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Abstract

Commonsense plausibility estimation is crit-001
ical for evaluating language models (LMs),002
yet existing generative approaches–reliant on003
likelihoods or verbalized judgments–struggle004
with fine-grained discrimination. In this paper,005
we propose ComPaSS, a novel discriminative006
framework that quantifies commonsense plau-007
sibility by measuring semantic shifts when aug-008
menting sentences with commonsense-related009
information. Plausible augmentations induce010
minimal shifts in semantics, while implausible011
ones result in substantial deviations. Evalua-012
tions on two types of fine-grained common-013
sense plausibility estimation tasks across dif-014
ferent backbones, including LLMs and vision-015
language models (VLMs), show that Com-016
PaSS consistently outperforms baselines. It017
demonstrates the advantage of discriminative018
approaches over generative methods in fine-019
grained commonsense plausibility evaluation.020
Experiments also show that (1) VLMs yield021
superior performance to LMs, when integrated022
with ComPaSS, on vision-grounded common-023
sense tasks. (2) contrastive pre-training sharp-024
ens backbone models’ ability to capture seman-025
tic nuances, thereby further enhancing Com-026
PaSS.027

1 Introduction028

Commonsense knowledge–the shared understand-029

ing of everyday phenomena and human experiences030

(Schank, 1983; Winograd, 1986; Hobbs, 1990)–is031

foundational to natural language understanding and032

generation. Despite the remarkable progress in033

large language models’ (LLMs) text generation034

capabilities, ensuring commonsense plausibility035

in their outputs remains an unresolved challenge036

(Marcus, 2020; Elazar et al., 2021; Mahowald et al.,037

2024; Chen et al., 2023). This challenge arises not038

only from the inherent difficulty of acquiring and039

applying commonsense knowledge but also from040

the absence of reliable frameworks for evaluating041

textual plausibility. Effective evaluation of com- 042

monsense plausibility addresses this gap twofold: 043

it identifies commonsense violations while offering 044

quantifiable metrics to guide the development of 045

techniques that augment LLM outputs. 046

In this work, we focus on developing general- 047

izable methods for commonsense plausibility esti- 048

mation (CSPE) that can be applied across diverse 049

domains and tasks. This leads us to investigate 050

zero-shot and few-shot approaches based on pre- 051

trained LMs, which leverage their inherent knowl- 052

edge without requiring additional training data or 053

domain-specific fine-tuning. 054

Previous studies on zero or few-shot CSPE pri- 055

marily adopt a generative perspective and can 056

be categorized into two main approaches, likeli- 057

hood estimation and verbalized judgments. The 058

likelihood-based methods (Trinh and Le, 2018; 059

Tamborrino et al., 2020; Holtzman et al., 2021) uti- 060

lize token prediction probabilities from language 061

models as an indicator, with the assumption that 062

sentences consistent with commonsense knowledge 063

tend to have a higher likelihood for their component 064

tokens. The verbalization-based methods (Brown 065

et al., 2020; Krause and Stolzenburg, 2024) ask 066

pre-trained LMs to answer the plausibility of a sen- 067

tence through natural language. The models can 068

generate the answer based on knowledge stored in 069

their parameters. 070

However, approaches based on the generative 071

perspective could be suboptimal for CSPE, since 072

it is essentially a discriminative task. In this paper, 073

we adopt a discriminative perspective for CSPE. 074

In communication, commonsense knowledge is 075

often assumed and left unstated, yet such omis- 076

sions rarely hinder mutual understanding (Clark, 077

1996; Noveck and Sperber, 2004). Inspired by 078

this, we propose ComPaSS, a method that mea- 079

sures Commonsense Plausibility through Semantic 080

Shifts introduced when augmenting sentences with 081

commonsense-related information. Plausible addi- 082
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tions yield minimal semantic shifts, whereas im-083

