAPP
and its ablations. Moreover, sampling preference data from the full RL process does not affect speed in
Stairs, Slope, and Wave, but slows down the training in other locomotion tasks. In Kettle, both ablations
initially improve performance but then drop to 20%, suggesting that biased preference data or a predictor
network that does not capture long-term dependencies in past states can introduce misleading preference
rewards, which ultimately destabilize the policy training.

15

Under review as submission to TMLR

Figure 12: Ablation Study. We evaluate two key design choices of LAPP: (1) updating the preference
predictor with the latest rollout trajectories (LAPP vs. LAPP (full process)), and (2) using a transformer-
based reward predictor (LAPP vs. LAPP (MLP)). (a) Training Speed: LAPP generally converges faster,
except in the Stairs task, where LAPP (full process) achieves similar speed, and in the Slope and Wave
tasks, where both tasks are simple enough for LAPP and its ablations to have similar performance. In
the Kettle task, both ablations fail at different stages, suggesting that a suboptimal training method for the
preference predictor can disrupt policy learning. (b) Behavior Control: Only LAPP successfully controls gait
pattern and cadence, while both ablations fail. (c) Challenging Task: LAPP enables successful backflips,
achieving a full 360◦ rotation. In contrast, LAPP (MLP) and LAPP (full process) reach only 57.2◦ and
39.6◦, respectively, and fail to complete the task.

Fig. 12 (b) evaluates the ability to control gait pattern and step cadence in quadruped locomotion. Only
LAPP succeeds, while both ablations fail. This supports the hypothesis that preference rewards must evolve
dynamically with training. LAPP (full process) struggles because sampling from the full trajectory pool
prevents the predictor from adapting to the current learning stage. LAPP (MLP) fails because MLPs
lack the capacity to model non-Markovian rewards, which are essential for cadence control. Specifically,
bounding gait requires analyzing foot synchronization from step history, and cadence control depends on
tracking past states to predict step timing rewards. However, MLPs cannot effectively capture these temporal
dependencies, leading to failure in high-level behavior control.

Fig. 12 (c) evaluates the quadruped backflip task. Neither ablation succeeds. LAPP (full process) reaches
39.6◦ degrees of backward rotation, while LAPP (MLP) improves slightly to 57.2◦. LAPP completes the

16

Under review as submission to TMLR

full 360◦ backflip, demonstrating the importance of both preference data sampling and transformer-based
prediction for capturing complex dynamics.

5.4 Real World Experiments

To evaluate the feasibility of deploying LAPP-trained policies on real robots, we conduct experiments with
the Unitree Go2 quadruped. The policy is first trained in the IsaacGym simulator (Makoviychuk et al.,
2021) and then directly deployed in the real world. To mitigate the sim-to-real gap, we apply domain
randomization, varying ground friction, robot mass, observation noise, and external disturbances during
training.

Figure 13: Gait Pattern Control. We can directly
deploy the policy trained by LAPP on trotting and
bounding gait control, specified via high-level language
instructions in the behavior prompts.

We first test gait pattern control. By specifying a
preferred gait pattern in the behavior instruction
prompt, LAPP successfully trains the robot to walk
forward using either a trotting or bounding gait as
shown in Fig. 13.

We then evaluate stair climbing. In Sec. 5.2, Fig. 5
has shown that LAPP accelerates stair-climbing
training in simulation. Here, we deploy the trained
policy at epoch 2200 onto a real 17 cm-high stair-
case. As shown in Fig. 14, LAPP-trained robot suc-
cessfully climbs both up and down stairs. In con-
trast, policies trained with PPO or Eureka under
the same number of epochs often fail to maintain
stability, stumble, and fall while navigating stairs.
These results demonstrate LAPP’s robustness in real-world deployment, effectively translating simulation-
trained behaviors to real hardware while reducing manual reward engineering efforts.

6 Conclusion

Figure 14: Stairs Climbing. LAPP-trained policies
enable the Unitree Go2 robot to climb up and down
stairs in a real-world deployment. The stairs are ap-
proximately 17 cm in height.

We introduced LAPP, a novel framework that lever-
ages LLM for preference feedback from raw state-
action trajectories to guide reinforcement learning.
Given only high-level behavior specifications in nat-
ural language, LAPP automatically learns a pref-
erence reward predictor using LLM-generated feed-
back and continuously refines robot motions to align
with the specified behavior through the adaptive re-
ward predictor.

