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ABSTRACT

We introduce Neural Parameter Regression (NPR), a novel framework specifi-
cally developed for learning solution operators in Partial Differential Equations
(PDEs). Tailored for operator learning, this approach surpasses traditional Deep-
ONets (Lu et al., 2021a) by employing Physics-Informed Neural Network (PINN,
Raissi et al., 2019) techniques to regress Neural Network (NN) parameters. By
parametrizing each solution based on specific initial conditions, it effectively ap-
proximates a mapping between function spaces. Our method enhances parame-
ter efficiency by incorporating low-rank matrices, thereby boosting computational
efficiency and scalability. The framework shows remarkable adaptability to new
initial and boundary conditions, allowing for rapid fine-tuning and inference, even
in cases of out-of-distribution examples.

1 INTRODUCTION

Partial Differential Equations (PDEs) are central to modeling complex physical phenomena across
diverse application areas. Traditional approaches often rely on numerical methods due to the scarcity
of closed-form solutions for most PDEs. The emergence of Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019) has revolutionized this domain. PINNs integrate the governing PDEs,
along with initial and boundary conditions, into the loss function of a Neural Network (NN), en-
abling self-supervised learning of approximate PDE solutions.

While PINNs are mostly employed to solve single instances of (possibly parametric) PDEs, Physics-
Informed DeepONets (Wang et al., 2021b) have extended their capabilities to the learning of solution
operators, i.e., mappings from initial conditions to solutions. We introduce Neural Parameter Re-
gression (NPR), advancing operator learning by combining Hypernetworks (Ha et al., 2017) with
Physics-Informed operator learning. Our approach significantly deviates from existing methods
(de Avila Belbute-Peres et al., 2021; Zanardi et al., 2023; Cho et al., 2023) by parametrizing the out-
put network as a low-rank model which by design satisfies the initial condition and is not required
to learn an identity mapping. We refer to Section A.1 for a detailed discussion of related work.

Our main contribution is a novel combination of Hypernetwork approaches with PINN techniques
in the setting of operator learning. We experimentally demonstrate the ability of our approach to
accurately capture (non-)linear dynamics across a wide range of initial conditions. Additionally,
we showcase the remarkably efficient adaptability of our model to out-of-distribution examples.
Section 2 introduces related concepts and our proposed method, Section 3 describes the training
procedure and presents experimental results, and Section 4 concludes the paper. Detailed discussions
and extended results can be found in the appendix.

2 METHODS

PINNs have emerged as a powerful tool for approximating solutions of PDEs by employing auto-
matic differentiation to construct a loss function which is zero if and only if the NN solves the PDE.
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Figure 1: The proposed architecture: The Hypernetwork HΦ maps an initial condition to another
function parametrized by THΦ , hence approximating a mapping between function spaces.

The DeepONet framework (Lu et al., 2021a) employs NNs to approximate operators in Banach
spaces. It evaluates an operator G through G(u)(y) for functions u and vectors y, using a Branch
Network Gbranch for encodings of u and a Trunk Network Gtrunk for encodings of y, combined via
the dot product. Initially designed for supervised operator learning, its extension to self-supervised
learning of PDE solution operators is achieved through Physics-Informed DeepONets (Wang et al.,
2021b). On the other hand, Hypernetworks (Ha et al., 2017) are a meta-learning approach, where
one NN (the Hypernetwork) learns the parameters of another NN (the Target Network). We refer
the reader to the appendix for more in-depth descriptions of these techniques.

We consider initial boundary value problems (IBVPs) of the form

∂tu(t, x) = N (u(t, x)) for (t, x) ∈ [0, T ]× Ω (1a)
u(0, x) = u0(x) for x ∈ Ω (1b)

B(u(t, x)) = 0 for (t, x) ∈ [0, T ]× ∂Ω. (1c)

Here, Ω ⊂ Rd for some d ∈ N, T > 0 is the final time, u0 the initial condition, B describes the
boundary condition, and N is an operator typically composed of differential operators and forcing
terms. Precisely, we are interested in approximating the Solution Operator, i.e., the mapping

G : X ⊃ K → Y, u0 7→
(
(t, x) 7→ u(t, x)

)
, (2)

between the infinite-dimensional Banach spaces X and Y , where K is compact. In the following we
assume that Equation 1 is well-posed, i.e., that the solution (in a suitable sense) exists and is unique.