plausible ones result in substantial deviations. For084

instance, adding ‘black’ to ‘There is a penguin’ re-085

sults in a minor semantic shift, aligning with the086

penguins’ natural coloration. By contrast, intro-087

ducing ‘green’ creates a substantial shift, highlight-088

ing the implausibility of such an atypical attribute.089

To quantify semantic shifts, ComPaSS computes090

the similarity between embeddings of the origi-091

nal sentence (without explicit commonsense ref-092

erences) and its modified counterpart augmented093

with commonsense-related information.094

Two aspects of semantic representations could095

influence the capability of ComPaSS in CSPE: the096

inclusion of commonsense knowledge and the dis-097

crimination of semantic nuances. These correspond098

to two key aspects of models used for obtaining099

sentence embeddings: 1) Modality. Language Mod-100

els (LMs) often suffer from reporting bias (Gor-101

don and Durme, 2013), which involves systematic102

distortions due to omitted commonsense details103

(e.g., ‘penguins are black’ is rarely stated) and sta-104

tistical biases from fixed linguistic patterns (e.g.,105

‘black sheep’). In contrast, vision-language mod-106

els (VLMs) incorporate visual information, thus107

mitigating reporting bias, especially for visually-108

grounded commonsense knowledge (e.g., object109

colors or spatial relations) (Paik et al., 2021; Zhang110

et al., 2022). 2) Contrastive learning. By training a111

model to distinguish between semantically similar112

and dissimilar instances, it enhances the model’s113

discriminative power. Representations from con-114

trastively trained models exhibit sharper separabil-115

ity, which directly impacts the precision of seman-116

tic shift measurements. Given these considerations,117

we study how ComPaSS performs based on vari-118

ous backbones of both LMs and VLMs, with and119

without contrastive learning.120

We evaluate ComPaSS against baselines on two121

fine-grained CSPE tasks that require ranking candi-122

date answers by plausibility rather than binary clas-123

sification. These tasks prioritize nuanced plausi-124

bility judgments, where answers may hold varying125

degrees of validity. The first task, attribute value126

ranking, involves ranking candidate attribute val-127

ues (e.g., color, shape, material) for objects using128

structured triplets (e.g., determining that "black"129

is more plausible than "green" for penguin-color),130

evaluated on datasets like CoDa (Paik et al., 2021)131

and ViComTe (Zhang et al., 2022). The second132

task, commonsense frame completion (Cheng et al.,133

2024), challenges models to rank plausible comple-134

tions for open-ended prompts (e.g., selecting ‘farm’ 135

over ‘truck’ for ‘Where are farmers with newly 136

harvested crops?’), testing alignment with human 137

preferences and broader commonsense reasoning. 138

Together, these tasks assess ComPaSS across in- 139

put formats (structured triplets vs. free-form text) 140

and knowledge types (object-specific attributes vs. 141

contextual, inferential commonsense). 142

Our experiments reveal three critical insights. 143

First, as a discriminative approach, ComPaSS con- 144

sistently outperforms prior generative methods in 145

fine-grained plausibility estimation, achieving su- 146

perior results across diverse model backbones. This 147

highlights the advantage of discriminative methods 148

in capturing subtle plausibility distinctions. Sec- 149

ond, utilizing ComPaSS, VLMs significantly out- 150

perform LMs for vision-grounded commonsense 151

(e.g., object colors or shapes), demonstrating that 152

visual information enhances representations and 153

benefits CSPE. Third, models with contrastive pre- 154

training yield significantly better results than those 155

without, emphasizing the importance of representa- 156

tions that capture semantic nuances in plausibility 157

measurement through ComPaSS. 158

2 Related Work 159

2.1 CSPE Based on Internal Knowledge 160

The sentence probability and perplexity computed 161

by LMs can serve as indicators of commonsense 162

plausibility, even in zero-shot settings (Trinh and 163

Le, 2018; Davison et al., 2019; Liu et al., 2021a). 164

For LLMs with instruction-following capability, 165

they can be directly prompted to judge whether 166

a given input is consistent with commonsense or 167

not (Zhao et al., 2024). Beyond directly judg- 168

ing plausibility, some methods (Jung et al., 2022; 169

Tafjord et al., 2022) evaluate the plausibility of hy- 170

potheses by scoring the validity of entailment paths 171

generated by the LLMs, i.e., the reasoning chains 172

justifying ‘reasonable’ or ‘unreasonable’ conclu- 173

sions, and selecting the final prediction based on 174

the highest-scoring path. VERA (Liu et al., 2023) 175

adopts a discriminative approach, training a classi- 176

fication head to make predictions based on model 177

representations, which fine-tunes LLMs on~7 mil- 178

lion commonsense statements. In contrast, our ap- 179

proach also leverages internal knowledge from a 180

discriminative perspective but does not require ad- 181

ditional training. 182
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...
There is a red penguin.

Question:    color distribution 
of penguins

Candidates: {red, gray, ...}

template for candidates

template for anchor There is a penguin.

There is a gray penguin.

...

Encode

sim

...

...

sim

...

The farmers with newly 
harvested crops are in 
a truck.

Question:    Where are the 
farmers with newly harvested 
crops?

Candidates: {truck, farm, ...}

prompt for candidates

prompt for anchor The farmers with newly 
harvested crops are .

The farmers with newly 
harvested crops are at 
the farm. 

...
Encode

sim

...

sim

farm

market

truck
...

＞
＞

(a) An Example of Attribute Value Ranking Task (b) An Example of Commonsense Frame Completion Task

Figure 1: How ComPaSS works on different tasks.

