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Abstract001

Language confusion—where large language002
models (LLMs) generate unintended languages003
against the user’s need—remains a critical chal-004
lenge, especially for English-centric models.005
We present the first mechanistic interpretabil-006
ity (MI) study of language confusion, com-007
bining behavioral benchmarking with neuron-008
level analysis. Using the Language Confu-009
sion Benchmark (LCB), we show that confu-010
sion points (CPs)—specific positions where lan-011
guage switches occur—are central to this phe-012
nomenon. Through layer-wise analysis with013
TunedLens and targeted neuron attribution, we014
reveal that transition failures in the final layers015
drive confusion. We further demonstrate that016
editing a small set of critical neurons, identi-017
fied via comparative analysis with multilingual-018
tuned models, substantially mitigates confusion019
without harming general competence or fluency.020
Our approach matches multilingual alignment021
in confusion reduction for most languages and022
yields cleaner, higher-quality outputs. These023
findings provide new insights into the internal024
dynamics of LLMs and highlight neuron-level025
interventions as a promising direction for ro-026
bust, interpretable multilingual language mod-027
eling. Code and data will be released upon028
publication.029

1 Introduction030

Current Large Language Models (LLMs), such031

as GPT-4 (Achiam et al., 2023), PaLM 2 (Anil032

et al., 2023), and Llama 3 (Grattafiori et al., 2024),033

have demonstrated exceptional linguistic compe-034

tence across a wide range of complex tasks that035

require abstract knowledge and reasoning (Dong036

et al., 2024; Wei et al., 2022). Early LLMs were037

predominantly trained on massive amounts of En-038

glish text data, with some limited exposure to other039

languages, resulting in initially constrained mul-040

tilingual capabilities (Touvron et al., 2023). Re-041

cent advances, such as multilingual continued pre-042

training and instruction tuning, have substantially043
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ما الفرق ب6 السور ا0كية وا0دينة في القرآن الكريم؟
English translation: What is the difference between the 
Meccan and Medinan surahs in the Holy Quran?

The difference between Meccan and Medinan surahs in the 
Quran is a significant aspect of Islamic studies. Here's a 
brief overview:

**Meccan Surahs (سور مكية):**

1. **Time period:** The Meccan surahs were revealed during 
the early years of Prophet Muhammad's prophethood, …
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Figure 1: Language Confusion in LLMs. (a) An exam-
ple of the language confusion phenomenon. (b) Visu-
alization of internal model dynamics using TunedLens,
highlighting how the confusion point emerges during
generation. (c) Benchmarking results of three Llama
models on the LCB benchmark across 5 languages.

extended these models’ ability to support multi- 044

ple languages (Zhu et al., 2023; Shaham et al., 045

2024; Kew et al., 2024; Wang et al., 2025b). As a 046

result, contemporary English-centric LLMs have 047

become foundational tools for multilingual com- 048

munication, multilingual content generation, and 049

cross-lingual applications (Bang et al., 2023; Ahuja 050

et al., 2023; Asai et al., 2024). However, despite 051

their impressive capabilities, a persistent and un- 052

derexplored limitation remains: LLMs can fail to 053
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generate text in the user’s intended language, even054