We propose (Physics-Informed) Neural Parameter Regression (NPR), a novel architecture for learn-
ing solution operators of PDEs. The architecture is depicted in Figure 1. It consists of a Hyper-
network HΦ with parameters Φ, which takes the role of the Branch Network in the DeepONet. By
mapping a discretization of a function u0 to a p-dimensional vector, we compute the parameters θ
of another NN denoted by Tθ. Further, we pass (t, x) through this learned network and obtain an
approximation of G(u0)(t, x), such that HΦ(u0) explicitly approximates the function G(u0).

A solution operator of an IBVP faces the challenge of implicitly learning an identity mapping, as
G(u0)(0, ·) = u0 must hold for all u0. Since learning the identity is a notoriously hard task (Hardt
& Ma, 2017), an essential part of our approach is to enforce the initial conditions in the Target
Networks by parametrizing the output as the deviation from the initial condition over time. This
approach is known as Physics-Constrained NNs (Lu et al., 2021b) and we refer to Section A.6 for a
detailed description. Precisely, we reparametrize the output of Tθ as

T̂HΦ(u0)(t, x) =
t

T
THΦ(u0)(t, x) +

T − t

T
u0(x). (3)

Conceptually, the network HΦ approximates a mapping between the function spaces X and Y .
Effectively however, it is a mapping from Rdenc to Rp, where denc is the encoding dimension (number
of sensors in Lu et al. (2021a)). Since the input and output dimensions are low, the majority of
parameters is in the hidden weights, which scale in O(nhiddend

2
hidden), where nhidden is the number
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Figure 2: The heat equation: The first and second row correspond to u0(x) = 0.5 sin(4πx) +

cos(2πx)+0.3 cos(6πx)+0.8 and the u0(x) =
∑3

n=1(sin(nπx)+cos(nπx))+1, respectively. The
columns shows the reference solutions, the results of NPR and the absolute differences, respectively.

of hidden layers and dhidden is the hidden dimension. By parametrizing the hidden weights as a
product of two matrices Ai and Bi of maximal rank r (Hu et al., 2022), we can reduce the number
of parameters to O(nhiddendhiddenr). More details can be found in Section A.8.

3 EXPERIMENTAL SETUP AND RESULTS

Given an IBVP (Equation 1), we define a compact set K ⊂ X of initial conditions and specify a
sampling procedure. We parametrize the Hypernetwork HΦ using a Multi-Layer Perceptron (MLP).
The input to HΦ is a batch of discretized initial conditions u0 ∈ K. From the output, we compute the
parameters of the Target Network Tθ, itself an MLP with low-rank hidden weights. The input to Tθ

is a batch of space-time coordinates (t, x). As per Equation 3, the output of Tθ is then reparametrized
to satisfy the initial condition. Using automatic differentiation, we compute the derivatives of the
output of Tθ w.r.t. x and t and construct the residual loss LPDE. The boundary loss LBC is computed
in a supervised manner. Finally, we build the total loss L as a weighted sum of LPDE and LBC and
differentiate the parameters Φ of HΦ w.r.t. L to train the Hypernetwork using Adam (Kingma &
Ba, 2015). Periodic loss weight calculations normalize the magnitudes of the updates caused by the
different loss components. Section A.9 contains a full description of the algorithm.

We evaluate NPR on two one-dimensional example problems, the heat equation and Burgers equa-
tion. We perform ablations regarding the hidden dimension and the rank of the weights in the Target
Network and compare to Physics-Informed DeepONets. Finally, we demonstrate the adaptability of
our model by evaluating and fine-tuning on out-of-distribution initial conditions. All experiments
are carried out on a single NVIDIA Tesla V100 GPU. The significantly higher training time for the
heat equation is due to the presence of second order derivatives and the more involved sampling
scheme.

Heat equation. We consider the heat equation with constant Dirichlet boundary conditions on
Ω = [0, 1] and T = 1. The set K is parametrized by Fourier polynomials with a fixed number
of coefficients and bounded absolute value, see Section A.2.1 for details. We compute a reference
solution using a finite difference scheme for twelve different initial conditions from the proposed
distribution, and compute the L1, L2, and L∞ errors between reference solution and model output.