2.2 CSPE Based on External Knowledge183

Language models (LMs) may have insufficient or184

inaccurate knowledge, which led to some meth-185

ods to incorporate external knowledge to bet-186

ter estimate commonsense plausibility. A typi-187

cal approach is to augment the model’s knowl-188

edge by retrieving relevant sentences from external189

sources (Zhang et al., 2021; Yu et al., 2022). Com-190

monsense knowledge bases (KBs) (Speer et al.,191

2016; Sap et al., 2019; Hwang et al., 2020) store192

extensive commonsense knowledge, enabling the193

extraction of relevant subgraphs to evaluate sen-194

tence consistency with commonsense (Choi et al.,195

2022). To alleviate the coverage limitations of the196

KBs while leveraging the extensive knowledge en-197

coded in LMs, COMET (Bosselut et al., 2019) in-198

troduced a dynamic KB by pre-training LM on199

existing commonsense KBs. Methods that utilize200

this dynamic KB (Ghazarian et al., 2023; Tian et al.,201

2023) demonstrate improved generalization across202

various commonsense reasoning tasks.203

3 Task Definition204

Formally, given an input instance xi = (c; aci )205

consisting of a context c and a candidate infor-206

mation aci ∈ A, where Ac = {ac1, ac2, ..., acK} de-207

notes the context-dependent candidate set with size208

K, the task is to predict a plausibility score set209

Pc = {pc1, pc2, ..., pcK} for all candidates, where210

each pci ∈ R quantifies the plausibility of augment-211

ing c with aci . The ground-truth scores are denoted212

as Gc = {gc1, gc2, ..., gcK}, where gci indicates the213

true score of aci . Performance is measured by the214

correlation between Pc and Gc.215

The input can take two specific forms: for at-216

tribute value ranking task, the input is a structured217

triplet xi = (o, has property p; aci ). The context218

c = (o, has property p), where o is a common ob-219

ject and p is a property. The candidate aci represents220

the i-th attribute value for the specified property.221

For the commonsense frame completion task, the222

context c = q is a free-form question, the input is a223

question-answer pair xi = (q; aci ), where aci is the224

i-th plausible answer to this question. 225

4 ComPaSS 226

Our method, ComPaSS, is a zero-shot approach for 227

estimating commonsense plausibility. We demon- 228

strate in Figure 1 how this method works on differ- 229

ent tasks. For each input, we first construct an an- 230

chor sentence (omitting the commonsense-related 231

detail) and a candidate sentence (augmenting that 232

detail). We then encode both sentences individu- 233

ally to obtain their semantic representations. Next, 234

we calculate their semantic similarity, where the 235

degree of semantic shift—inversely proportional to 236

similarity—quantifies plausibility. 237

4.1 Constructing Sentences 238

For each input context c and the candidate to be 239

evaluated aci , we construct two types of sentences: 240

an anchor sentence sanchor that contains only the 241

base context c while omitting target details, and a 242

candidate sentence scandi that further incorporates 243

commonsense-related information aci . The con- 244

struction process varies based on input type but 245

follows a unified framework: 246

sanchor = fanchor(c, zanchor), (1) 247
248

scandi = fcandi(c, a
c
i , zcandi), (2) 249

where f(·) ∈ {fanchor(·), fcandi(·)} denotes the con- 250

struction function, and z ∈ {zanchor, zcandi} denotes 251

task-specific templates or prompts. 252

As illustrated in Figure 1, the framework is in- 253

stantiated differently based on the input format: 254

For triplet inputs, we employ template-based con- 255

struction, where z represents a pre-defined tem- 256

plate (see Appendix A) and f(·) represents ap- 257

plying this template to generate a sentence. For 258

question-answer pairs, we query GPT-4 (Achiam 259

et al., 2023) for sentence transformation, where 260

z denotes the prompt (see Appendix B) and f(·) 261

represents query GPT-4 using the specified prompt. 262

Since questions cannot be directly converted into 263

coherent statements, we use a blank space as a 264

placeholder when constructing anchor sentences. 265
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4.2 Representing Sentences266

