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Abstract
In this work, we present polyhedral semantics as a means to tractably approximate Łukasiewicz infinitely-valued logic (Ł∞).
As Ł∞ is an expressive multivalued propositional logic whose decision problem is NP-complete, we show how to to obtain
an approximation for this problem providing a family of multivalued logics over the same language as Ł∞. Each element of
the family is associated to a polynomial-time linear program, thus providing a tractable way of deciding each intermediate
step. We also investigate properties of the logic system derived from polyhedral semantics and the details of an algorithm for
the approximation process.
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1 Introduction

The complexity of logic inference has been a major drawback for its wider adoption and dissem-
ination. Several strategies have been proposed to face this problem, chief among which is the
identification of fragments of logic that are tractable, such as the Horn fragment [8], the 2-clause
fragment of propositional logic [15] and the EL-family of description logics [1], which are a fragment
of ALC-description logics [2]. Note that all those fragments can be seen as subsets of classical
propositional, modal or first-order logic. In the context of non-classical logics, the fragments of
simple Ł-clausal forms and 2-clause (restricted) Ł-clausal forms of Łukasiewicz logics were recently
identified to be tractable [3].

Another way in which the tractability of logic was approached consisted of approximating classical
logic by a family of parameterized non-classical logics, such that each intermediate logic system is
tractable in relation to the size of the set of its parameters. This idea was initially proposed by [24],
who proposed two systems, S3 and S1, which approximated clausal propositional logic validity and
invalidity, respectively. Those systems were followed by studies that approximated propositional
logic in general, providing both semantic and proof-theoretic approach, as well as an incremental
way to proceed in the approximating path [9–11]. Other approximations of classical propositional
logics were proposed with both philosophical and computational motivation [6]. In all approaches
mentioned, each approximation step is a different parameterized logic whose decision procedure
is polynomial-time over the size of the parameter set; in some cases, the ‘approximation step’ is
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2 Polyhedral semantics and Łukasiewicz infinitely-valued logic

incremental, in the sense that an inference at step i + 1 could proceed from the point it stopped at
step i.

The vast majority of fragments and approximations in the literature have classical logic as their
target.1 But several non-classical logics have reached prominence, chief among which is Łukasiewicz
infinitely-valued logic (Ł∞), one of the aforementioned Łukasiewicz logics. Ł∞ is a system that
has attracted the attention for quite sometime [16], due to its rich semantics in terms of Chang-
algebras [4], important properties [17], complex analysis tools [5], important role among the class
of fuzzy logics [14] and foundational applications in probability theory [20]. Furthermore, Ł∞ has
been recently applied to the modelling and proving properties about neural networks [21, 22], an
application that leads us towards the search for efficient ways of deciding large Ł∞-theories.

In this work, we introduce polyhedral semantics, a semantic approximation of Ł∞ that yields a
multivalued and interval-valued logic over the same language as Ł∞. First, we study some properties
of the polyhedral semantics as logical equivalences and derivatives of connectives.

Then, as Ł∞ is an expressive multivalued propositional logic whose decision problem is
NP-complete [18], we aim at providing a tractable approximation for this problem, defining a
parameterized family of logics based on polyhedral semantics, whose decision procedure is shown
to be polynomial-time over the parameter set. The polyhedral semantics is directly coupled with a
set of linear programs, and is thus associated with a polynomial-time algorithm.

The rest of the paper is organized as follows. Section 1.1 brings some of the fundamentals of
Łukasiewicz infinitely-valued logic together with a known translation from its formulas to mixed
integer linear programming (MILP) constraints. Section 2 introduces polyhedral semantics and
presents some of its properties. Section 3 presents an approximation procedure for Ł∞ through a
family of logics determined by polyhedral semantics while Section 4 structures the algorithm and
proposes a heuristic needed in one of its steps. In Section 5, we draw some conclusions.

Notation. The language of Ł∞ contains propositional symbols in P, unary negation connective ¬
and binary connectives for disjunction ⊕, conjunction �, idempotent disjunction ∨ and idempotent
conjunction ∧. Propositional symbols are atomic formulas; if ϕ and ψ are formulas, then so are ¬ϕ,
(ϕ ⊕ ψ), (ϕ � ψ), (ϕ ∨ ψ) and (ϕ ∧ ψ). We designate the language of Ł∞ as L. If A is a set, |A|
denotes the cardinality of A.

1.1 Background: semantics for Ł∞
The negation ¬ and disjunction ⊕ connectives are usually considered primitive, and the remaining
connectives are defined in terms of them. For the semantics, consider a propositional symbol
assignment vP that assigns each symbol in P a value in [0, 1]. Such assignment may be extended
to a valuation v : L → [0, 1] such that, for ϕ, ψ ∈ L:

v(ϕ ⊕ ψ) = min(1, v(ϕ) + v(ψ)); (1)

v(¬ϕ) = 1 − v(ϕ). (2)

1Notable recent exceptions are [3] and [7].
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 3

We denote the set of all valuations by Val. From disjunction and negation, we derive the following
operators:

Conjunction: ϕ � ψ =def ¬(¬ϕ ⊕ ¬ψ) v(ϕ � ψ) = max(0, v(ϕ) + v(ψ) − 1)