when explicitly instructed—a phenomenon termed055

language confusion (Marchisio et al., 2024). Lan-056

guage confusion manifests as full-response, line-057

level, or word-level switches into unintended lan-058

guages, severely undermining user experience and059

model reliability, especially for non-English speak-060

ers (Figure 1a).061

Recent work by Marchisio et al. (2024) provides062

the first systematic characterization of language063

confusion, introducing the Language Confusion064

Benchmark (LCB) and associated metrics to quan-065

tify this phenomenon across a diverse set of lan-066

guages and models. Their evaluation revealed that067

even state-of-the-art LLMs are susceptible to lan-068

guage confusion, with English-centric LLMs such069

as Llama2, Llama3, and Mistral exhibiting partic-070

ularly high rates of unintended language switch-071

ing, especially in the absence of targeted multilin-072

gual alignment (Figure 1c). While Marchisio et al.073

(2024) propose several mitigation strategies, includ-074

ing decoding adjustments, prompting techniques,075

and multilingual fine-tuning, these approaches re-076

main largely surface-level, offering limited insight077

into the internal mechanisms that give rise to lan-078

guage confusion.079

A key observation from prior work is the identi-080

fication of confusion points—specific positions in081

the generation process where the model abruptly082

switches to an unintended language. However, the083

model’s internal dynamics leading to these confu-084

sion points and their causal role in language con-085

fusion remain largely unexplored. This gap is par-086

ticularly salient given the parallels to human bilin-087

gual code-switching, where switch points between088

languages are cognitively significant as extensively089

studied in psycholinguistics (Solorio and Liu, 2008;090

Bullock and Toribio, 2009). Further discussions091

are provided in Appendix A.092

In this work, we move beyond behavioral eval-093

uation to open the black box of LLMs, leveraging094

mechanistic interpretability (MI) methods (Conmy095

et al., 2023; Rai et al., 2024; Saphra and Wiegreffe,096

2024; Sharkey et al., 2025) to investigate the in-097

ternal representations and neuron-level processes098

underlying language confusion. We first empiri-099

cally demonstrate that confusion points are criti-100

cal drivers of language confusion: targeted inter-101

ventions at these points can substantially reduce102

confusion across languages. Building on this, we103

employ MI tools such as TunedLens (Belrose et al.,104

2023) to trace the evolution of language represen-105

tations through the model’s layers, revealing that 106

confusion typically arises from transition failures 107

in the final layers, where latent conceptual rep- 108

resentations are mapped to surface forms in the 109

target language (Figure 1b). To further elucidate 110

the mechanism, we conduct a neuron-level analy- 111

sis, identifying specific neurons in the last layers 112

whose activity is predictive of successful or failed 113

language transitions at confusion points. Inspired 114

by recent advances in neuron attribution and edit- 115

ing, we show that targeted manipulation of only 116

100 neurons can mitigate language confusion, offer- 117

ing a novel, model-internal approach to improving 118

multilingual reliability. Our findings provide the 119

first mechanistic account of language confusion in 120

LLMs, bridging the gap between behavioral bench- 121

marks and internal model dynamics. By highlight- 122

ing the central role of confusion points and their 123

neural substrates, we lay the groundwork for more 124

robust, interpretable, and cognitively informed mul- 125

tilingual language models. 126

Our work makes the following contributions: 127

(1) We provide the first mechanistic interpretabil- 128

ity study of language confusion in English-centric 129

LLMs, revealing the central role of confusion 130

points in unintended language switching; (2) We 131

employ layer-wise and neuron-level analyses to 132

trace the internal dynamics leading to language 133

confusion and identify critical late-layer neurons 134

responsible for transition failures; (3) We propose 135

and validate a principled neuron selection and edit- 136

ing strategy that effectively mitigates language con- 137

fusion and preserves the model’s general compe- 138

tence and output quality. 139

2 Related Work 140

Mechanistic Interpretability Methods Mech- 141

anistic interpretability (MI) seeks to reverse- 142

engineer neural networks by decomposing their 143

computations into human-understandable compo- 144

nents (Stolfo et al., 2023; Wang et al., 2024; 145

Men et al., 2024). A central technique in MI 146

is the projection of intermediate representations 147

into the vocabulary space, as implemented by 148

tools such as LogitLens (Nostalgebraist, 2020) and 149

TunedLens (Belrose et al., 2023), which enable 150

researchers to track how information and predic- 151

tions evolve across layers (Dar et al., 2023; Pal 152

et al., 2023). In addition to layer-wise analysis, 153

recent work has focused on identifying, attribut- 154

ing, and intervening on important neurons—those 155
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Dataset Data Source Language Prompt Example
Aya

Human-generated ar, en, pt, tr, zh
请简单介绍诗人李白的背景。

(Singh et al., 2024) Briefly introduce the poet Li Bai.
Dolly

MT post-edited ar, es, fr, hi, ru
Qu’est-ce qui est plus important, l’inné ou l’acquis?

(Singh et al., 2024) What is more important, nature or nurture?
Native

Human-generated es, fr, ja, ko
콘크리트는뭘로만든거야?

(Marchisio et al., 2024) What is concrete made of?
Okapi

Synthetic + MT
ar, en, pt, zh,it, Schreib einen Aufsatz von 500 Wörtern zum Thema KI.

(Lai et al., 2023) fr, de, id, es, vi Write a 500-word essay on AI.

Table 1: Overview and Prompt Example of the LCB Benchmark (monolingual part). The number of examples per
language is 100 in each dataset.

whose activations are strongly correlated with spe-156

cific linguistic functions or behaviors (Bau et al.,157

2020; Geva et al., 2022; Yu and Ananiadou, 2024b).158

Methods for neuron selection and editing, as well159

as circuit-level analysis (Elhage et al., 2021; Wang160

et al., 2023), have proven effective for uncovering161

the internal structure underlying phenomena such162

as factual recall (Meng et al., 2022; Geva et al.,163

2023), reasoning processing (Yu and Ananiadou,164

2024a), and now, as in our work, language con-165

fusion. By leveraging these MI techniques, we166

aim to provide a granular, causal understanding of167

how and why language confusion arises in multilin-168

gual LLMs, and to identify actionable intervention169

points for mitigation.170

Multilingual Interpretability Recent research171

has begun to probe the internal representations172

of English-centric and multilingual LLMs to un-173

derstand how they process and transfer informa-174

tion across languages (He et al., 2024; Zhao et al.,175

2024). Wendler et al. (2024) show that models like176

Llama2 often rely on English as an internal pivot177

language and can disentangle language and con-178

ceptual representations in controlled tasks. Fierro179

et al. (2025) examine how mechanisms identified180

in monolingual contexts generalize to multilingual181

settings. Wang et al. (2025a) investigate the inter-182

nal causes of crosslingual factual inconsistencies,183

revealing how MLMs transition from language-184

independent to language-specific processing. How-185

ever, prior work has not systematically connected186

these internal mechanisms to language generation187

errors such as language confusion.188

3 Revisiting Language Confusion:189

Benchmark Insights190

3.1 Recap of Language Confusion Benchmark191

The Language Confusion Benchmark192

(LCB) (Marchisio et al., 2024) provides a193

systematic framework for evaluating the ability 194

of LLMs to generate text in the user’s intended 195

language. The benchmark covers 15 typologically 196

diverse languages and uses a diverse set of prompts 197

sourced from human-written, post-edited, and 198

synthetic datasets to evaluate models, ensuring 199

coverage of a wide range of domains and linguistic 200

structures (Table 1). In this work, we focus 201

on the monolingual setting of LCB, where the 202

prompt and expected response are in the same 203

language. This setting is particularly relevant 204

for mechanistic interpretability research, as it 205

isolates language confusion phenomena from the 206

additional complexities of explicit cross-lingual 207

transfer. 208

To quantify language confusion, we adopt two 209

key metrics from LCB: line-level pass rate (LPR) 210

and line-level language accuracy (Acc). LPR 211

measures the percentage of model responses in 212

which every line is in the correct language. Acc 213

reflects the proportion of individual lines across all 214

responses that are correctly generated in the target 215

language. Both metrics rely on automatic language 216

identification using the fastText classifier (Joulin 217

et al., 2016, 2017), which efficiently detects the 218

language of each line in the generated output. 219

We conducted preliminary benchmarking exper- 220

iments on LCB with three instruction-tuned LLMs: 221

Llama3-8B (English-centric, no multilingual in- 222

struction tuning), Llama3-8B-multilingual (mul- 223

tilingual instruction-tuned) (Devine, 2024), and 224

Llama3.1-8B ( multilingual-optimized). As shown 225

in Figure 1c, Llama3-8B exhibits substantial lan- 226

guage confusion, with frequent line-level switches 227

to unintended languages (mostly English). In con- 228

trast, both Llama3-8B-multilingual and Llama3.1- 229

8B achieve near-perfect LPR and line-level accu- 230

racy, demonstrating the effectiveness of multilin- 231

gual instruction tuning and targeted optimization 232

for multilingual dialogue. 233
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Model Metric ar en pt tr zh es fr hi ru ja ko de id it vi avg
Llama3 LPR 33.0 99.5 71.0 33.0 19.3 73.0 59.3 8.0 28.0 14.0 23.0 19.0 22.0 34.0 11.0 36.5

