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Abstract

Prior work applying semiparametric theory to
causal inference has primarily focused on deriving
estimators that exhibit statistical robustness under
a prespecified causal model that permits identi-
fication of a desired causal parameter. However,
a fundamental challenge is correct specification
of such a model, which usually involves making
untestable assumptions. Evidence factors is an ap-
proach to combining hypothesis tests of a common
causal null hypothesis under two or more candi-
date causal models. Under certain conditions, this
yields a test that is valid if at least one of the under-
lying models is correct, which is a form of causal
robustness. We propose a method of combining
semiparametric theory with evidence factors. We
develop a causal null hypothesis test based on joint
asymptotic normality of K asymptotically linear
semiparametric estimators, where each estimator
is based on a distinct identifying functional derived
from each of K candidate causal models. We show
that this test provides both statistical and causal
robustness in the sense that it is valid if at least one
of the K proposed causal models is correct, while
also allowing for slower than parametric rates of
convergence in estimating nuisance functions. We
demonstrate the effectiveness of our method via
simulations and applications to the Framingham
Heart Study and Wisconsin Longitudinal Study.

1 INTRODUCTION

Prior work at the intersection of semiparametric theory and
causal inference has primarily focused on deriving estima-
tors that possess statistical robustness properties under a
prespecified causal model that permits identification of a
causal parameter of interest. For example, in the backdoor

causal model where treatment assignment is assumed to
be ignorable given observed covariates, the average causal
effect (ACE) is identified via the backdoor formula [Robins,
1986, Pearl, 2009], and the augmented inverse probability
weighted estimator (AIPW) of this parameter [Bang and
Robins, 2005] exhibits statistical robustness to specification
of the propensity score and outcome regression estimators.
In particular, the AIPW estimator is doubly robust, meaning
that it is consistent if either the propensity score or out-
come regression estimator is consistent, and it can attain
the parametric n−1/2 rate of convergence to the true ACE
even when using data-adaptive estimators of the propensity
score and outcome regression that may have convergence
rates slower than n−1/2. General semiparametric estima-
tion strategies with similar robustness properties have been
derived in settings where the causal model is represented
as a causal graph with latent confounders [Fulcher et al.,
2020, Jung et al., 2021, Bhattacharya et al., 2022]. However,
valid causal interpretation of these semiparametric estima-
tors relies on correct specification of the causal model. Fur-
thermore, causal models typically include assumptions that
are untestable using the observed data, and which can only
be justified using scientific arguments—classic examples
are the conditional ignorability assumption in the backdoor
model and the exclusion restrictions in the instrumental vari-
able (IV) [Balke and Pearl, 1993, Angrist et al., 1996] and
front-door models [Pearl, 1995a].

In some cases, there are multiple plausible causal mod-
els identifying a causal effect in a single observed dataset.
For example, the data may contain a set of covariates for
which conditional ignorability is plausible, and also contain
a plausible IV. Evidence factors is an approach to combining
hypothesis tests of a common causal null hypothesis under
two or more candidate causal models [Rosenbaum, 2010,
2011, Karmakar et al., 2019]. Under certain conditions, ev-
idence factors methodology yields a test that is valid if at
least one of the underlying causal models is correct, without
knowing which of the models is correct. This is a form of
causal robustness because the test is robust to misspecifica-



tion of some of the causal models as long as one is correctly
specified. This approach allows the analyst to make weaker
causal assumptions at the expense of stronger statistical
assumptions, since a well-behaved statistical test must be
constructed using each posited causal model.

In this paper, we propose methods for combining semipara-
metric theory with evidence factors to produce tests that
exhibit both statistical and causal robustness. Our proposed
approach is built upon the evidence factors design, where
multiple analyses are used to test a common causal null
hypothesis using a single dataset. We propose tests based
on joint asymptotic normality of multiple asymptotically
linear semiparametric estimators, where each estimator is
based on a distinct identifying functional derived from a
(possibly incorrect) causal model. We show our tests have
asymptotically valid type I error rate if at least one of the
causal models is correct.

Advantages of our method: Our tests have several advan-
tages over existing evidence factors methods, including re-
laxing some of the conditions required by standard evidence
factors designs [Rosenbaum, 2010, 2011, 2021].

(i) Since our tests are based on semiparametric estima-
tors, they possess the types of statistical robustness
discussed above.

(ii) We remove the need to demonstrate that the joint dis-
tribution of the p-values from multiple tests stochas-
tically dominates the uniform distribution under the
null, which is commonly used to demonstrate that the
combined p-value from an evidence factors analysis
has valid size under the null. Asymptotic validity of
our test is guaranteed by joint convergence in distri-
bution of the estimators, which is a consequence of
asymptotic linearity of semiparametric estimators.