Maximum: ϕ ∨ ψ =def ¬(¬ϕ ⊕ ψ) ⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Implication: ϕ → ψ =def ¬ϕ ⊕ ψ v(ϕ → ψ) = min(1, 1 − v(ϕ) + v(ψ))

Bi-implication: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ) v(ϕ ↔ ψ) = 1 − |v(ϕ) − v(ψ)|
For any propositional symbol p and valuation v, we have that v(p⊕¬p) = 1; so we define constants

1 =def z ⊕ ¬z and 0 =def ¬1.
Let α ∈ [0, 1]; a formula ϕ is α-satisfiable if there exists a v ∈ Val such that v(ϕ) = α;

otherwise, it is α-unsatisfiable. Similarly, ϕ is α+-satisfiable if there exists a v such that v(ϕ) > α;
otherwise, it is α+-unsatisfiable. A set of formulas Φ is α/α+-satisfiable if there exists a v such
that v(ϕ) = α/v(ϕ) > α, for all ϕ ∈ Φ. Most frequently, one is interested in deciding 1/0+-
satisfiability. The problem of deciding α/α+-satisfiability in Ł∞ for a given formula was shown to
be NP-complete by Mundici [18].

Hähnle proposed methods for deciding whether a formula is a [0, d]-tautology or a [c, 1]-
tautology, i.e. whether it has value at most d or at least c, respectively, under any valuation [13].
Based on such methods, let us show how the semantics of a formula can be expressed as a set of
MILP restrictions. Suppose yϕ and yψ stand for the values of v(ϕ) and v(ψ), respectively; in case
they are propositional symbols, such a restriction is just an equality to a constant. For the disjunction,
let yϕ⊕ψ = v(ϕ ⊕ψ), then by considering an extra symbol bϕ⊕ψ , the following restrictions imposed
on yϕ⊕ψ guarantee the same values as (1):

bϕ⊕ψ ∈ {0, 1}
bϕ⊕ψ ≤ yϕ⊕ψ ≤ 1 (3)

yϕ + yψ − bϕ⊕ψ ≤ yϕ⊕ψ ≤ yϕ + yψ

When bϕ⊕ψ = 0, yϕ⊕ψ = yϕ + yψ ≤ 1, and when bϕ⊕ψ = 1, yϕ⊕ψ = 1 ≤ yϕ + yψ . So
yϕ⊕ψ = min(1, yϕ + yψ). Negation remains a simple equality; letting y¬ϕ = v(¬ϕ), the following
restriction guarantees the same value as (2):

y¬ϕ = 1 − yϕ (4)

In a similar way to the disjunction, the remaining connectives can also be expressed as MILP
restrictions:

bϕ�ψ ∈ {0, 1}
v(ϕ � ψ) = yϕ�ψ 0 ≤ yϕ�ψ ≤ bϕ�ψ (5)

yϕ + yψ − 1 ≤ yϕ�ψ ≤ yϕ + yψ − bϕ�ψ

bϕ∨ψ ∈ {0, 1}
v(ϕ ∨ ψ) = yϕ∨ψ yϕ ≤ yϕ∨ψ ≤ yϕ + bϕ∨ψ (6)

yψ ≤ yϕ∨ψ ≤ yψ + 1 − bϕ∨ψ
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4 Polyhedral semantics and Łukasiewicz infinitely-valued logic

bϕ∧ψ ∈ {0, 1}
v(ϕ ∧ ψ) = yϕ∧ψ yϕ − bϕ∧ψ ≤ yϕ∧ψ ≤ yϕ (7)

yψ − (1 − bϕ∧ψ) ≤ yϕ∧ψ ≤ yψ

bϕ→ψ ∈ {0, 1}
v(ϕ → ψ) = yϕ→ψ bϕ→ψ ≤ yϕ→ψ ≤ 1 (8)

1 − yϕ + yψ − bϕ→ψ ≤ yϕ→ψ ≤ 1 − yϕ + yψ

bϕ↔ψ ∈ {0, 1}
v(ϕ ↔ ψ) = yϕ↔ψ 1 − yϕ + yψ − 2bϕ↔ψ ≤ yϕ↔ψ ≤ 1 − yϕ + yψ (9)

−1 + yϕ − yψ + 2bϕ↔ψ ≤ yϕ↔ψ ≤ 1 + yϕ − yψ

As an example, evaluating formula p ⊕ ¬p under valuation v is the same as evaluating yp⊕¬p
constrained to:

yp = v(p)

y¬p = 1 − yp

bp⊕¬p ∈ {0, 1}
bp⊕¬p ≤ yp⊕¬p ≤ 1

yp + y¬p − bp⊕¬p ≤ yp⊕¬p ≤ yp + y¬p

For any value of yp, we have that yp+y¬p = 1. Then, for both possibilities bp⊕¬p = 0 and bp⊕¬p = 1,
we have yp⊕¬p = 1 by the last two lines in MILP restrictions above. So, p ⊕ ¬p is a 1-tautology.

