
PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models

Fanxu Meng1,2, Zhaohui Wang1, Muhan Zhang1,2∗
1Institute for Artificial Intelligence, Peking University

2State Key Laboratory of General Artificial Intelligence, Peking University
https://github.com/GraphPKU/PiSSA

Abstract

To parameter-efficiently fine-tune (PEFT) large language models (LLMs), the low-
rank adaptation (LoRA) method approximates the model changes ∆W ∈ Rm×n

through the product of two matrices A ∈ Rm×r and B ∈ Rr×n, where
r ≪ min(m,n), A is initialized with Gaussian noise, and B with zeros. LoRA
freezes the original model W and updates the “Noise & Zero” adapter, which
may lead to slow convergence. To overcome this limitation, we introduce Principal
Singular values and Singular vectors Adaptation (PiSSA). PiSSA shares the same
architecture as LoRA, but initializes the adaptor matrices A and B with the princi-
pal components of the original matrix W , and put the remaining components into a
residual matrix W res ∈ Rm×n which is frozen during fine-tuning. Compared to
LoRA, PiSSA updates the principal components while freezing the “residual”
parts, allowing faster convergence and enhanced performance. Comparative ex-
periments of PiSSA and LoRA across 11 different models, ranging from 184M to
70B, encompassing 5 NLG and 8 NLU tasks, reveal that PiSSA consistently out-
performs LoRA under identical experimental setups. On the GSM8K benchmark,
Gemma-7B fine-tuned with PiSSA achieves an accuracy of 77.7%, surpassing
LoRA’s 74.53% by 3.25%. Due to the same architecture, PiSSA is also compat-
ible with quantization to further reduce the memory requirement of fine-tuning.
Compared to QLoRA, QPiSSA (PiSSA with 4-bit quantization) exhibits smaller
quantization errors in the initial stages. Fine-tuning LLaMA-3-70B on GSM8K,
QPiSSA attains an accuracy of 86.05%, exceeding the performance of QLoRA at
81.73%. Leveraging a fast SVD technique, PiSSA can be initialized in only a few
seconds, presenting a negligible cost for transitioning from LoRA to PiSSA.

1 Introduction

Fine-tuning large language models (LLMs) is a highly effective technique for boosting their capabili-
ties in various tasks [1, 2, 3, 4], ensuring models to follow instructions [5, 6, 7], and instilling models
with desirable behaviors while eliminating undesirable ones [8, 9]. However, the fine-tuning process
for very large models is accompanied by prohibitive costs. For example, regular 16-bit fine-tuning
of a LLaMA 65B parameter model requires over 780 GB of GPU memory [10], and the VRAM
consumption for training GPT-3 175B reaches 1.2TB [11]. Consequently, various parameter-efficient
fine-tuning (PEFT) [12, 13] methods have been proposed to reduce the number of parameters and
memory usage required for fine-tuning. Due to the ability to maintain the performance of full fine-
tuning without adding additional inference latency, Low-Rank Adaptation (LoRA) [11] has emerged
as a popular PEFT method.

∗Correspondence to: Muhan Zhang <muhan@pku.edu.cn>

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/GraphPKU/PiSSA

Pretrained
Matrix

𝑊 ∈ ℝ!×#

𝑥

𝑦

(a) Full Fine-tuning

Pretrained
Matrix

𝑊 ∈ ℝ!×#
𝐴~𝒩(0, 𝜎!)

𝐵 = 0

𝑚

𝑟

𝑥

𝑦

(b) LoRA

Residual	
Matrix

𝑈[:,$:]𝑆[$:,$:]𝑉[:,$:]&
𝑈[:,:$]𝑆[:$,:$]

⁄' (

𝑆[:$,:$]
⁄' (𝑉[:,:$])

𝑚

𝑥

𝑦

𝑆[: 𝑟]𝑟

(c) PiSSA

Figure 1: The comparison among Full Fine-tuning, training with LoRA, and PiSSA. In this visualiza-
tion, blue modules represent parts of the model whose parameters are frozen during training, while
orange modules indicate components that require updates. QLoRA quantizes the pretrained matrix in
LoRA to 4-bit, whereas QPiSSA quantizes the residual matrix in PiSSA.

Table 1: Comparison of similarities and differences between PiSSA and LoRA. In this table, bold
highlights the model’s primary component, while underline denotes the residual component.

LoRA PiSSA

Forward Y = X(W +∆W) = X(W +AB) Y = X(W res + Wpri) = X(W res + AB)

A ∼ N (0, σ2) ∈ Rm×r
A = U[:,:r] S

1/2

[:r,:r] ∈ Rm×r

Initialization
B = 0 ∈ Rr×n

B = S
1/2

[:r,:r] V
⊤
[:,:r] ∈ Rr×n

W res = U[:,r:] S[r:,r:] V
⊤
[:,r:] ∈ Rm×n

Gradient
∂L
∂A

= X⊤ (
∂L
∂Y

)
B⊤ → 0 ∂L

∂A
= X⊤ (

∂L
∂Y

)
B⊤ → Principal

∂L
∂B

= A⊤X⊤ (
∂L
∂Y

)
→ Random Direction ∂L

∂B
= A⊤X⊤ (

∂L
∂Y

)
→ Principal

Comparison
Fine-tunes noise while freezing W. Fine-tunes principal parts freezing W res.

Slow convergence and underperformance. Fast convergence and better performance.
QLoRA cannot reduce quantization error. QPiSSA can reduce quantization error.

LoRA [11] hypothesizes that the modifications to parameter matrices during fine-tuning exhibit
low-rank properties. As depicted in Figure 1b, for a pre-trained weight matrix W ∈ Rm×n, LoRA
substitutes the updates with a low-rank decomposition ∆W = AB, where A ∈ Rm×r and B ∈ Rr×n,
and the rank r ≪ min(m,n). For Y = XW , the modified forward pass is as follows:

Y = X(W +∆W) = X(W +AB), (1)

A random Gaussian initialization is used for A and zero for B, making AB = 0 at the beginning
of training, thereby the injection of adapters does not affect the model’s output initially. LoRA
avoids the need to compute gradients or maintain the optimizer states for the original matrix W ,
instead optimizing the injected, significantly smaller low-rank matrices A,B. Thus, it could reduce
the number of trainable parameters by 10,000× and the GPU memory requirement by 3× [11].
LoRA is capable of achieving comparable performance to full parameter fine-tuning. By integrating
the quantization of pre-trained matrices W , LoRA also enables reducing the average memory
requirements by 16× [10]. Meanwhile, the adapters can still utilize higher precision weights, thus,
the quantization usually does not significantly degrade the performance of LoRA.

According to Equation 1, the gradients of A and B are ∂L
∂A = X⊤ (

∂L
∂Y

)
B⊤ and ∂L

∂B = A⊤X⊤ (
∂L
∂Y

)
.

Compared to full fine-tuning, using LoRA initially does not change the output Y for the same input
X , so the magnitude and direction of gradient are primarily determined by the values of A and B.
Since A and B are initialized with Gaussian noise and zeros in LoRA, the gradients could be small

2

and uninformative for a long time, leading to slow convergence in the fine-tuning process. We also
observe this phenomenon empirically, as LoRA often wastes much time around the initial point.

Our Principal Singular values and Singular vectors Adapter (PiSSA) diverges from LoRA and its
successors by focusing not on approximating ∆W , but W . We apply singular value decomposition
(SVD) to matrix W . Based on the magnitude of the singular values, we partition W into two parts:
the principal low-rank matrix W pri, comprising a few largest singular values, and the residual matrix
W res, which possesses the remaining smaller singular values (with a larger quantity, representing
a possible long-tail distribution). The principal matrix W pri can be represented by the product of
A ∈ Rm×r and B ∈ Rr×n, where r ≪ min(m,n). As depicted in Figure 1c, A and B are initialized
based on the principal singular values and singular vectors and are trainable. Conversely, W res is
initialized with the product of the residual singular values and singular vectors and remains frozen
during fine-tuning. Since the principal singular vectors represent the directions in which the matrix W
has the most significant stretching or impact, by directly tuning these principal components, PiSSA is
able to fit the training data faster and better (as demonstrated in Figure 2a). Moreover, the loss
and gradient norm curves of PiSSA often demonstrate a similar trend to those of full parameter fine-
tuning in our experiments (Figure 4), indicating that fine-tuning the principal components matches
the behavior of fine-tuning the full matrix to some degree.

0.6 0.4 0.2 0.0 0.2 0.4

0.6

0.4

0.2

0.0

0.2

0.4 Target Local Minimum
Full FT Loss: 2.014
LoRA Loss: 6.037
PiSSA Loss: 1.780

(a) PiSSA converges more rapidly.

LLaMA-3-8B LLaMA-3-70B
0

5

10

15

20

25

Qu
an

tiz
at

io
n

Er
ro

r R
ed

uc
tio

n
(%

)

QLoRA
LoftQ r64 1-iter
PiSSA r64 1-iter
LoftQ r64 5-iter
PiSSA r64 5-iter
PiSSA r128 5-iter

(b) PiSSA reduces more quantization error.

Figure 2: We illustrate the two key advantages of PiSSA: converging faster and better, and reducing
quantization error. In the left figure, we use a toy example to show PiSSA’s faster convergence, where
we first train a two-layer MLP classifying odd numbers of MNIST, and then fine-tune the model
on even numbers. PiSSA finds the right direction more quickly and achieves a lower loss with the
same number of steps. In the right figure, PiSSA reduces quantization error more effectively than
LoftQ [14], with an optional 5-iteration SVD for further error reduction, as detailed in Appendix E.

Because the principal components W pri are preserved in the adapter at full precision, an additional
benefit of PiSSA is that when applying quantization to the frozen part W res, we can significantly
reduce the quantization error compared to QLoRA (which quantizes the entire W), as illustrated
in Figure 2b. Therefore, PiSSA is even more compatible with quantization than LoRA, making it a
superior plug-and-play substitution for LoRA.

Our paper makes several significant contributions:

• We analyze the initial gradient magnitude and direction in LoRA, demonstrating that A
initially has a zero gradient and B has a random gradient, which slows down convergence
and may lead to convergence at suboptimal local minima.

• We propose PiSSA initialization, a novel method that approximates the optimization di-
rection of full-parameter fine-tuning by adapting a model’s principal components. To our
knowledge, PiSSA is the first to apply SVD to the original model, using principal singu-
lar values and vectors to initialize the adapter for fine-tuning, while keeping the residual
components frozen. Experiments show that PiSSA converges faster and outperforms LoRA.

• We combine PiSSA with NF4 quantization to propose QPiSSA, which reduces quantization
error by about 20% compared to QLoRA, while maintaining the fast convergence and high
performance of PiSSA.