(iii) Finally, our method does not require that the candidate
causal models have non-overlapping sources of bias.
In other words, our test is valid even if the assumptions
of two or more of the candidate causal models are
invalidated by the same source of bias; e.g., the same
unmeasured confounder.

The weaker conditions of our proposed approach allow us to
readily apply our method to complex settings. We illustrate
this with two examples that have not been studied before
to the best of our knowledge. In the first example, we con-
sider three candidate causal models: backdoor, front-door,
and IV. In the second example, we consider three candidate
backdoor models with different adjustment sets. We evalu-
ate the effectiveness of our proposed test using simulations.
We then demonstrate our method with two real-world ap-
plications. First, we study the effect of smoking on blood
glucose levels using data from the Framingham Heart Study
[Kannel and Gordon, 1968] by combining analyses from a
backdoor, front-door and IV model. Finally, we compare our

methods with evidence factors analysis using the Wisconsin
Longitudinal study [Karmakar et al., 2021].

Other related work: In addition to the evidence factors
work cited earlier, we note that Sun et al. [2021] proposed
a multiply robust method for estimating causal effects in a
Mendelian randomization setting. Their work is specific to
a setting where the candidate models are all IV models. An
advantage of our work is that it can be applied in settings
where the candidate models are qualitatively distinct. We
also note that there is prior research on specification testing
for causal models—e.g., Entner et al. [2013] and Shah et al.
[2022] proposed tests for conditional ignorability models,
Bhattacharya and Nabi [2022] proposed tests for front-door
models, and Pearl [1995a] and Wang et al. [2017] proposed
tests for IV models. In contrast, we do not aim to test the
specification of causal models. Instead, our goal is to test a
causal null hypothesis provided that assumptions of at least
one of the underlying causal models hold, without knowing
which set of assumptions holds.

2 MOTIVATING EXAMPLE

We first describe an empirical example to motivate our gen-
eral theory and methods. We present the results of data
analysis for this example in Section 5. We are interested in
testing the causal null hypothesis that there is no average
causal effect (ACE) of smoking on glucose levels because
high glucose levels are a cause of diabetes. We use data from
the Framingham Heart Study [Kannel and Gordon, 1968]
to test this null hypothesis. The data are observational, and
consist of n = 3477 fully observed realizations of the data
structure O = {C,Z,A,M, Y }, and we will assume these
data are independent and identically distributed from a distri-
bution P . In this data, C denotes a set of baseline covariates
containing age, sex, BMI, past history of heart disease, and
past glucose level;A is binary current smoking status, which
is our treatment of interest; Y is glucose level, which is our
continuous outcome of interest;M is hypertension, which is
our candidate mediator; and Z is past hypertension, which is
our candidate IV. We define the ACE of smoking on glucose
as β = E[Y (A = 1)] − E[Y (A = 0)], where Y (A = 1)
and Y (A = 0) denote potential outcomes under assignment
to smoking and no smoking, respectively. Our causal null
hypothesis is H0 : β = 0.

Identification of the causal parameter β using the distribu-
tion of the observed data relies on assumptions encoded in
a causal model. Here, as is often the case, there are multi-
ple plausible causal models. Figure 1 shows three plausible
causal models for this study using causal directed acyclic
graphs (DAGs) [Spirtes et al., 2000, Pearl, 2009]. Each
causal DAG only includes the subset of variables important
for identification. Solid blue edges represent causal rela-
tions that are permitted by the model—i.e., do not violate
its identifying assumptions if present in the underlying data
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Figure 1: Plausible causal models and violations of their as-
sumptions (shown via red dashed edges). M1 is a backdoor
model, M2 is a front-door model, and M3 is an IV model.

generating process—and red dashed edges represent causal
relations that are not permitted by the model.