From such semantic expression, one may reduce, for instance, the problem of α-satisfiability to
MILP by building a set of MILP restrictions according to the construction of a formula ϕ ∈ L. For the
atoms p1, . . . , pk of ϕ, add the restrictions 0 ≤ ypi ≤ 1, for i = 1, . . . , k. Then, for each subformula
in the inductive construction of ϕ, add the restrictions given by Equations (3)–(9). Finally, add the
restriction yϕ = α. If the resulting set of MILP restrictions is feasible, ϕ is α-satisfiable; otherwise,
it is α-unsatisfiable.

Therefore, deciding about the α-satisfiability of formula p ⊕ ¬p is equivalent to deciding about
the feasibility of the following MILP restrictions:

0 ≤ yp ≤ 1

y¬p = 1 − yp

bp⊕¬p ∈ {0, 1}
bp⊕¬p ≤ yp⊕¬p ≤ 1

yp + y¬p − bp⊕¬p ≤ yp⊕¬p ≤ yp + y¬p

yp⊕¬p = α

Note that besides being 1-satisfiable, if p ⊕ ¬p is α-satisfiable, then we must have α = 1.
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 5

2 Polyhedral semantics

Based on the MILP presentation of the connectives, we propose a new form of semantics. In this
case, we do not deal with truth-functional valuations, but with interpretations that map a formula
ϕ ∈ L to sets of linear restrictions containing a distinguished variable yϕ , which takes values in a
subinterval of [0, 1]. Such linear restrictions describe polyhedra in Rn, for some n.

In order to obtain the new semantics, we first relax the integral conditions in Equations (3)–(9)
into continuous intervals. As a result of this relaxation, the binary value b now becomes a continuous
value β ∈ [0, 1], which we call relaxed variable. Thus, each connective projects a set of linear
inequalities describing a polyhedron:

0 ≤ βϕ⊕ψ ≤ 1

J(ϕ ⊕ ψ) βϕ⊕ψ ≤ yϕ⊕ψ ≤ 1 (10)

yϕ + yψ − βϕ⊕ψ ≤ yϕ⊕ψ ≤ yϕ + yψ

J(¬ϕ) y¬ϕ = 1 − yϕ (11)

0 ≤ βϕ�ψ ≤ 1

J(ϕ � ψ) 0 ≤ yϕ�ψ ≤ βϕ�ψ (12)

yϕ + yψ − 1 ≤ yϕ�ψ ≤ yϕ + yψ − βϕ�ψ

0 ≤ βϕ∨ψ ≤ 1

J(ϕ ∨ ψ) yϕ ≤ yϕ∨ψ ≤ yϕ + βϕ∨ψ (13)

yψ ≤ yϕ∨ψ ≤ yψ + 1 − βϕ∨ψ

0 ≤ βϕ∧ψ ≤ 1

J(ϕ ∧ ψ) yϕ − βϕ∧ψ ≤ yϕ∧ψ ≤ yϕ (14)

yψ − (1 − βϕ∧ψ) ≤ yϕ∧ψ ≤ yψ

0 ≤ βϕ→ψ ≤ 1

J(ϕ → ψ) βϕ→ψ ≤ yϕ→ψ ≤ 1 (15)

1 − yϕ + yψ − βϕ→ψ ≤ yϕ→ψ ≤ 1 − yϕ + yψ

0 ≤ βϕ↔ψ ≤ 1

J(ϕ ↔ ψ) 1 − yϕ + yψ − 2βϕ↔ψ ≤ yϕ↔ψ ≤ 1 − yϕ + yψ (16)

−1 + yϕ − yψ + 2βϕ↔ψ ≤ yϕ↔ψ ≤ 1 + yϕ − yψ

In detail, given a valuation v, a polyhedral interpretation Lv is a map from L to the power set of
the set of linear restrictions inductively defined as follows. For each propositional symbol p, we have
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6 Polyhedral semantics and Łukasiewicz infinitely-valued logic

Lv(p) = {yp = v(p)}. Then, for formulas ϕ, ψ ∈ L and � ∈ {⊕, �, ∨, ∧, →, ↔}:
Lv(¬ϕ) = J(¬ϕ) ∪ Lv(ϕ);

Lv(ϕ � ψ) = J(ϕ � ψ) ∪ Lv(ϕ) ∪ Lv(ψ).

For a formula ϕ ∈ L, a polyhedral interpretation Lv(ϕ) determines a polyhedron in Rn, with n = s+c,
where s is the number of distinct subformulas of ϕ (including ϕ itself) and c is the number of
connectives ⊕, �, ∨, ∧, → and ↔ occurring in ϕ. From now on, we freely identify a set of linear
restrictions Lv(ϕ) with the polyhedron it determines.

Now, given a polyhedral interpretation L, we define an interval-valuation IL, for formulas
ϕ ∈ L, by

IL(ϕ) =
{

yϕ

∣∣∣ 〈. . . , yϕ , . . .〉 ∈ L(ϕ)
}

⊆ [0, 1].

Note that IL(ϕ) is the projection of L(ϕ) to the yϕ-axis. We define polyhedral semantics compre-
hending the interval-valuations IL yielded by interpretations L that map formulas in L to polyhedra.
Let us denote by ŁP∞ the the multivalued logic system that has language L and is evaluated with the
polyhedral semantics.

LEMMA 2.1
Let p, q ∈ P and v ∈ Val. Then,

ILv(p ⊕ q) =
[

v(p) + v(q)

2
, v(p ⊕ q)

]
and

ILv(p � q) =
[

v(p � q),
v(p) + v(q)

2

]
.

