

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SCOOBDOOB: SCHRÖDINGER BRIDGE WITH DOOB'S h -TRANSFORM FOR MOLECULAR DYNAMICS

Anonymous authors

Paper under double-blind review

ABSTRACT

The slow processes of stochastic dynamical systems can be captured by Molecular Dynamics (MD) simulations, which approximate transition matrices describing how probabilities evolve over metastable conformations. Standard approaches such as Markov State Models (MSMs) extract dominant conformations and transition statistics via eigendecomposition, but face scalability and generalization limits. Here, we introduce Schrödinger Bridge with Doob's h -Transform (**ScooBDoob**), a discrete bridge-matching framework that models metastable dynamics by tilting MSM transition rates through Doob's transform to generate optimal stochastic paths between prescribed initial and terminal ensembles. We show that ScooBDoob preserves spectral stability of slow modes during training, recovers rare transition pathways with density-aware regularization, and generalizes zero-shot across temperatures. Experiments on the Müller-Brown potential and the Aib9 peptide demonstrate accurate kinetics and robust endpoint-conditioned rollouts, highlighting broad applicability to biomolecular dynamics.

1 INTRODUCTION

Simulating molecular dynamics (MD) trajectories accurately and efficiently remains a fundamental challenge in computational chemistry, particularly when predicting rare transition events between metastable states (Lewis et al., 2025a). Such events are crucial for understanding biological processes like protein folding, ligand binding, and conformational dynamics, but occur over long timescales, making direct computational simulations prohibitively expensive (Ghosh and Ranjan, 2020; Vincoff et al., 2025). Markov State Models (MSMs) have emerged as a popular approach for approximating these slow processes by representing continuous trajectories as discrete microstates and modeling transitions between these states as Markovian jumps (Chodera and Noé, 2014; Trubiano and Hagan, 2024; Pande et al., 2010). By deriving transition probability matrices from MD data, MSMs efficiently summarize long-term dynamical behavior, significantly reducing computational complexity and enabling more tractable analysis of complex biomolecular systems (Chodera and Noé, 2014; Trubiano and Hagan, 2024; Pande et al., 2010).

However, MSMs face substantial challenges in practice. First, eigendecomposition of transition matrices is a crucial step for extracting dynamical information, but can lead to numerical instability and inaccuracies if eigenvectors are unconstrained (Frank et al., 2022). Unstable eigenvectors can produce physically unrealistic predictions, which undermines the reliability of MSMs for critical biological applications. Furthermore, MD simulation data is inherently sparse in regions of conformational space that correspond to rare transitions, resulting in poorly estimated transition probabilities and limited predictive accuracy (Konovalov et al., 2021; Frank et al., 2022). Sparse data render MSM-derived trajectories highly sensitive to sampling variability and noise, thereby limiting their generalizability to unseen conformations and conditions.

Recent methods have leveraged generative models to sample transition paths between metastable states by framing trajectory generation as a stochastic control problem. These approaches include optimization of the Onsager-Machlup (OM) functional or a related control Lagrangian to produce high-likelihood paths under learned dynamics (Raja et al., 2025; Du et al., 2024), and diffusion-based samplers trained with off-policy learning to efficiently approximate the transition path distribution (Seong et al., 2025; Holdijk et al., 2023). More broadly, Schrödinger bridge formulations (Liu et al., 2023) provide a principled framework for path sampling under endpoint constraints, and recent

054 advances in stochastic optimal control further connect bridge problems to tractable learning objectives
 055 (Liu et al., 2025). Collectively, these methods demonstrate the promise of conditioning generative
 056 dynamics on endpoint constraints to study rare events, bypassing the need for collective variables or
 057 retraining on system-specific data.

058 In this work, we introduce Schrödinger Bridge with **Doob**'s *h*-Transform (**ScooBDoob**), a novel
 059 Schrödinger bridge formulation explicitly designed to enhance the robustness, stability, and general-
 060 ization capabilities of MSM-based methods. Our framework integrates three key advancements:
 061

- 062 **Parameterization of the Doob-Tilted Transition Matrix.** To condition the transition path
 063 on a target meta-stable state, we leverage Doob's *h*-transform to tilt the unconditional MSM
 064 transition matrix and train our parameterized model to match the optimal Schrödinger bridge.
 065 This enables the efficient simulation of feasible transition paths despite energy barriers.
- 066 **Density-Aware Regularization.** We introduce density-aware reweighting, which adjusts
 067 transition probabilities based on empirical MD sampling density, significantly enhancing
 068 robustness against data sparsity and sampling variability.
- 069 **Stiefel-Constrained Eigenvector Optimization.** We explicitly constrain eigenvectors to the
 070 Stiefel manifold, ensuring numerical stability and physically meaningful directional transitions,
 071 thus addressing the instability associated with unconstrained eigendecompositions.

072 We provide a detailed discussion on related works in Appendix A.
 073

074 2 PRELIMINARIES

075 2.1 LEARNING DISCRETE SCHRÖDINGER BRIDGES

076 **Schrödinger Bridge Problem** The Schrödinger Bridge (SB) problem aims to find the *optimal*
 077 probability path measure \mathbb{P} from samples of an initial distribution $x_0 \sim \mu_0$ to samples from a final
 078 distribution $x_N \sim \mu_N$. The optimal solution is defined as the path measure \mathbb{P}^{SB} with marginals μ_0
 079 and μ_N that minimizes the KL-divergence to a reference path measure \mathbb{Q}

$$080 \mathbb{P}^{\text{SB}} = \min_{\mathbb{P}} \{\text{KL}(\mathbb{P} \parallel \mathbb{Q}) : \mathbb{P}_0 = \mu_0, \mathbb{P}_N = \mu_N\} \quad (1)$$

081 where \mathbb{Q} can be defined as standard Brownian motion in continuous state spaces and a Dirichlet
 082 process in discrete state spaces. Note that $\mathbb{P}^{\text{SB}} \neq \mathbb{Q}$ as \mathbb{P} , since it must satisfy the boundary constraints
 083 $\mathbb{P} = \mu_0$ and $\mathbb{P}_T = \mu_T$.

084 **Continuous-Time Markov Chains** In discrete state spaces $\mathcal{X} = \{1, \dots, m\}$, time-varying stochastic
 085 process $(\mathbf{X}_t)_{t \in [0, T]}$ over the time horizon $[0, T]$ is considered a **continuous-time Markov chain**
 086 (**CTMC**) if it can be characterized by a transition rate matrix or *generator* $\mathbf{Q}_t \in \mathbb{R}^{\mathcal{X} \times \mathcal{X}}$ defined as

$$087 \mathbf{Q}_t(x, y) = \lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t} [\mathbb{P}(\mathbf{X}_{t+\Delta t} = y | \mathbf{X}_t = x) - \mathbf{1}_{x=y}] \quad (2)$$

088 where $\mathbb{P}(\mathbf{X}_{t+\Delta t} = y | \mathbf{X}_t = x)$ is the probability of making a discrete "jump" from state x at time t
 089 to state y at time $t + \Delta t$ and $\mathbf{1}_{x=y}$ is an indicator function that equals 1 if $x = y$. By taking the limit
 090 as Δt , the generator defines the *instantaneous* jump probability at time t . By definition, all entries of
 091 the generator are non-negative for $x \neq y$ (i.e., $\mathbf{Q}_t(x, y) \geq 0$) and the diagonal entries are defined as
 092 $\mathbf{Q}_t(x, x) = -\sum_{y \neq x} \mathbf{Q}_t(x, y)$.

093 **Doob's *h*-Transform** The Doob's *h*-transform is a theoretically-grounded method to condition a
 094 transition rate matrix (or *generator*) $\mathbf{Q}_t(x, y) \in \mathbb{R}^{m \times m}$ of a CTMC $(\mathbf{X}_t)_{t \in [0, T]}$ to a target state z at
 095 time T by *tilting* it via the conditional probability function $h_t(\mathbf{x})$.

$$096 \mathbf{Q}_t(x, y; z) = \mathbf{Q}_t(x, y) \frac{\mathbb{P}(\mathbf{X}_T = z | \mathbf{X}_t = y)}{\mathbb{P}(\mathbf{X}_T = z | \mathbf{X}_t = x)} - \delta_{xy} \sum_u \mathbf{Q}_t(x, u) \frac{\mathbb{P}(\mathbf{X}_T = z | \mathbf{X}_t = u)}{\mathbb{P}(\mathbf{X}_T = z | \mathbf{X}_t = x)} \quad (3)$$

097 where $\mathbb{P}(\mathbf{X}_T = z | \mathbf{X}_t = y)$ is the conditional probability of transitioning to a state z at time T
 098 given the current state $\mathbf{X}_t = x$ and δ_{xy} is the Dirac delta function that returns 1 when $x = y$ and
 099 0 otherwise. Intuitively, this transform decreases the transition rate $x \rightarrow y$ if the probability of
 100 transitioning to z from state x is higher than from state y and increases the transition rate if the
 101 probability of transitioning to z from state y is higher than from state x .

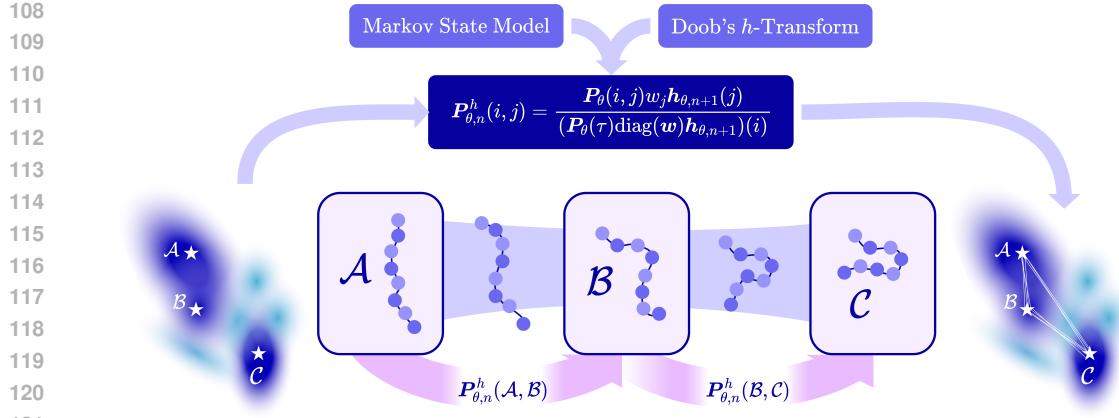


Figure 1: **Schrödinger Bridge with Doob's h -Transform (ScooBDoob).** ScooBDoob models stochastic transition paths between metastable states by learning Markov State Models (MSMs) of molecular dynamics trajectories and conditioning on target end-states using Doob's h -Transform.

2.2 MARKOV STATE MODELS

Molecular Dynamics A molecular dynamics (MD) simulation produces a time-ordered trajectory of molecular conformations, represented as Cartesian positions at discrete timesteps (Scherer et al., 2015). For larger biomolecules, the dimensionality of the MD features grows prohibitively large, resulting in computational bottlenecks when simulating their trajectories. Coarse-graining techniques have aimed to lower the dimensionality of MD features by finding *collective variables* (CVs) that largely capture the degrees of freedom of a molecule's conformation over time (Ingólfsson et al., 2014; Joshi and Deshmukh, 2021).