Given anchor and candidate sentences, we encode267

them into dense semantic representations using a268

pre-trained model θ, which can be either a LM or269

a VLM. For each sentence s ∈ {sanchor, scandi}, the270

model first processes the sentence along with spe-271

cial tokens (e.g., [CLS], [EOS], or others depend-272

ing on the model architecture) and then outputs273

token hidden states:274

H = θ(s) = {h0, h1, ..., hl}, (3)275

where l denotes the sequence length, including the276

special tokens. The final sentence representation277

r ∈ {ranchor, rcandi} is derived through architecture-278

specific strategies.279

For encoder models, we use the hidden state280

of the designated semantic aggregation token281

as sentence representation. Some models (e.g.,282

RoBERTa (Liu et al., 2021b)) use the initial ‘[CLS]’283

token for sentence representation (r = h0), while284

others (e.g., CLIP (Radford et al., 2021)) utilize the285

final ‘[EOS]’ token embedding (r = hl).286

For decoder models, we use the hidden state of287

the last token as sentence representation r = hl,288

which naturally encapsulates the accumulated con-289

text. Alternatively, PromptReps (Zhuang et al.,290

2024) prompts the model to generate a new repre-291

sentative token at position l + 1, using its hidden292

state as the sentence representation (r = hl+1). We293

apply this strategy to models that are not enhanced294

by contrastive learning.295

This architecture-aware representation strategy296

ensures ComPaSS’s flexibility across different297

model backbones while maintaining optimal per-298

formance for each specific architecture.299

4.3 Ranking with Semantic Shifts300

We rank the candidate option aci by measuring how301

naturally it integrates into the context, quantified302

through semantic similarity between the anchor303

sentence representation ranchor and the candidate304

sentence representation rcandi. The underlying prin-305

ciple is that the more plausible the information, the306

smaller the semantic shifts it induces when added307

to the context, leading to higher semantic similarity.308

Formally, we define the commonsense plausibility309

score pci for each candidate aci as:310

pci ∝ sim(ranchor, rcandi), (4)311

where sim(·) denotes a similarity function (e.g., co-312

sine similarity or dot product). Candidates are then313

ranked by their plausibility scores descendingly, 314

with higher-ranked candidates representing more 315

commonsense-consistent answers. 316

4.4 Discussion of Applicable LMs 317

This paragraph discusses the differences in ap- 318

plicable LMs between ComPaSS and generative 319

methods based on likelihoods and verbalization. 320

ComPaSS can utilize both encoder and decoder 321

style models as long as they can yield reason- 322

able sentence representations. Likelihood-based 323

approaches can also leverage these two types of 324

LMs. Candidate likelihoods can be estimated based 325

on masked/next token prediction for encoders and 326

decoders respectively. In contrast, verbalization- 327

based approaches require LLMs–decoder-only 328

LMs–to answer the plausibility estimation ques- 329

tions. This indicates the broader applicability of 330

ComPaSS. 331

5 Experimental Setup 332

5.1 Datasets 333

We evaluate methods through two types of 334

fine-grained commonsense plausibility estimation 335

(CSPE) tasks, where candidates should be ranked 336

based on commonsense plausibility. These tasks 337

are carefully chosen to comprehensively evaluate 338

methods across varying input formats (from struc- 339

tured triplets to free-form text) and commonsense 340

knowledge levels (from specific attribute knowl- 341

edge to general commonsense knowledge). 342

5.1.1 Structured Attribute Knowledge 343

Color Dataset (CoDa) 1 (Paik et al., 2021) is a 344

human-annotated dataset used for attribute value 345

ranking, which provides color distributions for 346

commonly recognized objects. It contains 521 ob- 347

jects, each with 11 candidate color attributes. 348

Visual Commonsense Tests (ViComTe) 2 349

(Zhang et al., 2022) is another dataset used for 350

attribute value ranking, which derived from the 351

multimodal dataset, i.e., Visual Genome (Krishna 352

et al., 2017). It offers attribute value distributions 353

across a broader set of properties, including color, 354

shape, and material. It contains 2,877 objects with 355

12 candidate color attributes, 706 objects with 12 356

candidate shape attributes, and 1,423 objects with 357

18 candidate material attributes. 358

1https://github.com/nala-cub/coda
2https://github.com/ChenyuHeidiZhang/

VL-commonsense
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5.1.2 Free-form General Knowledge359

Commonsense Frame Completion (CFC) 3360

(Cheng et al., 2024) is a dataset designed to eval-361

uate implicit commonsense reasoning, which con-362

sists of questions accompanied by multiple plau-363

sible answers with human-annotated preference364

scores. It requires models to make probabilistic365

judgments about answer plausibility. The evalua-366

tion protocol employs a probabilistic framework367

that measures how well a model’s predicted answer368

distribution aligns with human preferences. As369

the test set is not public, we use the validation set370

containing 55 questions for zero-shot evaluation.371

5.2 Evaluation Metrics372

Spearman’s rank correlation coefficient ρ: We373

choose this as the primary metric following CoDa374

and ViComTe. It measures the correlation between375

the predicted ranks of candidates and their ground-376

truth ranks, focusing on the relative ordering rather377

than exact values. This emphasis on relative order-378

ing aligns with the nature of commonsense plausi-379

bility assessment, where the exact probability val-380

ues are less important than correctly identifying381

more plausible options over less plausible ones. A382

ρ value of 1 indicates perfect correlation, 0 indi-383

cates no correlation, and -1 indicates perfect nega-384

tive correlation.385

Accuracy: CoDa and ViComTe include binary386

comparison tasks where each object is paired with387

two attribute values, with one being more plausi-388

ble than the other. The model need to rank the389

more plausible value higher. We use accuracy as390

the evaluation metric, which measures the propor-391

tion of correct rankings. This metric is particularly392

suitable for cross-attribute comparisons as it is un-393

affected by variations in the number of candidates,394

unlike the Spearman’s rank correlation coefficient.395

5.3 Methods for Comparison396

5.3.1 ComPaSS with Various Backbones397

We evaluate ComPaSS across diverse model archi-398

tectures to assess its adaptability:399

For LMs, we consider various open-source400

models, including RoBERTa-Large (Liu et al.,401

2021b) (RoBERTa), a widely-used encoder-only402

LM, along with two decoder-only LLMs, Mistral-403

7B-Instruct (Jiang et al., 2023) (Mistral) and404

Qwen2-7B-instruct (qwe, 2024) (Qwen2), both405

3https://github.com/qxc101/PROBEVAL_CFC/

demonstrating strong instruction-following capabil- 406

ities. We also evaluate their contrastive learning- 407

enhanced variants, i.e., sup-SimCSE-RoBERTa- 408

Large (Gao et al., 2021) (RoBERTaw/ CL), E5- 409

Mistral-7B-Instruct (Wang et al., 2023, 2022) 410

(Mistralw/ CL) and gte-Qwen2-7B-instruct (Li et al., 411

2023) (Qwen2w/ CL). 412

For VLMs, we test CLIP-ViT-L/14 (Radford 413

et al., 2021) (CLIP), a multimodal representa- 414

tion model trained on image-text pairs using con- 415

trastive learning, which aligns semantically sim- 416

ilar images and text into closely matching repre- 417

sentations. We also consider its advanced variant 418

EVA-CLIP-8B (Sun et al., 2023) (EVA-CLIP) with 419

improved performance. 420

5.3.2 Baselines 421

We compare against two categories of baseline 422

methods: 423

Commonsense models (CSMs): These mod- 424

els are specifically designed for modeling com- 425

monsense knowledge: COMET-Atomic-2020- 426

Bart (Bosselut et al., 2019) (COME-Atomic) is 427

a commonsense LM pre-trained on commonsense 428

KBs. COMET is suitable for processing triple in- 429

put, which can generate a probability score for each 430

candidate. ACCENT (Ghazarian et al., 2023) as- 431

sesses the commonsense plausibility of a sentence 432

by first extracting structured tuples and then scor- 433

ing them based on their compatibility with a com- 434

monsense KB. VERA-T5-XXL (Liu et al., 2023) 435

(VERA-T5) is trained on ~7M commonsense state- 436

ments and can directly estimate the commonsense 437

plausibility of statements. 438

Language models (LMs): We evaluate all open- 439

source LMs used as the backbone of ComPaSS 440

with both likelihood-based and verbalization-based 441

approaches. For the likelihood-based method, the 442

plausibility of a sentence is determined by the 443

probability of predicting each token in the sen- 444

tence sequentially, normalized by sentence length. 445

A higher probability indicates greater plausibil- 446

ity. In the case of verbalization-based method, 447

pre-trained language models are prompted in nat- 448

ural language (see Appendix C) to rank all can- 449

didate responses based on their plausibility. We 450

also test closed-source LLMs including gpt-3.5- 451

turbo-0125 (OpenAI, 2022) (GPT-3.5) and gpt-4- 452

0125-preview (Achiam et al., 2023) (GPT-4), the 453

latter introduces multi-modality and has superior 454

capabilities. 455
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Model (#Inference Parameters) CoDa Color Shape Material CFC