PROOF. For v ∈ Val, we have

Lv(p ⊕ q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yp = v(p), yq = v(q),

0 ≤ βp⊕q ≤ 1,

βp⊕q ≤ yp⊕q ≤ 1,

yp + yq − βp⊕q ≤ yp⊕q ≤ yp + yq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Taking βp⊕q = v(p)+v(q)
2 , we have yp⊕q = βp⊕q, which is the least possible value for yp⊕q. In fact,

suppose yp⊕q <
v(p)+v(q)

2 ; then, we would have βp⊕q <
v(p)+v(q)

2 , that yields yp⊕q ≥ yp+yq−βp⊕q >
v(p)+v(q)

2 and contradicts the original supposition. Also, by the inequalities in Lv(p ⊕ q), we have
that yp⊕q ≤ min{1, v(p) + v(q)} = v(p ⊕ q), which is the maximum possible value for yp⊕q. The
computation of interval limits for ILv(p � q) is similar. �

Within such context of polyhedral semantics, we say that a formula ϕ ∈ L is αP -satisfiable if there
exits a polyhedral interpretation L such that α ∈ IL(ϕ); otherwise it is αP -unsatisfiable. Similarly, ϕ

is α+
P -satisfiable if there exists a polyhedral interpretation L such that α′ ∈ IL(ϕ), for some α′ > α;

otherwise it is α+
P -unsatisfiable. Moreover, we say that a set of formulas Φ ⊆ L is αP -satisfiable

if there is a valuation v such that α ∈ ILv(ϕ), for all ϕ ∈ Φ. And Φ is α+-satisfiable if there is a
valuation v such that, for each ϕ ∈ Φ, α′

ϕ ∈ ILv(ϕ), for some α′
ϕ > α. An immediate consequence of

the relaxation in polyhedral semantics is that the decision for αP -satisfiability and α+
P -satisfiability

becomes tractable, for instead of MILP problems we now have reductions to linear programming
problems, which can be solved in polynomial time [11].
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 7

THEOREM 2.2
There are polynomial time decision procedures for the satisfiability problems in ŁP∞.

PROOF. Let Φ ⊆ L. Based on polyhedral interpretations, we inductively build from Φ a set of linear
restrictions Λ by means of Equations (10)–(16). However, instead of equalities to constants yp = κ ,
we add to Λ restrictions 0 ≤ yp ≤ 1, for all propositional symbol p occurring in formulas in Φ.
Therefore, Φ is αP -satisfiable if, and only if,

Λ ∪
{

yϕ = α

∣∣∣ ϕ ∈ Φ
}

(17)

is feasible. A polynomial procedure for solving αP -satisfiability follows from the tractability of
linear programming feasibility decision. A routine for solving α+

P -satisfiability is achieved by, first,
building set Λ as above for ψ = ∧

Φ and, then, maximizing yψ subject to Λ. In this way, Φ is
α+-satisfiable if, and only if, the maximum possible value for yψ is greater than α. Such routine is
also polynomial. �

In the following, we investigate some properties of ŁP∞. Let us say that ϕ, ψ ∈ L are equivalent,
denoting by ϕ ≡ ψ , if IL(ϕ) = IL(ψ), for all polyhedral interpretation L. We show some
equivalences from Ł∞ that are still valid in ŁP∞ and some that are not.

THEOREM 2.3
The following logical equivalences are valid in ŁP∞:

(i) ϕ � ψ ≡ ¬(¬ϕ ⊕ ¬ψ);
(ii) ϕ ⊕ ψ ≡ ψ ⊕ ϕ;

(iii) ϕ � ψ ≡ ψ � ϕ.

PROOF.

(i) For an interpretation L, we have that IL(ϕ � ψ) ⊆ IL(¬(¬ϕ ⊕ ¬ψ)) because each point
in L(ϕ � ψ) corresponds to a point in L(¬(¬ϕ ⊕ ¬ψ)) such that yϕ�ψ = y¬(¬ϕ⊕¬ψ) by
maintaining the values assigned to the restriction variables in L(ϕ) and L(ψ), obeying the
negation restrictions as (11) and making:

β¬ϕ⊕¬ψ = 1 − βϕ�ψ ;

y¬ϕ⊕¬ψ = 1 − yϕ�ψ .

The converse set inclusion is analogous.
(ii) By a similar argument to (i) with βϕ⊕ψ = βψ⊕ϕ and yϕ⊕ψ = yψ⊕ϕ .

(iii) By a similar argument to (i) with βϕ�ψ = βψ�ϕ and yϕ�ψ = yψ�ϕ . �
THEOREM 2.4
The disjunction and conjunction operators are not associative in ŁP∞. That is, in general, (ϕ ⊕ψ)⊕η

is not equivalent to ϕ ⊕ (ψ ⊕ η) and (ϕ � ψ) � η is not equivalent to ϕ � (ψ � η).