(original) Acc 33.7 99.8 74.5 37.5 23.4 77.1 64.1 15.1 28.2 17.1 23.6 23.0 27.3 39.8 14.8 39.9
Llama3 LPR 71.0 99.0 93.0 50.0 57.3 94.3 84.0 37.0 78.6 50.0 45.0 60.0 67.0 86.0 62.0 68.9

(replace) Acc 74.8 99.6 95.4 55.5 64.1 95.3 86.5 47.6 83.1 55.3 48.6 62.3 77.7 87.5 66.1 73.3
Llama3 LPR 98.3 98.5 99.0 95.8 88.8 98.3 95.9 97.0 100.0 93.5 100.0 100.0 88.8 100.0 97.9 96.8

(multilingual) Acc 98.7 99.5 99.8 96.9 93.8 99.3 96.9 97.5 100.0 95.8 100.0 100.0 94.2 100.0 97.9 98.0

Table 2: Impact of Confusion Point Replacement on Language Confusion Metrics. Line-level pass rate (LPR)
and line-level accuracy for original Llama3-8B, multilingual Llama3-8B, and Llama3-8B with confusion point
replacement, reported by language.

Given these findings, our work centers on un-234

derstanding and mitigating the language confusion235

observed in English-centric Llama3-8B. By lever-236

aging mechanistic interpretability methods, we aim237

to uncover the internal causes of confusion and de-238

velop interventions that can bring its performance239

closer to that of explicitly multilingual-tuned mod-240

els. In the following subsection, we delve deeper241

into the significance of confusion points as critical242

junctures in the generation process.243

3.2 Significance of Confusion Points244

A confusion point (CP) is the position in a model’s245

output where the first token of an unintended lan-246

guage abruptly appears, marking the onset of lan-247

guage confusion (Marchisio et al., 2024). This248

concept is inspired by psycho- and neurolinguistic249

research on code-switching, where the precise lo-250

cation of a language switch—known as a switch251

point—is central to understanding bilingual lan-252

guage production and processing (Blanco-Elorrieta253

and Pylkkänen, 2017; Suurmeijer et al., 2020). To254

empirically assess the role of CPs in LLM language255

confusion, we conduct a replacement experiment256

on Llama3-8B. For each instance of language con-257

fusion, we identify the CP using the fastText lan-258

guage detector. We then replace the token at the CP259

with the corresponding token generated by Llama3-260

8B-multilingual, which achieves near-perfect lan-261

guage accuracy, under the same prompt. This ap-262

proach is motivated by the psycholinguistic obser-263

vation that, in human code-switching, the choice at264

the switch point strongly influences the subsequent265

language trajectory (Moreno et al., 2002; Lai and266

O’Brien, 2020).267

Our results, summarized in Table 2, show a sub-268

stantial reduction in language confusion after CP269

replacement, even though our method does not270

represent an oracle upper bound. These findings271

highlight the centrality of confusion points in the272

emergence of language confusion and motivate our273

subsequent mechanistic analysis and targeted inter- 274

ventions. 275

4 Mechanistic Analysis of Language 276

Confusion Points 277

4.1 Analyzing Layer-wise Language 278

Transition 279

A central question in understanding language con- 280

fusion is where and how the model’s internal repre- 281

sentations fail to transition from a shared concep- 282

tual space to the intended target language. Moti- 283

vated by recent findings that English-centric LLMs 284

process information in a latent, often English- 285

biased, conceptual space before converting it to 286

the target language in the final layers (Wendler 287

et al., 2024; Wang et al., 2025a), we conduct a de- 288

tailed layer-wise analysis of this transition using 289

TunedLens (Belrose et al., 2023). 290

We employ TunedLens, the more reliable variant 291

of LogitLens (Nostalgebraist, 2020), to unembed 292

the hidden states of Llama3-8B at each layer into 293

the vocabulary space. With this, we inspect every 294

layer of the model and extract the top 10 predicted 295

tokens with the largest logits at the position im- 296

mediately preceding the confusion point (CP) (for 297

confusion cases) or the output token (for correct 298

cases). For each layer, we compute the average 299

number and summed probabilities of English and 300

target language tokens among the top-10 predic- 301

tions, using fastText for language identification. 302

Our analysis focuses on four typologically diverse 303

languages (Arabic, Portuguese, Turkish, Chinese) 304

from the LCB benchmark. We separate samples 305

into two groups: (1) Correct—where the model 306

generates the intended language throughout, and 307

(2) Confusion—where the model switches to an un- 308

intended language at a CP. For confusion samples, 309

we analyze the model’s state up to the token before 310

the CP. 311

Figure 2 presents the evolution of language to- 312

ken counts and probabilities across layers for both 313
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(a) Average Token Count

(b) Average Probability

Figure 2: Average token counts and probabilities for English and target language tokens among the top-10 predictions
at each layer, shown for both correct and confusion samples across four languages from Aya.