3

2 Related Works

The vast complexity and computational needs of large language models (LLMs) with billions of
parameters present significant hurdles in adapting them for specific downstream tasks. Parameter
Efficient Fine-Tuning (PEFT) [12, 13] emerges as a compelling solution by minimizing the fine-tuning
parameters and memory requirements while achieving comparable performance to full fine-tuning.
PEFT encompasses strategies like partial fine-tuning [15, 16, 17, 18, 19, 20, 21, 22], soft prompt
fine-tuning [23, 24, 25, 26, 27, 28, 29], non-linear adapter fine-tuning [30, 31, 32, 33, 34, 35, 36, 37,
38, 39], and low rank adapter based fine-tuning [40, 41, 11, 42].

LoRA [11] injects trainable adapters to the linear layers. After fine-tuning, these adaptations can be
re-parameterized into the standard model structure, thus gaining widespread adoption due to their
ability to maintain the model’s original architecture while enabling efficient fine-tuning. Following
LoRA, AdaLoRA [42] dynamically learns the rank size needed for LoRA in each layer of the model.
DeltaLoRA [43] updates the original weights of the model using parameters from adapter layers,
enhancing LoRA’s representational capacity. LoSparse [44] incorporates LoRA to prevent pruning
from eliminating too many expressive neurons. DoRA [45] introduces a magnitude component to
learn the scale of ∆W while utilizing the original AB as a direction component of ∆W . Unlike
LoRA and its successors, which focus on learning low-rank approximations of weight updates, our
PiSSA directly tunes the essential low-rank parts of the model while keeping the noisier, high-rank,
and nonessential parts frozen. Although our approach differs in philosophy from LoRA, it shares
most of LoRA’s structural benefits and can be extended by these methods to enhance its performance.

QLoRA [10] integrates LoRA with 4-bit NormalFloat (NF4) quantization, along with Double Quanti-
zation and Paged Optimizers, enabling the fine-tuning of a 65B parameter model on a single 48GB
GPU while preserving the performance of full 16-bit fine-tuning tasks. QA-LoRA [46] introduces
group-wise operators to increase the degree of freedom in low-bit quantization. LoftQ [14] reduces
quantization error by decomposing the quantization error matrix of QLoRA and retaining the principal
components with an adapter. PiSSA can also be combined with quantization techniques, and we have
found that PiSSA significantly reduces quantization error compared to QLoRA and LoftQ.

3 PiSSA: Principal Singular Values and Singular Vectors Adaptation

This section formally presents our Principal Singular values and Singular vectors Adaptation method.
PiSSA computes the singular value decomposition (SVD) of matrices W within the self-attention
and multilayer perceptron (MLP) layers. The (economy size) SVD of a matrix W ∈ Rm×n is
given by W = USV ⊤, where U ∈ Rm×min(m,n), V ∈ Rn×min(m,n) are the singular vectors with
orthonormal columns, and V ⊤ is the transpose of V . S = diag(s) ∈ Rmin(m,n)×min(m,n), where the
operation diag(s) transforms s to a diagonal matrix S, and s ∈ Rmin(m,n)

≥0 represents the singular
values arranged in descending order. When the top r singular values s[:r] are significantly larger
than the remaining singular values s[r:], we denote the intrinsic rank of W as r. Consequently, S,
along with U and V , can be divided into two groups: the principal singular values and vectors—
{U[:,:r], S[:r,:r], V[:,:r]}, and the residual singular values and vectors—{U[:,r:], S[r:,r:], V[:,r:]}, where
the matrix slicing notations are the same as those in PyTorch and [: r] denotes the first r dimensions.
The principal singular values and vectors are utilized to initialize the injected adapter consisting of
A ∈ Rm×r and B ∈ Rr×n:

A = U[:,:r] S
1/2
[:r,:r] ∈ Rm×r, (2)

B = S
1/2
[:r,:r] V

⊤
[:,:r] ∈ Rr×n. (3)

The residual singular values and vectors are used to build the residual matrix which is frozen during
fine-tuning:

W res = U[:,r:] S[r:,r:] V
⊤
[:,r:] ∈ Rm×n. (4)

As indicated by Equation 5, the integration of AB with the residual matrix also preserves the full
capability of the pre-trained model in the beginning of fine-tuning:

Y = XW = X(W res +W pri) = X(W res +AB). (5)

4

Similar to LoRA, the gradients of A and B are also given by ∂L
∂A = X⊤ (

∂L
∂Y

)
B⊤ and ∂L

∂B =

A⊤X⊤ (
∂L
∂Y

)
. Since elements of s[:r]≫ elements of s[r:], the trainable adapter W pri = AB contains

the most essential directions of W . In the ideal case, training AB mirrors the process of fine-tuning
the entire model despite using fewer parameters. The ability to directly fine-tune the most essential
part of a model enables PiSSA to converge faster and better. In contrast, LoRA initializes the adapters
A and B with Gaussian noise and zeros while keeping W frozen. Consequently, the gradients are
small or in random directions during the early stages of fine-tuning, possibly introducing much
waste of gradient descent steps. Moreover, an inferior initialization might lead to suboptimal local
minimum, resulting in worse generalization performance.

Since PiSSA shares the identical architecture with LoRA, it inherits most of LoRA’s benefits.
These include but are not limited to the capability of fine-tuning a model with a reduced number
of trainable parameters, quantizing the residual model to decrease memory consumption during
forward propagation in training, and easy deployment. The adapter’s straightforward linear structure
facilitates the integration of trainable matrices with the pre-trained weights upon deployment, thereby
maintaining the original inference speed of a fully fine-tuned model. Employing the Fast SVD
technique [47] allowed PiSSA to finish initialization in several seconds (Appendix B), which is a
negligible cost.

For storage efficiency, we can choose not to store the dense parameter matrix ∆W , but to store the
low-rank matrices, ∆A and ∆B instead. As shown in Appendix C, leveraging solely the ∆A and
∆B facilitates their seamless integration with the original pre-trained models. Finally, one pre-trained
model can accommodate multiple ∆A,∆B, fine-tuned by diverse PiSSA or LoRA procedures, which
enables fast adaptation of the pre-trained model to different downstream applications.

4 QPiSSA: An Extension Method with Lower Quantization Error

Quantization divides the value range of a matrix into several continuous regions, and maps all values
falling inside a region into the same “quantized” value. It is an effective technique to reduce the
memory consumption of forward propagation. At the same time, LoRA greatly reduces the backward
memory requirement, making it highly suitable to use LoRA and quantization together, where the
base model is quantized for memory-efficient forward propagation, and the LoRA adaptors are kept in
full precision for accurate backward parameter updates. One representative previous work, QLoRA,
quantizes the base model to Normal Float 4-bit (NF4) and initializes the full-precision A and B with
Gaussian-Zero initialization. Therefore, the overall error is given by:

Quantization Error of QLoRA = ||W − (nf4(W) +AB) ||∗ = ||W − nf4(W)||∗, (6)

where ||M ||∗ denotes the nuclear norm (also known as the trace norm [48]), defined as:

∥M∥∗ = trace
(√

M∗M
)
=

min{m,n}∑
i=1

σi(M), (7)

where σi(M) is the ith singular value of M . As we can see, the quantization error of QLoRA is the
same as that of directly quantizing the base model. Our QPiSSA, however, does not quantize the
base model but the residual model. Therefore, its error is given by:

Quantization Error of QPiSSA = ||W − (nf4(W res) +AB) ||∗ = ||W res − nf4(W res)||∗. (8)

Since the residual model has removed the large-singular-value components, W res has a narrower
distribution than that of W , as can be seen in Figures 3a and 3b (comparing the singular value
distributions of W and W res), as well as Figures 3c and 3f (comparing the value distributions of W
and W res), which is beneficial for reducing the quantization error. Moreover, given that NF4 is
optimized for data with a normal distribution, as discussed by Dettmers et al. [10], we fit the values
of W and W res to a Gaussian distribution respectively. As illustrated in Figures 3c and 3f, W res

aligns more closely with a Gaussian distribution and exhibits a smaller standard deviation, making
it more suitable for applying NF4 than W . Both the above lead QPiSSA to achieve a significantly
lower quantization error than QLoRA, shown in Figures 3d and 3e.

Besides the advantage of reducing quantization error, QPiSSA’s gradient direction is similar to that of
PiSSA, resulting in significantly better fine-tuning performance compared to QLoRA.

5

0 1000 2000 3000 4000
singular value index

0

5

10

15

20

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de
0 50 100
128 Principal Singular Values

10

20

(a) Original matrix W

0 1000 2000 3000 4000
singular value index

0

5

10

15

20

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
0.75
1.00
1.25

(b) Residual matrix W res

0.04 0.02 0.00 0.02 0.04
Data values

0

25

50

75

Pr
ob

ab
ilit

y
de

ns
ity

mu = -3.02e-06, std = 0.0135)

(c) The distribution of W

0 1000 2000 3000 4000
singular value index

0.0

0.2

0.4

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
128 Principal Singular Values

0.3
0.4
0.5

(d) Error matrix of QLoRA

0 1000 2000 3000 4000
singular value index

0.0

0.2

0.4

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
0.045
0.050
0.055

(e) Error matrix of QPiSSA

0.04 0.02 0.00 0.02 0.04
Data values

0

50

100

150

Pr
ob

ab
ilit

y
de

ns
ity

mu = -9.98e-07, std = 0.0034

(f) The distribution of W res

Figure 3: Visualizations of LLaMA 2-7B’s “layers[0].self_attn.q_proj” matrix, with distributions
for the full model shown in Appendix G. Figures (a), (b), (d), and (e) display the singular values of
W , W res, W − nf4(W), and W res − nf4(W res), respectively. Figures (c) and (f) show the data
distributions of W and W res.

5 Experiments

The experiments were conducted on the NVIDIA A800-SXM4(80G) GPU. In our experiments, we
adopt the Alpaca [49] implementation strategy, using the AdamW optimizer with a batch size of
128, a learning rate of 2e-5, cosine annealing schedules, and a warmup ratio of 0.03, without any
weight decay. As discussed in Section B.3 of QLoRA [10], we compute the loss using only the
responses from the instruction-following datasets. We ensure lora_alpha is always equal to lora_r, set
lora_dropout to 0, and incorporate the adapters into all linear layers of the base model. We utilize the
Float32 computation type for both the base model and the adapter in LoRA and PiSSA. For QLoRA,
LoftQ, and QPiSSA, we use 4-bit NormalFloat [10] for the base model and Float32 for the adapter.
BFloat16 [50] is used for full parameter fine-tuning to save the resources (see Appendix D).