Time-lagged Independent Component Analysis (TICA) Time-lagged independent component analysis (TICA; Pérez-Hernández et al. (2013)) is a method for reducing the high-dimensional feature space of molecular systems to a set of Collective Variables (CVs) that determine the primary degrees of freedom responsible for the slow transitions in MD simulations. Consider an MD snapshot of a d -dimensional molecular system at time t as $\mathbf{x}(t) \in \mathbb{R}^d$. Then, the time-lagged covariance matrices are defined as

$$\text{Cov}_{00} = \mathbb{E}[\mathbf{x}(t)\mathbf{x}(t)^\top], \quad \text{Cov}_{0\tau} = \mathbb{E}[\mathbf{x}(t)\mathbf{x}(t+\tau)^\top] \quad (4)$$

where the expectation is over the trajectory frames and τ is the chosen lag time. To determine the CVs, TICA solves the generalized eigenproblem

$$\text{Cov}_{0\tau} \mathbf{u}_i = \lambda_i \text{Cov}_{00} \mathbf{u}_i, \quad i \in \{1, \dots, d\} \quad (5)$$

where $\mathbf{u}_i \in \mathbb{R}^d$ are the eigenvectors and λ_i are the corresponding eigenvalues, and $t = -\tau / \ln \lambda_i$. With the top k eigenvalues sorted as $1 = |\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_d|$, we construct a projection matrix $\mathbf{U} \in \mathbb{R}^{n \times k}$ with columns being the corresponding eigenvectors, which projects $\mathbf{x}(t) \in \mathbb{R}^d$ to a k -dimensional feature vector $\mathbf{y}(t)$ as

$$\mathbf{y}(t) = \mathbf{U}^\top \mathbf{x}(t), \quad \mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_k] \quad (6)$$

Constructing the Markov State Model We can cluster the TICA-projected $\mathbf{y}(t)$ into m discrete microstates and represent state transitions over a lag time τ by a **Markov State Model (MSM)**. Formally, an MSM at lag time τ is defined as a stochastic matrix $\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}$ matrix of transition probabilities:

$$\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}, \quad P_{ij}(\tau) = \mathbb{P}(\mathbf{X}_{t+\tau} = j \mid \mathbf{X}_t = i) = \frac{C(i, j; \tau)}{\sum_{j'} C(i, j'; \tau)}, \quad (7)$$

where $C(i, j; \tau)$ is the observed count of transitions from state i at time t to state j at time $t + \tau$. The construction of an MSM has a natural connection to CTMCs, where the transition probabilities define a stochastic trajectory between discrete micro-states, which motivates our work.

162 **Algorithm 1 ScooBDoob:** Schrödinger Bridge with Doob’s h -Transform

163

164 1: **Input:** Observed count of transitions $i \rightarrow j$ at τ lag $C(i, j; \tau)$ for all $i, j \in \{1, \dots, m\}$

165 2: **while** Training **do**

166 3: $\mathbf{P}_{ij}(\tau) \leftarrow \frac{C(i, j; \tau)}{\sum_{j'} C(i, j'; \tau)}, \quad \mathbf{P}(\tau) \leftarrow [\mathbf{P}_{ij}(\tau)]$

167 4: $\mathbf{V}(i) \leftarrow \alpha/(C_i + 1), \quad \mathbf{w}(i) \leftarrow \exp(-\tau \mathbf{V}(i))$ \triangleright density-aware weights

168 5: $\mathbf{h}_N^V \leftarrow \nu$ \triangleright initialize terminal condition

169 6: **for** n in $N - 1, \dots, 0$ **do**

170 7: $\mathbf{h}_n^V \leftarrow \mathbf{P}(\tau)(\text{diag}(\mathbf{w})\mathbf{h}_{n+1}^V)$ \triangleright compute tilted distributions

171 8: $\mathbf{P}_n^V(i, j) \leftarrow \frac{\mathbf{P}_{ij}(\tau)\mathbf{w}(j)\mathbf{h}_{n+1}^V(j)}{(\mathbf{P}(\tau)\text{diag}(\mathbf{w})\mathbf{h}_{n+1}^V)(i)}, \quad \mathbf{P}_n^V \leftarrow [\mathbf{P}_n^V(i, j)]$

172 9:

173 10: **end for**

174 11: **for** micro-state i in $1, \dots, m$ **do** \triangleright train generator for each state i

175 12: $\mathbf{P}_{n, \theta}^h(i, \cdot) \leftarrow \text{NN}(\theta)$

176 13: Compute loss $\mathcal{L}_{\text{total}}(\theta) = \mathcal{L}_{\text{MSM}}(\theta) + \gamma_{\text{bridge}}\mathcal{L}_{\text{bridge}}(\theta) + \gamma_{\text{stief}}\mathcal{L}_{\text{stief}}(\theta)$

177 14: Optimize θ with $\nabla_{\theta}\mathcal{L}_{\text{total}}$

178 15: **end for**

179 16: **end while**

180 17: **return** parameterized transition predictor $\mathbf{P}_{\theta}(\tau) : [0, 1] \rightarrow \mathbb{R}^{m \times m}$

181

182

183 3 SCOOBDOOB: SCHRÖDINGER BRIDGE WITH DOOB’S h -TRANSFORM

184

185 We introduce **Schrödinger Bridge with Doob’s h -Transform (ScooBDoob)**, a discrete Schrödinger

186 bridge framework that learns stochastic transitions between metastable states in molecular systems

187 using a Doob-transformed Markov State Model (MSM). ScooBDoob is capable of modelling discrete

188 transition probabilities between MD microstates without requiring knowledge of the underlying

189 potential energy landscape, enabling flexible generalization to molecular systems without known

190 energies and sparse MD data.

192 3.1 PROBLEM SETUP

194 While MD is critical for exploring conformational landscapes and reaction pathways of biomolecular

195 systems, the performance is hindered by two prominent challenges. First, MD requires **well-defined**

196 and **transferable force fields** that accurately capture intermolecular and intramolecular forces

197 (Kaminski and Jorgensen, 1996; Zhu et al., 2012). While classical force fields enable fast simulations,

198 they rely on several assumptions that limit the expressivity of the simulation to model rare or

199 heterogeneous phenomena. ML-based force fields increase expressivity (Arts et al., 2023; Charron

200 et al., 2025; Lewis et al., 2025b); however, they are biased towards the interactions seen in the training

201 data and remain limited in their ability to generalize to unseen systems.

202 Second, many crucial processes, such as protein folding and allosteric switches, occur between

203 multiple low-energy, *meta-stable states*, where transitions away from the state are rare and occur

204 over long time-scales (Noé and Clementi, 2017). This makes these **rare processes prohibitively**

205 **expensive to simulate**, especially for larger systems. Techniques that aim to coerce these transitions

206 over smaller timescales (Ensing et al., 2006; Branduardi et al., 2012; Bussi and Branduardi, 2015;

207 Ghosh and Ranjan, 2020) often undermine the probabilistic nature of these transitions and miss

208 intermediate states.

209 These challenges motivate the development of **data-centric approaches for learning MD trajec-**

210 **tories** (Jing et al., 2024; Daigavane et al.; Lu et al., 2025; Tan et al., 2025; Rehman et al., 2025;

211 Wang et al., 2024) that bypass the need for defined energy landscapes and can generate feasible

212 maps between meta-stable states that align with the data manifold, while accounting for the sparsity

213 of MD data. Notably, **ScooBDoob** addresses *all* of these challenges by (1) learning probabilistic

214 transition rates *directly* from MD trajectory data, bypassing the need for external force-fields, (2)

215 conditioning discrete transitions on target states grounded in Doob’s h -Transform theory, and (3)

amplifying regions of low data density with Feynman-Kac reweighting.

216 3.2 DEFINING ENDPOINT-CONDITIONED TRANSITIONS BETWEEN META-STABLE STATES
217218 **Doob's h -Transform for Target-Conditioned Transition Rates** Given an unconditional transition
219 matrix $\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}$, we can steer trajectories toward a terminal distribution $\nu \in \Delta^{m-1}$ over
220 $T = N\tau$ steps by recursively define the distribution at each step $\mathbf{h}_n \in \Delta^{m-1}$ backward in time.
221

222
$$\mathbf{h}_N = \nu, \quad \mathbf{h}_n = \mathbf{P}(\tau)\mathbf{h}_{n+1}, \quad n \in \{N-1, \dots, 0\}. \quad (8)$$

223

224 Then, we construct the time-dependent Doob-conditioned transition matrix as
225

226
$$\mathbf{P}_n^h(i, j) = \mathbf{P}_{ij}(\tau) \frac{\mathbf{h}_{n+1}(j)}{\mathbf{h}_n(i)}, \quad \sum_{j=1}^m \mathbf{P}_n^h(i, j) = 1. \quad (9)$$

227

228 **Density-Aware Regularization via Feynman-Kac for Sparse MD Data** To mitigate bias toward
229 over-sampled basins and encourage coverage of sparsely visited regions, we introduce a density-aware
230 non-negative potential for each micro-state $\mathbf{V} : \{1, \dots, m\} \rightarrow \mathbb{R}_{\geq 0}$ proportional to the empirical
231 outgoing transition density.
232

233
$$C_i = \sum_{j \neq i} C_{ij}(\tau), \quad \rho(i) = \frac{\max(C_i, 1)}{\bar{C}}, \quad \mathbf{V}(i) = \alpha \rho(i), \quad (10)$$

234

235 where $C_{ij}(\tau)$ is the number of observed MD transitions at lag τ from state i to state j and C_i denotes
236 the total number of outgoing transitions from state i . \bar{C} is the mean of C_i . $\alpha \geq 0$ is a hyperparameter
237 controlling the penalization of sparsely sampled transitions. With the potential, we define a weight
238 vector $\mathbf{w} \in \mathbb{R}^m$ containing the weights of each microstate $w_j = \exp(-\tau \mathbf{V}(j))$.
239240 Given a time horizon of $T = N\tau$ with target distribution $\nu \in \Delta^{m-1}$, we define the target-conditioned
241 density-aware probability distributions $\mathbf{h}_n^V \in \Delta^{m-1}$ at each time increment from $n \in \{N, N-1, \dots, 0\}$ as
242

243
$$\mathbf{h}_N^V = \nu, \quad \mathbf{h}_n^V = \mathbf{P}(\tau) \left(\text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V \right) \quad (11)$$

244

245 where $\text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V$ reweights the probability of each state at time $n+1$ by its corresponding density
246 weight w_j , thereby encouraging the likelihood of transitioning into sparsely sampled intermediate
247 states. The resulting density-aware Doob kernel at each time step $n \in \{1, \dots, N\}$ is defined as
248

249
$$\mathbf{P}_n^h(i, j) = \frac{\mathbf{P}_{ij}(\tau) w_j \mathbf{h}_{n+1}^V(j)}{(\mathbf{P}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V)(i)}, \quad \sum_{j=1}^m \mathbf{P}_n^h(i, j) = 1 \quad (12)$$

250

251 Increasing the value of α used to compute \mathbf{V} strengthens the regularization, further discouraging
252 paths through low-density states. Setting $\alpha = 0$ recovers the standard Doob kernel without density
253 adjustment.
254255 **Proposition 3.1** (ScooBDoob yields the target end state for one-hot ν). *Assume the terminal
256 distribution is the one-hot vector $\nu = \mathbf{e}_z$ concentrating all mass on a fixed target microstate z .
257 Let \mathbf{h}_n (or \mathbf{h}_n^V) be defined by the backward recursions above and let \mathbf{P}_n^h be the corresponding
258 Doob kernels. For any initial distribution μ_0 supported on $\{i : \mathbf{h}_0(i) > 0\}$, the forward evolution*
259

260
$$\mu_{n+1} = \mu_n \mathbf{P}_n^h, \quad n = 0, 1, \dots, N-1$$

261

262 at terminal time satisfies $\mu_N = \nu$.
263264 **Stiefel Manifold Constraint for Large Systems** To enable stable eigendecomposition of the
265 transition matrix and enforce orthonormality of the learned eigenvectors, we begin by constructing
266 the symmetrized form of the Markov State Model. Let $\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}$ have stationary distribution π
267 with $\mathbf{D} = \text{diag}(\pi)$, and define the reversible symmetrization
268

269
$$\mathbf{M} = \mathbf{D}^{1/2} \mathbf{P}(\tau) \mathbf{D}^{-1/2} = \mathbf{Q}_{\text{MSM}} \mathbf{\Lambda}_{\text{MSM}} \mathbf{Q}_{\text{MSM}}^\top, \quad (13)$$

270 where $\mathbf{Q}_{\text{MSM}} \in \mathbb{R}^{m \times r}$ has orthonormal columns and $\Lambda_{\text{MSM}} = \text{diag}(\lambda_1, \dots, \lambda_r)$ collects the top r modes (271 $r = m$ gives the full basis). We maintain orthonormal columns by constraining \mathbf{Q}_{MSM} to 272 the Stiefel manifold $\mathcal{S}_{m,r}$ defined by 273

$$274 \quad \mathbf{Q}_{\text{MSM}} \in \mathcal{S}_{m,r} = \{\mathbf{Q} \in \mathbb{R}^{m \times m} \mid \mathbf{Q}^\top \mathbf{Q} = \mathbf{I}_r\}, \quad (14)$$

275 After a Euclidean update on a chosen objective function \mathcal{L} , 276

$$277 \quad \mathbf{Q}^{(t+1)} = \mathbf{Q}_{\text{MSM}}^{(t)} - \eta \nabla_{\mathbf{Q}_{\text{MSM}}} \mathcal{L}(\mathbf{Q}_{\text{MSM}}^{(t)}), \quad (15)$$