PROOF. For an interpretation L that assigns to propositional symbols p, q and r the restrictions
yp = 0.6, yq = 0.5 and yr = 0.4, respectively, we have that 0.475 ∈ IL((p ⊕ q) ⊕ r). However, the
minimum value in IL(p ⊕ (q ⊕ r)) is 0.525. On the other hand, we have that 0.525 ∈ IL(p � (q � r)),
but the maximum value in IL((p � q) � r) is 0.475. �

A t-norm is a function T : [0, 1]×[0, 1] → [0, 1] that satisfies the properties of commutativity (i.e.,
T(a, b) = T(b, a)), associativity (i.e., T(a, T(b, c)) = T(T(a, b), c)), monotonicity (i.e., T(a, b) ≤
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8 Polyhedral semantics and Łukasiewicz infinitely-valued logic

T(c, d), if a ≤ c and b ≤ d) and the value 1 acts as an identity (i.e., T(a, 1) = a). An s-norm is
a function S : [0, 1] × [0, 1] → [0, 1] that satisfies the properties of commutativity, associativity,
monotonicity and the value 0 acts as an identity. In Ł∞, the semantics of the conjunction operator is
a t-norm and the semantics of the disjunction operator is an s-norm.

In order to investigate properties of t-norm and s-norm in relation to the operators of ŁP∞,
such properties should be adapted to fit polyhedral semantics. For instance, we might say that
disjunction in ŁP∞ is commutative because, by the equivalence (ii) in Theorem 2.3, we have that
ILv(p ⊕ q) = ILv(q ⊕ p), for every propositional symbols p, q ∈ P and valuation v ∈ Val. An
analogous version of commutativity holds for conjunction in ŁP∞ also by Theorem 2.3. On the other
hand, by Theorem 2.4, equivalences standing for associativity of conjunction and disjunction in ŁP∞
do not hold. The following results have versions of monotonicity and identity element properties for
conjunction and disjunction in ŁP∞.

THEOREM 2.5
Let p1, p2, q1, q2 ∈ P and v ∈ Val be such that v(p1) ≤ v(p2) and v(q1) ≤ v(q2). If ILv(p1 ⊕ q1) =
[l, r] and ILv(p2 ⊕ q2) = [L, R], then l ≤ L and r ≤ R. For the conjunction operator (�), the result is
analogous.

PROOF. Immediately from Lemma 2.1. �
THEOREM 2.6
Let p ∈ P and v ∈ Val. Then,

• v(p) ∈ ILv(p ⊕ 0); and
• v(p) ∈ ILv(p � 1).

PROOF. Also immediately from Lemma 2.1. �
We finish this section by investigating differential properties of some connectives according to the

polyhedral semantics.
Let CI denote the set of closed subintervals of [0, 1]. Then, fixing propositional symbols p and q

and letting a valuation v be such that v(p) = x and v(q) = y, we define functions f⊕, f� : [0, 1]2 →
CI by:

f⊕(x, y) = ILv(p ⊕ q) and f�(x, y) = ILv(p � q).

For � ∈ {⊕, �}, we denote by min f�(x, y) and max f�(x, y) the left and right extremes of the interval
f�(x, y), respectively.

THEOREM 2.7
The following differential properties for disjunction and conjunction in ŁP∞ hold:

∂ min f⊕
∂x

(x, y) = ∂ min f⊕
∂y

(x, y) = 1

2

∂ max f⊕
∂x

(x, y) = ∂ max f⊕
∂y

(x, y) =
{

1, x + y < 1
0, x + y > 1

∂ min f�
∂x

(x, y) = ∂ min f�
∂y

(x, y) =
{

0, x + y < 1
1, x + y > 1

∂ max f�
∂x

(x, y) = ∂ max f�
∂y

(x, y) = 1

2
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 9

PROOF. The derivatives directly follow from Lemma 2.1. �

3 Approximating Ł∞-inference using polyhedral semantics

The idea of approximate entailment has been proposed and developed both as a means of modeling
the reasoning of an agent with limited resources and as a means to convey tractable reasoning to
intractable systems [11]. Even if all approximate reasoning systems consist of non-classical logics,
the vast majority of approximate reasoning systems have classical propositional logic as its target.

Here we propose to use a parameterised polyhedral semantics as a system that approximates non-
classical multivalued logic Ł∞. The approximation occurs by forcing a few (but not necessarily all)
of the the relaxed variables β to take binary values in {0, 1} instead of continuous values in [0, 1].

Suppose we are trying to verify whether a set of formulas Φ is α-unsatisfiable, i.e. we are going
to show that there is no valuation v that attributes v(ϕ) = α, for every ϕ ∈ Φ. One possible solution
is to transform Φ into a set of restrictions based on Equations (3)–(9) as in Section 1.1 and solve
them with MILP programming techniques; the problem is satisfiable iff there is a solution for the set
of mixed integer and continuous linear constraints. As this problem is NP-complete, we are going to
try to approximate it in a tractable way.

The idea is to obtain a sequence of decision steps starting with a single set of linear restrictions
obtained from Φ based on Equations (10)–(16), i.e. the set (17) in the proof of Theorem 2.2. At
each step, a set of sets of tractable linear inequalities are generated such that αP -unsatisfiability is
obtained if all the sets are unfeasible. In that case, we are guaranteed that the formula is also α-
unsatisfiable. Otherwise, a further approximation step is required. The approximation either stops
when αP -unsatisfiability is obtained or until an exponential number of sets of linear inequalities
is generated, corresponding to the initial MILP given by transforming Φ using Equations (3)–(9)
(Section 1.1), which is the only point in which it is possible to state α-satisfiability.