We fine-tune a trained model to the out-of-distribution initial condition u0(x) = 5x + 3 sin(4πx).
To achieve this, we compute the output of the Hypernetwork HΦ(u0) and use it as parameters for
Target Network Tθ. We discard HΦ and regard Tθ as a conventional PINN, training it for 200 steps.
The results are shown in Figure 3. Without fine-tuning, the model performs poorly, but after only
200 iterations (≈ 2 seconds on a AMD Ryzen 7 PRO 6850U CPU) the model adapts to the new
initial condition. See Section A.10 for details on fine-tuning.
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Figure 3: The heat equation with the out-of-distribution condition u0(x) = 5x + 3 sin(4πx). We
plot the reference solution (left), the absolute difference to the reference solution before fine-tuning
(middle) and after fine-tuning (right).
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Figure 4: The Burgers equation: The first row shows the results for the initial condition u0(x) =
−0.9x+ 1.1 and the second row for u0(x) = −0.2x+ 1.8.

Burgers equation. To showcase that our approach can also handle nonlinear dynamics, we con-
sider the (inviscid) Burgers equation on Ω = [0, 1] and T = 1. We impose a constant Dirichlet
boundary condition at x = 0 and parametrize the set of initial conditions K by affine functions
u0(x) = ax + b with a ∈ [−1, 0] and b ∈ [1, 2]. In this setting we can guarantee that no shocks
occur and we can give an explicit formula for the solution, see Section A.2.2 for details. Figure 4
shows how our model captures the induced nonlinear dynamics at different output scales. Close to
the formation of a shock, the performance degrades slightly, which is expected given the increasingly
steep nature of the solution in this region.

We present the results for both equations in Table 1. For the heat equation, the performance in terms
of L1 and L2 errors is comparable to the DeepONet, the L∞ error however is much lower across all
considered configurations. This is likely due to the enhanced expressivity of NPR, which enables
it to precisely capture the solution in the whole space-time domain. For the Burgers equation,
NPR outperforms the DeepONet in all metrics and configurations, even though we increased the
sizes of the Branch Network and Trunk Network as compared to the heat equation, underlining the
superiority of NPR in capturing nonlinear dynamics. By design, NPR requires more parameters than
the DeepONet, as the the output dimension of the Hypernetwork is a compressed representation of
the parameters of a full NN. Increasing the amount of DeepONet parameters to a comparable amount
gave worse results than the ones reported here.

4 CONCLUSION

We have presented Neural Parameter Regression, merging Hypernetworks and PINNs for self-
supervised learning of PDE solution operators. Utilizing low-rank matrices for compact parame-
terization and ensuring initial condition compliance, our approach efficiently learns PDE solution
operators and adapts swiftly to new conditions, promising advancements in the field.

While our method shows promising results, it shares a fundamental shortcoming of the DeepONet,
in the sense that it is only applicable to operators between functions spaces of relatively low di-
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Table 1: Comparative results for the heat and Burgers equations. # Target and # Hyper denote
the total number of parameters in the Target Network and the Hypernetwork, respectively. For the
DeepONet, they refer to the number of parameters in the Trunk and Branch Networks.

Hidden dim 32 Hidden dim 64 DeepONet
Equation Metric Rank 4 Rank 8 Rank 16 Rank 4 Rank 8 Rank 16

Heat

L1 0.0037 0.0028 0.0037 0.0036 0.0026 0.0021 0.0026
L2 0.0051 0.0037 0.0047 0.0046 0.0031 0.0030 0.0036
L∞ 0.0311 0.0171 0.0165 0.0166 0.0268 0.0159 0.0349

# Target 993 1761 3297 1985 3521 6593 4320
# Hyper 79137 129057 228897 143617 243457 443137 16672

Training Time 62 min 65 min 69 min 67 min 71 min 76 min 47 min

Burgers

L1 0.0007 0.0006 0.0004 0.0005 0.0006 0.0005 0.0011
L2 0.0023 0.0022 0.0014 0.0016 0.0019 0.0017 0.0030
L∞ 0.0282 0.0276 0.0206 0.0218 0.0238 0.0223 0.0328

# Target 993 1761 3297 1985 3521 6593 14752
# Hyper 79137 129057 228897 143617 243457 443137 57888

Training Time 16 min 17 min 20 min 17 min 20 min 24 min 14 min

mensional domains. This limitation arises from the exponential increase in the number of sensors
needed to meaningfully represent functions as the dimensionality of their domain grows. Further,
the considered examples do not show challenging behaviour such as sharp local features. We leave
the exploration of these limitations to future work.
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A APPENDIX

A.1 RELATED WORK

Our study extends the framework of PINNs and operator learning, a domain significantly advanced
by the introduction of Physics-Informed DeepONets (Wang et al., 2021b). These models leverage
automatic differentiation to learn mappings from initial conditions to solutions, demonstrating a sig-
nificant extension of PINN methodologies. Subsequent enhancements to the DeepONet architecture,
including a weighting scheme based on Neural Tangent Kernel (NTK) theory (Jacot et al., 2018),
were introduced by Wang et al. (2022a). Additionally, Wang & Perdikaris (2023) proposed learning
the solution operator for short intervals and iteratively applying it for long-term integration.