Baselines
C

SM
ACCENT (440M) 10.07 10.35 -2.10 16.99 35.04
COMET-Atomic (440M) 22.91 26.98 40.44 25.72 -
VERA-T5 (5B) 58.93 45.08 30.31 33.51 45.81

L
M

RoBERTa+likelihood (355M) 24.37 33.63 36.12 24.23 42.46
RoBERTaw/ CL+likelihood (355M) 23.36 31.51 26.69 22.23 38.03
Mistral+verbal. (7B) 46.64 38.63 30.46 36.34 32.06
Mistral+likelihood (7B) 51.30 34.31 26.70 37.03 47.98
Mistralw/ CL+likelihood (7B) 25.70 4.72 18.81 5.96 35.46
Qwen2+verbal. (7B) 57.40 41.59 38.30 36.76 29.32
Qwen2+likelihood (7B) 50.25 40.99 32.52 37.13 45.10
Qwen2w/ CL+likelihood (7B) 49.65 41.75 32.80 37.30 43.00

ComPASS

L
M

RoBERTaw/ CL (355M) 44.59 38.92 42.92 33.55 44.46
Mistralw/ CL (7B) 58.54 42.20 43.75 38.77 49.01
Qwen2w/ CL (7B) 59.16 44.61 47.51 38.49 46.41

V
L

M CLIP (124M) 58.10 45.55 45.82 33.56 35.13
EVA-CLIP (695M) 62.87 51.73 48.05 38.67 41.46

Table 1: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and their ground-truth
on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage. The best and second best results
are highlighted in bold and underlined, respectively. ‘+verbal.’ indicates using the verbalization-based method.

5.4 Implementation Details456

For closed-source models, we obtain the generated457

results via their official APIs. For open-source458

models, all experiments are conducted on a single459

NVIDIA A800 80G GPU. Notably, all experiments460

are carried out in a zero-shot or in-context few-shot461

setting. For ACCENT, we set the beam number to462

10 as specified in the original paper. When testing463

on the CFC dataset using the verbalization method,464

we sample the model 100 times for each question465

with a temperature of 0.7.466

6 Results and Analysis467

6.1 Overall Results468

The overall experimental results comparing base-469

line methods with our approach are presented in470

Table 1, which reveals several key findings:471

ComPaSS achieves the best performance com-472

pared to baselines. Further comparison between473

RoBERTa, Mistral, and Qwen2, with and with-474

out ComPaSS, shows a consistent improvement475

when ComPaSS is applied. This validates our476

method’s architecture-agnostic effectiveness. No-477

tably, even VERA, which was specifically fine-478

tuned for CSPE, achieves only comparable perfor-479

Method CoDa Color Shape Material

likelihood 24.37 33.63 36.12 24.23
ComPaSS 24.63 22.68 26.77 19.93

w/ unsup-CL 32.67 32.00 42.18 31.12
w/ sup-CL 44.59 38.92 42.92 33.55

Table 2: Performance of different Roberta variants. By
default we use the vanilla RoBERTa. ‘w/ unsup-CL’ and
‘w/ sup-CL’ denote RoBERTa pre-trained with unsuper-
vised and supervised contrastive learning, respectively.

mance to ComPaSS-enhanced models. Comparing 480

the performance of different methods on LMs in 481

the baseline, we find that verbalization-based meth- 482

ods fail to consistently outperform likelihood-based 483

approaches, even when applied to generative mod- 484

els. This limitation highlights the challenges such 485

methods face in making fine-grained distinctions 486

required for precise plausibility estimation. 487

VLMs demonstrate superior effectiveness in 488

learning visual-related commonsense knowl- 489

edge. Comparing the ComPaSS methods based 490

on various backbones, we find VLMs exhibit par- 491

ticular strength in visual attribute ranking, with 492

EVA-CLIP achieving the highest scores on CoDa 493

(62.87), Color (51.73), and Shape (48.05), signif- 494
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Figure 2: Binary classification accuracy of models with ComPaSS on different groups.
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Figure 3: ComPaSS performance with different template types and template ensemble settings.

