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ABSTRACT

Deep neural networks are proven to be vulnerable to data poisoning attacks. Re-
cently, a specific type of data poisoning attack known as availability attacks, has
led to the failure of data utilization for model learning by adding imperceptible
perturbations to images. Consequently, it is quite beneficial and challenging to de-
tect poisoned samples, also known as Unlearnable Examples (UEs), from a mixed
dataset. To tackle this problem, in this paper, we introduce a novel Iterative Self-
Regression approach for identifying UEs within a mixed dataset. This method
leverages the distinction between the inherent semantic mapping rules and short-
cuts, without the need for any additional information. Our investigation reveals a
critical observation: when training a classifier on a mixed dataset containing both
UEs and clean data, the model tends to quickly adapt to the UEs compared to the
clean data. Due to the accuracy gaps between training with clean/poisoned sam-
ples, we employ a model to misclassify clean samples while correctly identifying
the poisoned ones for identifying tainted samples. Furthermore, we find that it
is more effective to differentiate between clean and poisoned samples and build
the Iterative Self Regression algorithm. With incorporated additional classes and
iterative refinement, the model becomes more capable of differentiating between
clean and poisoned samples. Extensive experiments demonstrate that our method
outperforms state-of-the-art detection approaches across various types of attacks,
datasets, and poisoning ratios, and it significantly reduces the Half Total Error
Rate (HTER) in comparison to existing methods.

1 INTRODUCTION

The recent emphasis on data-centric Al (Zha et al.,2023)) underscores the importance and effective-
ness of improving the model’s performance from the perspective of data pre-processing optimization
instead of solely the model design. According to this viewpoint, it becomes critical to address the
challenges tied to those data-centric issues, including data collection, data preprocessing, data qual-
ity maintenance, efc., for learning-based methods. In fact, a considerable portion of the machine
learning process has been dedicated to the data issue (Whang et al. [2023). These efforts have
gradually guided researchers towards a consensus: high-quality data is critical for enabling more
advanced machine-learning algorithms to reach their full potential, which poses the data on par with
the approach itself. However, prevalent challenges persist, given that many real-world datasets are
limited in size, dirty (Natarajan et al.l 2013; [Frénay & Verleysen, 2013), biased (Tommasi et al.,
2017), and in some cases, even contaminated with malicious intents (Shafahi et al., 2018]).

Data poisoning attacks (Huang et al., 2020; |Chen et al., 2017} |Geiping et al., 2021} |Liu et al., 2020;
Nguyen & Tran|2021) further intensify these difficulties and reveal the urgent requirement for the at-
tention of the data management community. The significance of this issue is rooted in the deliberate
actions of attackers who maliciously manipulate data to undermine the accuracy of Al applications.
Compared to the natural degradation of signals or shifts in features, these contaminations are more
insidious and can result in greater damage, leading to a more obvious performance drop. In this
work, we focus on a specific type of data poisoning attack termed availability attacks (Yu et al.,
2022; Wu et al.l 2023)). These attacks add nearly invisible perturbations to the training data, which
makes the trained models fail to obtain useful knowledge for reaching reasonable performance. This
attack severely impacts the availability of data in the era of big data.
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The widely employed dataset search engines (Brickley et al.,[2019;|Castelo et al.,2021)) have height-
ened the risks of potential threats and misuse. Malicious dataset providers might release metadata to
the public, which can be automatically discovered and propagated through search engines. Availabil-
ity attacks, by introducing invisible perturbations within the £, norm to the original image, present
a considerable challenge in distinguishing between clean and poisoned samples. The malicious
dataset owner could even create mixed data by poisoning only portions of the data, which further
makes the detection more challenging. Researches (Fowl et al., 2021} |Huang et al.| 2021) demon-
strate that incorporating even a small proportion of clean samples into an unlearnable dataset leads to
an increase in test accuracy. As a result, it is difficult for data users to determine whether the dataset
is normal because the trained model appears to have reasonable performance. Training on these un-
learnable examples may not fully leverage the model’s potency, compromising testing performance
and wasting computational resources and time.

In this paper, we introduce Iterative Self Regression (ISR), an effective detection technique tailored
for detecting a wide range of visually imperceptible UEs. Our analysis reveals a critical insight:
when a classifier is trained on a dataset that combines UEs with clean data, the model tends to adapt
more rapidly to the UEs than to the clean data. This suggests that when the model is evaluated
on previously unseen UEs, it often demonstrates superior accuracy compared to its performance on
clean samples. Exploiting the accuracy disparities between training on clean and poisoned samples,
we design a model to misclassify clean samples while accurately identifying the poisoned ones,
facilitating the detection of tainted data. Furthermore, our findings lead us to the formulation of the
Iterative Self Regression algorithm. With additional classes and iterative refinement, the proposed
approach achieves improved performance in distinguishing these two types of samples.