Let us exemplify this process with the α-unsatisfiability decision of the set of formulas Φ =
{p � ¬p, q ⊕ r}. Let yp, yq, yr ∈ [0, 1] stand for the valuations of p, q, r, respectively; the translation
of Φ into a set of (relaxed) inequalities is as follows:

0 ≤ yp, yq, yr ≤ 1

y¬p = 1 − yp

0 ≤ yp�¬p ≤ βp�¬p ≤ 1

yp + y¬p − 1 ≤ yp�¬p ≤ yp + y¬p − βp�¬p (18)

0 ≤ βq⊕r ≤ yq⊕r ≤ 1

yq + yr − βq⊕r ≤ yq⊕r ≤ yq + yr

yp�¬p = yq⊕r = α

Let R be a set of relaxed variables; initially, R0 = ∅. If α = 1, (18) is already unfeasible, so Φ is
1-unsatisfiable. However, for α = 1

4 , (18) is feasible, so nothing can be stated about 1
4 -satisfiability

of Φ (although it is 1
4P -satisfiable).

For the second step of the approximation, we make R1 = {βp�¬p} ⊃ R0. This generates two sets
of linear inequalities that expand (18), one for βp�¬p = 0 and one for βp�¬p = 1:

(18) ∪ {βp�¬p = 0} (18) ∪ {βp�¬p = 1}
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10 Polyhedral semantics and Łukasiewicz infinitely-valued logic

As both those systems of inequalities are unfeasible for α = 1
4 , it follows that 1

4 -unsatisfiability of
Φ hold. However, had we chosen instead R′

1 = {βq⊕r} ⊃ R0, system (18) ∪ {βq⊕r = 1} would
be unfeasible, but (18) ∪ {βq⊕r = 0} would be feasible, and nothing would be implied about 1

4 -
unsatisfiability. So we would need to proceed with the approximation to the next step:

R2 = {βp�¬p, βq⊕r} ⊃ R′
1 ⊃ R0,

at which point the 1
4 -satisfiability would be decided negatively. In fact, for the set of formulas Φ,

R2 = Rend as it contains all the possible relaxed variables, in which case we consider all the 2|Rend|
{0, 1}-combinations for those variables, effectively operating in Ł∞.

A totally analogous example could be made for α+-satisfiability by suppressing the final
restriction in (18) and adding:

0 ≤ β(p�¬p)∧(q⊕r) ≤ 1

yp�¬p − β(p�¬p)∧(q⊕r) ≤ y(p�¬p)∧(q⊕r) ≤ yp�¬p

yq⊕r − (1 − β(p�¬p)∧(q⊕r)) ≤ y(p�¬p)∧(q⊕r) ≤ yq⊕r

This is the construction of Λ in Theorem 2.2 for
∧

Φ. Then, a step of the approximation consists of
maximizing y(p�¬p)∧(q⊕r) subject to each of the sets of linear constraints; if all of the maximization
problems in the step are either unfeasible or have maximum at most α, set Φ is α+-unsatisfiable.

In general, an approximation process to decide α/α+-satisfiability for a set Φ of formulas would
be parameterized by a sequence of sets of relaxed variables

∅ = R0 ⊂ R1 ⊂ · · · ⊂ Ri ⊂ · · · ⊂ Rend;

at each step i, one has to consider 2i relaxed linear systems. If all those systems are unfeasible/have
maximum at most α, then Φ is α/α+-unsatisfiable and the decision process terminates; otherwise,
nothing can be inferred about Φ in view of Ł∞. If no unsatisfiability decision is reached, the
process proceeds until Rend is reached and a final decision is made. This process is called a logical
approximation from below by Finger & Wassermann [10].

LEMMA 3.1
(Soundness of Ł∞ -approximation).
Suppose we are at step i in a logical approximation from below for α-satisfiability of a set of formulas
Φ, such that all the 2i relaxed linear systems are unfeasible. Then, Φ is α-unsatisfiable. Similarly
for α+-unsatisfiability.

PROOF. If Φ were α-satisfiable, then some of the sets of constraints in step i would be feasible in
such a way that its relaxed variables solutions were in {0, 1}. As an unfeasible set of constraints
remains unfeasible if extra restrictions are added, Φ is necessarily α-unsatisfiable in case all 2i

linear systems in step i are unfeasible. For α+-unsatisfiability, note that the solution of a linear
maximization problem may only decrease in the case of adding extra restrictions. Thus, if all such
problems in step i either have maximum at most α or are unfeasible, Φ must be α+-unsatisfiable. �

Let ŁP∞(Ψ ), where Ψ ⊆ L, be a multivalued logic system with language L that is evaluated by an
extended polyhedral semantics such that interpretations L(ψ) also contain restriction βψ ∈ {0, 1},
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 11

for every ψ ∈ Ψ . It is immediate that for each Ri in a sequence of relaxed variables there exists a
corresponding ŁP∞(Ψi), where

∅ = Ψ0 ⊂ Ψ1 ⊂ · · · ⊂ Ψi ⊂ · · · ⊂ Ψend.

