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ABSTRACT

Out-of-distribution (OOD) detection is a critical task for safe deployment of learn-
ing systems in the open world setting. In this work, we investigate the use of latent
density estimation via normalizing flows for the OOD task and present a fully un-
supervised approach with no requirement for exposure to OOD data, avoiding re-
searcher bias in OOD sample selection. This is a fully post-hoc method which can
be applied to any pretrained model, and involves training a lightweight auxiliary
normalizing flow model to perform the out-of-distribution detection via density
thresholding. Experiments on OOD detection in image classification show strong
results for far-OOD data detection with only a single epoch of flow training, in-
cluding 98.2% AUROC for ImageNet-1k vs. Textures, which exceeds the state
of the art by 8.4%. Further, we provide insights into training pitfalls that have
plagued normalizing flows for use in OOD detection.

1 INTRODUCTION

Machine learning has rapidly advanced in recent years, with state of the art models performing im-
pressive tasks in a wide range of technical domains. However the standard workflow in machine
learning is significantly less flexible than learning observed in animals in nature. While biological
neural systems continually learn in uncontrolled environments, artificial neural networks are instead
trained with a closed-world assumption (Yang et al., 2021) on a fixed corpus of training data, val-
idated against a set of reserved data drawn from the same data distribution, and then deployed to
perform roughly the same task. When deployed these models can be exposed to inputs that are dis-
similar to the in-distribution (ID) data they were trained and validated on, and potentially leading to
unpredictable behavior when encountering this out-of-distribution (OOD) data.

Addressing how artificial neural networks can be used in open world situations where they may be
exposed to out-of-distribution data remains a challenge. Out-of-distribution detection is the task
of identifying when a sample is not drawn from the training data distribution. This is especially
important in safety critical applications such as autonomous vehicles; the statistical assurances on
model performance provided by the validation dataset are no longer applicable.

In this work, we revisit using latent density estimation via normalizing flows for out-of-distribution
detection in image classification. Prior works assert that normalizing flows are not effective for
OOD detection when performing density estimation in pixel space (Nalisnick et al., 2019), and
density estimation in the latent space of pretrained models has been discussed but not thoroughly
investigated (Kirichenko et al., 2020). Contrary to works that dismiss normalizing flows in this
domain, we demonstrate that by performing density estimation in the latent space of a pretrained
image classification backbone model, normalizing the latent representations, and undertraining the
normalizing flow we are able to achieve competitive results on both small and large datasets. The
proposed method has the advantages of being fully unsupervised and requires no exposure to OOD
training data, avoiding researcher bias from a specific definition of the OOD data. Finally, this is a
post-hoc method that can be applied to any pretrained classification model, and it requires training
a lightweight normalizing flow model for only a single epoch to perform the latent-space density
estimation for out-of-distribution detection, making it a broadly applicable technique.
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2 RELATED WORK

2.1 OUT-OF-DISTRIBUTION DETECTION

OOD detection deals with identifying semantically distinct samples (from unseen classes) to avoid
erroneously classifying them as one of the classes in the training distribution. Out-of-distribution
detection performance is evaluated by attempting to discriminate between a validation dataset versus
an out-of-distribution dataset. The most widely used metric is the area under the receiver operating
characteristic (AUROC) (Fawcett, 2006), a threshold-free classification performance metric useful
for comparing unbalanced datasets. The false positive rate at 95% true positive rate (FPR95) is also
employed to a lesser extent, as it provides a single point snapshot of false positive rate with a fixed
OOD detection performance requirement.

OOD detection is a rich field with many existing approaches (Yang et al., 2021). These can be
divided into classification-based, distance-based, generative-based, and density-based approaches.
Classification-based approaches define a classification output that identifies ID and OOD inputs
at inference time, with common baseline methods including the max-softmax probability (MSP,
Hendrycks & Gimpel (2017)), ODIN (Liang et al., 2018), the energy score (Liu et al., 2020), and
post-hoc methods that modify the penultimate layer activations such as ASH (Djurisic et al., 2023)
and ReAct (Sun et al., 2021). MSP is a simple baseline method which thresholds on the maxi-
mum class probability. Energy score is a more modern development with stronger performance
while remaining simple to implement, calculating a metric inspired by thermodynamics (the free
energy) from the classification logits. ReAct is used in conjunction with the energy score, but clips
the top 10% of latent variables off prior to evaluation, resulting in state of the art performance on
large scale datasets. Distance-based methods label OOD samples as those sufficiently far from ID
training sample feature vectors, and include Euclidean and Mahalanobis distance (Lee et al., 2018).
Generative-based approaches employ generative models to reconstruct inputs, and assess samples
with poor reconstruction accuracy or low likelihood under the generative model as OOD (Salehi
et al., 2022). Examples of this approach include VAEs with modified priors (Floto et al., 2023),
hierarchical VAEs (Havtorn et al., 2021), and diffusion models (Graham et al., 2023; Liu et al.,
2023). These methods commonly require training a generative network to model the data distribu-
tion, which can be computationally demanding.