Our contributions can be summarized as:

* In this paper, we address a critical issue in the era of deep learning: how to identify and filter
harmful unlearnable data, screening samples that cannot be learned from. Accordingly, we
introduce Iterative Self Regression (ISR), the first detection method that aims at identifying
visually imperceptible unlearnable examples.

* ISR capitalizes on the observation that models trained on datasets blending UEs with clean
data tend to adjust more swiftly to UEs, resulting in a discernible accuracy differential,
to enable the identification of UEs. Specifically, ISR integrates additional classes and
undergoes iterative refinement, enhancing its discrimination between clean and poisoned
samples.

» Extensive experiments demonstrate the superior performance of our method over state-of-
the-art detection approaches when confronted with various types of attacks, datasets, and
poisoning ratios. When employing a detection-purification strategy, the results further
emphasize the method’s robustness in strengthening defenses against UEs.

2 RELATED WORK

2.1 DATA POISONING

Data poisoning (Biggio et al., |2012; Hong et al.| [2020; |[Huang et al.l [2020; Koh et al.l 2022) is
an increasingly recognized challenge in the modern machine learning ecosystem. Essentially, it
involves the malicious modification of training data (often in a passive manner) to deliberately distort
the behavior of a machine learning model.  These data poisoning attacks manifest in multiple
forms, ranging from targeted attacks aimed at particular categories to availability attacks seeking
to undermine overall test accuracy. For example, Backdoor attacks (Chen et al., 2017; |[Doan et al.,
2021} |Gu et al, [2019; Nguyen & Tran, 2021)) are characterized by the manipulation of training
data instances. This allows attackers to control the target model’s output utilizing a predetermined
trigger. Label flipping attacks (Xiao et al.;,2012) opt to switch training labels while leaving the data
instances untouched.

While most of the literature focuses on the malicious use of poisoning attacks, availability attacks
are employed as a protective measure against unauthorized model training. For example, Error-
Minimizing (EM) (Huang et al.| 2021)) poisons introduce error minimization noise to prevent deep
learning models from absorbing knowledge. Targeted Adversarial Poisoning (TAP) (Fowl et al.,
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2021) uses targeted adversarial examples of pre-trained models for availability attacks. Robust
Error-Minimizing (REM) (Fu et al., [2022)) introduces adversarial training based on the EM method
to generate robust unlearnable examples. Self-ensemble protection (SEP) (Chen et al., 2023) uses
multiple model checkpoints’ gradients to generate poison in a self-ensemble manner. Linear sepa-
rable Synthetic Perturbation(LSP) (Yu et al.| [2022)) reveal that the perturbations of several existing
availability attacks are (almost) linearly separable and propose to use synthetic shortcuts to perform
availability attack. Recently, One Pixel Shortcut (OPS) (Wu et al., 2023)) delves into the model’s
susceptibility to sparse poisons and augments its resistance to adversarial training.

2.2 EXISTING DEFENSE AGAINST AVAILABILITY ATTACKS

Defense against availability attacks can be mainly classified into two distinct categories: preprocess-
ing and training-phase defenses. The method based on preprocessing eliminates the poison added by
the attacker by preprocessing the data before training. Recently, |Liu et al.|(2023b) proposed to purify
the poisoned data using grayscale transformation and JPEG compression (Marcellin et al.| [2000).
Dolatabadi et al.| (2023)) demonstrate the efficacy of diffusion models (Ho et al., [2020) in removing
data protection perturbations. Training-phase defense methods are characterized by alterations in
the training procedure to enable model robustness, even when exposed to poisoned data. Existing
work tends to adopt adversarial training (Madry et al.| 2018)) as the countermeasure. However, this
approach is not without its shortcomings — the substantial computational overhead and extended
training durations often outweigh its benefits, and there exists a tangible risk of compromising the
performance of models trained on clean datasets. Recently, adversarial augmentations (Qin et al.,
2023)) introduce an innovative technique of applying a spectrum of augmentations.