5.1 Evaluating the Performance of PiSSA on both NLG and NLU Tasks

We begin by comparing PiSSA, LoRA, and full-parameter fine-tuning on natural language gener-
ation (NLG) tasks. We fine-tuned LLaMA 2-7B [51], Mistral-7B-v0.1 [52], and Gemma-7B [53]
on the MetaMathQA dataset [2] to assess their mathematical problem-solving capabilities on the
GSM8K [54] and MATH [2] validation sets. Additionally, the models were fine-tuned on the Code-
Feedback dataset [55] and evaluated for coding proficiency using the HumanEval [56] and MBPP [57]
datasets. Furthermore, the models were trained on the WizardLM-Evol-Instruct dataset [7] and tested
for conversational abilities on the MT-Bench dataset [6]. All experiments were conducted using
subsets containing 100K data points and were trained for only one epoch to reduce training overhead.

As shown in Table 2, across all models and tasks, fine-tuning with PiSSA consistently surpasses the
performance of fine-tuning with LoRA. Further experiments demonstrated that this improvement is
robust across various amounts of training data and epochs (Section 5.2), including both 4-bit and full
precision (Section 5.3), different model sizes and types (Section 5.4), and varying proportions of
trainable parameters (Section 5.5).

We also evaluate PiSSA’s natural language understanding (NLU) capability on the GLUE bench-
mark [59] with DeBERTa-v3-base [60]. Table 3 presents the results across 8 tasks. PiSSA outperforms
LoRA in 7 out of 8 NLU tasks, achieving an overall average improvement of 1.21%. Upon reviewing
the training loss on the exceptional dataset, MNLI, we observed that PiSSA’s average loss of 0.17
was lower than LoRA’s 0.24 in the final epoch. This indicates that the fitting ability of PiSSA remains
stronger than that of LoRA.

6

Table 2: Comparison of PiSSA and LoRA on NLG tasks, with results averaged over three runs and
reported with standard deviations.

Model Strategy GSM8K MATH HumanEval MBPP MT-Bench

LLaMA 2-7B
Full FT 49.13±0.21 7.29±0.22 21.20±0.30 35.59±0.25 4.91±0.01

LoRA(gaussian) 42.85±0.12 5.50±0.33 18.35±0.31 35.50±0.14 4.59±0.07
LoRA(kaiming) 43.23±0.64 5.90±0.16 18.21±0.45 35.47±0.37 4.56±0.04

PiSSA 53.22±0.55 7.47±0.34 21.92±0.38 37.24±0.63 4.88±0.03

Mistral-7B
Full FT 69.91±0.25 18.64±0.35 45.31±0.14 51.46±0.13 4.95±0.05

LoRA(gaussian) 69.50±0.42 20.08±0.20 43.78±0.34 58.46±0.37 4.90±0.05
LoRA(kaiming) 69.40±0.25 19.99±0.44 43.74±0.14 58.39±0.02 4.93±0.05

PiSSA 73.31±0.23 23.12±0.52 46.88±0.25 62.55±0.58 5.34±0.04

Gemma-7B
Full FT 72.09±0.32 22.71±0.34 47.02±0.27 55.67±0.50 5.40±0.12

LoRA(gaussian) 75.11±0.64 30.41±0.48 53.70±0.23 65.58±0.29 4.98±0.02
LoRA(kaiming) 74.53±0.47 29.90±0.16 53.57±0.27 65.25±0.29 4.97±0.09

PiSSA 77.78±0.32 31.33±0.33 54.31±0.28 66.17±0.43 5.64±0.10

Table 3: Comparison of PiSSA and LoRA on NLU tasks. LoRAG and LoRAK denote LoRA with
Gaussian and Kaiming initialization for B, respectively. Results for full fine-tuning, BitFit [15],
HAdapter [30], PAdapter [36], LoRAG [11] and AdaLoRA are from AdaLoRA [58], averaged over
five runs. Remaining methods are averaged over three runs, with details in Appendix L.

Method Params MNLI SST2 MRPC CoLA QNLI QQP RTE STSB ALL

Full FT 184M 89.90 95.63 89.46 69.19 94.03 92.40 83.75 91.60 88.25
BitFit 0.1M 89.37 94.84 87.75 66.96 92.24 88.41 78.70 91.35 86.20

HAdapter 1.22M 90.13 95.53 89.95 68.64 94.11 91.91 84.48 91.48 88.28
PAdapter 1.18M 90.33 95.61 89.46 68.77 94.29 92.04 85.20 91.54 88.41
LoRAG 1.33M 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60 88.50
LoRAK 1.33M 89.96 95.64 90.28 70.69 93.84 92.03 84.84 91.68 88.62
DoRA 1.27M 90.29 95.79 90.93 70.85 94.10 92.07 86.04 91.79 88.98

AdaLoRA 1.27M 90.76 96.10 90.69 71.45 94.55 92.23 88.09 91.84 89.46
PiSSA 1.33M 90.37 96.22 91.50 73.12 94.43 92.33 88.69 92.00 89.83

5.2 Experiments using Full Data and More Epochs

In this section, we finetune LLaMA 2-7B model on the complete MetaMathQA-395K dataset
for 3 epochs to ensure thorough saturation. The training loss and gradient norms is visualized
to demonstrate quicker convergence and evaluated on the GSM8K dataset every 1000 steps to
demonstrate superior performance of PiSSA compared to LoRA. The results are depicted in Figure 4.
Additionally, similar comparisons on Mistral-7B and Gemma-7B are detailed in Appendix J.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100
The First 100 Steps

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

LoRA
PiSSA
Full FT

(a) Loss over steps.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 G
ra

d
No

rm

0 25 50 75 100
The First 100 Steps

0

2

4

Tr
ai

ni
ng

 G
ra

d
No

rm LoRA
PiSSA
Full FT

(b) Grad norm over steps.

1000 2000 3000 4000 5000 6000 7000 8000 900045.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

GS
M

8K
 A

cc
ur

ac
y

(%
)

LoRA
PiSSA
Full FT

(c) Accuracy on GSM8K over training steps.

Figure 4: The loss, grad norm, and evaluation accuracy over the training steps of LoRA (indicated in
blue), PiSSA (in orange), and full parameter fine-tuning (in red).

According to Figure 4a, the loss of PiSSA reduces rapidly during the first 100 steps, and the grad norm
(shown in Figure 4b) of PiSSA is significantly higher than that of LoRA, with a trend similar to full
fine-tuning. Throughout the process, the loss of PiSSA remains lower than that of LoRA, indicating

7

that PiSSA converges to a better local optimum. As shown in Figure 4c, PiSSA consistently achieves
higher accuracy compared to LoRA, and in most cases also surpasses full parameters fine-tuning.
We hypothesize that this is because PiSSA is a denoised version of full fine-tuning. Comparing the
grad norm and loss curves of PiSSA and full fine-tuning, we can see that the larger grad norm of full
fine-tuning does not bring lower loss, indicating that a portion of the grad norm is spent on noisy
directions not beneficial for loss reduction. This phenomenon is consistent with Figure 2a.

5.3 Conducting 4-bit Quantization Experiments

In this section, we first compare the initial quantization error reduction ratio of PiSSA, QLoRA, and

LoftQ. This ratio is defined as (1 − ||W−(nf4(W
′
)+AB)||∗

||W−nf4(W)||∗) × 100%, measuring the relative error
decrease achieved by each mehod compared to directly quantizing the base model. The partial results
are presented in Table 4, and the complete results can be found in Table 8 in Appendix E.

Table 4: The quantization error reduction ratio of QLoRA, LoftQ, and PiSSA across different layers.
Method Rank Q K V O Gate Up Down AVG

LLaMA 2-7B
QLoRA – 0 0 0 0 0 0 0 0

loftQ 128 16.5 16.5 15.9 16.0 12.4 12.4 12.3 14.6
PiSSA 128 27.9 27.2 18.7 18.6 15.8 13.6 13.6 19.4

LLaMA 3-8B
QLoRA – 0 0 0 0 0 0 0 0

loftQ 128 16.4 29.8 28.8 16.1 11.9 11.7 11.7 18.1
PiSSA 128 26.3 41.7 32.3 20.1 14.4 12.5 12.9 22.9

LLaMA 3-70B

QLoRA – 0 0 0 0 0 0 0 0
LoftQ 64 6.1 17.8 17.0 6.0 4.3 4.4 4.2 8.5
PiSSA 64 15.7 34.2 18.9 7.5 6.7 5.7 4.7 13.4
PiSSA 128 23.2 49.0 30.5 12.5 10.1 8.8 8.2 20.3

In Table 4, PiSSA reduces the quantization error by about 20% compared to directly quantizing
the base model. The reduction is more significant for lower-rank matrices. For instance, in the
LLaMA-3-70B [61], all “Key” projection layers see a reduction of 49%. The results in Table 4
validate that QLoRA, discussed in Section 4, does not reduce quantization error. In contrast, PiSSA
significantly outperforms LoftQ in reducing quantization error, as further discussed in Appendix H.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 L
os

s

0 20 40 60 80 100
The First 100 Steps

0.2

0.4

0.6

Lo
ss

(a) Loss over training steps.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40 60 80 100
The First 100 Steps

0

5

10

Gr
ad

 N
or

m QLoRA
LoftQ
QPiSSA

LoRA
Full FT
PiSSA

(b) Grad norm over training steps.

1000 2000 3000 4000 5000 6000 7000 8000 9000
72

74

76

78

80

82

GS
M

8K
 A

cc
ur

ac
y

(%
) QLoRA

LoftQ
QPiSSA

LoRA
Full FT
PiSSA

(c) Accuracy on GSM8K over training steps.

Figure 5: The loss, grad norm, and evaluation accuracy over the training steps of (Q)LoRA, (Q)PiSSA,
LoftQ and full parameter fine-tuning.

8

The difference between QPiSSA and PiSSA is the quantization of the residual model to 4 bits. As
introduced in Section 4, the residual model has less influence on the optimal direction compared with
the principal adapter, which is the same in both QPiSSA and PiSSA. Therefore, besides reducing
the quantization error, we expect QPiSSA to also converge faster than QLoRA and LoftQ. We train
LLaMA 3-8B using LoRA/QLoRA, PiSSA/QPiSSA, LoftQ, and full fine-tuning on MetaMathQA-
395K for 3 epochs, recording the loss, gradient norm, and accuracy on GSM8K, as shown in Figure 5.

According to Figure 5, QPiSSA’s loss reduction speed in the first 100 steps is even faster than PiSSA
and full fine-tuning. Although LoftQ can reduce the quantization error, its loss convergence speed is
not faster than LoRA and QLoRA, indicating that QPiSSA’s ability to reduce the quantization error
and its fast convergence might also be orthogonal capabilities. After sufficient training, QPiSSA’s
loss is also much lower than that of LoRA/QLoRA and LoftQ. The grad norm is significantly larger
than those of LoRA/QLoRA and LoftQ. In terms of fine-tuning performance, QPiSSA’s accuracy is
higher than that of QLoRA and LoftQ and even better than that of full-precision LoRA.