This paper seeks to extend the concept of PINNs into a more dynamic and versatile framework.
Inspired by the recent advancements in Physics-informed DeepONets (Wang et al., 2021b), our ap-
proach focuses on explicitly learning solution operators of PDEs. By regressing the parameters of
an NN to act as a PINN, we propose a method that not only adapts to varying initial and boundary
conditions but also facilitates faster solution inference compared to traditional numerical methods.
Outside of the field of Physics Informed Machine Learning, this concept is known as Hypernetworks
(Ha et al., 2017). Chauhan et al. (2023) provide a comprehensive overview over existing hypernet-
work approaches. de Avila Belbute-Peres et al. (2021) have already applied Hypernetworks in the
context of PINNs, solving the parametric Burgers equation and the parametric Lorenz Attractor. We
take inspiration from their method and apply it in the context of operator learning.

Parallel to these developments, Li et al. (2021) also explored a two-stage training process, similar
to our approach. Theoretical underpinnings, such as bounds on the approximation error of PINNs,
were explored by De Ryck & Mishra (2022). Innovations like finite basis PINNs (Moseley et al.,
2023) and comprehensive surveys on Physics-Informed machine learning (Hao et al., 2023) further
enrich the context of our work. Studies focusing on importance sampling (Daw et al., 2022) and
extrapolation capabilities of DeepONets (Zhu et al., 2023) also provide valuable insights into the
evolving landscape of PINN research.

Zanardi et al. (2023) have also applied HyperNetworks to Physics-Informed problems and also have
used LoRa weight updates to a base model. We differ from this by inherently parametrizing the
output net as a low-rank model. Cho et al. (2023) have also applied Hypernetworks to PINNs and
parametrized the networks via low-rank matrices, but also in the setting of parametric PDEs with
fixed initial conditions. To the best of our knowledge, this work is the first to extend the concept of
HyperNetworks to the setting of learning solution operators of PDEs.

A.2 PARTIAL DIFFERENTIAL EQUATIONS

Equation 1 describes a wide range of initial boundary value problems (IBVPs) for PDEs. The
operator B can describe many different types of boundary conditions, e.g., Dirichlet, Neumann or
Robin boundary conditions. We point out that the operator N may depend on x, t and additional
parameters c, i.e. N = N (u, x, t, c), where we have omitted the dependence on x, t and c in the
notation for the sake of readability. We only consider solution operators on compact subsets of X ,
as compactness is an essential requirement for the universal approximation theorem for operators
(Chen & Chen, 1995), on which the DeepONet framework was built.

A solution to Equation 1 in the classical sense is a function u : [0, T ] × Ω → R which satisfies
the PDE and the initial- and boundary conditions. In this setting, the space X is usually chosen
as Ck(Ω,R)1, where k is high enough to allow for evaluations of the differential operator N . The
space Y is then usually chosen as C([0, T ] × Ω,R). Many other solution concepts exist, e.g. weak
solutions, mild solutions or viscosity solutions. We refer to the classical literature on PDEs (Evans,
1998) for an overview of solution concepts.

1Ck(Ω,R) denotes the k-times continuously differentiable functions from Ω to R.
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A.2.1 HEAT EQUATION

The one-dimensional heat equation with constant Dirichlet boundary conditions on Ω = [0, 1] and
T = 1, is described by

∂tu = κ∂xxu for (t, x) ∈ [0, 1]× Ω (4a)
u(0, x) = u0(x) for x ∈ Ω (4b)
u(t, 0) = u0(0); u(t, 1) = u0(1) for t ∈ [0, 1]. (4c)

The initial conditions u0 are all assumed to be in a compact set K, which we parametrize in Fourier
space. Concretely, we denote by Cc

n for n ∈ N and c > 0 the set of functions f : [0, 1] → R of the
form

f(x) = a0 +

n∑
i=1

an sin(2πnx) + bn cos(2πnx)

with
max

i=1,...,n
max{|ai|, |bi|} ≤ c.