icantly outperforming even 7B parameter LLMs.495

This performance gap persists despite the LLMs’496

access to large-scale text corpora and additional pa-497

rameters, underscoring the unique value of visual498

supervision. This performance gap highlights the499

limitations of text-only training, as even extensive500

textual data and additional parameters cannot fully501

compensate for the lack of visual grounding, which502

underscores the importance of multimodal learning503

for comprehensive commonsense understanding.504

Discriminative approaches may offer a more505

parameter-efficient pathway compared to gen-506

erative methods. Our experiments reveal that507

encoder-only models with millions of parameters508

like RoBERTa and CLIP-series models achieve509

comparable or even superior results to much larger510

decoder-only models (with billions of parameters)511

when combined with ComPaSS. This suggests512

that our discriminative method effectively lever-513

ages the semantic representation strengths of en-514

coder models, which are generally more parameter-515

efficient than generative models. By focusing on516

representation-level semantics rather than token517

generation, ComPaSS aligns closely with the pre-518

training objectives of encoder models, maximizing519

their representation power.520

The ability to discern semantic nuances in sen-521

tence representations is crucial for the perfor-522

mance of ComPaSS. As shown in Table 2, experi-523

ments with different RoBERTa variants reveal that524

applying ComPaSS to vanilla RoBERTa, which525

has weaker representation capabilities, leads to526

performance degradation. However, incorporating527

contrastive learning significantly improves perfor-528

mance, with even unsupervised contrastive training529

Model CoDa Color Shape Material

GPT-3.5 94.05 92.25 90.08 89.60
GPT-4 94.63 93.29 89.24 88.76

Mistralw/ CL 94.97 86.06 91.50 91.27
Qwen2w/ CL 94.71 86.79 94.04 90.42
EVA-CLIP 95.39 93.29 94.33 90.79

Table 3: Binary comparison accuracy on CoDa and
ViComTe. The best results are highlighted in bold. All
results are shown in percentage. Both Mistral and EVA-
CLIP use the ComPaSS method.

yielding substantial gains. Contrastive pre-training 530

enables even subtle plausibility distinctions to man- 531

ifest as measurable shifts in embedding space, mak- 532

ing it essential to the performance of ComPaSS. 533

6.2 Further Analyses 534

6.2.1 Comparisons to Closed-source Models 535

We extend our evaluation to include state-of-the-art 536

closed-source models, with results presented in Ta- 537

ble 3. Notably, our method outperforms even GPT- 538

4 across multiple tasks, demonstrating its effective- 539

ness in fine-grained CSPE. This performance gap 540

further highlights the limitations of verbalization- 541

based approaches in capturing subtle distinctions 542

required for precise plausibility estimation. 543

6.2.2 Granular Analysis of Attribute Types 544

We analyze binary comparison results on CoDa 545

and ViComTe across three attribute groups: single: 546

includes objects with one dominant attribute value 547

(e.g., snow’s color), multi: includes objects with 548

attributes mainly distributed among the top four 549

values (e.g., a penguin’s color), and any: includes 550

7



Task             : Rank the candidate colors according to the frequency with which a sheep is observed in each color.
Human                : white, gray, black, brown
GPT-3.5        : white, black, brown, gray
GPT-4           : white, black, brown, gray
E5-Mistral*  : white, gray, black, brown 
get-Qwen2* : white, brown, gray, black
EVA-CLIP*   : white, gray, black, brown 

photo of sheep in physical world

Figure 4: The ranking of sheep colors by humans and different models, along with corresponding images from the
physical world (from Google). The ‘*’ in the upper right represents the model with ComPaSS method.