278 with η being a step size. We retract back to $\mathcal{S}_{m,r}$ via a SVD: 279

$$280 \quad \mathbf{Q}^{(t+1)} = \mathbf{U} \Sigma \mathbf{V}^\top, \quad \mathbf{U}^\top \mathbf{U} = \mathbf{V}^\top \mathbf{V} = \mathbf{I} \quad (16)$$

282 where $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_k)$. This ensures that the transition matrix \mathbf{Q}_{MSM} remains orthonormal 283 while steering the kinetics towards the target state. 284

285 3.3 LEARNING TRANSITION DYNAMICS FROM MARKOV STATE MODELS

286 To learn the optimal discrete bridges over microstates, we treat the empirical MSM transition matrix 287 $\mathbf{P}_{\text{ref}}(\tau) \in \mathbb{R}^{m \times m}$ as the fixed reference dynamics. We match the reference dynamics with a one-step 288 parameterized network $\mathbf{P}_\theta(\tau)$ that is row-stochastic, and define a sequence of time-dependent tilted 289 transition matrices with Doob's h -transform. Finally, we learn a time-dependent network that predicts 290 the tilted transition probabilities $\mathbf{P}_{\theta,n}^h$ which preserve the MSM structure via a Stiefel manifold 291 constraint. The full training procedure is provided in Algorithm 2. 292

293 **Parameterization of the Discrete Transition Matrices** Let $\mathbf{P}_\theta(\tau) \in \mathbb{R}^{m \times m}$ be the learned 294 one-step transition matrix. Let z_θ be a neural network that produces a positive endpoint potential; 295 define

$$296 \quad \mathbf{h}_{\theta,N} = \nu, \quad \mathbf{h}_{\theta,n} = \mathbf{P}_\theta(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{\theta,n+1}, \quad n \in \{N-1, \dots, 0\}. \quad (17)$$

297 with density-aware regularization $w_j = \exp(-\tau \mathbf{V}(j))$ introduced in Section 3.2. The student's 298 time-inhomogeneous kernels are the discrete Doob tilts: 299

$$300 \quad \mathbf{P}_{\theta,n}^h(i, j) = \frac{\mathbf{P}_\theta(i, j) w_j \mathbf{h}_{\theta,n+1}(j)}{(\mathbf{P}_\theta(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{\theta,n+1})(i)}, \quad \sum_{j=1}^m \mathbf{P}_{\theta,n}^h(i, j) = 1. \quad (18)$$

303 3.4 DEFINING THE TRAINING OBJECTIVE

305 **Unconditional MSM Loss** Let $C_{ij}(\tau)$ denote the empirical transition counts at lag τ and $\mathbf{P}_\theta(\tau) \in$ 306 $\mathbb{R}^{m \times m}$ be a parameterized network. We train \mathbf{P}_θ with an unconditional MSM loss \mathcal{L}_{MSM} defined as 307

$$308 \quad \mathcal{L}_{\text{MSM}} = - \sum_{i,j} C_{ij}(\tau) \log \mathbf{P}_{\theta,ij}(\tau) + \gamma_{\text{CK}} \mathcal{L}_{\text{CK}} + \gamma_{\text{rev}} \mathcal{L}_{\text{rev}} \quad (19)$$

$$310 \quad \mathcal{L}_{\text{CK}} = \sum_{k=2}^K \left\| \widehat{\mathbf{P}}(k\tau) - \mathbf{P}_\theta(\tau)^k \right\|_F^2, \quad \mathcal{L}_{\text{rev}} = \left\| \mathbf{D}_\theta \mathbf{P}_\theta(\tau) - \mathbf{P}_\theta(\tau)^\top \mathbf{D}_\theta \right\|_F^2 \quad (20)$$

313 where $\boldsymbol{\pi}_\theta^\top \mathbf{P}_\theta(\tau) = \boldsymbol{\pi}_\theta^\top$ and $\mathbf{D}_\theta = \text{diag}(\boldsymbol{\pi}_\theta)$, and $K \in \{2, 3\}$ in practice. The first term represents 314 the count likelihood, and the second and third terms are the Chapman-Kolmogorov (CK) consistency 315 and reversibility, respectively. 316

317 **Schrödinger Bridge Loss** To train $\mathbf{P}_{\theta,n}^h$ such that it predicts the optimal Schrödinger bridge defined 318 by tilting the reference dynamics with Doob's h -transform, we minimize a KL-divergence-based 319 bridge loss $\mathcal{L}_{\text{bridge}}$ defined as 320

$$321 \quad \mathcal{L}_{\text{bridge}} = \sum_{n=0}^{N-1} \sum_{i=1}^m \text{KL} \left(\mathbf{P}_{\text{ref},n}^h(i, \cdot) \middle\| \mathbf{P}_{\theta,n}^h(i, \cdot) \right) \quad (21)$$

323 where $\mathbf{P}_{\text{ref},n}^h(i, \cdot)$ is defined with (12) using the fixed reference dynamics $\mathbf{P}_{\text{ref}}(\tau)$

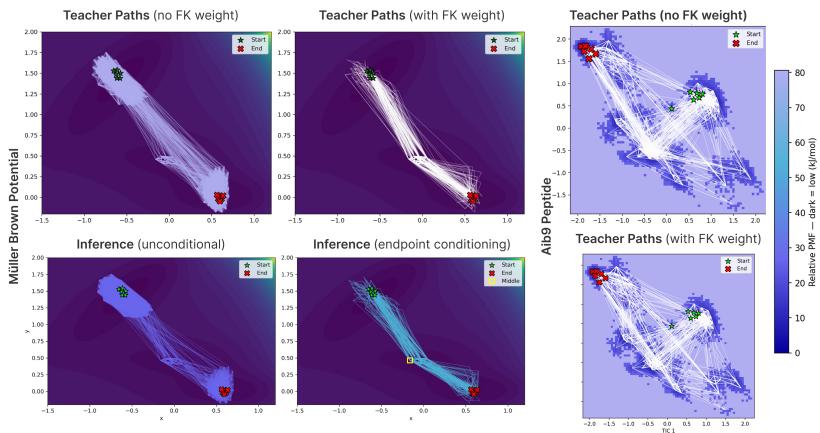


Figure 2: **Transition Paths Predicted by ScooBDoob on Müller-Brown Potential and Aib9 Peptide.** We show the teacher paths with and without density-aware FK reweighting. The inference paths are shown for the MB potential with and without endpoint conditioning.

Stiefel Loss Given the parameterized transition matrix $\mathbf{P}_\theta(\tau)$, we obtain the top- r eigenvector-eigenvalue pairs by symmetrizing and diagonalizing $\mathbf{M}_\theta \approx \mathbf{Q}_\theta \Lambda_\theta \mathbf{Q}_\theta^\top$, $\mathbf{Q}_\theta \in \mathbb{R}^{m \times r}$ (See Appendix B.1 for full details). To ensure that the eigenvectors are orthonormal, we add a soft Stiefel loss $\mathcal{L}_{\text{stief}}$ defined as

$$\mathcal{L}_{\text{stief}} = \|\mathbf{Q}_\theta^\top \mathbf{Q}_\theta - \mathbf{I}_r\|_F^2 + \eta \sum_{i=1}^r \max(0, |\lambda_{\theta,i}| - 1)^2 \quad (22)$$

We show in Figure A1 that the orthonormal constraint is enforced throughout training, highlighting that our approach effectively preserves the validity of the learned transition matrix. Finally, we define the **total training loss** to be the weighted sum of the MSM loss, bridge loss, and Stiefel loss, given by

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{MSM}} + \gamma_{\text{bridge}} \mathcal{L}_{\text{bridge}} + \gamma_{\text{stief}} \mathcal{L}_{\text{stief}} \quad (23)$$

which jointly optimizes the one-step transition matrix (teacher model) and the time-varying conditional transition dynamics.

3.5 SIMULATING THE LEARNED TRANSITION DYNAMICS

Simulating Unconditional Dynamics Given an initial distribution over microstates $\mu_0 \in \Delta^{m-1}$, we can simulate the unconditional trajectory over time $T = N\tau$ with the learned reference transition matrix $\mathbf{P}_\theta(\tau)$.

$$\mu_n = \mu_0 \mathbf{P}_\theta(\tau)^n, \quad \mathbf{x}_{n+1} \sim \mathbf{P}_\theta(\tau)(\mathbf{x}_n, \cdot) \quad (24)$$

Target Conditioned Bridge Given a time horizon $T = N\tau$ and a target distribution $\nu \in \mathbb{R}^m$, we can sample the intermediate trajectory from an initial distribution $\mu_0 \in \Delta^{m-1}$

$$\mu_{n+1} = \mu_n \mathbf{P}_{\theta,n}^h \quad \text{or} \quad \mathbf{x}_{n+1} \sim \mathbf{P}_{\theta,n}^{(h,V)}(\mathbf{x}_n, \cdot). \quad (25)$$

over time steps $n \in \{1, \dots, N\}$. Unconditional and target-conditioned simulation proceeds via Algorithm 3.

4 EXPERIMENTS

Here, we demonstrate the effectiveness of **ScooBDoob** on predicting discrete transitions between MD states conditioned on a target state. We start with a synthetic example on the Müller-Brown (MB) potential energy landscape, illustrating the model’s ability to capture intermediate states between conditioned endpoints. Then, we scale our evaluation to the 9-residue α -helical Aib9 peptide with two distinct intermediate paths (Karle and Bala, 1990).

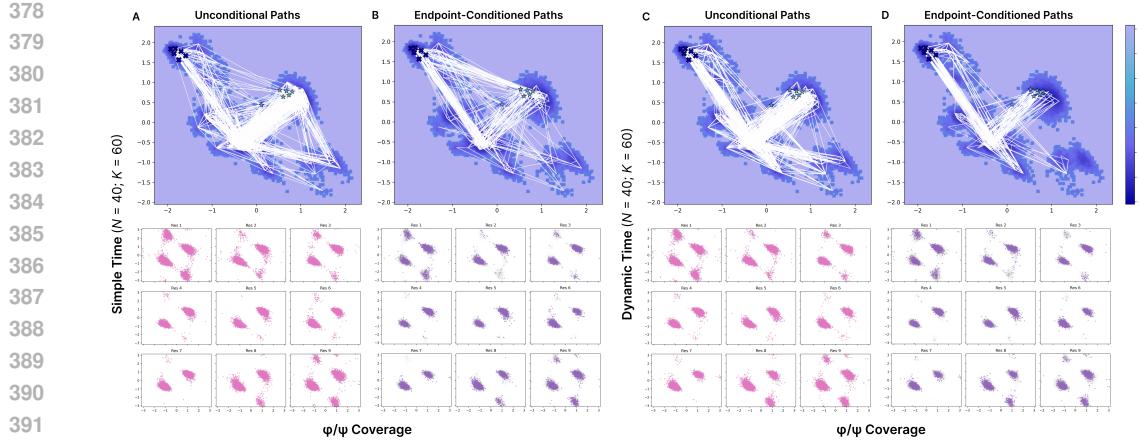


Figure 3: **Simulated transition paths for Aib9 Peptide.** Simple time indicates a fixed lag time $\tau = 60$, and dynamic time indicates a non-fixed lag time, N indicates the number of jumps simulated at inference, and K denotes the number of discrete microstates. Dark purple indicates high probability mass, and light purple indicates low probability mass. The axes are the φ/ψ dihedral angles. (A) Unconditional paths simulated for 60 jumps. (B) Endpoint-conditioned paths with Doob’s h -transform simulated with $\tau = 60$. (C) Unconditional paths and (D) endpoint-conditioned paths simulated from dynamic τ .

4.1 MÜLLER-BROWN POTENTIAL

Setup Following (Müller and Brown, 1979), we build up the testing system for a 2D Müller-Brown potential with a potential energy landscape $U(x)$ with three local minima states. We generated 8 unconditioned rollouts of length 8000 steps each, seeding half of the trajectories near the starting point at $(-0.6, 1.5)$, and the other half near the end point at $(0.6, 0.0)$. 64K frames are used for training in total. Experiment details are given in Appendix E.

Results Using TICA with lag $\tau = 120$ steps, we discretize trajectories into $K = 200$ microstates. The reference MSM exhibits a spectral gap with $\lambda_2 = 0.986$, indicating slow transitions. We first constructed our FK-Doob teacher with density-aware weights and committor-based biasing to enable transition paths to cross saddle points. After training a parameterized student kernel, we found that the unconditional path explored essential states, while conditioning on the target end state significantly reduced the search space and produced more concentrated endpoints (Figure 3, Table 1). To test generalization, we evaluated zero-shot performance across $N \in \{5, 55, 120\}$. The student kernel adapted well for $N = 55$ and $N = 120$, but for the extreme case of $N = 5$, it failed to consistently cross saddle points. This suggests that careful selection of N is critical to ensure sufficient exploration time (Figure A3).