Compared to conventional RL approaches that rely
on explicitly shaped reward functions, our experi-
ments in both simulation and real-world deployment
demonstrate that LAPP achieves faster training convergence while maintaining superior performance. More-
over, LAPP enables customizable high-level behavior controls. Finally, LAPP generalizes to complex and
non-Markovian preference rewards, surpassing traditional reward engineering methods and LLM-generated
reward functions. Notably, LAPP successfully solves the quadruped backflip task for the first time under a
basic RL setting, aided only by simple exploration warm-up steps. In contrast, all other baselines fail under
the same conditions.

These results showcase LAPP’s potential to push the boundaries of RL for robot learning, expanding robot
capabilities through foundation model-driven behavior guidance.

17

Under review as submission to TMLR

7 Limitations

We note several areas for future improvements of LAPP:

Frequent LLM queries. Despite our batch query process, LAPP still queries LLM very frequently due
to its online adaptive training scheme for the preference predictor. Future work could explore more efficient
data utilization to maintain or improve performance without biasing the predictor training while reducing
LLM query frequency.

Manual selection of state variables. Our trajectory state representation is curated for LLM queries
to include appropriate amount of the information. Including too many variables results in long prompts
leads to higher costs, and potential confusion in LLM’s responses, while too few variables may not provide
sufficient context for accurate reasoning. Future research could develop automated methods for state variable
selection, optimizing the balance between prompt length, cost, and label accuracy. One possible method is
to warm up the training with different variable selections and choose the best set based on the warm-up
performance.

Absence of visual inputs. LAPP currently does not consider the tasks that requires visual inputs to
the policy networks such as reactive motion planning in locomotion tasks, and its feasibility to handle state
trajectories with images remains unexplored. With the reasoning capability of VLMs continuously improving,
future work can explore the similar idea for tasks with visual trajectories. This could enhance preference
prediction accuracy and enable richer robot capabilities.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings

of the twenty-first international conference on Machine learning, pp. 1, 2004.

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina Zambelli,
Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional view on multi-
objective policy optimization. In International conference on machine learning, pp. 11–22. PMLR, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine Learn-
ing and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active preference learning-based reinforcement
learning. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II 23, pp. 116–131. Springer, 2012.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the people: The role
of humans in interactive machine learning. AI magazine, 35(4):105–120, 2014.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

Stephane Aroca-Ouellette, Natalie Mackraz, Barry-John Theobald, and Katherine Metcalf. Predict: Prefer-
ence reasoning by evaluating decomposed preferences inferred from candidate trajectories. arXiv preprint
arXiv:2410.06273, 2024.

18

Under review as submission to TMLR

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, 2021.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman. Deep reinforcement learning from
policy-dependent human feedback. arXiv preprint arXiv:1902.04257, 2019.

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond, December
2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. Pd-morl: Preference-driven multi-objective reinforce-
ment learning algorithm. arXiv preprint arXiv:2208.07914, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement learning. In
Conference on Robot Learning, pp. 362–372. PMLR, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Xin-Qiang Cai, Pushi Zhang, Li Zhao, Jiang Bian, Masashi Sugiyama, and Ashley Llorens. Distributional
pareto-optimal multi-objective reinforcement learning. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Chengliang Chai and Guoliang Li. Human-in-the-loop techniques in machine learning. IEEE Data Eng.
Bull., 43(3):37–52, 2020.

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen McAleer,
Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual dexterous manipulation
with reinforcement learning. Advances in Neural Information Processing Systems, 35:5150–5163, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforce-
ment learning from human preferences. Advances in neural information processing systems, 30, 2017.

Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

Xuzhe Dang, Stefan Edelkamp, and Nicolas Ribault. Clip-motion: Learning reward functions for robotic
actions using consecutive observations. arXiv preprint arXiv:2311.03485, 2023.

Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning with a
novel acquisition function. Autonomous Robots, 39:389–405, 2015.

Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and Franziska Meier. Model-
based inverse reinforcement learning from visual demonstrations. In Conference on Robot Learning, pp.
1930–1942. PMLR, 2021.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping for re-
inforcement learning under sparse rewards. Advances in Neural Information Processing Systems, 35:
5829–5842, 2022.