2.3 DETECTION OF BACKDOOR ATTACKS

A similar but different task compared to availability attack detection is backdoor attack detection.
To date, some defense methods have been proposed to detect and mitigate backdoor attacks. |Stein-
hardt et al.|(2017)) unveils a general defense against poisoning attacks, leveraging outlier or anomaly
detection techniques. However, a significant limitation of their approach is the prerequisite of a
clean, trusted dataset to effectively train the outlier detector. Addressing this constraint, |Chen et al.
(2018)) introduces a pioneering methodology capable of detecting poisonous backdoors without the
necessity of a verified and trusted dataset. This approach involves analyzing the neural network
activations associated with the training data. It assesses whether the data is poisoned and identifies
the specific data points that are affected if poisoning is detected. |Iran et al.|(2018)) propose Spectral
Signature defense that removes the data with the top e eigenvalues. Wang et al.|(2019) propose Neu-
ral Cleanse defense that first reverse-engineers a trigger by searching for patches that cause strong
misclassification, then prunes neurons with large activations. |Peri et al.| (2020) capitalize on the
observation that adversarial examples exhibit distinct feature distributions in higher layers of a neu-
ral network compared to their clean counterparts. They introduce a straightforward yet remarkably
effective defense mechanism called Deep k-NN, which is designed for detecting and removing poi-
soned samples by leveraging these differences in feature distributions. Recently, [Liu et al.|(2023a))
introduces TeCo, a technique anchored in sample corruption consistency for the precise detection of
trigger samples during testing.

3 METHODOLOGY

3.1 PRELIMINARY

Unlearnable Examples. In the era of big data, the internet and search engines bring about massive
volumes of data that can be used for training deep models. However, there is a possibility of data
contamination caused by availability attacks. That is, with small imperceptible perturbations, the
data appears normal still in visual appearance but results in the failure of training deep networks with
unsatisfactory testing accuracy. Here, these perturbed samples are termed ‘unlearnable examples’
(UEs). Following the existing unlearnable research (Huang et al.l [2021), we focus on the image
classification task in our paper. Given a clean dataset D. = {(;,y;)};, comprising N training
samples, where z € X C R represents the image and y € Y = {0,--- ,C — 1} represents its
corresponding labels. We consider a scenario in which a classifier is trained on the contaminated
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unlearnable data, represented as fy : X — ). To corrupt the model training, the existing methods
introduce perturbations to the clean images, resulting in an unlearnable dataset defined as:

Dy = {(xi + 0, y:) 1oy » (1
where §; € Ap C R?, with Ap representing the perturbation set for D... The objective of unlearn-

ability is to ensure that a classifier fy trained on D,, exhibits poor performance on testing datasets
when using D,, in the inference stage.

Defenses to Unlearnable Examples. The training data used for model training might be gathered
from online user channels with their regularly shared visual content like images and videos. Given
that some images might be disturbed to be unlearnable examples, which are visually indistinguish-
able from normal ones, the dataset we collect might include a mix of clean data and unlearnable
examples. It becomes critical to differentiate between these two types of data if we hope to train a
highly effective model. That also implies the importance of identifying unlearnable examples from
the training data. Once identified, the training data can be purified by removing those samples or
restoring their corresponding clean versions by methods like *DiffPure’ (Dolatabadi et al., [2023) to
improve the overall availability of the dataset.

Unlearnable Examples Detection. Given a mixed dataset D = D, U D., where D, =

{(«%,y2)} X consists of N, unlearnable examples and D, = {(z%,y’)}¥* including N, clean

samples, the detection of unlearnable examples within the mixed dataset D turns to learn a map-

ping f appropriate for a binary classification problem, relative to the poison ratio p = NP
Mathematically, the problem can be formulated as:
Ny+Ne
min Y [f(z) — I{z € D,}|. 2)

f@)efo1}y

UEs make faster learners. Recent research indicates that UEs offer easily learnable features that
are closely linked to labels, commonly recognized as shortcuts (Yu et al.l 2022} |Sandoval-Segura
et al} |2022). A notable observation is that when training a classifier on a dataset merging UEs and
clean data, the model adapts to the UEs more quickly than it does to the clean data (Huang et al.,
20215 [Fowl et al., [2021} |Yu et al.,[2022). Basically, when training a classifier F'(-|¢) on the mixed
dataset D = D,, U D,, the optimization process (regarding the loss £) is given by

Ny N,
0= arg minz E(F(l‘l + 6z|9)7 yi) + Z L'(F(xz|9), yi)~ 3)
K- im1

Since §; serves as a shortcut, the optimization process will prioritize minimizing the loss on UEs over
clean data. This indicates that when evaluated on previously unseen UEs, which typically follow a
similar distribution to the UEs in the training set (Liu et al., 2023b; [Yu et al.| |2022; [Wu et al., |2023)),
the model often shows superior accuracy compared to its performance on clean data.