4.2 AIB9 PEPTIDE

Setup Aib9 peptide is a 9-residue peptide experimentally validated to have two known macro intermediate states. We retrieve the Aib9 peptide trajectory with 100 ns simulation length from (Wang and Tiwary, 2021). We picked the replica at $400K$ for training and $412K$ for zero-shot prediction. There are a total of 50K frames, and 70% are used for training.

Table 1: **Results for Müller Brown potential with $N = 60$.**

Metric	MB potential
Row-KL (\downarrow)	0.3204
CK (\downarrow)	0.5401
Mean \mathcal{W}_2 (\downarrow)	0.2038

Results We selected the $400K$ replica as our training trajectory and built ScooBDoob on the TICA-projected microstates of the Aib9 peptide using τ sweeping based on a balance selection from the spectral gap against CK error. The teacher kernel, trained with FK constraints, produced smoother and more connected transition paths (Figure 3). In addition to matching MSM metrics (Table 2), we mapped transitions back to the original ψ/ϕ angle distributions and verified that the correct intermediate states participated in the transitions with high probability.

432 **Table 2: Ablation studies for Aib9 experiment hyperparameters.** Metrics are computed for inference rollouts.
 433 Total steps N determine the step choices for the models. The number of nearest neighbors K determines the
 434 number of discrete microstates that can be transitioned into. Simple timestep defines a rigid number of steps,
 435 and dynamic timesteps allow various timesteps.

Hyperparameter	Row-KL (↓)	CK (↓)	Mean \mathcal{W}_2 (↓)	KL _{endpoint} (↓)
Total Steps N at fixed $K = 40$				
$N = 20$	0.48 ± 0.08	0.67	0.032	1.09 ± 0.01
$N = 40$	0.40 ± 0.06	0.66	0.19	11.17 ± 0.04
$N = 60$	0.46 ± 0.08	0.67	0.053	0.88 ± 0.02
Nearest Neighbor K at fixed $N = 60$				
$K = 40$	0.45 ± 0.08	0.64	0.05	0.82 ± 0.02
$K = 60$	0.42 ± 0.07	0.67	0.19	10.78 ± 0.04
$K = 100$	0.48 ± 0.08	0.63	0.040	0.86 ± 0.02
Timestep $N = 40, K = 60$				
Simple	0.26 ± 0.07	0.49	0.0008	0.42 ± 0.01
Dynamic	0.46 ± 0.08	0.67	0.053	0.88 ± 0.02

446
 447
 448 The lag time τ and the number of clusters K contribute most strongly to the quality of the sampled
 449 paths. With a larger K , the model has more possible microstate transitions, which increases its ability
 450 to reach rare states. Conversely, a smaller K makes the number of microstates closer to the number
 451 of macrostates, effectively coarsening the dynamics. With the additional of the desired end state
 452 signal during inference, the paths will guarantee to end at the endpoints, as demonstrated in the
 453 Figure 3. When comparing fixed and dynamic timesteps, the dynamic variant produces paths that
 454 visually follow the teacher more closely, often finding multiple reasonable routes to the endpoint. By
 455 contrast, the fixed variant sometimes finds the shortcut to the endpoints and involve some looping
 456 between nearby states, as shown by the higher density of the white paths chosen between some states.
 457 Although the fixed N yields lower row-KL and endpoint KL numerically, these scores often reflect
 458 confident transitions rather than a more faithful path exploration follows the teacher.
 459

460 In addition, we noticed that during inference, when $N = K$, the end point KL divergence spikes,
 461 even though other metrics remain comparable. We suspect that the model effectively compressed the
 462 dynamics so that the probability mass arrives at the endpoints either too quickly or along the wrong
 463 support. This creates an artificial divergence in the endpoint distribution, even though the rollout
 464 paths still appear reasonable.

465 To monitor spectral stability during training, we evaluated the leading eigenvalues and eigenvectors
 466 of the learned transition matrix P_θ at each epoch (Table A2, Figure A1). The dominant eigenvalue λ_1
 467 remained near 1, as required for MSMs, and eigenvalue equation residuals were negligible, confirming
 468 numerical accuracy. Successive eigenvectors showed overlaps approaching 1 with small Frobenius
 469 distances, indicating smooth evolution and stable slow modes. These diagnostics confirm that Stiefel
 470 regularization stabilizes the eigendecomposition during training.

471 We also tested zero-shot generalization on replicas at $412K$ and $503K$ (Table A1). The fixed- N
 472 kernel achieved lower row-KL under temperature shift by concentrating transitions into sharper steps,
 473 while the multi- N kernel spread probability more smoothly across paths. This smoothing raised
 474 row-KL slightly but kept CK error low, showing that multi- N training preserves overall kinetics and
 475 yields more robust rollouts at unseen temperatures despite less favorable local scores.

476 5 CONCLUSION

477 We have introduced Schrödinger Bridge with Doob’s h -Transform (**ScooBDoob**), a machine learning
 478 framework for modeling molecular dynamics trajectories by learning discrete transitions between
 479 metastable states. ScooBDoob constructs a principled Schrödinger bridge from empirical MSMs
 480 using Doob’s transform and density-aware regularization, enabling rare-event trajectory generation
 481 without a known energy landscape. This approach allows conditioning on endpoint structures, making
 482 it well-suited for applications like protein refolding, allosteric modulation, and conformational control.
 483 Our future extensions will incorporate experimental intermediates or kinetic priors as constraints,
 484 enabling multi-objective control over long-timescale dynamics in undersampled or sparse regimes.
 485

486 REPRODUCIBILITY STATEMENT
487

488 We have taken care to make all results in this paper reproducible. Full model descriptions, objectives,
489 and algorithms are provided in Sections 3–3.1, with pseudocode for training and inference given in
490 Algorithms 2 and 3. Experimental details for the Müller-Brown potential and Aib9 peptide setups are
491 described in Sections 4, 4.2, and Appendix E. Hyperparameters, loss functions, and evaluation metrics
492 are presented in Appendix E (Tables A3, 2, and A1). Spectral stability diagnostics are provided
493 in Appendix D. Random seeds, training settings, and optimization hyperparameters are explicitly
494 reported. Upon publication, we will release an repository containing all code, preprocessing scripts,
495 model checkpoints, and one-command runners to regenerate the figures and tables. Together, these
496 ensure full reproducibility of the results.

497
498 ETHICS STATEMENT
499

500 This paper introduces a computational framework for simulating metastable dynamics in molecular
501 systems. All experiments use either synthetic toy landscapes (Müller-Brown potential, Section 4) or
502 publicly available molecular dynamics datasets (Aib9 peptide trajectory, Section 4.2, Appendix E).
503 No human subjects, identifiable personal data, or animal studies are involved. The work is limited to
504 methodological development and does not provide experimental protocols or actionable therapeutic
505 targets. All datasets are cited with attribution and used under their original licenses. While generative
506 frameworks for biomolecular dynamics could in principle have broader applications, the scope here
507 is fundamental simulation methodology, with minimal risk of misuse. We also report compute
508 assumptions and hyperparameters (Appendix E) to promote efficient and transparent replication.

509
510 REFERENCES
511

512 Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
513 Victor García Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
514 emulation of protein equilibrium ensembles with generative deep learning. *Science*, page eadv9817,
515 2025a.

516 Debasish Kumar Ghosh and Akash Ranjan. The metastable states of proteins. *Protein Science*, 29(7):
517 1559–1568, 2020.

518 Sophia Vincoff, Shrey Goel, Ksenia Kholina, Rishab Pulugurta, Pranay Vure, and Pranam Chatterjee.
519 Fuson-plm: a fusion oncoprotein-specific language model via adjusted rate masking. *Nature
520 Communications*, 16(1):1436, 2025.

521 John D Chodera and Frank Noé. Markov state models of biomolecular conformational dynamics.
522 *Current opinion in structural biology*, 25:135–144, 2014.

523 Anthony Trubiano and Michael F Hagan. Markov state model approach to simulate self-assembly.
524 *Physical Review X*, 14(4):041063, 2024.

525 Vijay S Pande, Kyle Beauchamp, and Gregory R Bowman. Everything you wanted to know about
526 markov state models but were afraid to ask. *Methods*, 52(1):99–105, 2010.

527 Anna-Simone Frank, Alexander Sikorski, and Susanna Röblitz. Spectral clustering of markov chain
528 transition matrices with complex eigenvalues. *arXiv preprint arXiv:2206.14537*, 2022.

529 Kirill A Konovalov, Ilona Christy Unarta, Siqin Cao, Eshani C Goonetilleke, and Xuhui Huang.
530 Markov state models to study the functional dynamics of proteins in the wake of machine learning.
531 *JACS Au*, 1(9):1330–1341, 2021.

532 Sanjeev Raja, Martin Sipka, Michael Psenka, Tobias Kreiman, Michal Pavelka, and Aditi S. Krish-
533 napriyan. Action-minimization meets generative modeling: Efficient transition path sampling with
534 the onsager-machlup functional. In *Forty-second International Conference on Machine Learning*,
535 2025.

540 Yuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P Gomes, Alan
 541 Aspuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational approach
 542 to transition path sampling. In *The Thirty-eighth Annual Conference on Neural Information
 543 Processing Systems*, 2024.

544 Kiyoung Seong, Seonghyun Park, Seonghwan Kim, Woo Youn Kim, and Sungsoo Ahn. Transition
 545 path sampling with improved off-policy training of diffusion path samplers. In *The Thirteenth
 546 International Conference on Learning Representations*, 2025.

547 Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
 548 optimal control for collective variable free sampling of molecular transition paths. *Advances in
 549 Neural Information Processing Systems*, 36:79540–79556, 2023.

550 Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos A. Theodorou, and
 551 Ricky T. Q. Chen. Generalized schrödinger bridge matching. *International Conference on Learning
 552 Representations*, 2023.

553 Guan-Horng Liu, Jaemoo Choi, Yongxin Chen, Benjamin Kurt Miller, and Ricky TQ Chen. Adjoint
 554 schrödinger bridge sampler. *arXiv preprint arXiv:2506.22565*, 2025.

555 Martin K Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-Hernández, Moritz
 556 Hoffmann, Nuria Plattner, Christoph Wehmeyer, Jan-Hendrik Prinz, and Frank Noé. Pyemma 2: A
 557 software package for estimation, validation, and analysis of markov models. *Journal of chemical
 558 theory and computation*, 11(11):5525–5542, 2015.

559 Helgi I Ingólfsson, Cesar A Lopez, Jaakko J Uusitalo, Djurre H de Jong, Srinivasa M Gopal, Xavier
 560 Periole, and Siewert J Marrink. The power of coarse graining in biomolecular simulations. *Wiley
 561 Interdisciplinary Reviews: Computational Molecular Science*, 4(3):225–248, 2014.

562 Soumil Y Joshi and Sanket A Deshmukh. A review of advancements in coarse-grained molecular
 563 dynamics simulations. *Molecular Simulation*, 47(10-11):786–803, 2021.

564 Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and Frank Noé.
 565 Identification of slow molecular order parameters for markov model construction. *The Journal of
 566 chemical physics*, 139(1), 2013.

567 George Kaminski and William L Jorgensen. Performance of the amber94, mmff94, and opls-aa force
 568 fields for modeling organic liquids. *The Journal of Physical Chemistry*, 100(46):18010–18013,
 569 1996.

570 Xiao Zhu, Pedro EM Lopes, and Alexander D MacKerell Jr. Recent developments and applications
 571 of the charmm force fields. *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 2
 572 (1):167–185, 2012.

573 Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
 574 Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion models and
 575 force fields for coarse-grained molecular dynamics. *Journal of Chemical Theory and Computation*,
 576 19(18):6151–6159, 2023.

577 Nicholas E Charron, Klara Bonneau, Aldo S Pasos-Trejo, Andrea Guljas, Yaoyi Chen, Félix Musil,
 578 Jacopo Venturin, Daria Gusew, Iryna Zaporozhets, Andreas Krämer, et al. Navigating protein
 579 landscapes with a machine-learned transferable coarse-grained model. *Nature chemistry*, pages
 580 1–9, 2025.

581 Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
 582 Victor García Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
 583 emulation of protein equilibrium ensembles with generative deep learning. *Science*, 389(6761):
 584 ead9817, 2025b.