5.4 Experiments Across Various Sizes and Types of Models

In this section, we compare (Q)PiSSA and (Q)LoRA across 9 models, ranging from 7-70B param-
eters, including LLaMA 2-7/13B [51], LLaMA-3-8/70B [61], Mistral-7B [52], Gemma-7B [53],
and Qwen1.5-7B [62], Yi-1.5-34B [63] and MoE models: DeepSeek-MoE-16B [64] and Mixtral-
8x7B [65]. These models were fine-tuned on the MetaMathQA-100K and CodeFeedback-100K
dataset and evaluated on the GSM8K and HumanEval. DeepSeek-MoE-16B, Mixtral-8x7B, Yi-1.5-
34B, and LLaMA-3-70B were fine-tuned with QPiSSA and QLoRA, while the other models were
using PiSSA and LoRA. From Figure 6, (Q)PiSSA, compared to (Q)LoRA, shows improved accuracy
across various sizes and types of models, demonstrating its consistent advantage over (Q)LoRA.

DeepSeek-MoE-16B

LLaMA-2-7B

LLaMA-2-13B

Qwen1.5-7B

Mistra
l-7B-v0.1

LLaMA-3-8B

Gemma-7B

Mixtral-8x7B-v0.1

LLaMA-3-70B

40

50

60

70

80

GS
M

8K
 A

cc
ur

ac
y

(%
) LoRA

QLoRA
PiSSA
QPiSSA

LLaMA-2-7B

LLaMA-2-13B

DeepSeek-MoE-16B

Mistra
l-7B-v0.1

LLaMA-3-8B

Gemma-7B

Qwen1.5-7B

Mixtral-8x7B-v0.1
15

20

25

30

35

40

45

50

55

60

Hu
m

an
Ev

al
 A

cc
ur

ac
y

(%
)

LoRA
QLoRA

PiSSA
QPiSSA

Figure 6: Comparison of (Q)PiSSA and (Q)LoRA across models from 7B to 70B.

5.5 Experiments on Various Ranks

This section explores the impact of incrementally increasing the rank of PiSSA/QPiSSA and
LoRA/QLoRA from 1 to 128, aiming to determine whether PiSSA/QPiSSA consistently outperforms
LoRA/QLoRA under different ranks. The training is conducted using the MetaMathQA-100K dataset
for 1 epoch, while the validation is performed on the GSM8K and MATH datasets. The outcomes of
these experiments are depicted in Figure 7, with additional results presented in Appendix K.

Figure 7a illustrates the quantization error reduction ratio across various ranks. In this figure, QLoRA
shows no reduction in quantization error, while QPiSSA consistently outperforms LoftQ in reducing
quantization error across all ranks, with a particularly notable advantage at lower ranks. In Figure 7b,
the final loss on the training set is shown for models trained with ranks ranging from 1 to 128. The
results indicate that PiSSA and QPiSSA achieve a better fit to the training data compared to LoRA,
QLoRA, and LoftQ. In Figures 7c and Figures 7d, we compare the accuracy of the fine-tuned models
on the GSM8K and MATH validation sets under various ranks, finding that PiSSA consistently
outperforms LoRA with the same amount of trainable parameters. Furthermore, as the rank increases,
PiSSA will reach and surpass the performance of full-parameter fine-tuning.

9

1 2 4 8 16 32 64 128
0

5

10

15

20

Er
ro

r R
ed

uc
tio

n
(%

) QLoRA
LoftQ
QPiSSA

(a) Quantization error reduction ratio across ranks.

1 2 4 8 16 32 64 128

0.3

0.4

0.5

M
et

aM
at

hQ
A

Lo
ss

Full FT
LoRA
PiSSA

LoftQ
QLoRA
QPiSSA

(b) Training loss under various ranks.

1 2 4 8 16 32 64 128
20

30

40

50

GS
M

8K
 A

cc
ur

ac
y

(%
) Full FT

LoRA
PiSSA

LoftQ
QLoRA
QPiSSA

(c) Accuracy on GSM8K under various ranks.

1 2 4 8 16 32 64 128

4

6

M
AT

H
Ac

cu
ra

cy
 (%

) Full FT
LoRA
PiSSA

LoftQ
QLoRA
QPiSSA

(d) Accuracy on MATH under various ranks.

Figure 7: The comparison among (Q)LoRA, (Q)PiSSA, LoftQ, and full fine-tuning across ranks.

6 Conclusion

This paper presents a PEFT technique that applies singular value decomposition (SVD) to the weight
matrix of pre-trained models. The principal components obtained from the SVD are used to initialize
a low-rank adapter named PiSSA, while the residual components are kept frozen, to achieve effective
fine-tuning and parameter efficiency simultaneously. Through extensive experiments, we found that
PiSSA and its 4-bit quantization version QPiSSA significantly outperform LoRA and QLoRA in both
NLG and NLU tasks, across different training steps, various model sizes and types, and under various
amount of trainable parameters. PiSSA provides a novel direction for research in PEFT by identifying
and fine-tuning the principal components within the model, analogous to slicing and re-baking the
richest slice of a pizza. As PiSSA shares the same architecture as LoRA, it can be seamlessly used in
existing LoRA pipelines as an efficient alternative initialization method.

7 Limitation

There are still some questions with PiSSA not addressed in this paper: 1) Besides language models,
can PiSSA also be adapted to convolutional layers and enhance the performance of vision tasks? 2)
Can PiSSA also benefit from some improvements to LoRA, such as AdaLoRA [58] and DyLoRA [66]
which adaptively adjust the rank? 3) Can we provide more theoretical explanations for the advantages
of PiSSA over LoRA? We are actively exploring these questions. Nevertheless, we are excited to see
the huge potential of PiSSA already demonstrated in existing experiments and look forward to more
tests and suggestions from the community.

8 Acknowledgements:

This work is supported by the National Key R&D Program of China (2022ZD016030).

10

References
[1] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,

Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

[2] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

[3] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

[4] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[5] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[6] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

[7] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2023.

[8] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[9] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[12] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

[13] Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for
large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

[14] Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

[15] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199,
2021.

11

[16] Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural
architecture search for parameter-efficient fine-tuning of large pre-trained language models.
arXiv preprint arXiv:2305.16597, 2023.

[17] Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schütze. Masking as an efficient
alternative to finetuning for pretrained language models. arXiv preprint arXiv:2004.12406,
2020.

[18] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

[19] Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse
fine-tuning for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

[20] Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
arXiv preprint arXiv:2109.05687, 2021.

[21] Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. arXiv preprint arXiv:2012.07463, 2020.

[22] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 12799–12807, 2023.

[23] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121, 2021.

[24] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[25] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[26] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

[27] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

[28] Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attempt:
Parameter-efficient multi-task tuning via attentional mixtures of soft prompts. arXiv preprint
arXiv:2205.11961, 2022.

[29] Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon
Kim. Multitask prompt tuning enables parameter-efficient transfer learning. arXiv preprint
arXiv:2303.02861, 2023.

[30] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790–2799. PMLR, 2019.

[31] Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language
model via parameter-efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

[32] Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du,
Vincent Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer
learning with fast inference. Advances in Neural Information Processing Systems, 36, 2024.

[33] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

12

[34] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

[35] Hongyu Zhao, Hao Tan, and Hongyuan Mei. Tiny-attention adapter: Contexts are more
important than the number of parameters. arXiv preprint arXiv:2211.01979, 2022.

[36] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.
Adapterfusion: Non-destructive task composition for transfer learning. arXiv preprint
arXiv:2005.00247, 2020.

[37] Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Mera: Merging
pretrained adapters for few-shot learning. arXiv preprint arXiv:2308.15982, 2023.

[38] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv
preprint arXiv:2106.04489, 2021.

[39] Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

[40] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[41] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[42] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2022.

[43] Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

[44] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse
approximation. In International Conference on Machine Learning, pages 20336–20350. PMLR,
2023.

[45] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

[46] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large
language models. arXiv preprint arXiv:2309.14717, 2023.

[47] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[48] Ky Fan. Maximum properties and inequalities for the eigenvalues of completely continuous
operators. Proceedings of the National Academy of Sciences, 37(11):760–766, 1951.

[49] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[50] Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high performance on cloud tpus.
Google Cloud Blog, 4, 2019.

13

https://github.com/tatsu-lab/stanford_alpaca

[51] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[52] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[53] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[54] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[55] Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

[56] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[57] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[58] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512, 2023.

[59] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

[60] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing, 2021.

[61] AI@Meta. Llama 3 model card. 2024.

[62] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[63] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv
preprint arXiv:2403.04652, 2024.

14

[64] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[65] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[66] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[67] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

15

The Supplementary Material for The Paper
“PiSSA: Principal Singular Values and Singular Vectors

Adaptation of Large Language Models.”
• In Section A, we combined PiSSA with two improved LoRA methods, and the experimental

results show that these improvements can further enhance the effectiveness of PiSSA.
• In Section B, we use fast singular value decomposition to initialize PiSSA. The results

indicate that the performance of fast singular value decomposition approaches that of
SVD decomposition in just several seconds. This ensures that the cost of converting from
LoRA/QLoRA to PiSSA/QPiSSA is negligible.

• In Section C, we demonstrate that the trained PiSSA adapter can be losslessly converted to
LoRA, allowing for integration with the original model, facilitating sharing, and enabling
the use of multiple PiSSA adapters.

• In Section D, we explore the experimental effects of using different precisions.
• In Section E, we discuss the effects of QPiSSA during multiple rounds of SVD decom-

position, which can significantly reduce quantization errors without increasing training or
inference costs.

• In Section F, we compare the use of high, medium, and low singular values and vectors to
initialize adapters. The experimental results show that initializing adapters with principal
singular values and vectors yields the best fine-tuning performance.

• In Section G, we used a normal distribution function to fit all linear layers of multiple models
and calculated their mu and sigma. The experimental results show that after using PiSSA
for initialization, the distribution of the remaining models, as described in Section 3 of the
main text, is indeed narrower than that of the original models.

• In Section H, we provide a comprehensive comparison of quantization errors among QLoRA,
LoftQ, and QPiSSA, theoretically explaining why QPiSSA reduce quantization errors.

• In Section I, we combine QPiSSA with various quantization methods beyond Normal Float
4bit, including INT8 and GPTQ. QPiSSA effectively reduces quantization error in these
formats, enhancing fine-tuning performance.

• In Section J, we trained Mistral-7B and Gemma-7B for a sufficient number of steps. The
results indicate that PiSSA and LoRA are less prone to overfitting compared to full parameter
fine-tuning.