To validate this phenomenon, we consider a mixed dataset D that includes an equal number of UEs
and clean data. Subsequently, we randomly sample 50% of the data from D for classifier training
and evaluate on the remaining data. Figure [I] illustrates the testing accuracy for both the unseen
UESs and the clean data throughout each epoch. Notably, for EM (Huang et al.,|2021)) and OPS (Wu
et al.| 2023)), the accuracy for UEs increases near 100% within a handful of epochs, while accuracy
improvement for the clean data is relatively slow.

This observation suggests that leveraging the distinction in learnability between UEs and clean data,
especially through the introduction of an early stopping mechanism during training, can help to filter
out potential inaccuracies labeled as clean data. In each iteration, we randomly select training data
from the mixed dataset and evaluate on the remaining data. Through this iterative process, we can
progressively distinguish the clean data from the rest. Nevertheless, when clean data is part of the
optimization process as depicted in Eq. 4} the accuracy for such data might not necessarily remain
at a low value. Consequently, if there is no significant gap in accuracy between UEs and clean data,
the filtering-based detection approach may fail to obtain the desirable results.

3.2 KEY INTUITION

It is simpler to distinguish between UEs and clean data. To tackle the above-mentioned issues,
we reveal a key insight: Distinguishing between clean and poisoned samples is demonstrated to be
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Figure 2: Test accuracy (%) on the unseen unlearnable data and clean data when training a classifier

on a mixed dataset plus additional clean data with label set to y + C.

less challenging than guiding the model to misclassify clean samples while accurately classifying
poisoned ones. In the filtering-based algorithm described above, the clean data, once filtered, is
excluded from model training in subsequent iterations. Moreover, our studies provide evidence
suggesting that these excluded clean data can considerably improve the effectiveness of detection.

Considering a mixed training dataset comprising 50% UEs and 50% clean data, each with their true
labels y. Additionally, we have the excluded clean data, but in this case, we modify their labels to
y+C e {C,---,2C — 1}, where C represents the number of classes in the dataset. These newly
labeled data are then merged with the mixed dataset to form the dataset for the next iteration. The
improved version of the optimization process is as follows:

’

N. N N,
0 =argmin Y _ L(F(x; +6(0),y:) + > LIF(xil0),5:) + Y L(F(xi]0),9: +C) @D
o i=1 i=1

Subsequently, we randomly select 50% of the data for training, utilize the expanded label space
,+-+,2C =1}, and evaluate the remaining data with original labels y € {0,--- ,C — 1}." As

illustrated in Figure [2] there is a noticeable decrease in the accuracy of clean data compared to
previous experiments. This result is intuitive, as introducing clean data with additional class labels
can lead to these clean data points being misclassified as y + C, thereby amplifying the difference
between UEs and clean data. Moreover, as the number of iterations increases, the percentage of
clean data with modified labels is expected to rise, likely resulting in more misclassifications as
y + C, thereby further expanding the gap between UEs and clean data.

3.3 ITERATIVE SELF REGRESSION(ISR) FOR UNLEARNABLE EXAMPLES DETECTION

The Iterative Self Regression, as outlined in Algorithm |1} is designed to distinguish between un-
learnable examples and clean samples, employing one subset for training and the other for testing
and classification. Specifically, if a sample is incorrectly identified during testing, its class label
is adjusted to y + C, expanding the label space for the entire dataset to {0,---,2C — 1}. Con-
sequently, we introduce C' additional classes to the original classification model. In essence, our
approach leverages the inherent responses of models when they encounter unlearnable examples.
Through iterative training and testing, and by categorizing samples based on the model’s prediction
capabilities, we can effectively distinguish the unlearnable examples and clean samples within the
dataset. During the iterative filtering process, poison samples tend to cluster within the initial C' cate-
gories, whereas clean samples are primarily categorized within the subsequent C' classes. However,
in the early iterations, given a relatively low proportion of UEs in the training data, there exists a
possibility that some UEs might be incorrectly identified as clean data during testing. As illustrated
in Figure [3| as iterations increase, there is a corresponding rise in the FRR, indicating a growing
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Algorithm 1 Iterative Self Regression (ISR) for Unlearnable Examples Detection

Input: A mixed dataset D with C classes, Classifier F'(-|Cr) with Cr classes, Percentage p, Nyij, .
Output: Segregated sets of clean samples and unlearnable examples.
Initialize: it = 0, retrieved = False;
while Nupdate > Nipre do

# filter clean data

- , N (it) IDfroinl _ .