585 Frank Noé and Cecilia Clementi. Collective variables for the study of long-time kinetics from
 586 molecular trajectories: theory and methods. *Current opinion in structural biology*, 43:141–147,
 587 2017.

594 Bernd Eising, Marco De Vivo, Zhiwei Liu, Preston Moore, and Michael L Klein. Metadynamics as a
 595 tool for exploring free energy landscapes of chemical reactions. *Accounts of chemical research*, 39
 596 (2):73–81, 2006.

597

598 Davide Branduardi, Giovanni Bussi, and Michele Parrinello. Metadynamics with adaptive gaussians.
 599 *Journal of chemical theory and computation*, 8(7):2247–2254, 2012.

600 Giovanni Bussi and Davide Branduardi. Free-energy calculations with metadynamics: Theory and
 601 practice. *Reviews in Computational Chemistry Volume 28*, pages 1–49, 2015.

602

603 Bowen Jing, Hannes Stärk, Tommi Jaakkola, and Bonnie Berger. Generative modeling of molecular
 604 dynamics trajectories. *Advances in Neural Information Processing Systems*, 37:40534–40564,
 605 2024.

606 Ameya Daigavane, Bodhi P Vani, Darcy Davidson, Saeed Saremi, Joshua A Rackers, and Joseph
 607 Kleinhenz. Jamun: Bridging smoothed molecular dynamics and score-based learning for confor-
 608 mational ensemble generation. In *ICML 2025 Generative AI and Biology (GenBio) Workshop*.

609

610 Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Aurélie Lozano, Vijil Chenthamarakshan, Payel Das,
 611 and Jian Tang. Aligning protein conformation ensemble generation with physical feedback. *arXiv*
 612 *preprint arXiv:2505.24203*, 2025.

613 Charlie B Tan, Majdi Hassan, Leon Klein, Saifuddin Syed, Dominique Beaini, Michael M Bronstein,
 614 Alexander Tong, and Kirill Neklyudov. Amortized sampling with transferable normalizing flows.
 615 *arXiv preprint arXiv:2508.18175*, 2025.

616 Danyal Rehman, Oscar Davis, Jiarui Lu, Jian Tang, Michael Bronstein, Yoshua Bengio, Alexander
 617 Tong, and Avishek Joey Bose. Fort: Forward-only regression training of normalizing flows. *arXiv*
 618 *preprint arXiv:2506.01158*, 2025.

619

620 Haibo Wang, Yuxuan Qiu, Yanze Wang, Rob Brekelmans, and Yuanqi Du. Generalized flow matching
 621 for transition dynamics modeling. *arXiv preprint arXiv:2410.15128*, 2024.

622

623 Isabella L Karle and Padmanabhan Balaram. Structural characteristics of. alpha.-helical peptide
 624 molecules containing aib residues. *Biochemistry*, 29(29):6747–6756, 1990.

625

626 Klaus Müller and Leo D Brown. Location of saddle points and minimum energy paths by a constrained
 627 simplex optimization procedure. *Theoretica chimica acta*, 53:75–93, 1979.

628

629 Yihang Wang and Pratyush Tiwary. Denoising diffusion probabilistic models for replica exchange.
 630 *arXiv preprint arXiv:2107.07369*, 2021.

631

632 Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sampling:
 633 Throwing ropes over rough mountain passes, in the dark. *Annual review of physical chemistry*, 53
 634 (1):291–318, 2002.

635

636 Christoph Dellago, Peter G Bolhuis, Félix S Csajka, and David Chandler. Transition path sampling
 637 and the calculation of rate constants. *The Journal of chemical physics*, 108(5):1964–1977, 1998.

638

639 Eric Vanden-Eijnden et al. Transition-path theory and path-finding algorithms for the study of rare
 640 events. *Annual review of physical chemistry*, 61:391–420, 2010.

641

642 Ferry Hooft, Alberto Perez de Alba Ortiz, and Bernd Eising. Discovering collective variables of
 643 molecular transitions via genetic algorithms and neural networks. *Journal of chemical theory and*
 644 *computation*, 17(4):2294–2306, 2021.

645

646 Jürgen Schlitter, Michael Engels, and Peter Krüger. Targeted molecular dynamics: a new approach
 647 for searching pathways of conformational transitions. *Journal of molecular graphics*, 12(2):84–89,
 1994.

648

649 Sergei Izrailev, Sergey Stepaniants, Barry Isralewitz, Dorina Kosztin, Hui Lu, Ferenc Molnar,
 650 Willy Wriggers, and Klaus Schulten. Steered molecular dynamics. In *Computational Molecular
 651 Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on
 652 Algorithms for Macromolecular Modelling, Berlin, May 21–24, 1997*, pages 39–65. Springer, 1999.

648 Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in monte carlo free-energy
 649 estimation: Umbrella sampling. *Journal of computational physics*, 23(2):187–199, 1977.
 650

651 Johannes Kästner. Umbrella sampling. *Wiley Interdisciplinary Reviews: Computational Molecular
 652 Science*, 1(6):932–942, 2011.

653 Alessandro Laio and Michele Parrinello. Escaping free-energy minima. *Proceedings of the national
 654 academy of sciences*, 99(20):12562–12566, 2002.
 655

656 Jeffrey Comer, James C Gumbart, Jérôme Hénin, Tony Lelièvre, Andrew Pohorille, and Christophe
 657 Chipot. The adaptive biasing force method: Everything you always wanted to know but were
 658 afraid to ask. *The Journal of Physical Chemistry B*, 119(3):1129–1151, 2015.

659 Michele Invernizzi and Michele Parrinello. Rethinking metadynamics: from bias potentials to
 660 probability distributions. *The journal of physical chemistry letters*, 11(7):2731–2736, 2020.
 661

662 Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
 663 and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition
 664 of data: Diffusion maps. *Proceedings of the national academy of sciences*, 102(21):7426–7431,
 665 2005.

666 Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Martin Held, John D
 667 Chodera, Christof Schütte, and Frank Noé. Markov models of molecular kinetics: Generation and
 668 validation. *The Journal of chemical physics*, 134(17), 2011.

669 Gregory R Bowman, Vijay S Pande, and Frank Noé. Introduction and overview of this book. In *An
 670 introduction to Markov state models and their application to long timescale molecular simulation*,
 671 pages 1–6. Springer, 2014.
 672

673 Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. Vampnets for deep learning of molecular
 674 kinetics. *Nature communications*, 9(1):5, 2018.

675 Jonas Kohler, Yaoyi Chen, Andreas Kramer, Cecilia Clementi, and Frank Noé. Flow-matching:
 676 Efficient coarse-graining of molecular dynamics without forces. *Journal of Chemical Theory and
 677 Computation*, 19(3):942–952, 2023.
 678

679 Maciej Majewski, Adrià Pérez, Philipp Thölke, Stefan Doerr, Nicholas E Charron, Toni Giorgino,
 680 Brooke E Husic, Cecilia Clementi, Frank Noé, and Gianni De Fabritiis. Machine learning coarse-
 681 grained potentials of protein thermodynamics. *Nature Communications*, 14(1):5739, 2023.

682 Alessandro Beghi. On the relative entropy of discrete-time markov processes with given end-point
 683 densities. *IEEE Transactions on Information Theory*, 42(5):1529–1535, 2002.
 684

685 Michele Pavon, Francesco Ticozzi, et al. Schrödinger bridges for discrete-time, classical and quantum
 686 markovian evolutions. In *Proceedings of the 19th International Symposium on Mathematical
 687 Theory of Networks and Systems–MTNS*, volume 5, 2010.

688 Michele Pavon and Francesco Ticozzi. Discrete-time classical and quantum markovian evolutions:
 689 Maximum entropy problems on path space. *Journal of Mathematical Physics*, 51(4), 2010.

690 Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E Jacob. Schrödinger bridge samplers.
 691 *arXiv preprint arXiv:1912.13170*, 2019.
 692

693 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 694 bridge with applications to score-based generative modeling. *Advances in neural information
 695 processing systems*, 34:17695–17709, 2021.

696 Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn
 697 Kim. Discrete diffusion schrödinger bridge matching for graph transformation. *arXiv preprint
 698 arXiv:2410.01500*, 2024.
 699

700 Kyle A Beauchamp, Daniel L Ensign, Rhiju Das, and Vijay S Pande. Quantitative comparison of villin
 701 headpiece subdomain simulations and triplet–triplet energy transfer experiments. *Proceedings of
 the National Academy of Sciences*, 108(31):12734–12739, 2011.

702 MRF Smyth. A spectral theoretic proof of perron-frobenius. In *Mathematical Proceedings of the*
703 *Royal Irish Academy*, volume 102, pages 29–35. Royal Irish Academy, 2002.
704

705 Brooke E Husic and Vijay S Pande. Markov state models: From an art to a science. *Journal of the*
706 *American Chemical Society*, 140(7):2386–2396, 2018.

707 Valeria Simoncini. Variable accuracy of matrix-vector products in projection methods for eigencom-
708 putation. *SIAM journal on numerical analysis*, 43(3):1155–1174, 2005.
709

710 Susanna Röblitz and Marcus Weber. Fuzzy spectral clustering by pcca+: application to markov state
711 models and data classification. *Advances in Data Analysis and Classification*, 7(2):147–179, 2013.

712 Carlos X Hernández, Hannah K Wayment-Steele, Mohammad M Sultan, Brooke E Husic, and Vijay S
713 Pande. Variational encoding of complex dynamics. *Physical Review E*, 97(6):062412, 2018.
714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 OUTLINE OF APPENDIX
757758 In Appendix B, we discuss the construction of the Markov State Model and the Stiefel manifold
759 constraint (B.1). Appendix E provides the setup for our experiments and the evaluation metrics.
760 Finally, the pseudocode for training ScooBDoob is given in Appendix F.
761762 **Notation** In this work, we consider a molecular system with features $\mathbf{x}(t) \in \mathbb{R}^d$ which can be
763 reduced with TICA to a lower-dimensional feature vector $\mathbf{y}(t)$. We denote the number of microstates
764 as m and the unconditional transition matrix with lag time τ as $\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}$, where $\mathbf{P}_{ij}(\tau) \in \mathbb{R}$
765 is the probability of transition from microstate i at time t to microstate j at time $t + \tau$. This matrix
766 is constructed from the observed transition counts $C(i, j; \tau) \in \mathbb{R}$. The initial discrete distribution
767 over the microstates is denoted $\mu_0 \in \Delta^{m-1}$ and the final distribution $\nu \in \Delta^{m-1}$. Given the number
768 of lag steps N with a total time horizon $T = N\tau$, we define the discrete distribution for step
769 $n \in \{N-1, \dots, 0\}$ starting from $\mathbf{h}_N = \nu \in \Delta^{m-1}$ as $\mathbf{h}_n = \mathbf{P}(\tau)\mathbf{h}_{n+1}$. The Doob-tilted transition
770 matrices given the backward distributions \mathbf{h}_n at each time step n is denoted $\mathbf{P}_n^h \in \mathbb{R}^{m \times m}$ where the
771 transition probability from i to j is $\mathbf{P}_n^h(i, j) \in \mathbb{R}$. $\mathbf{V} : \{1, \dots, m\} \rightarrow \mathbb{R}_{\geq 0}$ denotes a density-aware
772 potential for each micro-state which is used to compute a weight vector $\mathbf{w} \in \mathbb{R}^m$ where each element
773 is $\mathbf{w}(j) = \exp(-\tau\mathbf{V}(j))$.
774775 The parameterized unconditional transition matrix with parameters θ is denoted $\mathbf{P}_\theta(\tau) \in \mathbb{R}^{m \times m}$
776 and the corresponding tilted distribution at step n is denoted $\mathbf{h}_{\theta,n} \in \mathbb{R}^m$ which constructs the tilted
777 transition matrix $\mathbf{P}_{\theta,n}^h \in \mathbb{R}^{m \times m}$. To define the Stiefel constraint, we symmetrize $\mathbf{P}_\theta(\tau)$ with the
778 diagonal matrix $\mathbf{D} = \text{diag}(\boldsymbol{\pi})$ where $\boldsymbol{\pi} \in \Delta^{m-1}$ is the stationary distribution $\boldsymbol{\pi}^\top \mathbf{P}_\theta(\tau) = \boldsymbol{\pi}$ to get
779 the symmetrical matrix $\mathbf{M} \in \mathbb{R}^{m \times m}$. Then, we perform a symmetric eigendecomposition to obtain
780 the orthonormal matrix $\mathbf{Q}_{\text{MSM}} \in \mathbb{R}^{m \times r}$ and eigenvalues $\boldsymbol{\Lambda}_{\text{MSM}} = \text{diag}(\lambda_1, \dots, \lambda_r)$. At inference
781 time, we generate intermediate distributions $\mu_n \in \Delta^{m-1}$ by applying the learned transition to the
782 initial distribution μ_0 and sampling discrete states $\mathbf{x}_n \sim \mu_n$.
783784 A RELATED WORKS
785786 **Transition Path Sampling (TPS)** Computational approaches to transition path sampling over en-
787 ergy landscapes have been widely explored (Bolhuis et al., 2002; Dellago et al., 1998; Vanden-Eijnden
788 et al., 2010). Traditionally, non-ML approaches have leveraged low-dimensional representations
789 of molecules via *collective variables* (CVs) (Hooft et al., 2021), including steered MD (Schlitter
790 et al., 1994; Izrailev et al., 1999), umbrella sampling (Torrie and Valleau, 1977; Kästner, 2011),
791 meta-dynamics (Laio and Parrinello, 2002; Ensing et al., 2006; Branduardi et al., 2012; Bussi and
792 Branduardi, 2015), adaptive biasing force Comer et al. (2015), and on-the-fly probability-enhanced
793 sampling (Invernizzi and Parrinello, 2020). Such methods are powerful when good CVs are known,
794 but selecting CVs remains challenging (Hooft et al., 2021).
795796 **State-based Kinetic Models** An alternative line of work focuses on *state-based* models that extract
797 slow kinetics directly from simulation data. A rigorous theory shows that optimal CVs correspond
798 to the eigenfunctions of the transfer operator underlying MD (Noé and Clementi, 2017). Practical
799 approximations include Time-lagged Independent Component Analysis (TICA) (Pérez-Hernández
800 et al., 2013), Diffusion Maps (Coifman et al., 2005), and Markov State Models (MSMs) (Prinz et al.,
801 2011; Bowman et al., 2014; Mardt et al., 2018), which discretize conformational space into metastable
802 states and estimate transition probabilities. These approaches unify dimensionality reduction and
803 kinetics estimation under a variational principle.
804805 **Modeling Molecular Dynamics** More recently, coarse-grained and full-atom generative models
806 have sought to reconstruct trajectories and sample new transitions (Arts et al., 2023; Charron et al.,
807 2025; Kohler et al., 2023; Majewski et al., 2023; Lu et al., 2025; Raja et al., 2025). Methods such as
808 score-based modeling (Daigavane et al.; Tan et al., 2025), energy-based modeling (Lu et al., 2025;
809 Lewis et al., 2025b), and flow-based generative dynamics (Jing et al., 2024; Kohler et al., 2023;
Rehman et al., 2025) attempt to bypass explicit force fields by directly learning mappings between
metastable ensembles.
810