• In Section K, we offer a more detailed comparison of PiSSA and LoRA at different ranks.
It is evident that PiSSA consistently outperforms LoRA in terms of loss convergence,
quantization error reduction, and final performance across different ranks.

• In Section L, we describe the detail setting for NLU task.

16

A Enhancing PiSSA with LoRA Improvement Methods

AdaLoRA introduces three improvements over LoRA:

• Trainable parameters in AdaLoRA are changed to A,B, and E. A and B are Gaussian-
initialized, and E is a zero-initialized r-dimensional vector, making Adiag(E)B = ∆W ,
similar to singular value decomposition.

• A regularization loss |AAT −I|+ |BTB−I| is used to make A and B gradually orthogonal
during training, resembling the SVD of ∆W .

• An initial large rank is set, and less important E values are gradually masked during training,
resulting in different final ranks for each layer, achieving better performance with the same
number of parameters.

Despite the extensive use of SVD terms, AdaLoRA does not perform actual SVD on any matrix.
In the PEFT domain, terms like low-rank decomposition, and singular value decomposition often
appear. They generally refer to products of low-dimensional matrices approximating an ideal ∆W
without actual matrix decomposition. To our knowledge, PiSSA is the first to perform SVD on the
original model, fine-tuning the principal component while keeping the residual model frozen.

PiSSA and AdaLoRA represent different improvements to LoRA, making them combinable. There-
fore, we additionally improved PiSSA based on AdaLoRA’s three innovations:

• After extracting the principal singular values and vectors of W , we use S as an independent
trainable vector instead of multiplying it into U and V .

• Since PiSSA’s U and V are orthogonal at the beginning, maintaining their orthogonality
through orthogonal regularization is very easy.

• Although AdaLoRA claims to dynamically reduce the number of trainable parameters, the
initially large number of parameters is not truly pruned, resulting in more parameters being
updated during actual training. Therefore, we did not use this improvement.

DoRA adds a learnable magnitude module to LoRA, normalizing W +AB at each update step and
multiplying its by the magnitude module. This allows A,B to learn the direction and the magnitude
module to learn the magnitude of ∆W . While this approach can improve fine-tuning performance,
normalizing W + AB at each step results in slower fine-tuning speeds. In contrast, PiSSA only
changes LoRA’s initialization method, matching LoRA in training speed and converging faster,
thereby reducing training costs.

Table 5: GSM8K accuracy for LoRA and PiSSA when combined with LoRA improvement methods.
Model Method LoRA+ PiSSA+

Vanilla 71.01±0.199 76.75±0.036
LLaMA-3-8B DoRA 72.38±0.189 77.51±0.257

AdaLoRA 72.31±0.202 78.59±0.199

PiSSA, with its intrinsic principal singular values and orthogonal singular vectors, is very suitable
for combination with AdaLoRA. According to Table 5. The performance of the improved PiSSA
surpasses all the other methods including PiSSA. From lines 1, and 2 of the table, it is evident that
the performance of PiSSA combined with DoRA significantly surpasses that of DoRA alone and also
exceeds the performance of PiSSA alone. Taking into account the combination experiments of PiSSA
with AdaLoRA, it can be inferred that PiSSA benefits from the enhancement techniques of LoRA,
demonstrating the potential of PiSSA when integrated with other methods.

17

B Fast Singular Value Decomposition

In order to speed up the decomposition of the pre-trained matrix W , we adopted the algorithm
proposed by Halko et.al [47] (denoted as Fast SVD), which introduces randomness to achieve an
approximate matrix decomposition. We compare the initialization time, error, and training loss
between SVD and Fast SVD, with the results shown in Table 6. Initialization time refers to the
computation time taken to decompose the pre-trained parameter matrix W , measured in seconds.
Initialization error indicates the magnitude of the discrepancy introduced by Fast SVD compared
to SVD after decomposing the matrix. Specifically, the error is the sum of the absolute differences
between the matrices decomposed by original SVD and Fast SVD. For the error, we report the results
of the self-attention module in the table. Loss refers to the loss value at the end of training. In Fast
SVD, the parameter niter refers to the number of subspace iterations to conduct. A larger niter leads
to increased decomposition time but results in smaller decomposition error. The symbol∞ represents
the experimental results with the SVD method.

Table 6: Comparation between SVD and Fast SVD in terms of initialization time, error and training
loss.

Metric Niter Rank
1 2 4 8 16 32 64 128

Initialize
Time

1 5.05 8.75 5.07 8.42 5.55 8.47 6.80 11.89
2 4.38 4.71 4.79 4.84 5.06 5.79 7.70 16.75
4 5.16 4.73 5.09 5.16 5.60 7.01 7.90 11.41
8 4.72 5.11 5.14 5.40 5.94 7.80 10.09 14.81
16 6.24 6.57 6.80 7.04 7.66 9.99 14.59 22.67
∞ 434.92 434.15 434.30 435.42 435.25 437.22 434.48 435.84

Initialize
Error

1 1.30E-3 1.33E-3 1.55E-3 1.9E-3 1.98E-3 1.97E-3 2.00E-3 1.93E-3
2 5.84E-4 1.25E-3 1.45E-3 1.43E-3 1.48E-3 1.55E-3 1.48E-3 1.33E-3
4 6.01E-4 8.75E-4 6.75E-4 1.10E-3 1.05E-3 1.03E-3 1.08E-3 9.75E-4
8 1.26E-4 2.34E-4 5.25E-4 7.25E-4 5.75E-4 8.25E-4 8.25E-4 7.75E-4
16 7.93E-5 2.25E-4 1.28E-4 6.50E-4 4.25E-4 6.50E-4 6.00E-4 4.75E-4
∞ – – – – – – – –

Training
Loss

1 0.3629 0.3420 0.3237 0.3044 0.2855 0.2657 0.2468 0.2301
2 0.3467 0.3337 0.3172 0.2984 0.2795 0.2610 0.2435 0.2282
4 0.3445 0.3294 0.3134 0.2958 0.2761 0.2581 0.2414 0.2271
8 0.3425 0.3279 0.3122 0.2950 0.2753 0.2571 0.2406 0.2267
16 0.3413 0.3275 0.3116 0.2946 0.2762 0.2565 0.2405 0.2266
∞ 0.3412 0.3269 0.3116 0.2945 0.2762 0.2564 0.2403 0.2264

It can be observed that the computation time of the SVD is tens of times that of Fast SVD. In addition,
SVD exhibits consistently high time consumption with minimal variation as the rank increases, while
Fast SVD, although experiencing a slight increase in computation time with higher ranks, remains
significantly lower compared to SVD throughout. As the rank increases, the initialization error
initially rises gradually, with a slight decrease observed when the rank reaches 128. And at the same
rank, increasing the niter in Fast SVD leads to a gradual reduction in error. For training loss, we
observed that as the rank increases, the training loss decreases gradually. At the same rank, with the
increase of niter, the training loss of models initialized based on Fast SVD approaches that of models
initialized based on SVD.

18

C Equivalently Converting PiSSA into LoRA

The advantage of PiSSA lies in its ability to significantly enhance training outcomes during the fine-
tuning phase. After training, it allows for the direct sharing of the trained matrices A and B. However,
if we directly save A,B, users need to perform singular value decomposition on the original model to
get W res, which requires additional time. When employing fast singular value decomposition, there
can be slight inaccuracies too. More importantly, such a way necessitates altering the parameters of
the original model, which can be inconvenient when using multiple adapters, especially when some
adapters might be disabled or activated. Therefore, we recommend converting the trained PiSSA
module equivalently into a LoRA module, thereby eliminating the need to modify the original model’s
parameters during sharing and usage. In the initialization phase, PiSSA decomposes the original
matrix into principal components and a residual matrix: W = W res + AB. Upon completion of
training, the model adjusts the weights as follows: W +∆W = W res+A′B′. Thus, the modification
of the model weights by PiSSA is given by:

∆W = A′B′ −AB (9)

= [A′ A]︸ ︷︷ ︸
∆A

[
B′

−B

]
︸ ︷︷ ︸
∆B

(10)

where ∆A ∈ Rm×2r and ∆B ∈ R2r×n. Therefore, we can store and share the new adaptor ∆A
and ∆B instead of A′, B′, which allows directly inserting the adaptor to the original matrix and
avoids breaking W . Since r is typically small, the twice storage overhead is still acceptable. This
modification allows for plug-and-play usage without the need for singular value decomposition, saving
time and avoiding computational errors associated with the SVD, without necessitating changes to
the original model parameters.

D Comparison of Fine-Tuning in BF16 and FP32 Precision

In this section, we compare the effects of training with BFloat16 and Float32 precision. The
comparing include four models: LLaMA-2-7B, Mistral-7B, Gemma-7B, and LLaMA-3-8B, each
fine-tuned with all parameters in both BFloat16 and Float32 precision on the MetaMathQA-395K
dataset. The validation results conducted on the GSM8K dataset are shown in Figure 7.

Table 7: Comparison of fine-tuning results of LLaMA-2-7B, Mistral-7B, Gemma-7B, and LLaMA-3-
8B in BF16 and FP32 precision on MetaMathQA-395K dataset for 3 epochs.

Model Training Loss GSM8K ACC (%) MATH ACC (%)
BF16 FP32 BF16 FP32 BF16 FP32

LLaMA-2-7B 0.1532 0.1316 63.15 68.31 13.14 20.38
Mistral-7B 0.1145 0.1306 73.09 65.88 26.44 23.66
Gemma-7B 0.1331 0.1382 75.21 75.97 29.18 28.64
LLaMA-3-8B 0.1271 0.1317 81.96 75.44 33.16 28.72

From Table 7, it is evident that the choice of precision greatly affects the experimental results. For
example, the LLaMA-2-7B model shows a 5.16% higher performance on the GSM8K dataset when
using FP32 compared to BF16. Conversely, the Mistral-7B and LLaMA-3-8B on GSM8K are
7.21% and 6.52% lower with FP32 than with BF16 separately. The Gemma-7B model shows similar
performance with both precisions. Unfortunately, the experiments did not prove which precision is
better. To reduce training costs, we use BF16 precision when fine-tuning all parameters. For methods
with lower training costs, such as LoRA, PiSSA, we use FP32 precision. For QLoRA, QPiSSA and
LoftQ, the base model was used NF4 precision, while the adapter layers used FP32 precision.