groups. In early and middle layers, English to-314

kens dominate the top-10 predictions for all lan-315

guages, reflecting the English-centric latent con-316

ceptual space of Llama3-8B. This is consistent with317

prior work showing that LLMs encode information318

in a shared, language-agnostic space in interme-319

diate layers. In the final layers, a sharp transition320

emerges. For correct samples, the number and321

probability of target language tokens rise steeply,322

overtaking English tokens in the last few layers—323

indicating a successful transition to the target lan-324

guage surface form. In contrast, for confusion sam-325

ples, this transition fails: English tokens remain326

dominant or even increase, while target language327

tokens lag behind. This failure to shift from the328

latent conceptual space to the target language at the329

critical moment leads to CPs and erroneous output.330

Our layer-wise analysis with TunedLens reveals331

that the transition to the target language occurs in332

the final layers, and that failures in this process are333

tightly linked to language confusion. These find-334

ings provide direct evidence that language confu-335

sion in Llama3-8B is primarily caused by transition336

failures in the last few layers, motivating our sub-337

sequent neuron-level investigation to pinpoint and338

intervene on the specific components responsible339

for these failures.340

4.2 Localizing Critical Neurons at Confusion341

Points342

A key step toward understanding and mitigating343

language confusion is to identify which neurons are344

most responsible for the emergence of confusion345

points. Building on recent advances in neuron-level 346

attribution (Geva et al., 2022; Yu and Ananiadou, 347

2024b), we adopt a static, efficient method to lo- 348

cate and analyze the most influential feed-forward 349

network (FFN) neurons in Llama3-8B. 350

Methodology In the inference pass in decoder- 351

only LLMs, for a given input sequence, each layer 352

output hli (layer l, token position i) is a sum of the 353

previous layer’s output hl−1
i , the attention output 354

Al
i, and the FFN output F l

i : 355

hli = hl−1
i +Al

i + F l
i (1) 356

The FFN output F l
i is calculated by a non-linear σ 357

on two MLPs W l
fc1 ∈ RN×d and W l

fc2 ∈ Rd×N : 358

F l
i = W l

fc2σ(W
l
fc1(h

l−1
i +Al

i)) (2) 359

Following Geva et al. (2021), the FFN layer out- 360

put F l
i can be represented as a weighted sum over 361

neuron subvalues: 362

F l
i =

N∑
k=1

ml
i,k · fc2lk (3) 363

364
ml

i,k = σ(fc1lk · (hl−1
i +Al

i)) (4) 365

where fc2lk is the k-th column of W l
fc2, and ml

i,k is 366

derived from the inner product between the residual 367

output (hl−1
i +Al

i) and fc1lk, the k-th row of W l
fc1. 368

Geva et al. (2022) and Dar et al. (2023) project 369

FFN neuron subvalues with unembedding matrices 370

to compute the token probability distribution. To 371
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quantify the importance of each neuron for gener-372

ating a specific token (e.g., at a confusion point),373

we adopt the log probability increase method of Yu374

and Ananiadou (2024b). For a neuron in the l-th375

FFN layer vl, its importance score is defined as376

the increase in log probability of the target token377

when vl is added to the residual stream Al + hl−1,378

compared to the baseline without vl:379

Imp(vl) = log(p(w|vl +Al + hl−1)−
log(p(w|Al + hl−1)

(5)380

This approach efficiently identifies neurons whose381

activations most strongly influence the model’s pre-382

diction at a given position.383

(a) Individual Case

(b) Aggregated Neuron Scores

Figure 3: Distribution of Important Neurons Associated
with Confusion Points in Llama3-8B. (a) Distribution of
the top 300 most important FFN neurons across layers
for an individual Chinese prompt “请解释拆东墙补西
墙的意思。(Please explain ‘拆东墙补西墙.’)” from
Aya. (b) Aggregated distribution of important neuron
scores across all Chinese test samples in Aya.

Experimental Observations We apply this384

method to Llama3-8B on confusion samples from385

the LCB benchmark, focusing on the token posi-386

tion immediately preceding each confusion point.387

For each sample and language, we compute the im-388

portance scores for all 14,336 FFN neurons in each389

layer of Llama3-8B, rank them, and select the top390

300 most important neurons per sample. We then391

analyze the distribution of these critical neurons392

across layers, both for individual samples and ag-393

gregated over all samples in a language. Our anal-394

ysis reveals a striking concentration of important395

neurons in the final layers, as visualized in Figure 3. 396

This pattern holds both at the single-sample level 397

and when aggregating across samples, indicating 398

that the emergence of confusion points is primarily 399

driven by late-layer FFN activity. We further rank 400

neurons by their frequency of appearance in the top 401

300 sets across samples, finding that a subset of 402

neurons consistently recurs as highly influential for 403

confusion points. 404

To understand the effect of multilingual align- 405

ment, we repeat the analysis on Llama3-8B- 406

multilingual using the same set of prompts. Af- 407

ter multilingual instruction tuning, language con- 408

fusion is nearly eliminated. Comparing neuron 409

importance scores between the two models (Fig- 410

ure 4), we observe that most neurons critical for 411

confusion in the Llama3-8B become much less im- 412

portant in its multilingual counterpart, suggesting 413

that multilingual alignment suppresses the activity 414

of confusion-inducing neurons. However, a small 415

number of neurons remain important or even in- 416

crease in importance, likely reflecting their role in 417

encoding general semantic information rather than 418

language-specific transitions.

Figure 4: Neuron rank comparison between original
Llama3 and multilingual Llama3. Results of Chinese
test samples in Aya.

419
These findings reinforce the conclusion from our 420

layer-wise analysis: language confusion is tightly 421

linked to the activity of specific FFN neurons in 422

the final layers. The suppression of these neurons 423

through multilingual alignment provides a mech- 424

anistic explanation for the effectiveness of such 425

tuning. Moreover, the identification of a small set 426
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ar pt tr zh es fr hi ru ja ko de id it vi Avg.
original 33.44 74.26 37.55 24.04 77.15 63.16 16.47 28.20 17.44 23.50 23.00 27.33 39.83 14.79 35.73
freq 31.75 75.10 36.51 22.09 76.29 66.98 18.66 27.70 19.29 23.08 22.25 27.83 39.45 13.58 35.75
score 76.97 93.41 67.61 80.63 91.22 74.77 60.00 50.32 53.50 33.25 40.27 53.58 96.00 67.56 67.08
comparative 85.45 97.12 57.27 89.39 92.20 83.17 82.74 89.43 49.95 40.33 80.82 78.94 95.25 66.50 77.75

Table 3: Confusion mitigation performance of different selection strategies. Line-level accuracy is reported.

of persistent, semantically important neurons sug-427

gests that targeted neuron-level interventions could428

mitigate confusion without harming overall model429

performance. These insights directly inform our430

subsequent strategies for neuron-based mitigation431

of language confusion.432

5 Mitigating Language Confusion via433

Neuron Editing434

A central challenge in mitigating language confu-435

sion via neuron editing is to identify a set of neu-436

rons whose intervention effectively reduces confu-437

sion without degrading the model’s general compe-438

tence or fluency. Insights from our previous mech-439

anistic analysis indicate that language confusion is440

primarily driven by a subset of late-layer FFN neu-441

rons. However, indiscriminate deactivation of im-442

portant neurons risks harming the model’s overall443

performance. Thus, a principled neuron selection444

strategy is essential.445

token_num token_prob fluency acc_ood xnli senti
Original 1.96 24.5 25.8 39.9 46.4 98.4
Edited 3.43 36.8 21.8 74.25 44.9 98.2
Diff 1.47 12.3 -4.0 34.4 -1.5 -0.2

Table 4: Results of generalization and robustness of
neuron editing. Average performance across languages
is reported. Detailed results in Appendix B.