Randomly divide D into two subsets: D;,. . and D, ,;, where I TR
(it)
train

Evaluate F'(-|2C') on DU update y; € DU by y; = Yi+C-I{(4; = vi) & (y; € [0,C—1]) };

val’ val

Randomly initialize and train a classifier F'(-|2C) using D with early stopping;

Record the number of updated y; as Nypdate;
# retrieve unlearnable data

if Nupdate > Ninre & retrived = False then
D) = {(z,y) | (x,y) € D,y € [C,2C — 1]};
D(zt) _ D\D(zt)

train val ?
(it)

train

Evaluate F'(-|2C') on DY) update y; € fot) usingy; =y, — C - I{§; =y — C};

val? al

Randomly initialize and train a classifier F'(-|C') using D with early stopping;

retrieved = True;
Nupdate = O;

end
it=1at+1;

end
Return D, = {(z,y)|y € [0,C — 1]}, D, = {(z,y)|y € [C,2C — 1]}
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Figure 3: Performance Vs. Iterations on detecting EM-based UEs with 80% poison rate.

number of poisoned samples being misclassified with each subsequent iteration. To address this,
we propose the idea of conducting retrieval once after several iterations. Furthermore, we establish
a stopping criterion based on the number of correctly classified clean data during each iteration.
Conventionally, we set the threshold Ny, to be 2% of the total number of the entire dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and models. We use three image classification datasets, CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al.| 2009)), and 100-class subset of ImageNet (Deng et al., [2009)
in our experiments. We implement ResNet-18 (He et al., 2016) as the image classification model.

Methods for Generating UEs. We explore a variety of representative methods to generate UE:
EM (Huang et al.,2021), REM (Fu et al.l[2022) with a perturbation bound of ¢, = 8, AR (Sandoval-
Segura et al., [2022), LSP (Yu et al.,[2022) constrained by /5 = 1.0, and OPS (Wu et al.}|2023)) with
a perturbation bound of ¢y = 1.

Competing Methods. As our proposed ISR is the first UEs detection method without any base-
lines/competitors, we re-implement several state-of-the-art defensive techniques from backdoor at-
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Table 1: Detection performance on CIFAR-10 dataset.

Dataset | Ratio | Poisons |  Deep k-NN (Peri et al.[[2020) | TeCo (Liu et al.|[2023a) | Our Method
| | Fl-scoret FAR| FRR| HTER| |Fl-score FAR| FRR| HTER| |Fl-scoret FAR| FRR| HTER|
EM 47.68 3.82 7339 38.60 49.55 19.53 79.55 49.54 83.29 5.65 17.13 11.39
OPS 46.32 226 7343 37.84 51.50 19.90 79.90 49.90 91.06 4.66 9.52 7.09
0.2 LSP 37.95 16.52 78.29 47.41 49.51 19.63 79.65 49.64 79.27 60.67 1932 39.99

REM 38.19 1633 7842 47.37 4849  20.22 80.21 50.21 7936 7256 19.89 46.22
AR 38.57 19.31 79.61 49.46 51.43 19.66 79.64 49.65 78.66  78.00 19.95 48.97

EM 69.85 3.26 42.89 23.08 49.51 40.25 60.24  50.25 88.88 0.10 1560  7.85
OPS 61.01 21.46 49.40 3543 48.50  40.54 6044 50.49 92.96 0.55 1002 541
0.4 LSP 64.21 12.12 4672  29.92 49.69  39.53 59.60 49.57 80.23 297 2437 13.67
REM 5723 27.03 5231 39.67 49.51 39.93 59.94 49.94 82.20 459 2206 1332
AR 48.10  36.80 583 4755 48.79  40.14 60.11 50.13 60.03 4296 3995 4146

EM 7444  29.52 2334 2644 51.10  59.64 39.69 49.67 95.98 4.06 3.93 4.00
OPS 70.79 3244 622 19.33 50.26  60.01 40.01 50.01 95.25 237  8.03 5.20
0.6 LSP 60.00 5045 30.57 40.51 4970  61.37 41.13 51.25 93.96 429 854 6.42
REM 68.80  35.88 29.12 32.50 4948  60.60 40.59 50.60 8498  16.03 13.02 14.52
AR 40.53 5947 39.82 49.64 50.27  60.14 40.13 50.13 40.75 1412 59.72  36.92