Note that ŁP∞(Ψ0) = ŁP∞(∅) = ŁP∞. We define αΨ /α+
Ψ -satisfiability just as αP/α+

P -satisfiability
except that the extended polyhedral interpretations of ŁP∞(Ψ ) are considered instead of the original
polyhedral interpretations.

THEOREM 3.2
Let Φ be a set of formulas such that the number of subformulas in Φ is n. Suppose approximate logic
ŁP∞(Ψ ) is such that |Ψ | = O(log n). Then, the decision of αΨ /α+

Ψ -satisfiability of Φ in ŁP∞(Ψ ) has
complexity time polynomial in n.

PROOF. The decision of αΨ /α+
Ψ -satisfiability may be done by the method described in this section,

but only the relaxed variables βψ , for ψ ∈ Ψ , may be chosen to be fixed. As |Ψ | = O(log n), there
are 2O(log n) sets of constraints in the last step of the approximation, each of which may be solved in
polynomial time. Then, the whole decision may be achieved in polynomial time. �

So, in an approximation process for Ł∞ grounded on ŁP∞(Ψ ), the decision is tractable while
|Ψ | = O(log n). However, only an undecidable verdict is transferred to Ł∞. Also note that each
approximation step can be incremental, in the sense that if for some attribution of 0/1 values to
elements of Ri leads to an unfeasible system, there is no need to explore those configurations at
subsequent Rj, j > i, as those will also be unsatisfiable. Thus, the closed paths in Ri remain closed
in Rj.

Conversely, for fast α/α+-satisfiability, an appropriate {0, 1}-valuation can be guessed for the
relaxed variables in Rend such that, in polynomial time, the corresponding set of constraints can
be shown to be feasible. A logical approximation process from above for Ł∞ can be obtained by
a generate-and-test of valuations for relaxed values; a single feasible system would imply Φ to be
α/α+-satisfiable in Ł∞.

4 Fixing relaxed variables

The approximation satisfiability algorithm devised in last section is structured as the procedure
APPROX-Ł∞ in Algorithm 1. Besides a set of formulas Φ ⊆ L and a number α ∈ [0, 1] ∩ Q,
indicating that APPROX-Ł∞ is to decide about the αP -satisfiability of Φ, the procedure also takes
a natural number N as input. Such N must be at most the maximum number of subformulas of a
formula in Φ and it indicates how far the procedure may go in approximating its decision, i.e. how
many relaxed variables may be fixed.

A negative decision of αP -unsatisfiability by Algorithm 1 is also a decision of α-unsatisfiability.
Moreover, a decision of αP -satisfiability is particularly a decision of αΨRN

-satisfiability in Ł∞(ΨRN ),
where

ΨRN =def

{
ψ ∈ L

∣∣∣ βψ ∈ RN

}
;

RN is the set of fixed relaxed variables in the last iteration of the approximation. Note that if N is
the maximum number of subformulas of a formula in Φ, procedure APPROX-Ł∞ returns an exact
decision on the α-satisfiability of Φ.
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12 Polyhedral semantics and Łukasiewicz infinitely-valued logic

ALGORITHM 1 APPROX-Ł∞
Input: A set of formulas Φ ⊆ L, a number α ∈ [0, 1] ∩ Q and a number N ∈ N.
Output: No, if Φ is α-unsatisfiable. Or Yes, if Φ is αP -satisfiable.

1: Γ (0) := {
Λ ∪ {yϕ = α | ϕ ∈ Φ} }

; � equation (17) computed for Φ

2: R0 := ∅;
3: for i = 0, . . . , N do
4: if all sets in Γ (i) are unfeasible then
5: return No; � Φ is α-unsatisfiable
6: else
7: Choose a relaxed variable β /∈ Ri; � nondeterministic step
8: Γ (i+1) := ∅;
9: Ri+1 := Ri ∪ {β};

10: for all Γ ∈ Γ (i) do
11: Γ (i+1) := Γ (i+1) ∪ {

Γ ∪ {β = 0}, Γ ∪ {β = 1} }
;

12: end for
13: end if
14: end for
15: return Yes; � Φ is αP -satisfiable

Algorithm 1 is almost completely determined except for a nondeterministic step in line 7. As we
saw in last section, in the example where Φ = {p � ¬p, q ⊕ r}, the choice of a relaxed variable in
each iteration of the algorithm may interfere with how quickly it converges to a negative decision
(α-unsatisfiability). Let us resume the discussion about that example in order to propose a heuristic
for choosing relaxed variables.

In the first iteration of APPROX-Ł∞ taking as input Φ = {p � ¬p, q ⊕ r} and α = 1
4 , the only

element in Γ (0) = {Γ (0)
1 } comprehends the restrictions in (17), which are jointly feasible. Then,

in order to determine Γ (1), the algorithm proceeds by choosing some relaxed variable to fix. An
intuition about such choice may be drawn from the following linear programming problems:

min βp�¬p + βq⊕r

s.t. Γ
(0)

1

max βp�¬p + βq⊕r

s.t. Γ
(0)

1

The minimum value of the sum of relaxed variables subject to Γ
(0)

1 is 0.25, which may be achieved by
βp�¬p = 0.25 and βq⊕r = 0. And the maximum value is 1, which may be achieved by βp�¬p = 0.75
and βq⊕r = 0.25.