Schrödinger Bridge over MSM In discrete time, classical Schrödinger Bridges (SBs) on Markov chains (Beghi, 2002; Pavon et al., 2010; Pavon and Ticozzi, 2010) solve endpoint-constrained path-space maximum-entropy problems by a multiplicative Doob h -transform of a prior kernel, with potentials given by space-time harmonic functions and uniqueness via the Beurling-Jamison theorem. While this theory provides constructive formulas for tilting Markov kernels analytically, **ScooBDoob** learns these tiltings directly from molecular dynamics trajectories. The student kernel \mathbf{P}_θ acts as a parametric Doob h -transform, constrained by reversibility and conditioned on metastable endpoints.

Whereas SBs enforce exact marginals and admit closed-form harmonic potentials, **ScooBDoob** enforces macrostate marginals and learns an approximate bridge distribution, extending the maximum entropy principle into a data-driven regime. Thus, given an MSM prior \prod and endpoint marginals (μ_0, μ_N) , with μ_N concentrated on a target macrostate, ScooBDoob seeks a Markov bridge kernel \mathbf{P}_θ that approximates the SB minimizer $\mathbb{P}^{\text{SB}} = \min_{\mathbb{P}} \{\text{KL}(\mathbb{P} \parallel \mathbb{Q}) : \mathbb{P}_0 = \mu_0, \mathbb{P}_N = \mu_N\}$ by training \mathbf{P}_θ to match the Doob-tilted optimum through MSM consistent losses.

Learning Schrödinger Bridges Schrödinger bridge methods have also been used outside molecular dynamics to construct samplers or generative models in continuous time. Bernton et al. (2019) approximates iterative proportional fitting in continuous state spaces to reduce variance in Annealed Importance Sampling and Sequential Monte Carlo. With others (De Bortoli et al., 2021; Liu et al., 2023) connect bridge dynamics with score-based generative modeling and Kim et al. (2024) extend the scope into graph transformation. While these methods focus on sampling from static or structured distributions via continuous or discrete diffusions, our approach differs in that we operate on finite-state MSMs and learn bridge kernels directly from MD trajectories to generate endpoint-conditioned paths between metastable states.

B EXTENDED THEORETICAL BACKGROUND

Here, we describe preliminaries and additional details on the theory of Schrödinger bridge matching with Doob’s h -Transform and optimization on the Stiefel manifold.

B.1 STIEFEL MANIFOLD CONSTRAINT

Stiefel Manifold The Stiefel manifold, denoted $\mathcal{S}_{n,k}$ is the set of $n \times k$ ($n \geq k$) orthonormal rectangular matrices defined as

$$\mathcal{S}_{n,k} = \{\mathbf{Q} \in \mathbb{R}^{n \times k} \mid \mathbf{Q}^\top \mathbf{Q} = \mathbf{I}_k\} \quad (26)$$

where $\mathbf{I}_k \in \mathbb{R}^{k \times k}$ is the $k \times k$ identity matrix.

Eigendecomposition of MSM Given the MSM transition matrix $\mathbf{P}(\tau)$ at lag time τ , there exists a stationary distribution $\pi \in \mathbb{R}^m$ such that $\mathbf{P}(\tau)\pi = \pi$ (Beauchamp et al., 2011). Symmetrize via:

$$\mathbf{M} = \mathbf{D}^{\frac{1}{2}} \mathbf{P}(\tau) \mathbf{D}^{-\frac{1}{2}}, \quad \mathbf{D} = \text{diag}(\pi) \quad (27)$$

We then diagonalize

$$\mathbf{M} = \mathbf{Q}_{\text{MSM}} \boldsymbol{\Lambda}_{\text{MSM}} \mathbf{Q}_{\text{MSM}}^\top, \quad \mathbf{Q}_{\text{MSM}} \in \mathbb{R}^{m \times r}, \quad \boldsymbol{\Lambda}_{\text{MSM}} = \text{diag}(\lambda_1, \dots, \lambda_m), \quad (28)$$

so that

$$\mathbf{P}(\tau) = \mathbf{D}^{-\frac{1}{2}} \mathbf{Q}_{\text{MSM}} \boldsymbol{\Lambda}_{\text{MSM}} \mathbf{Q}_{\text{MSM}}^\top \mathbf{D}^{\frac{1}{2}} = \sum_{i=1}^m \lambda_i \mathbf{r}_i \mathbf{\ell}_i^\top, \quad (29)$$

where λ_i are the eigenvalues of $\mathbf{P}(\tau)$, and \mathbf{r}_i and $\mathbf{\ell}_i$ are the corresponding right and left eigenvectors, respectively. $\mathbf{r}_i = \mathbf{D}^{-\frac{1}{2}} \mathbf{q}_i$, $\mathbf{\ell}_i = \mathbf{D}^{\frac{1}{2}} \mathbf{q}_i$, and bi-orthogonality $\mathbf{\ell}_i^\top \mathbf{D} \mathbf{r}_j = \delta_{ij}$ maintains.

B.2 CHAPMAN-KOLMOGOROV CONSISTENCY

For a Markov chain modeling of dynamics at lag time τ , one step of length $k\tau$ should look the same as k consecutive steps of length τ .

$$\mathbf{P}(k\tau) = \mathbf{P}(\tau)^k, \quad k = 2, 3, \dots \quad (30)$$

If such CK consistency fails, the assumption that the dynamics are approximately Markovian at lag τ does not hold.

From the MD trajectory, count matrix C_{ij} can be built to represent jump from state i to state j after lag τ . Assume that at lag $k\tau$ there exists $C_{k\tau}$, counts can be turned into probability:

$$\hat{\mathbf{P}}_{\text{ref}}(\tau)[i, j] = \frac{C_{\tau}[i, j]}{\sum_{j'}(C_{\tau}[i, j'])} \quad (31)$$

where $j = k$ depend on the metrics asked. ScoobDoob parameterizes the one-step kernel P_{θ} , and the CK consistency is used to measure whether

$$\mathbf{P}_{\theta}^k \approx \hat{\mathbf{P}}_{\text{ref}}(k\tau). \quad (32)$$

Low CK error indicates that the learned one-step dynamics compose correctly over longer lags, a prerequisite for stable implied timescales and reliable kinetic predictions (Prinz et al., 2011; Bowman et al., 2014; Noé and Clementi, 2017).

C THEORETICAL PROOFS

Lemma 1 (Row-stochasticity and telescoping identity). *Let $\mathbf{P}(\tau) \in \mathbb{R}^{m \times m}$ be a row-stochastic MSM transition matrix and let $(\mathbf{h}_n)_{n=0}^N$ be the backward sequence defined by*

$$\mathbf{h}_N = \nu, \quad \mathbf{h}_n = \mathbf{P}(\tau) \mathbf{h}_{n+1}, \quad n = N-1, \dots, 0,$$

or, in the density-aware case, by

$$\mathbf{h}_N^V = \nu, \quad \mathbf{h}_n^V = \mathbf{P}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V, \quad n = N-1, \dots, 0,$$

with $w_j = \exp(-\tau V(j))$ as in Section 3.2. Define the time-inhomogeneous Doob kernels

$$\mathbf{P}_n^h(i, j) = \frac{\mathbf{P}_{ij}(\tau) \mathbf{h}_{n+1}(j)}{\mathbf{h}_n(i)}, \quad \text{or} \quad \mathbf{P}_n^h(i, j) = \frac{\mathbf{P}_{ij}(\tau) w_j \mathbf{h}_{n+1}^V(j)}{(\mathbf{P}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V)(i)}.$$

Then for every n and i , $\sum_j \mathbf{P}_n^h(i, j) = 1$ (row-stochasticity). Moreover, for any path (i_0, \dots, i_N) the path probability under the Doob chain satisfies the telescoping identity

$$\mu_0(i_0) \prod_{n=0}^{N-1} \mathbf{P}_n^h(i_n, i_{n+1}) = \mu_0(i_0) \left(\prod_{n=0}^{N-1} \mathbf{P}_{i_n i_{n+1}}(\tau) \right) \cdot \frac{\mathbf{h}_N(i_N)}{\mathbf{h}_0(i_0)},$$

with \mathbf{h}_n replaced by \mathbf{h}_n^V in the density-aware case. Row-stochasticity is immediate from the weighted space-time harmonic relation $\mathbf{h}_n = \mathbf{P}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{n+1}$ (cf. Pavon-Ticozzi, Eq 25) (Pavon and Ticozzi, 2010), exactly as in their Eq. 27, where $\sum_j \hat{p}_{ij} = 1$ follows by dividing $\sum_j \pi_{ij} \varphi(t+1, j)$ by $\varphi(t, i)$.

Proof. Row-stochasticity follows from the backward recursion, where we sum over columns j :

$$\sum_j^m \mathbf{P}_n^h(i, j) = \frac{1}{\mathbf{h}_n(i)} \sum_j^m \mathbf{P}_{ij}(\tau) \mathbf{h}_{n+1}(j) = \frac{(\mathbf{P}(\tau) \mathbf{h}_{n+1})(i)}{\mathbf{h}_n(i)} = \frac{\mathbf{h}_n(i)}{\mathbf{h}_n(i)} = 1,$$

and similarly in the density-aware case with $\text{diag}(\mathbf{w}) \mathbf{h}_{n+1}^V$. For the telescoping identity, expand the product of Doob factors and note that the ratios $\mathbf{h}_{n+1}(i_{n+1})/\mathbf{h}_n(i_n)$ cancel along the path, leaving only $\mathbf{h}_N(i_N)/\mathbf{h}_0(i_0)$. The argument is identical with \mathbf{h}^V . \square

Proposition 3.1 (ScoobDoob yields the target end state for one-hot ν). *Assume the terminal distribution is the one-hot vector $\nu = \mathbf{e}_z$ concentrating all mass on a fixed target microstate z . Let \mathbf{h}_n (or \mathbf{h}_n^V) be defined by the backward recursions above and let \mathbf{P}_n^h be the corresponding Doob kernels. For any initial distribution μ_0 supported on $\{i : \mathbf{h}_0(i) > 0\}$, the forward evolution*

$$\mu_{n+1} = \mu_n \mathbf{P}_n^h, \quad n = 0, 1, \dots, N-1$$

at terminal time satisfies $\mu_N = \nu$.