EM 4320 78.72 17.55 48.14 51.24 7975 19.77 49.76 98.13 2.08 0.88 1.48
OPS 70.51  35.57 2590 30.74 50.11  80.42 2040 50.41 95.98 0.09 1652 830
0.8 LSP 75.62 5697 10.10 33.53 52.68  81.04 20.82 50.93 96.09 319 697 5.08
REM 58.79 7254 13.19 4287 56.64  79.94 19.95 49.95 90.52 8.81 1337 11.09
AR 49.66  79.83 19.93 49.88 4937  80.69 20.68 50.69 82.35 1720 26.16 21.68

| Average | 56.07 3452 4243 3850 | 5037 50.15 50.12 50.14 | 84.50 1725 17.75 17.50

CIFAR-10

tacks for comparison. TeCo (Liu et al.|, 2023a)) is an innovative test-time poisoned sample detec-
tion method designed for backdoor attacks. It evaluates the consistency of test-time robustness by
measuring the extent of severity deviation, which triggers shifts in predictions across different cor-
ruptions. Deep k-NN (Peri et al., [2020) is a straightforward, yet highly-effective detection against
clean-label backdoor attacks, and exploits the property that adversarial examples have different fea-
ture distributions than their clean counterparts in deeper layers of the network. Furthermore, these
adversarial features are typically aligned closely to the distribution of the target class.

Metrics. To evaluate the performance of availability attacks, we adopt the Half Total Error Rate

(HTER) and the F1-score as our evaluation metrics. HTER is formulated as: HTER = w,

where FAR = gt and FRR = . It integrates both the False Rejection Rate (FRR) and

the False Acceptance Rate (FAR) to provide a holistic view of the performance. The F1 score is

__ 2x(precision X recall)
calculated by F1 score = ~precision Trecall) -

4.2 EFFECTIVENESS ON VARIOUS TYPES AND DIFFERENT POISON RATIOS

Results on CIFAR-10 dataset. We evaluate the performance of ISR on different unlearnbale ex-
amples comprehensively. In terms of the poison ratios, we focus on evaluating at 20%, 40%, 60%,
and 80%. The results in Table [I|demonstrate that ISR can successfully identify the trigger samples,
particularly when the poison ratio exceeds 20%, as confirmed by the fact that most HTER values
below 10%. However, with only a 20% poison ratio, the poisoned samples represent a minority, and
additional experiments reveal that a marginal percentage of UEs does not significantly affect testing
performance. Therefore, the effectiveness of detection becomes more critical when dealing with
larger poison ratios. Notably, on the CIFAR-10 dataset, ISR achieves an average HTER of 0.1750,
F1 score of 0.8450, FAR of 0.1725, and FRR of 0.1775. These results showcase ISR’s superiority,
surpassing the runner-up by roughly 20% in HTER, 30% in F1-score, 17% in FAR, and 25% in FRR.
Certainly, there are scenarios in which ISR may not achieve success, particularly when dealing with
AutoRegressive (AR) poisons. AR poisons utilize autoregressive perturbations, making them more
complex and not linearly separable (Sandoval-Segura et al.||2022)). This complexity can make them
more challenging to detect, especially when the poison ratios are low. Figure [3|illustrates the per-
formance at each iteration. It is noticeable that once retrieval is integrated and the filtering process
continues through several iterations, the method demonstrates improved convergence performance
compared to the results preceding retrieval. In summary, our work delivers consistent effectiveness
across various types of UEs without using extra knowledge.

There are also some interesting findings about baselines. TeCo, although highly effective in detect-
ing poisoned samples for backdoor attacks, appears to completely fail when dealing with unlearnable
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Table 2: Detection performance on CIFAR-100 dataset.
Dataset | Ratio | Poisons |  Deep k-NN (Peri et al.|[2020) | TeCo (Liu et al.|[2023a) | Our Method
| | Fl-scoret FAR| FRR| HTER| |Fl-score FAR| FRR| HTER| |Fl-scoret FAR| FRR| HTER|

EM 52.10 10.80 73.53 42.16 45.79 19.99 79.99 49.99 8132 3792 1756 27.74
0.2 OPS 50.83 10.16 73.56 41.86 48.05 19.89 7991 49.90 80.88  37.79 18.41 28.10

LSP 45.53 17.78 78.44 48.11 47.68 19.89 7991 49.90 7917  79.68 19.99 4983
EM 73.06 1.97 3995 20.96 4825  40.54 60.42 50.48 93.03 423  8.50 6.36
0.4 OPS 69.73 547 4272 241 48.89  40.87 60.83 50.85 90.44 294 1272 7.83
LSP 66.88 833 4472 2652 4591 42,64 61.78 5221 78.58 11.66 24.53 18.09