We may interpret the values for βp�¬p in both problems as an indication of the impossibility of
this variable reaching 0 or 1. In this way, fixing βp�¬p will perhaps quickly lead to 1

4 -unsatisfiability,
which we already know to be the case. Indeed, if we set R1 = {βp�¬p}, both sets of restrictions in
Γ (1) are unfeasible.

Had we chosen βq⊕r to fix and set R′
1 = {βq⊕r}, the set of restrictions Γ

(1)′
1 = Γ (0)∪{βq⊕r = 0} in

Γ (1)′ would be feasible and one more iteration would be needed. Although βp�¬p would be the only
option left among the yet unfixed relaxed variables, let us examine the following linear programming
problems:

min βp�¬p

s.t. Γ
(1)′

1

max βp�¬p

s.t. Γ
(1)′

1
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Polyhedral semantics and Łukasiewicz infinitely-valued logic 13

In these problems, the minimum value of βp�¬p is 0.25 and the maximum is 0.75, pointing to
the impossibility of βp�¬p reaching 0 or 1. Both problems generated by fixing βp�¬p are indeed
unfeasible, leading to the 1

4 -unsatisfiability of Φ.
In view of the above exposure, we now delineate a proposal of heuristic for fixing relaxed

variables. In the i-th iteration of APPROX-Ł∞, if any of the sets of constraints in Γ (i) =
{Γ (i)

1 , . . . , Γ (i)
2i } is feasible, the algorithm will choose some of the yet unfixed relaxed variables to be

fixed next.
Let S1, . . . , Sk ∈ Γ (i) be the k feasible sets of constraints, k ≤ 2i and Bunf be the set of yet unfixed

relaxed variables. The heuristic consists, first, in solving the 2k linear programming problems, for
j = 1, . . . , k, in the following:

(19)

For each β ∈ Bunf, there are k values corresponding to the solutions of the minimization problems,
which are, then, combined in a single value β ∈ [0, 1]. Such combination might be, for instance, the

average of the k values or the minimum among them. Analogously, β is a combination of the k values
corresponding the the solutions of the maximization problems (such as their average or maximum).
Remember that linear programming problems may be solved in polynomial time [12].

Finally, in an attempt to choose the relaxed variable with the strongest indication of impossibility
to reach 0 or 1, the heuristic choice follows the following rule:

βchoice := arg max
β∈Bunf

{
min{β, β}

}
. (20)

A procedure for dealing with α+
P -satisfiability may be easily adapted from Algorithm 1. In such

adaptation, the condition on line 4 is replaced by ‘all linear programs for maximizing y∧
Φ subject

to each set of restrictions in Γ (i) are either unfeasible or have value at most α’. The same heuristic
just described for fixing relaxed variables in the αP -satisfiability case may be used in such a α+

P -
satisfiability procedure. In addition to maximizing y∧

Φ subject to a set of constraints Sj, the linear
programs in (19) are also solved and Equation (20) is used for choosing a relaxed variable to fix.

5 Conclusion

In this work, we introduced the polyhedral semantics to formulas of Łukasiewicz infinitely-valued
logic through relaxations of variables in the widely known codification of the traditional semantics
into sets of MILP-constraints. By means of the polyhedral semantics, we established the logic system
ŁP∞, where compound formulas are interval-valued from valuation assignments to their propositional
symbols.

Then, we presented properties of ŁP∞ as the tractability of its satisfiability problems (The-
orem 2.2). We established some logical equivalences in ŁP∞, such as the ones that state the
commutativity property for disjunction and conjunction (Theorem 2.3), and showed that associativity
does not hold for these operators (Theorem 2.4). In this way, although disjunction and conjunction
in ŁP∞ have some of the properties of s-norms and t-norms, they lack associativity. Nevertheless, we
showed that such connectives comply with notions of monotonicity and identity element, which are
suitable for polyhedral semantics (Theorems 2.5 and 2.6). We also established differential properties
for disjunction and conjunction in ŁP∞ (Theorem 2.7).
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14 Polyhedral semantics and Łukasiewicz infinitely-valued logic

Based on polyhedral semantics, we introduced an approximation procedure for satisfiability in
Ł∞, where the decision in ŁP∞ is the loosest approximation and better approximations are iteratively
achieved in a sequence of polyhedral semantics-based systems as relaxed variables are fixed. A
maximum number of iterations in order that approximation satisfiability is tractable was devised
(Theorem 3.2). Finally, we proposed a heuristic for choosing relaxed variables to fix in such
approximation procedure.

For the future, we intend to implement the approximation procedure for satisfiability in Ł∞
and empirically analyze its performance. This investigation might ground a comparison among the
heuristic for choosing relaxed variables proposed in this work and other possible approaches for such
choice. Also, a deepest investigation about logic systems based on polyhedral semantics might be
carried out.

Moreover, an investigation about the use of the approximation algorithm for satisfiability in Ł∞
as part of approximation procedures for other problems might also be pursued. For instance, in an
approximation procedure for the Boolean maximum satisfiability problem (MaxSAT), which may
be reduced both to 0+-satisfiability [19] and 1-satisfiability in Ł∞ [23].
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