19

E Reducing Quantization Error through Multiple Iteration of SVD

Table 8 provides a supplementary explanation of the results in Table 4. When number of iterations
T > 1, LoftQ uses an N -bit quantized weight Q ∈ Rm×n

N and low-rank approximations A ∈ Rm×r

and B ∈ Rn×r to minimize the following objective by alternating between quantization and singular
value decomposition:

min
Q,A,B

∥W − (Q+AB⊤)∥F , (11)

where ∥ · ∥F denotes the Frobenius norm, A and B are set to zero. Inspired by LoftQ, our QPiSSA
T -iter alternately minimize the following objective:

min
Wres,A,B

∥W − (nf4(Wres) +AB⊤)∥F , (12)

where A and B are initialized by the principal singular values and singular vectors. The process is
summarized in Algorithm 1:

Algorithm 1 QPiSSA-T -iters, T ≥ 2

input Pre-trained weight W , target rank r, 4-bit quantization function nf4(·), alternating step T
1: Initialize A0, B0 ← SVD(W) by (2) and (3)
2: Initialize residual weight Wres ←W −A0B

⊤
0

3: for t = 2 to T do
4: Update At, Bt ← SVD(W − nf4(Wres)) by (2) and (3)
5: Update residual weight Wres ←W −At−1B

⊤
t−1

6: end for
output nf4(Wres), AT , BT

Table 8: PiSSA reduces more quantization error on various ranks and number of iterations.
Method Rank niter Q K V O Gate Up Down AVG

LLaMA
-2-7B

QLoRA – – 0 0 0 0 0 0 0 0
loftQ 128 1 8.1 8.1 7.2 7.3 5.3 5.1 5.1 6.6

PiSSA 128 1 19.0 18.1 8.9 8.9 8.2 5.9 6.0 10.7
loftQ 128 5 16.5 16.5 15.9 16.0 12.4 12.4 12.3 14.6

PiSSA 128 5 27.9 27.2 18.7 18.6 15.8 13.6 13.6 19.4

LLaMA
-3-8B

QLoRA – – 0 0 0 0 0 0 0 0
LoftQ 64 1 4.3 11.0 9.9 3.9 2.7 2.5 2.6 5.3
PiSSA 64 1 11.3 16.4 8.8 6.3 4.5 2.9 3.3 7.7
loftQ 64 5 10.1 18.8 18.2 9.9 7.1 7.1 7.1 11.2

PiSSA 64 5 17.1 27.3 19.5 12.1 8.9 7.2 7.6 14.3
loftQ 128 1 8.2 20.7 18.8 7.5 5.2 4.8 4.9 10.0

PiSSA 128 1 17.1 26.5 10.7 10.7 7.0 5.0 5.6 11.8
loftQ 128 5 16.4 29.8 28.8 16.1 11.9 11.7 11.7 18.1

PiSSA 128 5 26.3 41.7 32.3 20.1 14.4 12.5 12.9 22.9

LLaMA
-3-70B

QLoRA – – 0 0 0 0 0 0 0 0
LoftQ 64 1 2.4 11.6 9.2 1.9 1.8 1.7 1.3 4.3
PiSSA 64 1 12.3 25.0 9.0 4.1 4.2 3.2 2.2 8.6
LoftQ 64 5 6.1 17.8 17.0 6.0 4.3 4.4 4.2 8.5
PiSSA 64 5 15.7 34.2 18.9 7.5 6.7 5.7 4.7 13.4
PiSSA 128 1 17.7 36.6 15.7 6.7 5.8 4.5 3.8 13.0
PiSSA 128 5 23.2 49.0 30.5 12.5 10.1 8.8 8.2 20.3

According to Table 8, multiple iterations can significantly reduce quantization error. For instance,
using QPiSSA-r64 with 5-iter on LLaMA-3-8B reduces the quantization error nearly twice as much
as with 1-iter. In the main paper, we used 5 iterations in Section 5.3 and Section 5.4, while 1 iteration
was used in Section 5.5.

20

F Conductive Experiments on Various SVD Components

To investigate the influence of singular values and vectors of varying magnitudes on the fine-tuning
performance, we initialize the adapters injected into LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B
with principal, medium, and minor singular values and vectors. These models are then fine-tuned on
the MetaMathQA dataset [2] and evaluated against the GSM8K [54] and MATH datasets [67], with
the outcomes depicted in Figures 8.

LLaMA-2-7B Mistral-7B Gemma-7B
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
et

aM
at

h
Lo

ss

Principal
Middle
Minor

LLaMA-2-7B Mistral-7B Gemma-7B

30

40

50

60

70

80

GS
M

8K
 A

cc
ur

ac
y(

%
)

Principal
Middle
Minor

LLaMA-2-7B Mistral-7B Gemma-7B
0

5

10

15

20

25

30

M
AT

H
Ac

cu
ra

cy
(%

)

Principal
Middle
Minor

Figure 8: Initializing with principal, medium, and minor singular values and vectors, the training
loss on the MetaMathQA and the accuracy on the GSM8K and MATH validation sets are reported,
respectively, for three models.

The results highlight that initializing adapters with principal singular values and vectors consistently
leads to reduced training loss and enhanced accuracy on both the GSM8K and MATH validation
datasets across all three models. This underscores the efficacy of our strategy in fine-tuning the model
parameters based on the principal singular values.

G The Residual Matrices having a Narrower Distribution

To intuitively compare the distribution differences between quantized original and residual models, in
Figure 3, we took LLaMA 2-7B’s first Query layer as an example to illustrate the distribution of W
and Wres. However, using only one layer of one model is not statistically significant. In this section,
we applied PiSSA initialization to LLaMA-2-7B, Mistral-7B, Gemma-7B, and LLaMA-3-8B, and fit
the values in every linear layer with Gaussian distribution and calculated their mu and sigma.

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0

5

10

15

20

25

30

Pr
ob

ab
ilit

y
De

ns
ity

 Base Matrices: = 5.47e 06, = 0.0193
Residual Matrices: = 2.68e 06, = 0.0172

(a) LLaMA-2-7B

0.015 0.010 0.005 0.000 0.005 0.010 0.015
0

25

50

75

100

125

150

175

Pr
ob

ab
ilit

y
De

ns
ity

 Base Matrices: = 9.81e 07, = 0.0033
Residual Matrices: = 5.37e 07, = 0.0029

(b) Mistral-7B-v0.1

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0

20

40

60

80

100

120

Pr
ob

ab
ilit

y
De

ns
ity

 Base Matrices: = 1.34e 06, = 0.0045
Residual Matrices: = 0.70e 06, = 0.0040

(c) Gemma-7B

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0

10

20

30

40

Pr
ob

ab
ilit

y
De

ns
ity

 Base Matrices: = 5.70e 06, = 0.0139
Residual Matrices: = 2.39e 06, = 0.0118

(d) LLaMA-3-8B

Figure 9: Comparison of Loss and Ratio to the target A and target B for LoRA and PiSSA across the
initial 5 steps.

The results in Figure 9 show that the residual models’ means are closer to 0, and the standard
deviations are smaller after PiSSA initialization. Thus, W res indeed has a narrower distribution than
W in a statistical sense. Nevertheless, the difference is not as large as that in the first layer after
averaging all layers, which we suspect is because middle layers in a model tend to have more even
eigenvalue distributions due to redundancy and insufficient training.

21

H Comparing the Quantization Error of QLoRA, LoftQ and QPiSSA

This section extends the discussion in Section 4 by providing a comprehensive comparison of the quan-
tization errors associated with QLoRA, LoftQ, and QPiSSA. Using the “layers[0].self_attn.q_proj”
of LLaMA 2-7B as an example, we illustrate the singular values of critical matrices during the
quantization process with QLoRA, LoftQ, and PiSSA in Figure 10. A larger sum of the singular
values (nuclear norm) of the error matrix indicates a greater quantization error.

0 1000 2000 3000 4000
singular value index

0

5

10

15

20

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
128 Principal Singular Values

10

20

(a) Original matrix W

0 1000 2000 3000 4000
singular value index

0

5

10

15

20

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100

10

20

(b) Quantized matrix nf4(W)

0 1000 2000 3000 4000
singular value index

0

5

10

15

20

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
0.75
1.00
1.25

(c) Residual matrix W res

0 1000 2000 3000 4000
singular value index

0.0

0.2

0.4

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
128 Principal Singular Values

0.3
0.4
0.5

(d) Error of QLoRA

0 1000 2000 3000 4000
singular value index

0.0

0.2

0.4

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
0.225

0.250

(e) Error of LoftQ

0 1000 2000 3000 4000
singular value index

0.0

0.2

0.4

sin
gu

la
r v

al
ue

 m
ag

ni
tu

de

0 50 100
0.045
0.050
0.055

(f) Error of PiSSA

Figure 10: Several important singular values for calculation the quantization error of QLoRA, LoftQ
and PiSSA.

The quantization error of QLoRA, which quantizes the base model to Normal Float 4-bit (NF4) and
initializes A and B with Gaussian-Zero initialization, is:

Quantization Error of QLoRA = ||W − (nf4(W) +AB) ||∗ = ||W − nf4(W)||∗, (13)

As shown in Equation 13, QLoRA decomposes the original matrix in Figure 10a into the sum of
a quantized matrix (Figure 10b) and an error matrix (Figure 10d). By comparing Figure 10a and
Figure 10d, we can see that the magnitude of the error matrix is much smaller than that of the original
matrix. Therefore, the benefit of preserving the principal components of the W matrix with the
adapter is greater than that of preserving the principal components of the error matrix with the adapter.

LoftQ [14], designed to preserve the principal components of the error matrix using the adapter, first
performs singular value decomposition on the quantization error matrix of QLoRA:

UerrSerrV err = W − nf4(W), (14)

then uses the larger singular values to initialize A and B, thereby reducing the quantization error to:

LoftQerr = ||W − (nf4(W) +AB) ||∗ = ||Uerr
[r:] S

err
[r:,r:]V

err
[r:] ||∗ =

min(m,n)∑
i=r

Serr
[i,i]. (15)

LoftQ eliminates only the largest r singular values Serr
[:r] (see Figure 10e) from the QLoRA error

matrix (Figure 10d).

Our PiSSA, however, does not quantify the base model but the residual model:

Quantization Error of PiSSA = ||W − (nf4(W res) +AB) ||∗ = ||W res − nf4(W res)||∗, (16)

where A and B are initialized following Equation 2 and 3. Since the residual model has removed the
large-singular-value components, the value distribution of W res can be better fitted by a Student’s
t-distribution with higher degrees of freedom compared to W (as can be seen in Figure 11) and thus
quantizing W res results in lower error using 4-bit NormalFloat (shown in Figure 10f).

22

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Data values

0

20

40

60

80

Pr
ob

ab
ilit

y
de

ns
ity

df=1.90, loc=-1.2e-06, scale=5.2e-3

(a) The original matrix W

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Data values

0

50

100

150

Pr
ob

ab
ilit

y
de

ns
ity

df=2.01, loc=-5.6e-05, scale=2e-3

(b) The residual matrix Wres

Figure 11: Fitting the original matrix and the residual matrix using Student’s t-distribution.