19

https://github.com/Genesis-Embodied-AI/Genesis

Under review as submission to TMLR

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In 11th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 433–440. IFAAMAS,
2012.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with large language
models for object rearrangement. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2086–2092. IEEE, 2023.

Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Tangjie Lv, Changjie Fan, and
Zhipeng Hu. Aligndiff: Aligning diverse human preferences via behavior-customisable diffusion model.
arXiv preprint arXiv:2310.02054, 2023.

Joseph Early, Tom Bewley, Christine Evers, and Sarvapali Ramchurn. Non-markovian reward modelling from
trajectory labels via interpretable multiple instance learning. Advances in Neural Information Processing
Systems, 35:27652–27663, 2022.

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement Learning Algorithms:
Analysis and Applications, pp. 25–33, 2021.

Benjamin Evans, Herman A Engelbrecht, and Hendrik W Jordaan. Reward signal design for autonomous
racing. In 2021 20th International Conference on Advanced Robotics (ICAR), pp. 455–460. IEEE, 2021.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via models of hu-
man notions of interestingness with environments programmed in code. arXiv preprint arXiv:2405.15568,
2024.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Machine learning, 89:123–156, 2012.

Yolanda Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D’Orazio, Daniel Garijo, Shruti Gadewar,
Qifan Yang, and Neda Jahanshad. Towards human-guided machine learning. In Proceedings of the 24th
international conference on intelligent user interfaces, pp. 614–624, 2019.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping in
reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

Marek Grześ. Reward shaping in episodic reinforcement learning. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pp. 565–573, 2017.

Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforcement learning. In 2008 4th
International IEEE Conference Intelligent Systems, volume 2, pp. 10–22. IEEE, 2008.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking reward
shaping: Understanding the benefits of reward engineering on sample complexity. Advances in Neural
Information Processing Systems, 35:15281–15295, 2022.

Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pp. 3766–3777. PMLR, 2023.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse reinforcement
learning. Advances in neural information processing systems, 29, 2016.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 8154–8173, 2023.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu
Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al. A practical guide
to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36
(1):26, 2022.

20

Under review as submission to TMLR

Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop rl. In
Conference on Robot Learning, pp. 2014–2025. PMLR, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and Changjie
Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances in Neural
Information Processing Systems, 33:15931–15941, 2020.

Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J Mankowitz, Michael Ne-
unert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, et al. A constrained multi-objective
reinforcement learning framework. In Conference on Robot Learning, pp. 883–893. PMLR, 2022.

Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act: Mapping
multi-modality instructions to robotic actions with large language model. arXiv preprint arXiv:2305.11176,
2023.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor Mordatch,
Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation with grounded models
for embodied agents. Advances in Neural Information Processing Systems, 36, 2024.

Ahmed Hussein, Eyad Elyan, Mohamed Medhat Gaber, and Chrisina Jayne. Deep reward shaping from
demonstrations. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 510–517.
IEEE, 2017.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward learning
from human preferences and demonstrations in atari. Advances in neural information processing systems,
31, 2018.

Zhengran Ji, Lingyu Zhang, Paul Sajda, and Boyuan Chen. Enabling multi-robot collaboration from single-
human guidance. arXiv preprint arXiv:2409.19831, 2024.

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Preference
transformer: Modeling human preferences using transformers for rl. arXiv preprint arXiv:2303.00957,
2023.

Dohyeong Kim, Hyeokjin Kwon, Junseok Kim, Gunmin Lee, and Songhwai Oh. Stage-wise reward shap-
ing for acrobatic robots: A constrained multi-objective reinforcement learning approach. arXiv preprint
arXiv:2409.15755, 2024a.

Minu Kim, Yongsik Lee, Sehyeok Kang, Jihwan Oh, Song Chong, and Se-Young Yun. Preference alignment
with flow matching. arXiv preprint arXiv:2405.19806, 2024b.

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement. In 2008
7th IEEE international conference on development and learning, pp. 292–297. IEEE, 2008.

W Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessandro Allievi.
Models of human preference for learning reward functions. arXiv preprint arXiv:2206.02231, 2022.

Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph inverse
reinforcement learning from diverse videos. In Conference on Robot Learning, pp. 55–66. PMLR, 2023.