EM 90.27 294 1293 793 50.78  59.90 3991 49.90 96.86 4.03  1.67 2.85
0.6 OPS 68.80 3.69 43.64 23.66 49.71 60.97 40.86 50.91 92.07 1.70 15.19 845
LSP 85.29 7.44 1779 12.62 50.64  60.30 40.25 50.28 92.79 6.29 859 7.44

EM 4226 7569 895 4232 56.99  81.03 20.60 50.81 97.52 262 179 2.21
0.8 OPS 71.18 6031 525 3278 49.53  80.96 20.93 50.94 96.05 1.97 1144 671
LSP 7178 5941 478  32.09 56.78  77.39 18.08 47.73 97.07 1.59  8.11 4.85

| Average | 65.64 2200 37.19 2959 | 49.92 5036 5029 5033 | 89.65 16.04 1238 14.21

CIFAR-100

Table 3: Detection performance on 100-class ImageNet subset.
Dataset | Ratio | Poisons |  Deep k-NN (Peri et al.|[2020) | TeCo (Liu et al.|[2023a) | Our Method
| | Fl-scoret FAR| FRR| HTER| |Fl-scoret FAR| FRR| HTER| |Fl-scoret FAR| FRR| HTER|
EM | 4139 1992 80.14 5003 | 49.84 2027 80.20 5023 | 9303 2359 150 1255

0.2 OPS 42.31 18.24 79.05 48.64 5032 20.82 80.08 50.85 90.08  26.62 5.3l 15.97
LSP 49.90 6.56 7295 39.76 50.18 17.90 78.14 48.02 88.77 22776 9.01 15.89
EM 47.11 4027 5993 50.10 48.57  40.85 60.75 50.80 94.03 11.36  1.70 6.53

0.4 OPS 60.16  18.01 49.88 33.94 49.02  41.07 61.09 51.08 91.71 12.71  5.00 8.85
LSP 68.56 415 43.62 23.88 55.13 3448 5475 44.61 92.03 1535 1.60 8.47

EM 5292 60.34 39.84 50.09 4899  62.05 41.72 51.89 95.76 6.33  0.05 3.43
0.6 OPS 77.9 23.19 21.55 2337 48.45 6124 4131 51.27 94.64 479 621 5.50
LSP 85.88 393 18.08 11.01 56.74 5397 35.84 4490 95.71 4.80 346 4.13

EM 5879  79.69 19.69 49.69 4928  81.01 20.99 51.00 97.22 3.14  1.04 2.09
0.8 OPS 80.36 4921 560 274 4947  80.70 20.69 50.70 94.72 4.61 833 6.47
LSP 4487 7489 7.15 41.02 57.74  76.01 17.01 46.51 96.24 322 6.10 4.66

| Average | 59.18 3320 4146 3741 | 5223 4750 5023 4932 | 93.66 11.53 4.11 7.88

ImageNet-100

examples. This divergence in performance could be attributed to the differing objectives of back-
door attacks and UEs. Backdoor attacks aim to manipulate the prediction results, shifting them from
the source class to the target class after the integration of triggers. On the other hand, unlearnable
examples do not necessarily require a prediction shift after the perturbations are introduced. This
difference in objectives illuminates the varying performance of TeCo in these diverse situations.
Deep k-NN appears to be effective when the number of UEs and clean data is well balanced. How-
ever, it seems to fail when dealing with a critical scenario where UEs significantly outnumber the
clean data. This indicates that Deep k-NN’s efficiency is closely tied to data distribution, particularly
when there is a significant imbalance between UEs and clean data.

Results on CIFAR-100 dataset and 100-class ImageNet subset. In our experiments on both the
100-class datasets, we select the three most representative unlearnable examples methodologies. As
the experimental results are shown in Table[2]and Table[3] our ISR strategy consistently outperforms
competing methods in terms of detection and defense against UEs.

4.3 ABLATION STUDY

We conduct experiments to show the effectiveness of the proposed detection strategy, comparing
it with the method without the retrieval process and without introducing additional classes. The
experimental results are shown in Table It can be seen that introducing additional classes and
including the filtered clean data in the training process both significantly improve the detection
performance. Specifically, the retrieval process has demonstrated its effectiveness, particularly in
critical scenarios with a high poison ratio This enhancement is most noticeable in the False Rejection
Rate (FRR), a key metric that evaluates the effectiveness of identifying malicious UEs. With the
incorporation of the retrieval process, a significant decrease in FRR is observed. = Furthermore,
through t-SNE, we illustrate the feature distribution of the model, comparing training scenarios
without and with the additional clean data (having updated labels y € [C,2C — 1]), as shown in
Figure [} It is evident that the additional clean data serves to separate the clean data from the UEs
in the latent space, thereby improving the detection performance.
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Table 4: Ablation study of the proposed method on CIFAR-10 dataset.