I Combining QPiSSA with Various Quantization Methods

In addition to NF4 quantization, QPiSSA can also be combined with GPTQ and INT8 quantization.
We posit that PiSSA effectively reduces quantization error for several reasons:

• It reduces outlier values;
• It makes the value distribution more Gaussian-like;
• It preserves larger values in full precision, thereby narrowing the weight distribution in the

quantized portion.

While INT8 also targets the reduction of outlier values (point 1), PiSSA has the potential to enhance
this effect. The second point aligns well with NF4, and the third point is crucial as PiSSA uses an
adaptor to retain a significant portion of weights in full precision, maintaining the integrity of critical
values.

Table 9: Quantization Error and Accuracy for PiSSA Combined with Various Quantization Methods.
GPTQ quantizes each row w independently, adjusting one weight at a time while updating all remain-
ing, non-quantized weights. Therefore, the nuclear norm method used for calculating quantization
error in the main paper is not applicable to GPTQ. Instead, we measure Perplexity on WikiText-2,
where a lower Perplexity indicates reduced quantization error.

Model Dataset Quantization Error GSM8K Accuracy
QLoRA PiSSA QLoRA PiSSA

NF4 324.8 (nuclear norm) 265.8 (nuclear norm) 70.79±0.42 73.76±0.20
LLaMA-3-8B INT8 34.47 (nuclear norm) 28.21 (nuclear norm) 71.68±0.14 76.54±0.32

GPTQ 20.79 (perplexity) 6.23 (perplexity) 70.18±0.42 74.58±0.22

As shown in Table 9, QPiSSA combined with INT8 reduces quantization error by 18.16% on
LLaMA-3-8B, and significantly outperforms QLoRA using INT8. Furthermore, in row 3 of the
table, the perplexity of LLaMA-3-8B increases to 20.79 after quantization with GPTQ-4bit on the C4
dataset. However, when PiSSA is applied, the perplexity is reduced to 6.23. These results confirm the
effectiveness of PiSSA in reducing quantization error, as discussed in the main paper.

Overall, QPiSSA demonstrates a clear advantage over QLoRA when combined with various quanti-
zation methods, retaining the fast convergence and superior performance characteristics of PiSSA
while minimizing quantization error.

23

J Evaluating PiSSA on Mixtral and Gemma with More Training Steps

This is the supplement for Section 5.2. We applied PiSSA, LoRA, and full parameter fine-tuning on
the full MetaMathQA-395K dataset using Mistral-7B and Gemma-7B models, training for 3 epochs.
Figures 12 and 13 display the training loss, gradient norm, and evaluation accuracy on GSM8K.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100
The First 100 Steps

0.2

0.4

0.6

Tr
ai

ni
ng

 L
os

s

LoRA
PiSSA
Full FT

(a) Loss over training steps.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k

2

4

6

8

10

Tr
ai

ni
ng

 G
ra

d
No

rm

0 25 50 75 100
The First 100 Steps

0

10

20

Tr
ai

ni
ng

 G
ra

d
No

rm LoRA
PiSSA
Full FT

(b) Grad norm over steps.

1000 2000 3000 4000 5000 6000 7000 8000 900070

71

72

73

74

75

76

77

GS
M

8K
 A

cc
ur

ac
y

(%
)

LoRA
PiSSA
Full FT

(c) Accuracy on GSM8K over training steps.

Figure 12: Fine-tuning Mistral-7B-v0.1 on the MetaMathQA-395K dataset for 3 epochs: A compari-
son of full parameter fine-tuning (indicated by a dashed line), LoRA (in blue), and PiSSA (in orange).

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100
The First 100 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

LoRA
PiSSA
Full FT

(a) Loss over training steps.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Tr
ai

ni
ng

 G
ra

d
No

rm

0 25 50 75 100
The First 100 Steps

0

20

40

Tr
ai

ni
ng

 G
ra

d
No

rm LoRA
PiSSA
Full FT

(b) Grad norm over steps.

1000 2000 3000 4000 5000 6000 7000 8000 900070

72

74

76

78

80

GS
M

8K
 A

cc
ur

ac
y

(%
)

LoRA
PiSSA
Full FT

(c) Accuracy on GSM8K over training steps.

Figure 13: Fine-tuning Gemma-7B on the MetaMathQA-395K dataset for 3 epochs: A comparison
of full parameter fine-tuning (indicated by a dashed line), LoRA (in blue), and PiSSA (in orange).

As shown in Figure 12a and 13a, the loss for full parameter fine-tuning decreases sharply with each
epoch, indicating overfitting to the training data. Notably, during the entire first epoch, the loss for
full parameter fine-tuning on Mistral and Gemma is significantly higher than for LoRA and PiSSA,
suggesting that full parameter fine-tuning has weaker generalization capabilities compared to LoRA
and PiSSA on Mistral-7B and Gemma-7B models. The gradient norm for the first epoch in Figure
13b fluctuates dramatically with each step, further indicating instability in the training process for
full parameter fine-tuning. Consequently, as illustrated in Figures 12c and 13c, the performance
of full parameter fine-tuning is markedly inferior to that of LoRA and PiSSA. These experiments
demonstrate that using parameter-efficient fine-tuning can prevent the over-fitting issue caused by
over-parameters.

24

K Supplementary Experiments on Various Ranks

K.1 Quantization Error for More Type of Layers

Figure 7a only shows the reduction ratio of quantization error for “q_proj” layers. In Figure 14, we
present the error reduction ratios for the remaining types of linear layers under different ranks.

1 2 4 8 16 32 64 128
Rank

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Qu
an

tiz
tio

n
Er

ro
r R

ed
uc

in
g

(%
)

k_proj
QLoRA
LoftQ
PiSSA

1 2 4 8 16 32 64 128
Rank

0

2

4

6

8

Qu
an

tiz
tio

n
Er

ro
r R

ed
uc

in
g

(%
)

v_proj
QLoRA
LoftQ
PiSSA

1 2 4 8 16 32 64 128
Rank

0

2

4

6

8

Qu
an

tiz
tio

n
Er

ro
r R

ed
uc

in
g

(%
)

o_proj
QLoRA
LoftQ
PiSSA

1 2 4 8 16 32 64 128
Rank

0

1

2

3

4

5

6

7

8

Qu
an

tiz
tio

n
Er

ro
r R

ed
uc

in
g

(%
)

gate_proj
QLoRA
LoftQ
PiSSA

1 2 4 8 16 32 64 128
Rank

0

1

2

3

4

5

6
Qu

an
tiz

tio
n

Er
ro

r R
ed

uc
in

g
(%

)
up_proj

QLoRA
LoftQ
PiSSA

1 2 4 8 16 32 64 128
Rank

0

1

2

3

4

5

6

Qu
an

tiz
tio

n
Er

ro
r R

ed
uc

in
g

(%
)

down_proj
QLoRA
LoftQ
PiSSA

Figure 14: Comparison of quantization errors in QLoRA, LoftQ, and PiSSA across k_proj, v_proj,
o_proj and gate_proj, up_proj, down_proj layers.

From Figure 14 it can be observed that under different ranks, the reduction ratio of quantization
error for various linear layers in LLaMA-2-7B, including “k_proj”, “v_proj”, “o_proj”, “gate_proj”,
“up_proj”, and “down_proj” layers, is consistently lower with PiSSA compared to LotfQ.

25

K.2 Evaluation Performance for More Model on Various Ranks

Section 5.5 only validated the effectiveness of LLaMA-2-7B. In Figure 15, we also present the
comparative results of Mistral-7B-v0.1, and Gemma-7B under different ranks.

1 2 4 8 16 32 64 128
Rank

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

M
et

aM
at

h
Lo

ss

LLaMA 2-7B

1 2 4 8 16 32 64 128
Rank

0.18

0.20

0.22

0.24

0.26

M
et

aM
at

h
Lo

ss

Mistral-7B-v0.1

1 2 4 8 16 32 64 128
Rank

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

M
et

aM
at

h
Lo

ss

Gemma-7B
Full Finetuning LoRA PiSSA

(a) Final training loss across different ranks.

1 2 4 8 16 32 64 128
Rank

25

30

35

40

45

50

55

GS
M

8K
 A

cc
ur

ac
y

(%
)

LLaMA 2-7B

1 2 4 8 16 32 64 128
Rank

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

GS
M

8K
 A

cc
ur

ac
y

(%
)

Mistral-7B-v0.1

1 2 4 8 16 32 64 128
Rank

66

68

70

72

74

76

78

80

82

GS
M

8K
 A

cc
ur

ac
y

(%
)

Gemma-7B
Full Finetuning LoRA PiSSA

(b) Rank-wise performance evaluated using pass@1 on the GSM8K dataset.

1 2 4 8 16 32 64 128
Rank

3

4

5

6

7

M
AT

H
Ac

cu
ra

cy
 (%

)

LLaMA 2-7B

1 2 4 8 16 32 64 128
Rank

15

16

17

18

19

20

21

22

23

M
AT

H
Ac

cu
ra

cy
 (%

)

Mistral-7B-v0.1

1 2 4 8 16 32 64 128
Rank

22

24

26

28

30

32

M
AT

H
Ac

cu
ra

cy
 (%

)

Gemma-7B
Full Finetuning LoRA PiSSA

(c) Rank-wise performance evaluated using pass@1 on the MATH dataset.

Figure 15: Fine-tuning LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B on the MetaMathQA dataset:
A comparison of full parameter fine-tuning (indicated by a dashed line), LoRA (in blue), and PiSSA
(in orange).

From Figure 15, PiSSA uses fewer trainable parameters compared to LoRA while achieving or even
surpassing full-parameter fine-tuning on LLaMA-2-7B and Mistral-7B. Remarkably, on Gemma-7B,
PiSSA exceeds full-parameter fine-tuning performance even at rank=1. However, as the rank increases
to 128, the performance of PiSSA begins to decline, indicating that PiSSA over-parameterizes earlier
than LoRA. This over-parameterization phenomenon does not occur on LLaMA-2-7B, suggesting that
increasing the rank further might enable PiSSA to achieve even higher performance on LLaMA-2-7B.

26

K.3 More Training Loss and Grad Norm under Various Ranks

In Figure 16 and 17, we examining the loss and gradient norm during the training process of PiSSA
and LoRA on LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B using different ranks.