Here, n controls the number of Fourier coefficients and c > 0 controls the maximal amplitudes. For
fixed n and c the elements of Cc

n are pointwise bounded and equicontinuous, hence by the Arzela-
Ascoli theorem Cc

n is a compact subset of C(Ω,R). This parametrization allows for a straightfor-
ward sampling procedure, by simply sampling the coefficients ai and bi uniformly from [−c, c].
Especially for larger values of n, it makes sense to sample coefficients from a smaller interval (e.g.
[− c

n ,
c
n ]), as otherwise the high frequency components will cause very high slopes in the sampled

functions. While (for e.g., n = 3 and c = 2) our sampled functions look quite similar to the sam-
ples from a gaussian random field (GRF) in Wang et al. (2022a), we point out that our sampling
procedure produces samples from a compact subset of C(Ω,R), while the GRF approach does not.

The hyperparameters for the sampling procedure are detailed in Table 2.

A.2.2 BURGERS EQUATION

As a second example, we consider the one-dimensional (inviscid) Burgers equation on Ω = [0, 1]
and T = 1 with a constant Dirichlet boundary condition at x = 0, i.e.,

∂tu = −u∂xu for (t, x) ∈ [0, 1]× Ω (5a)
u(0, x) = u0(x) for x ∈ Ω (5b)
u(t, 0) = u0(0) for t ∈ [0, 1] (5c)

The initial conditions are parametrized as affine functions u0(x) = ax + b with a ∈ [−1, 0] and
b ∈ [1, 2]. It is well-known (Chandrasekhar, 1943) that the solution on the time interval [0, 1] in this
case is given by

u(t, x) = min

{
ax+ b

at+ 1
, b

}
. (6)

After one time unit, or more precisely at t = − 1
a , the solution develops a shock and constructing

solutions is much more involved. We refer to Toro (2009) for details on how to treat shock waves in
the context of hyperbolic PDEs theoretically as well as numerically.

A.3 HYPERPARAMETERS

Table 2 details the hyperparameters used in the experiments. Two unconventional choices are the
sin activation function and the use of the mean absolute error as a loss function. We also experi-
mented with relu (for the Hypernetwork) and tanh activations, however found that sin consistently
performed best. We also ran experiments using the mean squared error as loss function, however
found that the mean absolute error performed better. Following Zimmer et al. (2023b), we employ a
linearly decaying learning rate schedule after a linear warmup for the first 10% of the training steps.

All experiments were carried out on a NVIDIA Tesla V100 GPU. The training time for the heat
equation was between 60 and 75 minutes (depending on the hidden dimension and rank out the

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 2: Hyperparameters in our experiments.

Parameter Heat equation Burgers equation

Number of fourier coefficients n 3 -
Maximal absolute amplitude c 2 -
alow - -1
ahigh - 0
blow - 1
bhigh - 2
Number optimization steps 2× 1016 = 65536 2× 1016 = 65536
Collocation batch size npde 2048 2048
Learning rate 1× 10−3 1× 10−3

Optimizer Adam Adam
Loss function Mean absolute error Mean absolute error
Number of hidden layers in HΦ 4 4
Hidden dimension in HΦ 64 64
Activation in HΦ sin sin
Number of hidden layers in Tθ 4 4
Activation in Tθ sin sin
Hidden dimension in Tθ variable, see Table 1 variable, see Table 1
Output rank in Tθ variable, see Table 1 variable, see Table 1

target network) and between 15 and 22 minutes for the Burgers equation. The difference is due to
higher order derivatives in the heat equation.

For the DeepONets in Table 1 we used a Branch Network with four hidden layers and a hidden
dimension of 64 and a Trunk Network with four layers and a hidden dimension of 32. Across the
considered values for these hyperparameters, this configuration gave the best result. For the Burgers
equation, we used a Branch Network with a hidden dimension of 128 and a Trunk Network with a
hidden dimension of 64. Still, the results were not competitive with NPR.

A.3.1 EVALUATION DETAILS

To calculate the metrics for the heat equation, we compute a reference solution on a grid of size
5002 using a finite difference scheme. Concretely, we discretize the domain [0, 1] × [0, 1] by using
equidistant grid points x1, . . . , xn and t1, . . . , tm with m = n = 500.