Poisons Methods / Ratio ‘ 04 ‘ 0.6 ‘ 0.8
|Fl-scoreT FAR] FRR] HTER]|Fl-scoreT FAR] FRR| HTER][FI-scoreT FAR] FRR] HTER]
w/o retrive 9452 417 6.25 521 91.44  3.01 1741 8385 97.05 140 882 5.1
EM |w/o additional classes| 82.92 29.20 2.20 15.70 78.53 2627 0.69 13.48 9456  6.05 202 4.03
Our Method 88.88  0.10 15.60 7.85 9598 4.06 393 4.00 98.13 2.08 0.88 148
w/o retrive 9433 1672 7.86 4.77 9448 385 790 588 9484  0.60 19.37 9.99
OPS |w/o additional classes| 83.90 26.59 5.17 15.88 87.75 1496 6.45 10.70 92.33 6.70 12.53 9.62
Our Method 9296 055 10.02 541 9525 237 8.03 520 9598 0.09 16.52 8.30
so{ <+ Clean data go{ + Clean data
- UEs
60 60 4
~ Y7 ~ Y7
S 201 S 201
2 2
g ° g °
€ €
5 -20 5 =204
_40 -40
-60 —60
-80 -80

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Dimension 1 Dimension 1
(a) w/o additional clean data (b) w/ additional clean data

Figure 4: t-SNE visualizations on CIFAR-10, comparing models trained without and with additional
clean data, where the labels for the additional clean data are updated to y € [C,2C — 1]. Note that
UEs are generated by EM, and the shared training data consists of 50% UEs and 50% clean data.

4.4 DETECTION FOR PURIFICATION

In this section, we demon- Table5: Test Accuracy (%) of models trained on CIFAR-10 with
strate the effectiveness of our various defensive methods. Dp denote Diffpure.

approach by conducting ex- Ratio | Defensive method | EM OPS LSP REM AR | Mean
periments dedicated to defend- wio 9427 9391 9461 9406 94.24 | 9421
ing against UEs while adher- 0.2 Dp on all samples 89.61 72.64 89.67 89.92 89.93 | 86.35
ing to detection-defense princi- Dp on detected samples | 9420 94.02 94.21 93.99 94.09 | 94.10
les. It is worth noting that wlo 9342 9263 9328 93.18 93.23 | 93.14
P h £ g 04 Dponall samples | 89.44 71.53 89.60 89.67 89.81 | 86.01
we choose Diffpure (Dolatabadi Dp on detected samples | 93.63 9321 93.10 9328 93.30 | 93.30
20237Wh1ChuFlhze,sadlf' wlo 9186 9176 91.89 9171 91.68 | 91.78
fusion model for purification, as 0.6 Dponall samples | 89.45 69.55 89.80 90.02 89.39 | 85.64
the defense method in these ex- Dp on detected samples 9290 91.83 92.83 91.51 91.79 | 92.17
periments. As evident in Ta- wlo 87.94 87.17 88.19 86.58 87.51 | 87.47

: 0.8 Dp on all samples 89.86 70.39 89.73 89.87 89.70 | 85.91
ble [5} our proposed detection Dp on detected samples | 91.48 89.87 9022 9152 89.97 | 90.61

methods prove highly effective
in improving defense performance, particularly in scenarios with significant poison ratios. Note
that all experiments were conducted on CIFAR-10 dataset.

5 CONCLUSION

In this paper, we present Iterative Self Regression (ISR), a robust and efficient detection technique
designed to identify a wide range of visually imperceptible Unlearnable Examples (UEs). Our ap-
proach leverages a critical property: Unlearnable Examples (UEs) tend to be acquired by the clas-
sifier more rapidly than clean data when training on a partially poisoned dataset. This difference
inspires us to introduce an iterative algorithm for data separation. Moreover, we highlight that dis-
tinguishing between clean and poisoned samples is more effective. Through the introduction of
the additional classes and the adoption of iterative refinement, our proposed approach achieves
improved effectiveness in classifying these two sample types. Extensive experiments conclusively
demonstrate that our method outperforms state-of-the-art detection approaches when challenged
with various types of attacks, datasets, and poisoning ratios.
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