objects with a broader attribute distribution (e.g.,551

a T-shirt’s color). As shown in Figure 3, VLMs552

demonstrate particular strength in the single group.553

This advantage primarily stems from how visual in-554

formation overcomes reporting bias in textual data.555

For objects in the single category, their most com-556

mon attribute is often not explicitly mentioned in557

text due to its widespread acceptance as common558

knowledge. However, these attributes are consis-559

tently and explicitly depicted in visual data. This560

inherent visual grounding allows VLMs to capture561

stereotypical attributes more effectively than text-562

based LLMs.563

6.2.3 Effect of Template Format564

We investigate the importance of sentence-level565

context in semantic shift measurement by compar-566

ing two approaches: word collocation compari-567

son (e.g., ‘penguin’ and ‘black penguin’) and full568

sentence construction (e.g., ‘There is a penguin’569

and ‘There is a black penguin’). As shown in570

Figure 3(a), sentence-level inputs consistently out-571

perform word-level comparisons for both LLMs572

and VLMs. This performance gap underscores573

the importance of complete sentence construction574

for ComPaSS, as sentence-level inputs better align575

with models’ pre-training data formats.576

6.2.4 Template Ensemble Methods577

We investigate three template utilization strategies:578

The single-optimal ensemble approach uses the uni-579

fied best-performing template, serving as an im-580

plicit ensemble. For explicit ensemble methods,581

score-level ensemble averages prediction scores582

across multiple templates, and representation-level583

ensemble fuses sentence representations from sev-584

eral templates before computing the final score.585

As shown in Figure 3 (b), both explicit ensemble586

strategies significantly improve LLM performance,587

with score-level ensemble showing more consistent588

gains. However, VLM shows limited improvement589

from ensemble methods, likely due to their simpler590

pre-training data structure. This contrast highlights591

LLMs’ sensitivity to linguistic variations and their 592

ability to benefit from diverse syntactic structures. 593

6.3 Case Study 594

We use the classic ‘black sheep problem’ to intu- 595

itively explain why ComPaSS is effective. Since 596

‘black sheep’ is an idiom, one is much more likely 597

to mention a ‘black sheep’ than to specify the color 598

of a sheep. Such reporting bias confuses the LMs 599

that learn knowledge through probabilistic model- 600

ing. As shown in Figure 4, GPT-3.5 and GPT-4 601

both overestimate the probability of ‘black’ being 602

the color of sheep even though sheep in black are 603

rare. In contrast, our approach relies on semantic 604

rather than probabilistic likelihood is able to dis- 605

tinguish between the linguistic meaning and the 606

visual recognition of ‘a black sheep’, resulting in 607

a more accurate estimation of the sheep’s color. 608

In addition, VLM calibrates the color distribution 609

well by incorporating visual information. 610

7 Conclusion 611

We introduce ComPaSS, a discriminative frame- 612

work for fine-grained commonsense plausibility 613

estimation via semantic shift measurement. By 614

leveraging the idea that plausible commonsense 615

augmentations cause minimal semantic deviation, 616

ComPaSS offers a generalizable approach for vari- 617

ous tasks and model architectures. Our experiments 618

show that discriminative methods outperform gen- 619

erative approaches in capturing nuanced plausibil- 620

ity distinctions, with ComPaSS consistently sur- 621

passing likelihood-based and verbalization-based 622

baselines. Vision-language models also excel on 623

visually-grounded commonsense tasks, addressing 624

reporting bias through multimodal alignment. Fi- 625

nally, we emphasize the role of contrastive pre- 626

training in improving semantic representation qual- 627

ity, directly enhancing plausibility estimation ac- 628

curacy. Overall, ComPaSS highlights the value of 629

utilizing semantic embeddings to extract common- 630

sense knowledge from pre-trained models. 631

8



8 Limitations and Ethical Considerations632

ComPaSS faces challenges in making absolute633

pointwise judgments. The method’s reliance on634

semantic shift measurement inherently provides635

comparative assessments rather than definitive plau-636

sibility scores. This limitation stems from the dif-637

ficulty in establishing absolute semantic distance638

thresholds for plausibility classification. Future639

work could explore calibration techniques to bridge640

this gap. In addition, for attribute value ranking641

task, our method relies on predefined templates to642

construct sentences for objects and candidate at-643

tributes. Automating template generation could be644

an important avenue for future improvement.645

As our method relies on LLMs and VLMs, it646

inherits potential biases present in the training647

data. These biases, whether related to societal648

stereotypes or uneven distribution of information649

across certain attributes, could affect the model’s650

judgment in ranking attribute plausibility. Con-651

sequently, our method may inadvertently perpetu-652

ate or amplify these biases, especially in scenarios653

where the model’s understanding of an attribute is654

skewed by biased representations in the data. Ad-655

dressing these biases is an important avenue for656

future work.657
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A Templates for Sentence Construction874

The templates we used to construct anchor sen-875

tences and candidate sentences of different property876

are shown in Table A.877

B Prompt for Sentence Transformation878

The prompt we use for converting question-answer879

pair can be found in Figure 6.880

C Prompt for Verbalization-based881

Method882

The prompt we use for the verbalization-based883

method can be found in Figure ??.884

D More Experimental Results885

Since not all models are compatible with all meth-886

ods, we exclude the results of incompatible model-887

method combinations from the main text. The com-888

plete results are provided in Table 5. Notably, the889

results of Mistralw/ CL with the verbalization-based890

method is 0, as this model, trained via contrastive891

learning, has significantly lost its ability to follow892
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able responses based on prompts.894

11

https://api.semanticscholar.org/CorpusID:253098034
https://api.semanticscholar.org/CorpusID:253098034
https://api.semanticscholar.org/CorpusID:253098034
https://api.semanticscholar.org/CorpusID:235248317
https://api.semanticscholar.org/CorpusID:235248317
https://api.semanticscholar.org/CorpusID:235248317


Transform the problem into declarative sentence based on each answer with minimal modifications. Do not 
introduce more information, and do not lose any information in the questions and answers.

For Example:
Question 1:
who was driving through the night, shooting blurred lights out of focus?
Answers 1:
1. person, 2. chauffeur, 3. taxi driver, 4. a person, 5. or a driver.
Sentences 1:
1. A person was driving through the night, shooting blurred lights out of focus.
2. A chauffeur was driving through the night, shooting blurred lights out of focus.
3. A taxi driver was driving through the night, shooting blurred lights out of focus.
4. A person was driving through the night, shooting blurred lights out of focus.
5. A driver was driving through the night, shooting blurred lights out of focus.
Question 2:
why would a goat eat hay in a stable?
Answers 2:
1. gain energy, 2. to fulfill hunger, 3. to get nutrition, 4. get nutrition
Sentences 2:
1. a goat eats hay in a stable to gain energy.
2. a goat eats hay in a stable to fulfill hunger.
3. a goat eats hay in a stable to get nutrition.
4. a goat eats hay in a stable to get nutrition.
Question 3:
why would an aircraft receive fuel from a cargo aircraft?
Answers 3:
1. longer flight times, 2. takeoff, 3. traveling, 4. enable travel, 5. refill fuel
Sentences 3:
1. an aircraft receives fuel from a cargo aircraft because of longer flight times.
2. an aircraft receives fuel from a cargo aircraft for takeoff.
3. an aircraft receives fuel from a cargo aircraft for traveling.
4. an aircraft receives fuel from a cargo aircraft to enable travel.
5. an aircraft receives fuel from a cargo aircraft to refill fuel.

New Task:
Question 4:
<Q>
Answers 4:
<A>
Sentences 4:

Figure 5: The prompt for converting question-answer pair into sentence. The blue part is the instruction, the green
part is the 3-shot example, and the red part is the placeholder for the specific input.
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Property Templates for anchor Templates for candidate

Color

A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].
An image of a [o]. An image of a [c] [o].
An image of a [o]. An image of a [o] which is [c].

There is an image of a [o]. There is an image of a [c] [o].
There is a photo of a [o]. There is a photo of a [c] [o].
There is a picture of a [o]. There is a picture of a [c] [o].
There is an image of a [o]. There is an image of a [o] which is [c].
There is a photo of a [o]. There is a photo of a [o] which is [c].