Panagiotis Kyriakis and Jyotirmoy Deshmukh. Pareto policy adaptation. In International Conference on
Learning Representations, volume 2022, 2022.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement learning
from human feedback with ai feedback. In Forty-first International Conference on Machine Learning,
2024.

21

Under review as submission to TMLR

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based rein-
forcement learning. arXiv preprint arXiv:2111.03026, 2021a.

Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training. In International Conference on Machine Learning,
pp. 6152–6163. PMLR, 2021b.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, and Yecheng Jason Ma.
Environment curriculum generation via large language models. In Conference on Robot Learning (CoRL),
2024.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion: From
natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. Llm+ p:
Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2020.

Runze Liu, Yali Du, Fengshuo Bai, Jiafei Lyu, and Xiu Li. Pearl: zero-shot cross-task preference alignment
and robust reward learning for robotic manipulation. In International Conference on Machine Learning,
2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Yecheng Jason Ma, William Liang, Hungju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bastani, and
Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. In Robotics: Science and
Systems (RSS), 2024.

James MacGlashan, Michael L Littman, David L Roberts, Robert Loftin, Bei Peng, and Matthew E Taylor.
Convergent actor critic by humans. In International Conference on Intelligent Robots and Systems, 2016.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.

Ofir Marom and Benjamin Rosman. Belief reward shaping in reinforcement learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised online
reward shaping in sparse-reward environments. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2369–2375. IEEE, 2021.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering
with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

22

Under review as submission to TMLR

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, pp.
2, 2000.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari,
Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang Chen, Pannag
Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source
generalist robot policy. In Proceedings of Robotics: Science and Systems, Delft, Netherlands, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf: Semi-supervised
reward learning with data augmentation for feedback-efficient preference-based reinforcement learning.
arXiv preprint arXiv:2203.10050, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural information
processing systems, 1, 1988.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Ellis Ratner, Dylan Hadfield-Menell, and Anca D Dragan. Simplifying reward design through divide-and-
conquer. arXiv preprint arXiv:1806.02501, 2018.

Unitree Robotics. Unitree rl gym. https://github.com/unitreerobotics/unitree_rl_gym, 2023. Ac-
cessed: 2025-01-22.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91–100. PMLR, 2022.

Kanghyun Ryu, Qiayuan Liao, Zhongyu Li, Koushil Sreenath, and Negar Mehr. Curricullm: Automatic
task curricula design for learning complex robot skills using large language models. arXiv preprint
arXiv:2409.18382, 2024.

Akanksha Saran, Ruohan Zhang, E Short, and Scott Niekum. Efficiently guiding imitation learning algo-
rithms with human gaze. In International Conference on Autonomous Agents and Multiagent Systems,
2021.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems, 9, 1996.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

ShadowRobot. Shadowrobot dexterous hand, 2005. URL https://www.shadowrobot.com/products/
dexterous-hand/. Accessed: 2025-01-31.

Isaac Sheidlower, Elaine Schaertl Short, and Allison Moore. Environment guided interactive reinforcement
learning: Learning from binary feedback in high-dimensional robot task environments. In Proceedings of
the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1726–1728, 2022.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in pddl domains with pretrained large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 20256–20264, 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp.
11523–11530. IEEE, 2023.

23

https://github.com/unitreerobotics/unitree_rl_gym
https://www.shadowrobot.com/products/dexterous-hand/
https://www.shadowrobot.com/products/dexterous-hand/

Under review as submission to TMLR

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent. Advances
in Neural Information Processing Systems, 23, 2010.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie
Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable policies for
embodied tasks. In The Twelfth International Conference on Learning Representations, 2023.

Yujin Tang, Wenhao Yu, Jie Tan, Heiga Zen, Aleksandra Faust, and Tatsuya Harada. Saytap: Language to
quadrupedal locomotion. In Conference on Robot Learning, pp. 3556–3570. PMLR, 2023.

Zuoxin Tang, Donghyun Kim, and Sehoon Ha. Learning agile motor skills on quadrupedal robots using
curriculum learning. In International Conference on Robot Intelligence Technology and Applications, vol-
ume 3, 2021.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement learning:
Novel design techniques. In 2013 IEEE symposium on adaptive dynamic programming and reinforcement
learning (ADPRL), pp. 191–199. IEEE, 2013.