We then compute the absolute value of the difference dabs,ij between the reference solution and the
model output on this grid and the errors as

L1 = 500−2
∑
xi,tj

dabs,ij , L2 = 500−2

√∑
xi,tj

d2abs,ij , L∞ = max
xi,tj

dabs,ij .

For the Burgers equation, we use the explicit formula from Equation 6 and compute the errors in the
same way as for the heat equation.

A.4 PHYSICS-INFORMED NEURAL NETWORKS

The idea of PINNs (Raissi et al., 2019) is to design a loss function, which incorporates all the
components of equation 1 and is zero if and only if the network solves the PDE. The typical approach
is to parametrize the solution by an NN uθ with parameters θ and introduce three loss components:

LPDE =

∫
[0,T ]×Ω

∥∂tuθ(t, x)−N (uθ(t, x))∥ dxdt

LIC =

∫
Ω

∥uθ(x, 0)− u0(x)∥ dx

LBC =

∫
[0,T ]×∂Ω

∥B(uθ(t, x))∥ dxdt.
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The partial derivatives needed to evaluate ∂tuθ and Nu are computed using automatic differentia-
tion and the norm ∥·∥ appearing in the integrals is typically the L2 norm. The total loss is given by
L = λPDELPDE + λICLIC + λBCLBC, where λPDE, λIC and λBC are loss weights which can be
chosen as hyperparameters or adapted dynamically (Wang et al., 2021a; 2022b).

A.5 (PHYSICS-INFORMED) DEEPONETS

The DeepONet (Lu et al., 2021a) architecture gives an approximation of any operator G implicitly,
that means: Given a function u and a value y = (t, x), the NN returns an approximation of G(u)(y).
While this approach has shown to be successful in many applications, it has some drawbacks. First,
the mapping u 7→ G(u) is a bit hidden in the architecture. It can be recovered by evaluating the
Branch Network Gbranch at u and then considering the mapping (t, x) 7→ Gtrunk(t, x) · Gbranch(u).
This type of recovery can be useful if one wants to evaluate the function Gbranch(u) at many points
without having to run the full network. This however illustrates another shortcoming of the Deep-
ONet architecture: An unneccesarily large amount of the complexity needs to be allocated at the
Trunk Network, which must produce rich enough representations of the inputs (t, x) to be able to
approximate G(u)(t, x) for any u by an operation as simple as the dot product, without knowledge
of u. This issue has been addressed in Wang et al. (2022a) by introducing additional encoders which
mix the hidden representations of the Branch Network and Trunk Network at every step. However,
introducing these encoders makes the recovery of the mapping u 7→ G(u) impossible, as now for
each pair (u, (t, x)) the whole architecture needs to be evaluated.

Building upon the PINN framework, the Physics-informed DeepONet (Wang et al., 2021b) applies
these principles in an operator learning context. It harnesses the power of automatic differentiation
and extends the capabilities of PINNs to learn mappings between function spaces while respect-
ing physical constraints. It is worth emphasizing that both approaches do not require any labeled
training data (except for initial- and boundary conditions, which are needed to make the problem
well-posed) and can thus be considered as self-supervised learning methods. This is particularly
crucial in the context of learning solution operators, as obtaining training data involves applying nu-
merical solvers. Recently, Hasani & Ward (2024) have proposed to generate training data for neural
operators which avoids solving the PDE numerically.

A.6 PHYSICS-CONSTRAINED NEURAL NETWORKS

In the specific setting of learning the mapping from an initial condition to the solution at a given time,
a model Nθ is posed with the challenge of learning an identity mapping for t = 0, i.e. Nθ(u0, 0, x) =
u0(x) must hold for all x ∈ Ω. Lu et al. (2021b) proposed to parametrize the output in a way that
the initial condition is always satisfied. Concretely, given any model Nθ, a new model N̂θ is defined
as follows:

N̂θ(u0, t, x) = (1− α(t))Nθ(u0, t, x) + α(t)u0(x).