Finally, for density-based approaches a density estimation model is built from the training data such
that the ID data lies within high density regions, and OOD data encountered at inference time occu-
pies low density regions. A threshold on the density can be added to transform a density estimator
into an out-of-distribution detector, classifying low probability data as out-of-distribution. In this
approach the density estimator is used as a proxy for model epistemic uncertainty (Hüllermeier &
Waegeman, 2021). Density estimation methods can be performed in the input data space or a trans-
formed representation space, and include kernel methods, radial basis functions, and normalizing
flows (Hüllermeier & Waegeman, 2021; Yang et al., 2021). Kirichenko et al. (2020) observed that
using a normalizing flow to perform density estimation in the latent space improves over performing
density estimation in the pixel space, but their analysis is extremely limited and their results do not
exceed other state-of-the-art methods.

2.2 NORMALIZING FLOWS

Normalizing flows are a class of generative neural networks that are dimensionality preserving and
fully invertible. They are trained to map between two probability distributions, typically a data
distribution and a known base probability distribution, such as the normal distribution. Normalizing
flows have the dual function of being an exact density estimator (by measuring the probability of
a datapoint when mapped to the base distribution), and a generative model (by sampling from the
base distribution, and then mapping into the data space). Mathematically, normalizing flows can be
written as implementing a change of variables:

p(z) = q(fθ(z))

∣∣∣∣det(∂fθ(z)

∂zT

)∣∣∣∣
log p(z) = log q(fθ(z)) + log |det (Jfθ(z))|
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where p(z) is the data distribution, q(z) is the known base distribution, and fθ(z) is the mapping
function between these two distributions, implemented as an invertible normalizing flow network
parameterized by θ.

For a more thorough and formal review of the mathematics of normalizing flows, we refer readers to
Kobyzev et al. (2021). Implementing normalizing flows is often more challenging than other neural
networks, as the model must be entirely invertible and should have a Jacobian that can be efficiently
calculated. However, they have shown impressive performance in many tasks, including generating
realistic images of faces (Kingma & Dhariwal, 2018) and high quality density estimation on image
data (Ho et al., 2019).

2.3 NORMALIZING FLOWS FOR OUT-OF-DISTRIBUTION DETECTION

Normalizing flows have been applied to the task of out-of-distribution detection in several prior
works with mixed success, but have historically performed very poorly for OOD detection in the
image classification domain. When performing density estimation on pixel data in images, previous
authors recommend against the use of normalizing flows, finding that they learn spurious pixel-level
correlations and capture low-level statistics rather than high-level semantics (Nalisnick et al., 2019;
Kirichenko et al., 2020; Zhang et al., 2021a).

In Gudovskiy et al. (2022), Rudolph et al. (2021), and Rudolph et al. (2022) normalizing flows are
applied to image segmentation anomaly detection by performing density estimation of multiscale
feature map embeddings instead of pixel space. Results are promising, but limited to small scale
datasets, and they use hand-tailored network architectures that do not generalize to other domains.

Flows have also been used for anomaly detection in video data. Cho et al. (2022) uses a Glow
normalizing flow (Kingma & Dhariwal, 2018) to perform density estimation of the latent variables
produced by two autoencoders, one capturing spatial information and one capturing temporal infor-
mation. This work highlights the importance of performing density estimation in the latent space and
demonstrates competitive performance in this domain, but has a complex autoencoder architecture
with a reconstruction loss term, limiting its potential applications. Jiang et al. (2022) apply a normal-
izing flow for the task of quantifying sample rareness, illustrating the value of latent space density
estimation with normalizing flows for the downstream task of data mining and dataset balancing.