It is an image of a [o]. It is an image of a [o] which is [c].
It is a photo of a [o]. It is a photo of a [o] which is [c].

There is a [o]. There is a [o] in [c].
There is a [o]. There is a [o] which is [c].

Everyone knows [o]. Everyone knows that [o] is [c].
Everyone knows [o]. Everyone knows that [o] is [c].

Shape

This is a [o]. This is a [o] with [c] shape.
There is a [o]. There is a [c] [o].
There is a [o]. There is a [o] which shape is [c].

It is an image of a [o]. It is an image of a [o] which shape is [c].
There is an image of a [o]. It is an image of a [o] which shape is [c].
There is an image of a [o]. There is an image of a [c] [o].
There is a picture of a [o]. There is a picture of a [c] [o].
There is a picture of a [o]. There is an picture of a [o] which shape is [c].
There is a picture of a [o]. There is an picture of a [c] [o].
This is a picture of a [o]. This is a picture of a [o] has [c] shape.

A picture of a [o]. A picture of a [o] has [c] shape.
An image of a [o]. An image of a [c] [o].
A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].
[o] is of shape . [o] is of shape [c].

The shape of [o]. The shape of [o] can be [c].
The shape of the [o]. The shape of the [o] is [c].

Material

This is an image of a [o]. This is an image of a [o] made of [c].
This is an image of a [o]. This is an image of a [o] which made from [c].
This is an image of a [o]. This is an image of a [o] which made of [c].
This is a photo of a [o]. This is a photo of a [o] made of [c].
This is a picture of a [o]. This is a picture of a [o] made of [c].
This is a picture of a [o]. This is a picture of a [o] which made of [c].

It is a picture of a [o]. It is a picture of a [o] made of [c].
A picture of a [o]. A picture of a [o] which made from [c].
A picture of a [o]. A picture of a [o] which made of [c].
A picture of a [o]. A picture of a [c] [o].

There is an image of a [o]. There is an image of a [c] [o].
There is a photo of a [o]. There is an photo of a [c] [o].
There is a picture of a [o]. There is an picture of a [c] [o].

An image of a [o]. An image of a [c] [o].
A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].

Table 4: Templates we used for constructing anchor sentences and candidate sentences. The templates for CoDa are
the same as Color.
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Sort all the <PROP>s in candidate set based on how frequently the object is observed to be each <PROP>. 
The higher the <PROP> is ranked, the more commonly the object is of that <PROP>. The candidate set is 
<PROP_LIST>. The output must be a sorted result that includes all candidate <PROP>s as in the example.

Here are some samples:
object: <OBJ0>
result: <RES0>
object: <OBJ1>
result: <RES1>
object: <OBJ2>
result: <RES2>

New Task:
object: <OBJ>
result:

Answer the question based on commonsense. Your answer should be brief. You cannot refuse to answer 
for any reason.

Example 1: 
Question: who was driving through the night, shooting blurred lights out of focus?
Answer: person
Example 2: 
Question: why would an aircraft receive fuel from a cargo aircraft?
Answer: to fly
Example 3: 
Question: where's the heart-shaped hot dog and some pizza on a big tray?
Answer: restaurant

New Task:
Question: <Q>
Your answer:

The Prompt of Verbalization-based Method for Attribute Value Ranking

The Prompt of Verbalization-based Method for Commonsense Frame Completion

Figure 6: The prompt for attribute value ranking task and commonsense frame completion task.

14



Model (#Inference Parameters) CoDa Color Shape Material CFC

Baselines

C
SM

ACCENT (440M) 10.07 10.35 -2.10 16.99 35.04
COMET-Atomic-2020-Bart (440M) 22.91 26.98 40.44 25.72 -
VERA-T5-XXL (5B) 58.93 45.08 30.31 33.51 45.81

L
M

RoBERTa+likelihood (355M) 24.37 33.63 36.12 24.23 42.46
RoBERTaw/ CL+likelihood (355M) 23.36 31.51 26.69 22.23 38.03
Mistral+verbal. (7B) 46.64 38.63 30.46 36.34 32.06
Mistral+likelihood (7B) 51.30 34.31 26.70 37.03 47.98
Mistralw/ CL+verbal. (7B) 0.0 0.0 0.0 0.0 0.0
Mistralw/ CL+likelihood (7B) 25.70 4.72 18.81 5.96 35.46
Qwen2+verbal. (7B) 57.40 41.59 38.3 36.76 29.32
Qwen2+likelihood (7B) 50.25 40.99 32.52 37.13 45.10
Qwen2w/ CL+verbal. (7B) 11.12 15.28 -24.21 0.45 21.39
Qwen2w/ CL+likelihood (7B) 49.65 41.75 32.8 37.3 43.00

ComPASS

L
M

RoBERTaw/ CL (355M) 44.59 38.92 42.92 33.55 44.46
Mistralw/ CL (7B) 58.54 42.20 43.75 38.77 49.01
Qwen2w/ CL (7B) 59.16 44.61 47.51 38.49 46.41

V
L

M CLIP (124M) 58.10 45.55 45.82 33.56 35.13
EVA-CLIP (695M) 62.87 51.73 48.05 38.67 41.46

Table 5: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and their ground-truth
on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage. The best and second best results
are highlighted in bold and underlined, respectively. ‘+likelihood’ indicates using the likelihood-based method and
‘+verbal.’ indicates using the verbalization-based method.
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