918 *Proof.* We prove the density-aware case (the unweighted case is identical with $w_j \equiv 1$). Since
919 $\nu = \mathbf{e}_z$, we have

$$920 \quad \mathbf{h}_N^V = \nu = \mathbf{e}_z, \quad \mathbf{h}_{N-1}^V = \mathbf{P}(\tau) \operatorname{diag}(\mathbf{w}) \mathbf{e}_z = w_z \mathbf{P}(\tau) \mathbf{e}_z,$$

922 so that $\mathbf{h}_{N-1}^V(i) = w_z \mathbf{P}_{iz}(\tau)$ for every i . By Eq. (12), for the final step $n = N - 1$ and any i, j ,

$$924 \quad \mathbf{P}_{N-1}^h(i, j) = \frac{\mathbf{P}_{ij}(\tau) w_j \nu(j)}{w_z \mathbf{P}_{iz}(\tau)} = \delta_{jz} = \begin{cases} 1, & j = z, \\ 0, & j \neq z. \end{cases}$$

926 Thus the last-step kernel \mathbf{P}_{N-1}^h deterministically sends all mass into z , so regardless of μ_{N-1} ,

$$928 \quad \mu_N(j) = \sum_i^m \mu_{N-1}(i) \mathbf{P}_{N-1}^h(i, j) = \sum_i^m \mu_{N-1}(i) \delta_{jz} = \delta_{jz} = \mathbf{e}_z = \nu(j).$$

930 where δ is the Kronecker delta. Because each \mathbf{P}_n^h is row-stochastic (Lemma 1), normalization and
931 positivity are preserved throughout, and the recursion is well defined for all n . Hence $\mu_N = \nu$. \square

933 **Remark 1** (General terminal distributions). *For a general terminal law $\nu \in \Delta^{m-1}$ (not necessarily
934 one-hot), the Doob kernels (Eqs. (2) or (5)) still define a valid inhomogeneous Markov chain. Writing
935 $\alpha_n^\top(i) := \mu_n(i)/\mathbf{h}_n(i)$ (or $\alpha_n(i) := \mu_n(i)/\mathbf{h}_n^V(i)$ in the density-aware case). Then one verifies that
936 $\alpha_{n+1}^\top = \alpha_n^\top \mathbf{P}(\tau)$ (unweighted), $\alpha_{n+1}^\top = \alpha_n^\top \mathbf{P}(\tau) \operatorname{diag}(\mathbf{w})$ (density-aware). Hence*

$$937 \quad \mu_N(j) = \nu(j) [\alpha_0^\top \mathbf{P}(\tau)^N]_j \quad \text{or} \quad \mu_N(j) = \nu(j) [\alpha_0^\top (\mathbf{P}(\tau) \operatorname{diag}(\mathbf{w}))^N]_j$$

939 To enforce $\mu_N = \nu$ componentwise for arbitrary μ_0 , one requires the full Schrödinger system
940 (maximum-entropy) compatibility between the boundary marginals, equivalently choosing the forward
941 potential so that the terminal factor equals 1; see Appendix A.3 and Eq. (24). In our experiments we
942 restrict to the one-hot terminal law (Appendix D.1), for which Proposition 3.1 applies directly.

943 D ADDITIONAL RESULTS AND DISCUSSION

946 Table A1: **Zero-shot evaluation across temperatures.** Metrics computed at replicas 412 K and 503 K using
947 models trained at 400 K. Lower is better. Multi- N maintains CK consistency with only a modest increase in KL.

Model	412 K			503 K		
	Row-KL	CK	\mathcal{W}_2	Row-KL	CK	\mathcal{W}_2
Fixed- N	1.462	0.925	0.016	1.047	0.869	0.041
Multi- N	1.520	0.927	0.020	1.124	0.877	0.023

955 D.1 EVALUATING SPECTRAL STABILITY DURING TRAINING

966 Figure A1: **Spectral stability metrics over training steps.**

969 **Spectral gap** Denote the symmetrized operator by $\mathbf{M} \in \mathbb{R}^{m \times m}$ with eigenvalues $1 = \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$. The spectral gap is the difference between $\lambda_1 - \lambda_2$, which quantifies separation between
970 the stationary mode and the slowest dynamic process (Prinz et al., 2011). A larger gap is a clearer
971 metastable separation.

972 Table A2: Spectral stability diagnostics of the learned MSM during training. All metrics indicate stable
 973 eigenvalues and eigenvectors across training, attributed to the Stiefel constraints.

Metric	Value (mean \pm std)
Spectral gap (gap_1)	0.091 ± 0.014
Perron eigenvalue (λ_1)	1.000028 ± 0.000001
Overlap diag. mean (\uparrow)	0.951 ± 0.084
Overlap diag. min (\uparrow)	0.829 ± 0.340
Residual (first eigenpair) (\downarrow)	$(1.9 \pm 0.3) \times 10^{-5}$
Residual (mean top- r) (\downarrow)	$(2.3 \pm 0.1) \times 10^{-5}$
Subspace distance (SubF) (\downarrow)	0.341 ± 0.494

984 **Perron eigenvalue** For any row-stochastic transition matrix, the Perron-Frobenius theorem guarantees
 985 a leading eigenvalue $\lambda_1 = 1$. Deviations indicate difficulty in normalization and reversibility of
 986 $\mathbf{P}_\theta(\tau)$ (Smyth, 2002).

988 **Overlap diag.** Let $\mathbf{Q}_{\text{MSM}}^{(t)}$ and $\mathbf{Q}_{\text{MSM}}^{(t-1)}$ denote the top r eigenvectors of M at successive training
 989 steps. The overlap matrix $\mathbf{O} = (\mathbf{Q}_{\text{MSM}}^{(t-1)})^\top \mathbf{Q}_{\text{MSM}}^{(t)}$ measures alignment (Husic and Pande, 2018). The
 990 mean and minimum of the diagonal entries of $|\mathbf{O}|$ indicates how stable each eigenvector is across
 991 epochs.

994 **Residual** For each eigenpair $(\lambda_i, \mathbf{q}_i)$ with \mathbf{q}_i a column of \mathbf{Q}_{MSM} , the residual is defined follows
 995 Simoncini (2005) as

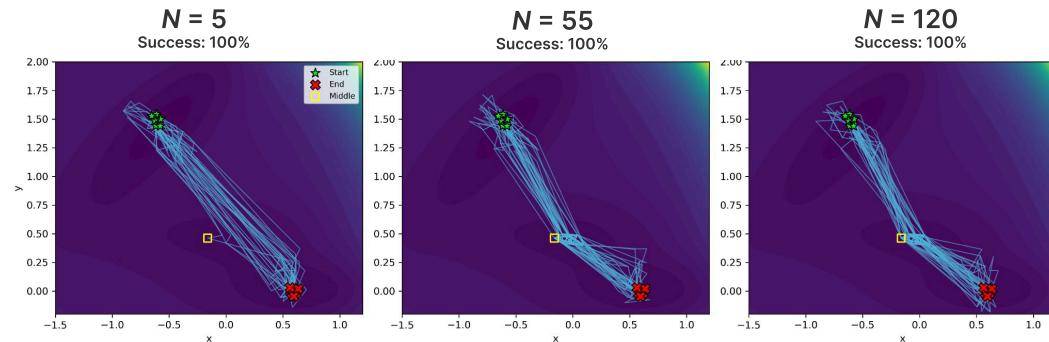
$$997 \quad \|\mathbf{M}\mathbf{q}_i - \lambda_i \mathbf{q}_i\|_2. \quad (33)$$

999 Small numbers confirms that the computed eigenpairs solve the eigenvalue problem accurately.

1001 **Subspace distance** The subspace spanned between epochs by the top r eigenvectors is represented
 1002 by the projection matrix $\mathbf{Q}_{\text{MSM}} \mathbf{Q}_{\text{MSM}}^\top$. Subspace distance between two consecutive steps is measured
 1003 as the Frobenius norm

$$1005 \quad \left\| \mathbf{Q}_{\text{MSM}}^{(t)} (\mathbf{Q}_{\text{MSM}}^{(t)})^\top - \mathbf{Q}_{\text{MSM}}^{(t-1)} (\mathbf{Q}_{\text{MSM}}^{(t-1)})^\top \right\|_F, \quad (34)$$

1007 which is invariant to rotations and sign flips. Smaller values indicate that the slow kinetic subspace is
 1008 stable across training iterations.



1023 **Figure A2: Transition Paths Predicted by ScooBDoob on Müller-Brown Potential.** Tested path generation on
 1024 unseen number of steps N . Green stars indicate starting states and red Xs indicate target end state. Intermediate
 1025 transition states are marked with the yellow square.

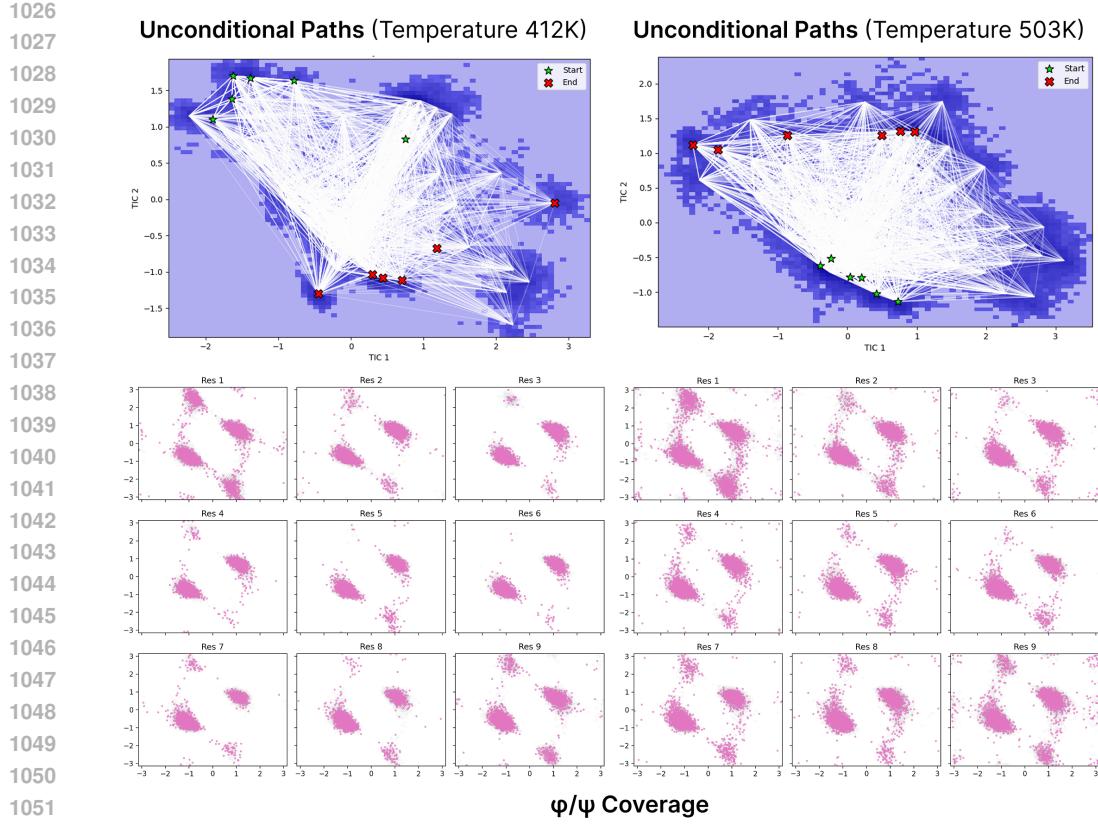


Figure A3: Unconditional transition paths of Aib9 peptide at temperatures of 412K and 503K. Simulations were performed with trained models under the identical conditions of $K = 40$ and $N = 60$. **Above:** Darker color indicates lower-energy states, with white lines showing sampled transition paths. Start and End states were determined following Appendix E. **Below:** Color highlights the states visited by the model. The grey background indicates ground-truth coverage.

E EXPERIMENTAL DETAILS

E.1 AUTOMATIC τ SWEEPING AND ENDPOINT DETERMINATION

For systems like AIB9 where inputs are torsion features without clear labels for start and end microstates, we avoid manual choices and infer 1) a suitable lag time τ and 2) representative start/end state sets directly from kinetics estimated on the data.