Zhang et al. (2020) demonstrate strong OOD detection performance using normalizing flows in im-
age classification, but is not a post-hoc method, as it requires jointly training both the classifier back-
bone and the normalizing flow model with additional loss hyperparameters. This approach is limited
by the necessity to jointly learn the latent space, and results are only evaluated on small datasets.
Kirichenko et al. (2020) briefly introduce the concept of performing density estimation in the latent
space of a pretrained classifier, but their analysis is very limited and results are not compelling. Our
work carries the investigation of latent density estimation via normalizing flows investigation much
further, demonstrating that normalizing flows can achieve state of the art out-of-distribution detec-
tion in image classification as a simple, post-hoc method with no complex architecture changes or
modifications to the backbone.

3 METHOD

3.1 LATENT DENSITY ESTIMATION

In this work we leverage a pre-trained neural network backbone to provide a compressed, reduced
representation of our input data that is rich in semantic information for the downstream task of image
classification. We use the penultimate layer’s activations as latent variables for density estimation.
These latent variables contain all of the necessary information for the backbone model to perform
the output classification task, and are typically transformed to the final output logits using a linear
projection head.

We perform density estimation on the latent representations using existing normalizing flows
(Kingma & Dhariwal, 2018; Dinh et al., 2017; Chen et al., 2019), learning an invertible mapping
between the latent space and a normal probability distribution. Our normalizing flows are trained
on the penultimate layer activations of a frozen pre-trained image classifier, with the optimization
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criterion of minimizing the log likelihood of the transformed latents. As an unsupervised method,
the class labels of the original image data are unused. Once trained, the normalizing flow is a
computationally efficient density estimator for the latent space of the pre-trained backbone model.
Out-of-distribution detection is achieved by applying a simple probability threshold to the density
estimates for new samples, classifying low density samples as OOD. This straightforward technique
is fully post-hoc, and only requires training a normalizing flow on ID data with no exposure to any
OOD data. See Figures 1 and 2 below for a block diagram and visualization of our method.

Classifier model Classification, p(y | x)Image data, x

Latent variable, z Normalizing flow Probability, p(z)

Figure 1: Visualization of the method of latent density estimation for out-of-distribution detection.

(a) (b)

Figure 2: (a) A t-SNE visualization of the latent space of a ResNet18 backbone model comparing
ID data (CIFAR-10), OOD data (SVHN), and flow generated latent variables. Clearly visible are
10 clusters corresponding to the 10 classes of CIFAR-10, as is the coincidence between the ID data
and the flow generated data points. (b) A histogram of the bits-per-dimension to represent ID latents
versus OOD latents under the normalizing flow model. Better separability of these distributions
leads to higher AUROC for OOD detection.

3.2 MEASURING BITS-PER-DIMENSION

A connection has been established in the literature between out-of-distribution detection and loss-
less compression, and lossless compression and flow models (Zhang et al., 2021b; Yang et al., 2023).
Since normalizing flows provide exact likelihood estimates, they can be used as the basis for a loss-
less compression scheme via Shannon’s source coding theorem (Shannon, 1948). A dequantization
step is common practice for density estimation of discrete data; random noise drawn from the uni-
form distribution U(0, 1

256 )
d is commonly used when modelling d-dimensional pixel data (Dinh

et al., 2017; Lippe & Gavves, 2021; Theis et al., 2016), as each pixel can take on 256 values. We
select a quantization precision of ϵ = 1

1024 as this is the smallest precision which half-precision
floating-point, a common data format for neural networks, can represent around 1 (IEEE, 2008).
When training flow models, latent variables are additively augmented with uniform random noise
drawn from U(− ϵ

2 ,
ϵ
2 )

d. We estimate the lower bound on the bits per dimension (bpd) needed to
represent latent variable z to a precision of ϵ = 1

1024 under an entropy coding scheme (Shannon,
1948) as:

bpd = − log2(p(z))

d
− log2(ϵ)

where z ∈ Rd, and p(z) is the probability of z under our normalizing flow model. In-distribution
data produces latent variables with a high probability under the flow model, which can be recon-
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structed using a small amount of information under a lossless compression scheme. Conversely,
out-of-distribution latent representations are assigned lower probability, requiring a larger amount
of information to represent.

4 EXPERIMENTAL SETUP

We evaluate the utility of normalizing flows for out-of-distribution detection on a range of image
classification tasks, using a variety of backbone networks and in-distribution datasets.