5.1 Neuron Selection and Intervention446

We compare three neuron selection strategies: (1)447

Frequency-Based Selection: Selects the neurons448

most frequently identified as important across all449

confusion samples for a given language. (2) Ag-450

gregate Importance Selection: Ranks neurons by451

the sum of their importance scores across all con-452

fusion samples, selecting those with the highest453

cumulative influence. While this method captures454

the overall impact, it may still include neurons es-455

sential for general language competence. (3) Com-456

parative Importance Selection: Inspired by Yu and457

Ananiadou (2024a), this strategy identifies neurons458

whose importance scores for confusion points de-459

crease most substantially after multilingual align-460

ment. Specifically, for each neuron, we compute461

the difference in importance score between orig- 462

inal Llama3-8B and Llama3-8B-multilingual on 463

the same input. Neurons with the largest drop are 464

prioritized for intervention, as they are likely to 465

be specifically implicated in language confusion 466

rather than general semantic processing. 467

For each strategy, we select the top 100 neurons 468

and intervene by setting their activations to zero 469

during generation. We evaluate the impact of each 470

method on the LCB benchmark. Our results (Ta- 471

ble 4) demonstrate that Comparative Importance 472

Selection achieves the most effective reduction in 473

language confusion, substantially outperforming 474

both frequency-based and aggregate importance 475

methods. Frequency-based selection yields mini- 476

mal benefit, while aggregate importance provides 477

moderate improvement but still lags behind our 478

proposed approach. Notably, the comparative strat- 479

egy selectively targets neurons implicated in con- 480

fusion, minimizing collateral impact on general 481

model competence. 482

5.2 Generalization and Robustness of Neuron 483

Editing 484

To further validate the effectiveness and safety of 485

our Comparative Importance Selection strategy, we 486

conduct a comprehensive evaluation across mul- 487

tiple metrics and experimental setups. Our goal 488

is to ensure that neuron editing not only mitigates 489

language confusion but also preserves the model’s 490

general competence, fluency, and robustness across 491

domains (Table 4). 492

Language Confusion Mitigation We first assess 493

the impact of neuron editing on language confu- 494

sion using the LCB benchmark. In addition to 495

standard metrics (line-level pass rate and line-level 496

accuracy), we analyze the internal output distribu- 497

tions by reporting (1) the number of target language 498

tokens among the top-10 candidates in the final out- 499

put token logit, and (2) the total probability mass 500

assigned to target language tokens in the top-10. 501

These metrics provide a deeper view of how neu- 502

ron editing shifts the model’s internal preference 503

toward the intended language, beyond surface-level 504
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accuracy.505

Robustness on General Tasks To evaluate506

whether neuron editing affects the model’s general507

capabilities, we test the edited model on widely508

used multilingual benchmarks, including XNLI509

and multilingual sentiment analysis. We also as-510

sess output fluency by measuring the perplexity of511

generated responses using the multilingual model512

facebook/xglm-564M (Lin et al., 2022). Across513

all these metrics, the edited model maintains per-514

formance comparable to the original Llama3-8B,515

indicating that our intervention does not degrade516

general language understanding or generation qual-517

ity.518

Out-of-Domain Generalization We further ex-519

amine the generalization of neuron editing by ap-520

plying neurons selected from one data source (e.g.,521

Aya) to out-of-domain test sets (e.g., Okapi) for522

the same language. The edited model continues to523

demonstrate strong mitigation of language confu-524

sion, suggesting that the identified neurons capture525

robust, domain-independent mechanisms underly-526

ing confusion points.527

5.3 Comparison with Multilingual Alignment528

To contextualize the effectiveness of neuron edit-529

ing, we compare the performance of the edited530

Llama3-8B model with that of the multilingual-531

tuned Llama3-8B. Quantitative results show that532

neuron editing achieves language confusion miti-533

gation on par with the multilingual-aligned model534

for most languages. Both approaches yield high535

line-level pass rates and language accuracy, demon-536

strating that targeted neuron intervention can match537

the benefits of extensive multilingual instruction538

tuning for confusion reduction.539

Beyond aggregate metrics, qualitative analysis540

reveals further advantages of the neuron editing541

approach. Through case studies, we observe that542

the edited Llama3-8B not only generates fluent543

and accurate responses in the intended target lan-544

guage, but also avoids certain artifacts introduced545

by multilingual alignment. For example, in several546

instances (Figure 5), the multilingual Llama3-8B547

produces outputs containing HTML tags or format-548

ting patterns reminiscent of its instruction tuning549

data, reflecting the influence of imperfect or noisy550

multilingual datasets. In contrast, the neuron-edited551

model consistently produces clean, well-structured,552

and contextually appropriate responses, free from553

such extraneous formatting.554

Case 2 (okapi-zh, id5)

Input: 撰写一篇有关健康饮食重要性的争论性文章。Write 
an argumentative essay on the importance of healthy eating.

Before Neuron Editing: English Translation: "To tear down the 
eastern wall to repair the western wall" - Meaning: To solve a 
problem by creating a new one, or to fix one issue by making 
another one worse.

After Neuron Editing: 英语作文\n健康饮食的重要性：是或
不是？\n在当今的生活中，健康饮食已经成为人们日常生
活中的一部分。然而，是否健康饮食真的那么重要？

Multilingual Llama3:
](https://www.zhihu.com/question/34614445) \n[如何
在日常生活中更好地保持健康饮食习
惯？](https://www.zhihu.com/question/34614445)

Case 1 (aya-zh, id1)

Input: 请解释“拆东墙补西墙”的意思。Please explain “拆东墙
补西墙”

Before Neuron Editing: English Translation: "To tear down the 
eastern wall to repair the western wall" - Meaning: To solve a 
problem by creating a new one, or to fix one issue by making 
another one worse.