Here, α : [0, T ] → [0, 1] is a function which is 1 for t = 0 and 0 for t = T , e.g α(t) = 1 − t
T .2

This was adopted by Brecht et al. (2023) in the context of operator learning. This way, we do not
only mitigate the problem of learning the identity, but also eliminate the need for the LIC term in the
loss function, thus reducing the number of hyperparameters and making the problem easier. In the
case of Dirichlet boundary conditions, we can apply the same procedure to those by parametrizing
the output by a function β : [0, T ]× ∂Ω → Rd and defining the new model as:

N̂θ(u0, t, x) = (1− β(x))Nθ(u0, t, x) + β(x)ub(t), (7)

where ub : [0, T ] → ∂Ω describes the (non-homogenuous) Dirichlet boundary condition and
β : ∂Ω → [0, 1] is a function which is 1 for x ∈ ∂Ω and between 0 and 1 for x ∈ Ω. This eliminates
LBC from the loss function. We point out that neither a closed form of u0 nor ub is required. If we
only have samples of u0 and ub at certain points, we can simply interpolate them (e.g. using linear
interpolation or splines).

2The factor α(t) in front of the u0 term is not necessary to achieve the hardcoding, however we found that
it works better.
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While we found that hardcoding the boundary conditions increases the speed at which our models
converge, it is not strictly necessary. Hardcoding the initial conditions however is crucial. This is
interesting, as it hints at the following: Regressing the parameters of an NN to act as a PINN is a very
difficult task, but clearly it will be even harder if the networks are supposed to learn complicated
mappings. Thus, our study demonstrates that hardcoding initial conditions greatly simplifies the
learning problem and should be considered in any application of PINNs.

A.7 HYPERNETWORKS

Ha et al. (2017) have introduced the approach of one NN learning the parameters of another NN and
have coined it Hypernetworks. We refer to Chauhan et al. (2023) for a recent review on the topic.

A.8 LOW-RANK PARAMETRIZATION OF MLPS

A multilayer perceptron (MLP) is a NN with an input layer, an output layer and one or more hidden
layers. Each layer consists of a linear transformation followed by a non-linear activation function.
The linear transformation is parametrized by a matrix W and a bias vector b. Concretely, for an
MLP with n hidden layers and hidden dimension d, the output is defined as:

MLP(x) = Wn−1hn−1 + bn−1

hi = σ(Wihi−1 + bi) for i = 2, . . . , n− 1

h1 = σ(W1x+ b1)

where x is the input, hi is the output of the i-th layer, Wi are the weight matrices and bi are the
bias vectors. σ is a nonlinear function, often called the activation and is typically chosen as tanh or
ReLU.

If we choose to parametrize the Target Network by a multilayer perceptron (MLP) with nhidden
hidden layers, each with a hidden dimension of dhidden, the number of parameters is given by

dp = dinputdhidden + dhidden + (nhidden − 1)(d2hidden + dhidden) + dhiddendoutput + doutput. (9)

Since this scales quadratically in the hidden dimension dhidden, it quickly becomes intractable as it
blows up the final layer of our network. Therefore, motivated by the success of LoRA (Hu et al.,
2022; Zimmer et al., 2023a), we parametrize the weights of the hidden layers as the product of 2
matrices, i.e. Wi = AiBi for i = 1, . . . , nhidden − 1 with Ai, B

T
i ∈ Rdhidden×r, where r ≪ dhidden is

the rank of the matrices and therefore the rank of the matrix Wi is also at most r. This reduces the
number of parameters to

dp = dinputdhidden + dhidden + 2(nhidden − 1)(rdhidden + dhidden) + dhiddendoutput + doutput (10)

Remarkably, for some PDEs we achieve good results with a rank as low as four, showing that by
this approach we can learn approximations of the solution operator efficiently.

A.9 DETAILS ON THE TRAINING ALGORITHM

Hypernetwork and Target Network Architectures Our Hypernetwork HΦ is parametrized as a
multilayer perceptron (MLP). The choice of the number of hidden layers, their dimensions, and the
activation function (sin instead of the common tanh) is made to allow for richer implicit neural
representations, as suggested by Sitzmann et al. (2020). The Target network Tθ also follows an
MLP architecture with low-rank hidden weights, designed to efficiently capture the dynamics of the
problem.

Sampling and Discretization of Initial Conditions Initial conditions u0 are sampled from a com-
pact set K ⊂ X using a specified sampling procedure. The discretization of u0 into input vectors or
tensors for HΦ in this work simply means taking equidistant samples of u0 on the domain Ω. The
number of samples is a hyperparameter of the model ans was chosen to be 32 in this study.
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Periodic Update of Loss Weights The loss weights λPDE, λIC, λBC are updated periodically to nor-
malize the magnitudes of the gradient updates. Considering the case that all loss components are
present (neither initial- nor boundary conditions are hardcoded), every 100 steps we compute the
loss weights as follows:

1. Sample a batch for each of the loss components.

2. Compute
∥∥∥ ∂Φ
∂Li

∥∥∥ for i in {PDE, IC,BC} using automatic differentiation.