Datasets: We use CIFAR-10 (Krizhevsky, 2012) and ImageNet-1k (Deng et al., 2009) as our
in-distribution datasets. CIFAR-10 models are evaluated against random Gaussian noise, SVHN
(Netzer et al., 2011), Places365 (Zhou et al., 2018), CelebA (Liu et al., 2015), and CIFAR-100
(Krizhevsky, 2012) as out-of-distribution datasets. ImageNet-1k models are evaluated against Tex-
tures (Cimpoi et al., 2014) and reduced versions of iNaturalist (Van Horn et al., 2018), SUN (Xiao
et al., 2010), and Places (Zhou et al., 2018). The latter three are filtered to ensure these datasets
contain no common classes with ImageNet-1k, as done by Sun et al. (2021). Datasets can be consid-
ered as either near-OOD or far-OOD (Salehi et al., 2022) depending on how semantically distinct
they are from the ID dataset; in this work we consider Gaussian noise and SVHN to be far-OOD vs.
CIFAR-10, and Textures to be far-OOD from ImageNet-1k.

Evaluation: Out-of-distribution detection performance is evaluated using AUROC, calculated be-
tween the in-distribution validation dataset and out-of-distribution dataset. AUROC is a threshold-
free metric, and an AUROC of 50% indicates no separability between the distributions, while an
AUROC of 100% indicates perfect separability between the distributions. We evaluate our method
against MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), energy score (Liu et al.,
2020), and ReAct (Sun et al., 2021).

Normalizing Flow Models: We use a 10 block Glow (Kingma & Dhariwal, 2018) flow for all
experiments. For flow models trained on CIFAR-10, each block is composed of two linear layers
with dimension [512, 2048, 512]. For flow models trained on ImageNet-1k, each block is composed
of two linear layers which do not alter the dimensionality of the latent space (2048 for ResNet50
and 768 for Swin-S). Flow models are trained using the Adam optimizer (Kingma & Ba, 2014) for
only a single epoch with a learning rate of 1e-4 for CIFAR-10 and 1e-5 for ImageNet-1k.

Backbone Model: For CIFAR-10, we train a ResNet18 classifier backbone using supervised learn-
ing to a validation accuracy of 92.1%. For ImageNet-1k, we use two Pytorch pretrained models
as classifier backbones: ResNet50 and Swin-S (top-1 validation accuracies of 80.6% and 83.2%
respectively).

5 RESULTS

We first present our main results for CIFAR-10, summarized Table 1. Our method exceeds other
approaches on SVHN and Gaussian noise (far-OOD), and is competitive with alternatives on more
challenging datasets (Places365, CelebA, CIFAR-100). Further, we present results for the larger
scale ImageNet-1k dataset in Table 2. With a ResNet backbone, our method is able to achieve
98.2% AUROC on Textures (Cimpoi et al., 2014), and obtain 8.4% better performance than the next
best method, ReAct (Sun et al., 2021). With a transformer backbone, we again outperform ReAct
by 4.1% on Textures. Samples from the Textures dataset are visually distinct from ImageNet and
can be considered far-OOD. Our method outperforms competing methods at detecting these more
visually distinct types of OOD samples (CFIAR-10 vs. SVHN, and ImageNet vs. Textures).

Table 1: Main results, CIFAR-10.

Backbone Method Out-of-Distribution Dataset (AUROC ↑)
Gaussian SVHN Places365 CelebA CIFAR-100

ResNet18
+ CIFAR-10

MSP 90.86 88.62 88.78 90.62 85.86
Energy Score 87.33 87.12 92.77 94.62 88.35
ODIN 88.95 87.47 95.13 95.16 87.43
LDE (ours) 99.41 96.06 92.61 93.23 85.93
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Table 2: Main results, ImageNet-1k. *Results from Sun et al. (2021).

Backbone Method Out-of-Distribution Dataset (AUROC ↑)
Textures iNaturalist SUN Places

ResNet50 + ImageNet-1k

MSP 77.75 86.15 81.48 79.77
ReAct* 89.80 96.22 94.20 91.58
Energy Score 84.08 87.92 87.35 83.97
ODIN 85.45 88.82 87.13 83.73
LDE (ours) 98.19 80.40 81.26 72.63

Swin-S + ImagetNet-1k

MSP 80.42 88.45 82.98 81.53
ReAct 84.89 92.02 86.78 85.09
Energy Score 77.97 81.40 75.47 72.13
ODIN 63.10 63.96 56.44 50.8
LDE (ours) 88.97 94.57 85.64 82.89

6 DISCUSSION

Normalizing flows are powerful tools for density estimation of high dimensional data, but their
utility for out-of-distribution detection is contingent on the details of their training. To practically
implement normalizing flows for OOD detection, we discuss several key considerations.