After Neuron Editing: “拆东墙补西墙”是中国古代的一句成语
，它的意思是“解决问题的方法是解决问题的根源，而不是
简单地解决表面现象”。\n …

Multilingual Llama3: 2023-03-23 14:34:23 拆东墙补西墙的
意思是为了解决某个问题或问题所在的某个方面，而不是
直接解决问题本身，…

Figure 5: Case study of neuron editing.

These findings highlight a key strength of mecha- 555

nistic neuron editing: it directly addresses the inter- 556

nal causes of language confusion without introduc- 557

ing side effects from large-scale data-driven align- 558

ment. By preserving the original model’s seman- 559

tic competence and output quality, neuron editing 560

offers a more targeted and interpretable solution. 561

This suggests that, beyond traditional multilingual 562

instruction tuning, mechanistic interpretability- 563

driven interventions can provide a promising path 564

toward high-quality, robust multilingual language 565

models. 566

6 Conclusions 567

This work provides the first mechanistic inter- 568

pretability account of language confusion in 569

English-centric LLMs. By tracing confusion points 570

to failures in late-layer transitions and localizing 571

the critical neurons responsible, we demonstrate 572

that targeted neuron editing can robustly mitigate 573

language confusion without sacrificing general 574

competence or fluency. Our approach achieves 575

results on par with multilingual-tuned models for 576

most languages, while preserving cleaner output 577

quality. These findings highlight the promise of 578

neuron-level interventions for more reliable and 579

interpretable multilingual language modeling. 580
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Limitations581

While this work provides the first mechanistic in-582

terpretability account of language confusion in583

English-centric LLMs, several limitations remain.584

Our analysis primarily focuses on the monolingual585

setting; cross-lingual contexts, which may involve586

distinct mechanisms and challenges, are left for587

future research. Additionally, neuron editing inter-588

ventions are evaluated on selected benchmark tasks589

and may require further validation across broader590

domains and model architectures. Lastly, while our591

approach identifies and mitigates language confu-592

sion, fully understanding how these mechanisms593

interact with other multilingual phenomena war-594

rants further investigation.595

Ethic Statement596

This research was conducted in accordance with597

the ACM Code of Ethics. The datasets that we use598

are publicly available. We have not intended or do599

not intend to share any Personally Identifiable Data600

with this paper. Regarding the usage of AI tools,601

we only use AI models for language refining.602
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A Further Discussion on Code-Switching1009

and Language Confusion1010

Code-switching as a Linguistic Phenomenon1011

Code-switching, the practice of alternating between1012

languages within a single conversation or utterance,1013

is a well-studied natural phenomenon in bilingual-1014

ism and psycholinguistics (Gardner-Chloros, 2009).1015

Code-switching is typically intentional, often re-1016

flecting speakers’ identities, social relationships,1017

and contextual adaptation (Treffers-Daller, 2009;1018

Yim and Clément, 2021). In NLP, code-switching1019

has been explored through evaluating model per-1020

formance on code-switched data for tasks such as1021

sentiment analysis, machine translation, summa-1022

rization, and language identification (Khanuja et al.,1023

2020; Doğruöz et al., 2021; Winata et al., 2023).1024

Code-switching is a natural, contextually appro-1025

priate strategy in human communication, whereas1026

language confusion, on which our work focuses, is1027

an unintended and erroneous switch to an incorrect1028

language in LLMs (Marchisio et al., 2024). Though1029

related to code-switching, language confusion is1030

an unnatural phenomenon that arises from model1031

failures rather than communicative intent.1032

Language Confusion and Confusion Points in1033

LLMs Language confusion has been observed in1034

various multilingual NLP settings, such as “source1035

language hallucinations” in zero-shot cross-lingual1036

transfer (Li and Murray, 2023; Pfeiffer et al., 2023;1037

Chirkova and Nikoulina, 2024) and “off-target1038

translation” in machine translation (Sennrich et al.,1039

2024). In LLMs, this manifests as abrupt, unex-1040

pected switches to the wrong language during gen-1041

eration, even under explicit instructions. This issue1042

is particularly prevalent in English-centric mod-1043

els lacking robust multilingual alignment (Zhong1044

et al., 2024). A key concept in recent work is the1045

confusion point—the specific position in genera-1046

tion where the model transitions to an unintended1047

language. Inspired by the importance of code-1048

switching points in human bilingualism, confusion1049

points are central to understanding and diagnosing1050

language confusion in LLMs (Guzzardo Tamargo1051

et al., 2016). Unlike natural code-switching, these1052

points reflect internal model failures. Recent bench-1053

marks (Marchisio et al., 2024) systematically char-1054

acterize confusion points at response, line, and1055

word levels, revealing their widespread impact and1056

motivating deeper mechanistic investigation, as pur-1057

sued in this work.1058

B Full Experimental Results 1059

Table 5 presents the full benchmarking results. Ta- 1060

ble 6 shows the full results of the CP replacement 1061

experiment. Tables 7 and 8 present the full results 1062

of robustness and generalization experiments. 1063

C Detailed Experimental Setup 1064

C.1 Models 1065

We primarily use three variants of the Llama3 fam- 1066

ily for our experiments: 1067

• Llama3-8B: The baseline English-centric 1068

model without multilingual instruction tuning. 1069

• Llama3-8B-multilingual: The multilingual 1070

instruction-tuned version, as described in 1071

(Devine, 2024). 1072

• Llama3.1-8B: An improved model optimized 1073

for multilingual dialogue. 1074

All models are used in their publicly released forms 1075

unless otherwise stated. For neuron editing experi- 1076

ments, we intervene on Llama3-8B using the strate- 1077

gies described in Section 5. 1078

C.2 Datasets and Tasks 1079

Language Confusion Benchmarking and Re- 1080

placement Experiments We use the Language 1081

Confusion Benchmark (LCB) (Marchisio et al., 1082

2024) for all language confusion detection and mit- 1083

igation experiments. LCB covers 15 typologically 1084

diverse languages and comprises several monolin- 1085

gual and cross-lingual datasets: 1086

• Monolingual sources: Aya (human- 1087

generated), Dolly (post-edited), Native 1088

(human-generated), and Okapi (synthetic + 1089

machine translated). 1090

• Languages: Arabic, English, Portuguese, 1091

Turkish, Chinese, Spanish, French, Hindi, 1092

Russian, Japanese, Korean, German, Indone- 1093

sian, Italian, Vietnamese. 1094

All main benchmarking and confusion point re- 1095

placement experiments are run on the monolingual 1096

portions of LCB, using 100 prompts per language 1097

per dataset as described in Table 1. 1098
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Robustness and Generalization Experiments1099