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

Rank 1

0 100 200 300 400 500 600 700

Rank 2

0 100 200 300 400 500 600 700

Rank 4

0 100 200 300 400 500 600 700

Rank 8

0 100 200 300 400 500 600 700

Rank 16

0 100 200 300 400 500 600 700

Rank 32

0 100 200 300 400 500 600 700

Rank 64

0 100 200 300 400 500 600 700

Rank 128

0 20 40
First 50 Steps

0.5

0.6

0.7

0.8
Tr

ai
ni

ng
 L

os
s

0 20 40
First 50 Steps

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

0 100 200 300 400 500 600 700

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s
0 20 40

First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 100 200 300 400 500 600 700
Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

0 20 40
First 50 Steps

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

Figure 16: Comparison of training loss for LLaMA-2-7B, Mistral-7B, and Gemma-7B, organized
into three rows, using LoRA and PISSA across ranks 2i, i ∈ [0, 7], organized into eight columns.

0 100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 G
ra

d
No

rm

Rank 1

0 100 200 300 400 500 600 700

Rank 2

0 100 200 300 400 500 600 700

Rank 4

0 100 200 300 400 500 600 700

Rank 8

0 100 200 300 400 500 600 700

Rank 16

0 100 200 300 400 500 600 700

Rank 32

0 100 200 300 400 500 600 700

Rank 64

0 100 200 300 400 500 600 700

Rank 128

0 20 40
First 50 Steps

0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0.0

0.5

1.0

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0.0

0.5

1.0

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0.5

1.0

1.5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0.5

1.0

1.5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

1

2

3
Tr

ai
ni

ng
 G

ra
d

No
rm

0 20 40
First 50 Steps

0

1

2

3

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

1

2

3

4

Tr
ai

ni
ng

 G
ra

d
No

rm

0 100 200 300 400 500 600 700
0

1

2

3

4

5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

0 20 40
First 50 Steps

0

1

2

3

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

1

2

3

4

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

1

2

3

4

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

1

2

3

4

5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

1

2

3

4

5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

2

4

6

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0
2
4
6
8

10

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 G
ra

d
No

rm

0 100 200 300 400 500 600 700
Steps

0

5

10

15

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 100 200 300 400 500 600 700
Steps

0 20 40
First 50 Steps

0

5

10

15

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

5

10

15

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

5

10

15

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

5

10

15

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

5

10

15

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

10

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

10

20

Tr
ai

ni
ng

 G
ra

d
No

rm

0 20 40
First 50 Steps

0

10

20

Tr
ai

ni
ng

 G
ra

d
No

rm

Figure 17: Comparison of grad norm for LLaMA-2-7B, Mistral-7B, and Gemma-7B, organized into
three rows, using LoRA and PISSA across ranks 2i, i ∈ [0, 7], organized into eight columns.

From Figure 16, PiSSA consistently shows a faster initial loss reduction compared to LoRA across
various ranks. Additionally, the final loss remains lower than that of LoRA. This advantage is
particularly pronounced when the rank is smaller. From Figure 17, the gradient norm of PiSSA
remains consistently higher than that of LoRA throughout the training process, indicating its efficient
fitting of the training data. A closer look at the first few steps of LoRA’s gradient norm reveals a trend
of rising and then falling. According to Section 3, LoRA’s gradients are initially close to zero, leading
to very slow model updates. This requires several steps to elevate LoRA’s weights to a higher level
before subsequent updates. This phenomenon validates our assertion that LoRA wastes some training
steps and therefore converges more slowly. It demonstrates the robustness of the faster convergence
property of PiSSA across various ranks.

27

L Experimental Settings on NLU

Datasets We evaluate the performance of PiSSA on GLUE benchmark, including 2 single-sentence
classification tasks (CoLA, SST), 5 pairwise text classification tasks (MNLI, RTE, QQP, MRPC and
QNLI) and 1 text similarity prediction task (STS-B). We report overall matched and mismatched
accuracy on MNLI, Matthew’s correlation on CoLA, Pearson correlation on STS-B, and accuracy on
the other datasets.

Implementation Details To evaluate the performance of PiSSA intuitively, we compared PiSSA
to LoRA with the same number of trainable parameters. DeBERTa-v3-base has 184M trainable
parameters. PiSSA and LoRA were applied to WQ, WK and WV respectively, resulting in a total of
1.33M trainable parameters.

The results for full fine-tune, BitFit [15], HAdapter [30], PAdapter [36], LoRA with Gassian ini-
tialization [11] and AdaLoRA are sourced from AdaLoRA [58], based on five runs. The remaining
results use the publicly available LoftQ [14] codebase and are averaged over three runs. In LoRA, the
B matrix is initialized to zero, while the A matrix can be initialized using various methods, such as
Gaussian initialization and Kaiming initialization [68]. The selection of the initialization method can
influence the final results. In this paper, we report the different results of LoRA based on Gaussian
initialization and Kaiming initialization in the experiments, as shown in Table 2 and Table 3. For
DoRA, we used the code from the PEFT package for deployment and conducted a search on key
hyperparameters. We set the rank of PiSSA in this experiment as 8 and selecte lora alpha in 8,
16. We utilize AdamW with linear learning rate schedule to optimize and tune learning rate (LR)
from 1e-4,2e-4,3e-4,4e-4,5e-4, 6e-4, 5e-5, 3e-5. Batch sizes (BS) are selected from 6, 8, 16, 32. The
hyperparameter configurations of PiSSA, DoRA and LoRA with Kaiming Initialization are shown in
Table 10. LoRAK denotes LoRA with Kaiming initialization, and α denotes LoRA alpha.

Table 10: Hyperparameters of PiSSA, DoRA and LoRA with Kaiming Initialization on GLUE.

Dataset PiSSA DoRA LoRAK

Epoch BS LR α Epoch BS LR α Epoch BS LR α

MNLI 5 16 5e-4 8 10 32 2e-4 16 10 32 3e-4 8
SST-2 20 16 3e-5 8 10 16 4e-4 16 10 32 1e-4 8
MRPC 20 32 2e-4 8 10 32 4e-4 16 10 32 4e-4 8
CoLA 20 16 1e-4 8 20 8 1e-4 6 30 32 4e-4 8
QNLI 10 32 1e-4 16 10 16 2e-4 16 25 32 3e-4 8
QQP 10 16 1e-4 8 10 16 1e-4 6 10 16 3e-4 8
RTE 50 16 1e-4 8 50 8 2e-4 6 50 32 4e-4 8
STS-B 20 8 3e-4 8 20 16 3e-4 6 30 16 4e-4 8

28

M Comparison of Initial Gradient Subspaces

To compare the gradient subspaces of PiSSA and LoRA, we conducted two additional experiments to
validate our analysis.

First, we trained LLaMA-3-8B on the MetaMath dataset five times, initializing LoRA with different
random seeds while using the same batch of 128 training examples to compute LoRA’s gradients.
After performing dimensionality reduction to two dimensions, the results are presented in Table 11.

Table 11: Ablation results for LoRA and PiSSA across different seeds.
Method Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

grad_A LoRA [0,0] [0,0] [0,0] [0,0] [0,0]
PiSSA [0,1] [0,1] [0,1] [0,1] [0,1]

grad_B LoRA [-0.99, 0.12] [0.95, 0.31] [0.46, -0.89] [0.24, 0.97] [0.04, -0.99]
PiSSA [1,0] [1,0] [1,0] [1,0] [1,0]

We observe that the gradient of matrix A remains consistently zero, while the gradient direction of
matrix B varies across initializations. This behavior arises because matrix A‘s gradient depends on
matrix B, which in LoRA is initialized to zero, resulting in a zero gradient for A. In contrast, matrix
B is initialized from a Gaussian distribution, leading to variation in its gradient direction across
different seeds. In comparison, PiSSA’s gradient direction remains consistent across all five training
runs, as it solely depends on the original model and the training data. This experiment highlights the
stability of PiSSA’s optimization trajectory relative to LoRA’s more variable directionality.

Next, we quantitatively compared the effect of updating along the principal singular value direction
versus a “random” direction during the early stages of fine-tuning. We trained LLaMA-3-8B on the
MetaMathQA dataset using both PiSSA and LoRA, saving the parameters and gradients from the
first 50 iterations. At the 50th step, the loss values for LoRA and PiSSA were 0.3677 and 0.2899,
respectively. Using the parameters from the 50th step as the target point, we evaluated the movement
in the first five steps relative to the target, computing how much progress was made towards the final
point. We then divided this progress by the total target distance to obtain a ratio. These ratios are
shown in Figure 18.

1 2 3 4 5
Steps

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

LoRA
PiSSA

(a) Loss over steps.

1 2 3 4 5
Steps

0

5

10

15

20

25

Ra
tio

 to
 Ta

rg
et

 A
 (%

)

LoRA
PiSSA

(b) Ratio to target A over steps.

1 2 3 4 5
Steps

5

10

15

20

25

Ra
tio

 to
 Ta

rg
et

 B
 (%

)

LoRA
PiSSA

(c) Ratio to target A over steps.

Figure 18: Comparison of Loss and Ratio to the target A and target B for LoRA and PiSSA across
the initial 5 steps.

The results reveal that after just five updates, PiSSA reduced the loss from 0.8884 to 0.3346, while
LoRA’s loss reduction was more modest, dropping to only 0.5538. This demonstrates the advantage
of updating along the principal singular value direction, which PiSSA leverages, leading to faster
convergence. Further, in the first step, matrix A in LoRA exhibited a zero gradient and therefore did
not update. Over the next four steps, it moved only 15.94% towards the target direction. Similarly,
matrix B in LoRA consistently moved less towards the target endpoint compared to PiSSA.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: 7

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

30

Justification: 3, 4
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]
Justification: 5
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: error bars are not reported because it would be too computationally expensive
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We only use public available datasets.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

33

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only use public available datasets and models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: 2
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

34

paperswithcode.com/datasets

Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Related Works
	PiSSA: Principal Singular Values and Singular Vectors Adaptation
	QPiSSA: An Extension Method with Lower Quantization Error
	Experiments
	Evaluating the Performance of PiSSA on both NLG and NLU Tasks
	Experiments using Full Data and More Epochs
	Conducting 4-bit Quantization Experiments
	Experiments Across Various Sizes and Types of Models
	Experiments on Various Ranks

	Conclusion
	Limitation
	Acknowledgements:
	Enhancing PiSSA with LoRA Improvement Methods
	Fast Singular Value Decomposition
	Equivalently Converting PiSSA into LoRA
	Comparison of Fine-Tuning in BF16 and FP32 Precision
	Reducing Quantization Error through Multiple Iteration of SVD
	Conductive Experiments on Various SVD Components
	The Residual Matrices having a Narrower Distribution
	Comparing the Quantization Error of QLoRA, LoftQ and QPiSSA
	Combining QPiSSA with Various Quantization Methods
	Evaluating PiSSA on Mixtral and Gemma with More Training Steps
	Supplementary Experiments on Various Ranks
	Quantization Error for More Type of Layers
	Evaluation Performance for More Model on Various Ranks
	More Training Loss and Grad Norm under Various Ranks

	Experimental Settings on NLU
	Comparison of Initial Gradient Subspaces