Sreyas Venkataraman, Yufei Wang, Ziyu Wang, Zackory Erickson, and David Held. Real-world offline
reinforcement learning from vision language model feedback. arXiv preprint arXiv:2411.05273, 2024.

Mudit Verma and Katherine Metcalf. Symbol guided hindsight priors for reward learning from human
preferences. arXiv preprint arXiv:2210.09151, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint arXiv:
Arxiv-2305.16291, 2023a.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu,
and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language models. In Arxiv,
2023b.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe
Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language models. arXiv
preprint arXiv:2310.01361, 2023c.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zackory Erickson,
David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for automated robot learning
via generative simulation. arXiv preprint arXiv:2311.01455, 2023d.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson. Rl-vlm-f:
Reinforcement learning from vision language foundation model feedback. arXiv preprint arXiv:2402.03681,
2024.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team CraftJarvis.
Describe, explain, plan and select: interactive planning with large language models enables open-world
multi-task agents. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, pp. 34153–34189, 2023e.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interactive agent
shaping in high-dimensional state spaces. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I Polosukhin. Attention
is all you need. In NIPS, 2017.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from trajectory
preference queries. Advances in neural information processing systems, 25, 2012.

24

Under review as submission to TMLR

Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. Model-free preference-based reinforcement
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-based
reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46, 2017.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul Christiano.
Recursively summarizing books with human feedback. arXiv preprint arXiv:2109.10862, 2021.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang He. A survey of human-
in-the-loop for machine learning. Future Generation Computer Systems, 135:364–381, 2022.

Boxi Xia, Bokuan Li, Jacob Lee, Michael Scutari, and Boyuan Chen. The duke humanoid: Design and
control for energy efficient bipedal locomotion using passive dynamics. arXiv preprint arXiv:2409.19795,
2024.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Reward shaping with language models for reinforcement learning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
tUM39YTRxH.

Yaqi Xie. Translating natural language to planning goals with large-language models. The International
Journal of Robotics Research, 2019:1, 2020.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik. Prediction-
guided multi-objective reinforcement learning for continuous robot control. In International conference on
machine learning, pp. 10607–10616. PMLR, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective rein-
forcement learning and policy adaptation. Advances in neural information processing systems, 32, 2019.

Chao Yu, Hong Lu, Jiaxuan Gao, Qixin Tan, Xinting Yang, Yu Wang, Yi Wu, and Eugene Vinitsky. Few-shot
in-context preference learning using large language models. arXiv preprint arXiv:2410.17233, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards for
robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR, 2023.

Xinyi Yuan, Zhiwei Shang, Zifan Wang, Chenkai Wang, Zhao Shan, Zhenchao Qi, Meixin Zhu, Chenjia Bai,
and Xuelong Li. Preference aligned diffusion planner for quadrupedal locomotion control. arXiv preprint
arXiv:2410.13586, 2024.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi. Xirl:
Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pp. 537–546. PMLR,
2022.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and Joseph J
Lim. Bootstrap your own skills: Learning to solve new tasks with large language model guidance. In
Conference on Robot Learning, pp. 302–325. PMLR, 2023.

Lingyu Zhang, Zhengran Ji, and Boyuan Chen. CREW: Facilitating human-ai teaming research. Transactions
on Machine Learning Research, 2024a.

Lingyu Zhang, Zhengran Ji, Nicholas R Waytowich, and Boyuan Chen. GUIDE: Real-time human-shaped
agents. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H Ballard, and Peter Stone. Leveraging human guidance for
deep reinforcement learning tasks. arXiv preprint arXiv:1909.09906, 2019.

25

https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=tUM39YTRxH

Under review as submission to TMLR

Li Zhou and Kevin Small. Inverse reinforcement learning with natural language goals. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 11116–11124, 2021.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward shaping via meta-learning. arXiv
preprint arXiv:1901.09330, 2019.

26

	Introduction
	Related Work
	Preliminaries
	LLMs-Assisted Preference Prediction
	Behavior Instruction: Generating Preference Labels from State-Action Trajectories
	Preference Predictor Training: Modeling LLM Feedback
	Preference-Driven Reinforcement Learning
	Network Architectures

	Experiments
	Baselines
	Simulation Experiments
	Ablation Study
	Real World Experiments

	Conclusion
	Limitations