Based on our previous discussion on MSMs, the pair (λ_2, q_2) encodes the slowest nontrivial relaxation. We use the sign of the second eigenvector q_2 to produce a coarse two-well split (Röblitz and Weber, 2013):

$$\mathcal{A} = \{i : (q_2)_i \leq 0\}, \quad \mathcal{B} = \{i : (q_2)_i > 0\}. \quad (35)$$

To get confident endpoints for conditioning, we then pick the k most negative entries of q_2 as the start set S_{start} and the k most positive as the end set S_{end} . In the current experiment, k is set to 6.

For a chosen lag τ , the implied timescale of the slowest process is

$$t_2(\tau) = \frac{-\tau}{\ln |\lambda_2|}, \quad \text{spectral_gap} = 1 - |\lambda_2|. \quad (36)$$

A larger gap implied clearer separation between the stationary mode and the slowest transition, which tends to stabilize metastable assignments.

1080 A grid of lag steps τ_{multiple} range from 40 to 200 was tested. The final τ will be picked by maximizing
 1081 the score below that favors both kinetic separation and a split with balanced start and end states:
 1082

$$1083 \text{score}(\tau) = \text{spectral_gap}(\tau)(0.5 + 0.5 \cdot \frac{\min(|\mathcal{A}|, |\mathcal{B}|)}{\max(1, \max(|\mathcal{A}|, |\mathcal{B}|))}) \quad (37)$$

1085 Then during training, at τ^* we set $S_{\text{start}}/S_{\text{end}}$ to the k most negative/positive entries of q_2 .
 1086

1087 E.2 CONSTRUCTING THE TEACHER TRANSITION MATRIX

1088 The teacher transition matrix $\mathbf{P}_{\text{ref}}(\tau)$ is used to define the matching objective of the parameterized
 1089 student model $\mathbf{P}_{\theta}(\tau)$. We fix a time horizon $T = N\tau$ and a terminal distribution $\nu \in \Delta^{m-1}$, where
 1090 N is the number of lag steps. For a target state z , we set the terminal distribution to the one-hot
 1091 vector. We define the conditional distributions at each time step $\mathbf{h}_n^V \in \Delta^{m-1}$ as
 1092

$$1093 \mathbf{h}_N = \nu, \quad \mathbf{h}_n = \mathbf{P}_{\text{ref}}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{n+1}, \quad n \in \{N-1, \dots, 0\}. \quad (38)$$

1094 The Doob h -transformed teacher transition matrices at each time step are then defined as
 1095

$$1096 \mathbf{P}_{\text{ref},n}^h(i, j) = \frac{\mathbf{P}_{\text{ref}}(i, j; \tau) \mathbf{w}(j) \mathbf{h}_{\theta, n+1}(j)}{(\mathbf{P}_{\text{ref}}(\tau) \text{diag}(\mathbf{w}) \mathbf{h}_{\theta, n+1})(i)} \quad (39)$$

1098 E.3 DATA CURATION

1100 **Synthetic Müller-Brown Potential** Following (Müller and Brown, 1979), we build up the testing
 1101 system for a 2D and 3D Müller-Brown potential with a potential energy landscape $U(\mathbf{x})$ with three
 1102 local minima states.

$$1103 U(\mathbf{x}) = \sum_{j=1}^4 A_j \cdot \exp[a_j(x_1 - X_j)^2 + b_j(x_1 - Y_j)(x_2 - X_j) + c_j(x_2 - Y_j)^2] \quad (40)$$

1106 where $a = (-1, -1, -6.5, -0.7)$, $b = (0, 0, 11, 0.6)$, $c = (-10, -10, -6.5, 0.7)$, $A =$
 1107 $(-200, -100, -170, 15)$, $X = (1, 0, -0.5, -1)$, $Y = (0, 0.5, 1.5, 1)$, as formulated in (Müller
 1108 and Brown, 1979; Hernández et al., 2018). The dynamics are governed by

$$1109 \dot{\mathbf{x}}(t) = -\beta \nabla U(\mathbf{x}) + \sqrt{2D} \eta(t) \quad (41)$$

1111 where $\beta = 1$, $\eta(t)$ is Gaussian noise with zero mean, time step $\Delta t = 10^{-3}$, and reflecting bounds
 1112 $(-1.5, 1.2) \times (-0.2, 2.0)$.

1113 E.4 LOSS CONSTRUCTION

1115 We used a complex loss system to maintain the Markov State Model properties. Additional constraints
 1116 like the Chapman-Kolmogorov loss ensure the conservation of the stationary distribution at the second-
 1117 highest eigenvalue. Reversibility loss ensures that the detailed balance is held in the MSM system,
 1118 and the Stiefel constraint ensures that the eigenvectors remain orthogonal.

1119 For protein systems, the K can be large with thousands of states, so we approximate the \mathbf{P}_{θ} by only
 1120 predicting the transition probabilities for the $k = 48$ nearest neighbors:
 1121

$$1122 \forall j \in \mathcal{N}(i), \quad \mathbf{P}_{\theta}(i, j) = \text{softmax}(p_{\theta}(\mathbf{z}_i, \mathbf{z}_j; n)) \quad (42)$$

1123 where $\mathcal{N}(i)$ are the k nearest neighbors of state i .
 1124

1125 E.5 TRAINING DETAILS

1127 For MB potential training, a two-layer MLP with a hidden dimension of 128 and a dropout rate of
 1128 0.1 was used to map the features to a scalar score. We trained the model for 200 epochs with early
 1129 stopping. The learning rate was set to $3e^{-3}$ using the Adam optimizer. All default hyperparameters
 1130 are given in Table A3.

1131 For Aib9 peptide experiments, we concatenated all angle features into a $36D$ -shaped input for the
 1132 model, and applied a 2-layer MLP encoder that takes paired interaction features as input. The learning
 1133 rate was set to $1e^{-3}$ using the Adam optimizer. Training occurred for 200 epochs with early stopping.
 All default hyperparameters are given in Table A3.

Table A3: Default hyperparameters for MB and Aib9 peptide experiments.

Experiment	Δt	Temp (K)	LR	Epochs	λ_{CK}	λ_{rev}	λ_{stf}	λ_{br}	Paths (unc/cond)
MB Potential	1.0×10^{-3}	–	1×10^{-3}	200	1.0	1.0	1.0	1.0	200 / 200
Aib9 Peptide	2.0 ps	400	1×10^{-3}	200	1.0	2.0	2.0	1.0	100 / 100

E.6 EVALUATION METRICS

Row-KL Divergence We evaluate the KL-divergence of the predicted transition probabilities from each micro-state $i \in \{1, \dots, m\}$ defined as a row of the parameterized transition matrix $\mathbf{P}_\theta(\tau)$ compared to the teacher transition matrix $\mathbf{P}_{\text{ref}}(\tau)$.

$$D_{\text{KL}}(\mathbf{P}_\theta(i, \cdot) \parallel \mathbf{P}_{\text{ref}}(i, \cdot)) = \sum_{j=1}^m \mathbf{P}_\theta(i, j) \log \frac{\mathbf{P}_\theta(i, j)}{\mathbf{P}_{\text{ref}}(i, j)} \quad (43)$$

Wasserstein-2 Distance (\mathcal{W}_2) We compute the \mathcal{W}_2 distance of the predicted terminal state

$$\mathcal{W}_2 = \left(\min_{\pi \in \Pi(p, q)} \int \|\mathbf{x} - \mathbf{y}\|_2^2 d\pi(\mathbf{x}, \mathbf{y}) \right)^{1/2} \quad (44)$$

Chapman-Kolmogorov Error We are comparing the student kernel \mathbf{P}_θ at lag τ against empirical 2-lag kernel from counts to satisfy:

$$\mathbf{P}(2\tau) = \mathbf{P}(\tau)^2 \quad (45)$$

The error is reported to be:

$$\frac{\|\mathbf{P}_\theta^2 - \mathbf{P}_{\text{ref}}(2\tau)\|_F}{\max(10^{-16}, \|\mathbf{P}_{\text{ref}}(2\tau)\|_F)} \quad (46)$$

If the error is small, the model composes correctly and respect Markovianity, otherwise the model is not consistent across time lags.

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 F ALGORITHMS
11891190 Here, we provide the pseudocode for the construction of the teacher transition matrices and training
1191 the parameterized time-dependent generators in Algorithm 2 and the procedure for simulating the
1192 unconditional and target-conditioned dynamics with ScooBDoob in Algorithm 3.
11931194 **Algorithm 2 Training ScooBDoob**

1195 1: **Input:** Observed count of transitions between states $i \rightarrow j$ at τ lag $C(i, j; \tau)$ for all $i, j \in$
1196 $\{1, \dots, m\}$
1197 2: 3: **while** Training **do**
1198 4: $\mathbf{P}_{ij}(\tau) \leftarrow \frac{C(i, j; \tau)}{\sum_{j'} C(i, j'; \tau)}$ \triangleright compute transition probabilities from each microstate
1199 5: $\mathbf{P}(\tau) \leftarrow [\mathbf{P}_{ij}(\tau)]$ \triangleright construct unconditional transition matrix
1200 6: $\mathbf{V}(i) \leftarrow \alpha / (C_i + 1)$, $\mathbf{w}(i) \leftarrow \exp(-\tau \mathbf{V}(i))$ \triangleright density-aware weights
1201 7: $\mathbf{h}_N^V \leftarrow \nu$ \triangleright initialize terminal condition
1202 8: **for** n in $N - 1, \dots, 0$ **do**
1203 9: $\mathbf{h}_n^V \leftarrow \mathbf{P}(\tau)(\text{diag}(\mathbf{w})\mathbf{h}_{n+1}^V)$ \triangleright compute tilted distributions
1204 10: $\mathbf{P}_n^V(i, j) \leftarrow \frac{\mathbf{P}_{ij}(\tau)\mathbf{w}(j)\mathbf{h}_{n+1}^V(j)}{(\mathbf{P}(\tau)\text{diag}(\mathbf{w})\mathbf{h}_{n+1}^V)(i)}$ \triangleright compute doob-tilted probabilities
1205 11: $\mathbf{P}_n^V \leftarrow [\mathbf{P}_n^V(i, j)]$ \triangleright construct matrix
1206 12: **end for**
1207 13: **end for**
1208 14: **for** micro-state i in $1, \dots, m$ **do** \triangleright train generator for each state i
1209 15: $\mathbf{P}_{n,\theta}^h(i, \cdot) \leftarrow \text{NN}(\theta)$
1210 16: Compute loss $\mathcal{L}_{\text{total}}(\theta) = \mathcal{L}_{\text{MSM}}(\theta) + \gamma_{\text{bridge}}\mathcal{L}_{\text{bridge}}(\theta) + \gamma_{\text{stief}}\mathcal{L}_{\text{stief}}(\theta)$
1211 17: Optimize θ with $\nabla_{\theta}\mathcal{L}_{\text{total}}$
1212 18: **end for**
1213 19: **end while**
1214 20: **return** parameterized transition predictor $\mathbf{P}_{\theta}(\tau) : [0, 1] \rightarrow \mathbb{R}^{m \times m}$

1218 **Algorithm 3 Inference with ScooBDoob**

1219 1: **Input:** parameterized model $\mathbf{P}_{\theta}(\tau) : [0, 1] \rightarrow \mathbb{R}^{m \times m}$, initial distribution μ_0 , number of steps N
1220 2: $\mathcal{P} \leftarrow \{\}$ \triangleright initialize path
1221 3: **for** step n in $1, \dots, N - 1$ **do**
1222 4: $\mu_n \leftarrow \mu_{n-1}\mathbf{P}_{\theta}(\tau)$ \triangleright predict distribution over microstates
1223 5: $z_n \sim \mu_n$ \triangleright sample discrete state from distribution
1224 6: $\mathcal{P} \leftarrow \mathcal{P} \cup \{\mu_n, z_n\}$ \triangleright append to path
1225 7: **end for**
1226 8: **return** \mathcal{P}, μ_N, z_n

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **G USE OF LARGE LANGUAGE MODELS (LLMs)**
12431244 We acknowledge the use of large language models (LLMs) to assist in polishing and editing parts of
1245 this manuscript. LLMs were used to refine phrasing, improve clarity, and ensure consistency of style
1246 across sections. All technical content, experiments, analyses, and conclusions were developed by the
1247 authors, with LLM support limited to language refinement and editorial improvements.
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295