To assess the robustness and generalization of neu-1100

ron editing, we evaluate on:1101

• XNLI (Conneau et al., 2018): Cross-lingual1102

natural language inference in 15 languages.1103

• Multilingual Sentiment Analysis: Standard1104

multilingual sentiment datasets (including1105

German, Spanish, French, Japanese, and Chi-1106

nese). It is a binary classification task derived1107

from the multilingual Amazon review dataset.1108

• Out-of-domain LCB evaluation: For each1109

language, neurons are selected from one LCB1110

source (e.g., Aya), then tested on a different1111

source (e.g., Okapi) to assess generalization.1112

C.3 Metrics1113

Language Confusion Metrics We adopt two pri-1114

mary metrics from LCB:1115

• Line-level Pass Rate (LPR): Percentage of1116

responses where every line is in the correct1117

language.1118

• Line-level Accuracy: Proportion of lines gen-1119

erated in the correct language.1120

Language identification for these metrics is per-1121

formed using the fastText classifier (Joulin et al.,1122

2016).1123

Internal Model Metrics We further report:1124

• Target Language Token Count: Number of1125

target language tokens among the top-10 out-1126

put logits in the final layer.1127

• Target Language Token Probability: Total1128

probability mass assigned to target language1129

tokens in the top-10 output logits.1130

Generalization and Fluency Metrics1131

• XNLI and Sentiment Accuracy: Standard1132

classification accuracy on XNLI and multilin-1133

gual sentiment analysis tasks.1134

• Fluency (Perplexity): Perplexity of gener-1135

ated outputs, measured using the multilin-1136

gual facebook/xglm-564M model (Lin et al.,1137

2022).1138

C.4 Implementation Details 1139

All experiments are run on NVIDIA A100 GPUs. 1140

Prompt formatting and decoding settings follow 1141

the LCB benchmark defaults. Neuron interven- 1142

tions are implemented at inference time via custom 1143

hooks in PyTorch, zeroing out selected neuron acti- 1144

vations layer-wise as described in Section 5.1. For 1145

TunedLens analysis, we use the public implemen- 1146

tation from Belrose et al. (2023). 1147

All code, evaluation scripts, and neuron selec- 1148

tion details will be released upon publication to 1149

facilitate reproducibility. 1150
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metrics: acc
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3

aya 55.55 100.00 86.90 37.69 42.23 - - - - - - - - - - 64.47
dolly 33.00 - - - - 75.77 60.49 19.05 34.45 - - - - - - 44.55
native - - - - - 91.47 79.17 - - 18.05 25.92 - - - - 53.65
okapi 22.00 99.67 63.12 - 9.08 67.75 55.03 - - - - 25.25 27.83 39.83 15.41 42.50
avg 36.85 99.83 75.01 37.69 25.65 78.33 64.90 19.05 34.45 18.05 25.92 25.25 27.83 39.83 15.41 41.60

Llama3-
multilingual

aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.21
dolly 98.99 - - - - 98.15 93.03 97.50 100.00- - - - - - 97.53
native - - - - - 99.75 97.87 - - 95.83 100.00- - - - 98.36
okapi 98.97 100.00 99.83 - 95.20 100.00 99.80 - - - - 100.00 94.23 100.00 97.87 98.65
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.00 95.83 100.00100.00 94.23 100.00 97.87 98.02

Llama3.1

aya 93.35 99.50 97.82 98.98 96.21 - - - - - - - - - - 97.17
dolly 97.94 - - - - 98.00 97.84 99.50 98.99 - - - - - - 98.45
native - - - - - 98.8 99.75 - - 97.82 100 - - - - 99.09
okapi 97.31 100.00 99.50 - 97.28 100.00100.00- - - - 100.00 97.08 100.00 99.67 99.08
avg 96.20 99.75 98.66 98.98 96.75 98.93 99.20 99.50 98.99 97.82 100.00100.00 97.08 100.00 99.67 98.77

Crosslingual
source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3

complex 32.84 - 47.04 29.13 9.68 48.98 47.47 35.56 41.22 6.80 12.42 41.54 37.43 43.16 38.12 33.67
okapi 23.94 - 56.34 27.38 6.88 63.48 59.88 51.83 29.62 2.23 5.50 45.35 45.34 52.51 32.50 35.91
sharegpt 27.75 - 56.37 32.18 17.19 54.78 59.95 47.83 28.78 13.67 17.19 46.37 52.17 53.90 44.90 39.50
avg 28.18 - 53.25 29.56 11.25 55.75 55.77 45.07 33.21 7.57 11.70 44.42 44.98 49.86 38.51 36.36

Llama3.1

complex 36.43 - 63.16 56.34 38.02 64.34 68.31 53.54 47.93 38.30 38.71 65.14 56.56 61.19 63.60 53.68
okapi 23.74 - 49.38 48.46 18.63 55.57 56.71 50.92 41.42 21.12 27.12 56.92 54.54 61.47 48.03 43.86
sharegpt 40.28 - 62.57 60.69 41.98 65.50 74.17 63.50 51.00 42.58 48.40 69.75 72.67 66.70 66.68 59.03
avg 33.48 - 58.37 55.16 32.88 61.80 66.39 55.99 46.78 34.00 38.08 63.94 61.26 63.12 59.44 52.19

Table 5: Full benchmarking results on LCB.