6.1 DIMENSIONALITY REDUCTION

The dimensionality of the latent representation plays a large role in the performance of the normal-
izing flow. Very high dimensional representations are more challenging to model and may require
more data to train. In previous work, performing preliminary dimensionality reduction of the latent
variables via principal component analysis (PCA) prior to density estimation has been used to help
with computational efficiency in flow training (Jiang et al., 2022).

(a) (b)

Figure 3: Impact of PCA dimensionality reduction of latent variables on OOD detection.

However, our experiments show that generally an unreduced latent space yields stronger OOD de-
tection performance (Figure 3). Dimensionality reduction will inevitably remove information from
the latent representations, and in contrast to labelled tasks or methods that use OOD data expo-
sure, it is unclear what information in the latent representations is required for high performance
OOD detection, and how to preserve this information. For the larger dataset, performance increases
monotonically with latent dimension, while for CIFAR-10, the performance generally increases but
is lower for the unreduced embedding of size 512. This is likely due to the increased training diffi-
culty.

6.2 FLOW REGULARIZATION

During training, the goal is to optimize a flow model that generalizes from the training to the valida-
tion distribution, while still separating OOD data. It is critically important to manage overfitting: the
normalizing flow’s generalization gap between the training and validation data distributions directly
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impacts the separability of validation and out-of-distribution data (see Figure 4 for a visualization of
training, validation, and OOD bit-per-dimension distributions).

(a) AUROC: 96.06 (b) AUROC: 84.36

Figure 4: Bits-per-dimension histograms for the same flow model at 0 epochs and 1000 epochs.
With further training, the bits/dim decreases for all distributions, but the training and validation
distributions begin to separate due to overfitting, and the separability of the ID/OOD distributions
degrades.

A variety of standard regularizations techniques can be used to avoid overfitting on the training
data: augmenting the dataset, applying dropout, and carefully selecting the model size with respect
to the amount of data available. We train our flows on latent representations obtained with dataset
augmentation identical to the augmentations used to train the backbone model.

Under-training was found to be critically important. Our experiments demonstrated a surprising
trend: training a normalizing flow model to minimize the validation loss may actually be detrimental
to OOD detection performance. Loss on a test OOD dataset decreases during training (OOD data
becomes more likely as the flow model fits to ID data), and AUROC for this test OOD dataset peaks
early, then drops with additional epochs as the flow model fits to the training data (see Figure 5). The
optimal number of epochs to train a flow model for depends on the OOD dataset, flow architecture,
and backbone model, and is far before the validation loss begins to rise (classic overfitting). This
is thus distinct from early stopping, and represents a novel and beneficial form of under-training.
In our work we report all results using normalizing flows trained to only a single epoch to ensure
consistent evaluations across models and datasets.

(a) (b)

Figure 5: Normalizing flow loss and AUROC during training. Loss evaluated on both ID and OOD
test datasets decreases during training, and AUROC peaks early and then declines.

6.3 SCALING LATENT REPRESENTATIONS

We find that normalizing the latent variables strongly improves OOD detection performance on far-
OOD datasets (CIFAR-10 vs. SVHN and ImageNet-1k vs. Textures, for example). We can write the
final linear head of the backbone model as:

y = WT z = ∥z∥(WT ẑ)

Where W is the weight matrix (ignoring the bias term), z is our latent variable, ∥z∥ is the Euclidean
norm of z, and ẑ is the normalized (unit-length) latent variable. We interpret the product WT ẑ as

7



Under review as a conference paper at ICLR 2024

the semantic agreement between ẑ and each logit’s class, while ∥z∥ relates to the network’s overall
confidence in the output. By training the normalizing flow model on normalized latent variables,
density estimation is performed on the semantic content of the latent space disentangled from the
network’s confidence. As a result, experiments show that performance is substantially improved on
far-OOD data.