3. Compute the total magnitude of the updates M =
∑

i

∥∥∥ ∂Φ
∂Li

∥∥∥.

4. Set λi = M
∥∥∥ ∂Φ
∂Li

∥∥∥−1

for i in {PDE, IC,BC}.

Minibatch Construction and Optimization We explain in more detail how minibatches are con-
structed for computing the loss components. For LPDE, we sample npde initial conditions from K as
well as npde space-time coordinates (t, x) from [0, T ]×Ω. The initial conditions u0 are discretized
into vectors û, so a batch which is input to the hypernetwork is of the form ûi, (ti, xi), where i is the
index for the position in the minibatch. After passing this batch through HΦ, we obtain a batch of
vectors v̂i, which we reshape into a batch of NNs Tθ,i. We then evaluate (in parallel) the NNs Tθ,i

at the points (ti, xi) and use automatic differentiation to compute the derivatives ∂tTθ,i and NTθ,i.
Finally, we compute the loss component LPDE and the gradient of the hypernetwork parameters Φ
w.r.t. LPDE using automatic differentiation. For LBC, we sample nbc initial conditions from K as
well as nbc space-time coordinates from ∂Ω × [0, T ]. Again, the initial conditions are discretized
and passed through the hypernetwork, after which we evaluate the NNs at the sampled points and
compute the loss component LBC and its gradient in a supervised manner. For LIC, the batch con-
sists of nic initial conditions sampled from K together with points xi sampled from Ω. We pass
the discretized initial conditions through the hypernetwork and evaluate the NNs at (0, xi). We then
compute the loss component LIC and its gradient in a supervised manner. Finally, we construct the
total loss L = λPDELPDE + λICLIC + λBCLBC and compute the gradient of the Hypernetwork
parameters Φ w.r.t. L using automatic differentiation. We then update the Hypernetwork parameters
using the Adam Algorithm. We present the full training algorithm in Algorithm 1.

A.10 FINE-TUNING PROCEDURE

To enhance the adaptability of our model for both challenging in-distribution initial conditions and
out-of-distribution examples, we propose a systematic procedure. Our model, by design, outputs
NN parameters corresponding to each given initial condition. This capability enables us to input
any initial condition, within the constraints of our sensor resolution3, to obtain a specific set of
NN parameters. To increase expressivity, we then “unfold” this network by explicitly computing
the low-rank product matrices AiBi for the hidden weights. Subsequently, the Branch Network is
omitted, treating the resulting network as a conventional PINN. Remarkably, this adaptation process,
which requires only a few hundred steps or a matter of seconds, significantly reduces the error for a
wide range of initial conditions, including out-of-distribution as shown in Figure 3.

3This refers to initial conditions that can be meaningfully represented given the chosen number of sensors.
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Algorithm 1 The full training algorithm for Neural Parameter Regression
Input: Initial condition distribution, domain Ω× [0, T ]
Hyperparameters:
Nsteps (Total training steps)
Bcollocation (Collocation batch size)
BIC (Initial condition batch size)
BBC (Boundary condition batch size)
ωfreq (Loss weight update frequency)
Output: Trained Hypernetwork parameters
Initialize Hypernetwork parameters
for i = 1 to Nsteps do

if i mod ωfreq is 0 then
Update loss weights λPDE, λIC, λBC

end if
Sample batch of Bcollocation initial conditions u0

Discretize u0 into vectors or tensors
Sample collocation points (t, x) from Ω× [0, T ]
Evaluate and reshape Hypernetwork output to get NNs
Compute the differential operator N and ∂t using automatic differentiation
Compute LPDE

if initial condition not hardcoded then
Sample batch of BIC initial conditions u0 for LIC

Compute LIC

end if
if boundary condition not hardcoded then

Sample batch of BBC boundary conditions u0 for LBC

Compute LBC

end if
Construct total loss L = λPDELPDE + λICLIC + λBCLBC and compute the gradient of the
Hypernetwork’s parameters Φ w.r.t. Ł using automatic differentiation
Update Hypernetwork parameters using a variant of stochastic gradient descent (e.g. Adam)

end for
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