metrics: lpr
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3-ori

aya 53 100 83 33 31.63 - - - - - - - - - - 64.47
dolly 30 - - - - 68 54 8 28 - - - - - - 44.55
native - - - - - 88 72 - - 14 23 - - - - 53.65
okapi 16 99 59 - 7 63 52 - - - - 19 22 34 11 42.50
avg 33.00 99.50 71.00 33.00 19.32 73.00 59.33 8.00 28.00 14.00 23.00 19.00 22.00 34.00 11.00 36.48

Llama3-re

aya 83.67 98 91 50 65.66 - - - - - - - - - - 77.67
dolly 65.66 - - - - 94 76 37 78.57 - - - - - - 70.25
native - - - - - 97 86 - - 50 45 - - - - 69.50
okapi 63.54 100 95 - 49 92 90 - - - - 60 67 86 62 76.17
avg 70.96 99.00 93.00 50.00 57.33 94.33 84.00 37.00 78.57 50.00 45.00 60.00 67.00 86.00 62.00 68.95

Llama3-multi

aya 98 96.97 99 95.83 84.69 - - - - - - - - - - 97.17
dolly 97.98 - - - - 95.96 91.84 97 100 - - - - - - 98.45
native - - - - - 99 96.81 - - 93.48 100 - - - - 99.09
okapi 98.97 100 99 - 92.93 100 99 - - - - 100 88.78 100 97.87 99.08
avg 98.32 98.49 99.00 95.83 88.81 98.32 95.88 97.00 100.00 93.48 100.00100.00 88.78 100.00 97.87 96.79

metrics: acc
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3-ori

aya 53.75 100 86.4 37.5 39.46 - - - - - - - - - - 64.47
dolly 30.75 - - - - 73.45 59.99 15.05 28.2 - - - - - - 44.55
native - - - - - 91.05 77.75 - - 17.13 23.58 - - - - 53.65
okapi 16.5 99.67 62.62 - 7.33 66.83 54.7 - - - - 23 27.33 39.83 14.79 42.50
avg 33.67 99.84 74.51 37.50 23.40 77.11 64.15 15.05 28.20 17.13 23.58 23.00 27.33 39.83 14.79 39.94

Llama3-re

aya 86.9 99.17 94.97 55.53 71.12 - - - - - - - - - - 81.54
dolly 68.48 - - - - 94.25 80.66 47.62 83.1 - - - - - - 74.82
native - - - - - 97 87.92 - - 55.27 48.58 - - - - 72.19
okapi 68.92 100 95.79 - 57.13 94.67 91 - - - - 62.33 77.67 87.5 66.08 79.88
avg 74.77 99.59 95.38 55.53 64.13 95.31 86.53 47.62 83.10 55.27 48.58 62.33 77.67 87.50 66.08 73.29

Llama3-multi

aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.17
dolly 98.99 - - - - 98.15 93.03 97.5 100 - - - - - - 98.45
native - - - - - 99.75 97.87 - - 95.83 100 - - - - 99.09
okapi 98.97 100 99.83 - 95.2 100 99.8 - - - - 100 94.23 100 97.87 99.08
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.00 95.83 100.00100.00 94.23 100.00 97.87 98.02

avg

ar en pt tr zh es fr hi ru ja ko de id it vi avg
Llama3 LPR 33.0 99.5 71.0 33.0 19.3 73.0 59.3 8.0 28.0 14.0 23.0 19.0 22.0 34.0 11.0 36.5
(original) Acc 33.7 99.8 74.5 37.5 23.4 77.1 64.1 15.1 28.2 17.1 23.6 23.0 27.3 39.8 14.8 39.9
Llama3 LPR 71.0 99.0 93.0 50.0 57.3 94.3 84.0 37.0 78.6 50.0 45.0 60.0 67.0 86.0 62.0 68.9
(replace) Acc 74.8 99.6 95.4 55.5 64.1 95.3 86.5 47.6 83.1 55.3 48.6 62.3 77.7 87.5 66.1 73.3
Llama3 LPR 98.3 98.5 99.0 95.8 88.8 98.3 95.9 97.0 100.0 93.5 100.0 100.0 88.8 100.0 97.9 96.8
(multilingual) Acc 98.7 99.5 99.8 96.9 93.8 99.3 96.9 97.5 100.0 95.8 100.0 100.0 94.2 100.0 97.9 98.0

Table 6: Full results of CP replacement experiments
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num_ori prob_ori num_edit prob_edit num_diff prob_diff fluency_ori fluency_cna diff
ar 2.83 25.8 5.37 30.3 2.55 4.5 30.1 24.7 -5.4
pt 2.86 49.5 3.41 56.0 0.56 6.5 25.7 23.3 -2.3
tr 2.05 29.5 2.42 23.5 0.37 -6.0 21.2 18.8 -2.5
zh 1.33 8.6 5.10 37.3 3.78 28.7 33.1 26.0 -7.0
es 1.67 26.5 3.28 50.3 1.61 23.8 25.4 23.2 -2.2
fr 2.48 43.0 2.91 49.2 0.43 6.2 21.2 21.1 -0.1
hi 1.25 12.0 1.64 13.7 0.39 1.8 28.5 22.9 -5.6
ru 1.09 18.0 3.21 31.0 2.12 13.0 23.7 19.5 -4.2
de 2.73 23.7 4.45 37.1 1.72 13.4 23.8 18.5 -5.3
it 1.33 8.4 2.50 39.3 1.17 31.0 25.7 20.2 -5.5
avg 1.96 24.5 3.43 36.8 1.47 12.3 25.8 21.8 -4.0

Table 7: Full results of robustness experiments. Perplexity is calculated to measure fluency.

xnli
language acc_ori acc_edit
ar 0.42 0.37
de 0.54 0.54
es 0.46 0.5
fr 0.49 0.5
hi 0.47 0.48
ru 0.37 0.3
tr 0.46 0.52
vi 0.46 0.37
zh 0.51 0.46

avg 0.464 0.449

sentiment analysis
language acc_ori acc_edit
de 0.98 0.98
es 0.98 0.98
fr 0.98 0.97
ja 0.99 0.99
zh 0.99 0.99

avg 0.984 0.982

Table 8: Full results of generalization experiments.
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