Table 3: Flow AUROC results, CIFAR-10: normalized vs. unnormalized latents

Backbone Model Latent Scaling Out-of-Distribution Dataset (AUROC ↑)
SVHN CIFAR-100

ResNet18 + CIFAR-10 Unnormalized 85.63 57.68
Normalized 96.48 85.93

Table 4: Flow AUROC results, ImageNet-1k: normalized vs. unnormalized latents

Backbone Model Latent Scaling Out-of-Distribution Dataset (AUROC ↑)
Textures iNaturalist SUN Places

ResNet50 + ImageNet-1k Unnormalized 86.95 49.78 60.21 58.89
Normalized 98.19 80.40 81.26 72.63

Swin-S + ImageNet-1k Unnormalized 86.57 93.70 86.63 85.10
Normalized 88.97 94.57 85.64 82.89

6.4 FLOW ARCHITECTURE

Normalizing flow architecture is an active area of research, with different flow designs having their
own pros and cons. RealNVP (Dinh et al., 2017) is fast and simple flow architecture but performs
poorly compared to more modern methods. Glow (Kingma & Dhariwal, 2018) demonstrates good
performance as a generative model but is not state of the art for density estimation, and Residual
Flows (Chen et al., 2019) are excellent density estimators but are slower to train than alternatives.

Table 5: Normalizing flow OOD detection vs. architecture comparison. AUROC results are gener-
ally comparable, and more performant flow models with superior density estimation do not equate
to improved OOD detection performance.

Backbone Model Flow Architecture Out-of-Distribution Dataset (AUROC ↑)
SVHN CIFAR-100

ResNet18 + CIFAR-10
RealNVP 92.13 86.33
Glow 96.99 85.87
Residual Flow 96.89 80.32

Surprisingly, experiments show that the performance of OOD detection is relatively insensitive to
flow architecture. We believe this is due to the fact that discrimination between two distributions (the
validation dataset and OOD dataset) is the key task, rather than high quality modeling of the training
distribution. As discussed in the previous section, maximum separability (via AUROC) between the
validation and OOD datasets is often seen after only a few training epochs of the flow model, far
before the training distribution is adequately modelled.

Concisely: the training loss of the flow model is unimportant for OOD detection. Instead, the dif-
ference in losses between the ID and OOD distributions is more important. More sophisticated flow
models which advance the state of the art in density estimation may not necessarily be advantageous
for out-of-distribution detection (see Table 5). In our experiments Glow (Kingma & Dhariwal, 2018)
was used as it was found to perform well while being faster than more complex methods, such as
Residual flows (Chen et al., 2019) and FFJORD (Grathwohl et al., 2019), and was stable to train.

6.5 BACKBONE LATENT REPRESENTATIONS

OOD detection performance is strongly affected by the distribution of latent representations pro-
duced by the backbone model in a manner that is independent of image classification accuracy and
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difficult to predict. As shown in Section 4, performance varies strongly between convolutional and
transformer-based backbones despite similar classification accuracy.

(a) Classification accuracy: 92.13% (b) AUROC: 96.48%

(c) Classification accuracy: 93.45% (d) AUROC: 86.98%

Figure 6: Top row: supervised backbone (ResNet18). Bottom row: unsupervised backbone (EMP-
SSL ResNet18, Tong et al. (2023)). Note the distinct clusters and good histogram separability for
the supervised model, and the more complex latent space with poor histogram separability for the
unsupervised model.

Comparison of a supervised and self-supervised ResNet18 CIFAR-10 classifier backbone shows that
highly clustered ID latent data (as visualized by t-SNE) is correlated with improved OOD detection
performance with this method. We hypothesize that the effectiveness of our proposed method de-
pends on the compactness of latent representations and the margin between in-distribution class
boundaries (see Figures 6a, 6c). Specifically, we expect that models with compact ID class repre-
sentations occupying a lower volume of latent space will increase the likelihood of OOD samples
falling in low density regions. Future work will investigate this hypothesis, exploring the connection
between pretrained backbone model architecture, ID latent representation compactness, and flow
model performance for separating ID and OOD distributions.

7 CONCLUSION

We investigate a method for out-of-distribution detection by performing density estimation using
normalizing flows in the latent space of pretrained image classification models. In contrast with prior
work in this space, our experiments show that by performing density estimation in the latent space
and with the identified training regularizations, normalizing flows can achieve strong performance
on a variety of common benchmarks on large scale datasets. Our method outperforms all existing
methods for detecting far-OOD data, as demonstrated by the results on CIFAR-10 vs. SVHN, and
ImageNet-1k vs. Textures.

Performing density estimation on normalized latent variables and under-training the normalizing
flow are shown to be particularly important, and we observe the surprising behavior that OOD detec-
tion performance peaks very early in training. We further show that OOD detection performance is
not dependent on the flow model’s ability to perform high quality density estimation, but is strongly
dependent on the distribution of latent representations of the backbone model. Using the discussed
techniques, we demonstrate that normalizing flows are effective tools for OOD detection in image
classification.
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