Model M1 is a model that assumes the smoking-glucose
relationship is unconfounded given the observed covariates
C. Under M1, the ACE β is identified with the observed
data parameter ψ1(P ) given by the backdoor formula

ψ1,P = E [µ(1, C)− µ(0, C)] , (1)

where µ(a, c) := E(Y | A = a,C = c) [Robins, 1986,
Pearl, 1995a]. For brevity, we will refer to models like M1

that permit identification via the backdoor formula as back-
door models. Model M2 is a front-door model that assumes
that smoking only impacts glucose through its effect on
hypertension, but permits unmeasured common causes of
smoking and glucose (but not hypertension). Under M2,
the ACE is identified with the parameter ψ2,P given by

ψ2,P := E {E [γ(M,C) | A = 1, C]

− E [γ(M,C) | A = 0, C]} ,
(2)

where γ(m, c) := E[µ(m,A, c) | C = c] for µ(m, a, c) :=
E(Y |M = m,A = a,C = c) [Pearl, 1995a]. Model M3

is an IV model that assumes prior hypertension is exogenous
and only impacts glucose through its effect on smoking,
but permits unmeasured common causes of smoking and
glucose (but not previous hypertension). Under M3, the
ACE is identified with ψ3,P given by

ψ3,P =
E(Y | Z = 1)− E(Y | Z = 0)

E(A | Z = 1)− E(A | Z = 0)
(3)

[Balke and Pearl, 1993, Angrist et al., 1996]. We note that
each causal model above also includes non-graphical as-
sumptions, such as positivity, for identification to hold.
These will be stated in Section 4.

Semiparametric estimators that exhibit robustness to nui-
sance estimation have been developed for ψ1,P , ψ2,P , and

ψ3,P . For example, the AIPW estimator of ψ1,P [Bang and
Robins, 2005] is doubly robust with respect to estimators
of the outcome regression and propensity score, the aug-
mented primal IPW estimator of ψ2,P [Fulcher et al., 2020,
Bhattacharya et al., 2022] is doubly robust with respect to
estimators of the outcome regression and conditional distri-
bution of the mediator, and the empirical plug-in estimator
of ψ3,P does not require any nuisance estimators.

If the assumptions in causal model Mk hold, a semiparamet-
ric estimator of the corresponding identified parameter ψk,P

can be used to construct a statistically robust hypothesis
test of the causal null hypothesis that β = 0. For example,
if the backdoor model M1 holds, then a hypothesis test
based on the AIPW estimator will have power tending to
one as long as either the outcome regression or propensity
score estimator is consistent, and will have asymptotically
valid type I error rate as long as the outcome regression
and propensity score estimators achieve sufficient rates of
convergence (which may be slower than n−1/2).

If the causal model Mk fails to hold, a hypothesis test based
on ψk,P may not provide any information about whether
β = 0. Furthermore, it is often the case that some of the
assumptions in a causal model do not imply any testable con-
straints on the observed data distribution. Indeed, in all three
models proposed in Figure 1, the absence of the red dashed
edges is untestable. The IV assumptions can be falsified via
an inequality constraint, but not confirmed [Pearl, 1995b,
Wang et al., 2017]. Therefore, the plausibility of causal mod-
els typically relies on substantive arguments. In the context
of observational studies, such substantive arguments are
frequently tenuous. For example, health consciousness is
an unmeasured covariate in the Framingham Heart Study
that could impact the likelihood of smoking and impact
glucose levels through its effect on diet and exercise. If so,
the backdoor model M1 may not hold. It is also possible
that smoking impacts glucose through mechanisms other
than hypertension, such as reduced likelihood of exercising
or reduced appetite, which would invalidate the front-door
model M2. Finally, past history of hypertension may not
be exogenous, because diet and exercise may be associated
with both hypertension and glucose, which would invalidate
the IV model M3.

To relax the reliance on a single causal model, evidence
factors can be used to derive a test of the null hypothesis
H0 : β = 0 that is valid as long as at least one of M1, M2,
or M3 is true, without knowing which is true. This is a form
of causal robustness. Evidence factors typically require that
the joint distribution of the individual p-values stochastically
dominates the uniform distribution under the null. In our
approach, asymptotic validity of the test is instead guaran-
teed by joint convergence in distribution of the estimators,
which follows directly from asymptotic linearity of semi-
parametric estimators. In addition, standard evidence factors
analyses require that the source of bias that invalidates one



causal model does not necessarily bias other causal models.
For example, the presence of an unmeasured confounder
U that also causes past history of hypertension, such as
health consciousness, biases M3 and may bias M1 as well
unless the backdoor paths through Z and U are blocked by
C. Previous evidence factors literature has used blocking
or stratification to preclude such cases [Zhao et al., 2022,
Karmakar et al., 2021], which can reduce effective sample
size and statistical power. Our proposed approach relaxes
this condition and allows one source of bias to potentially
invalidate multiple analyses, and adds statistical robustness
to the analyses as described above.

3 METHOD FOR COMBINING
EVIDENCE FACTORS

We propose a new method for combining evidence factors
that takes advantage of the asymptotic linearity of influ-
ence function-based estimators. We first outline our formal
problem setup. Let β denote the causal parameter of inter-
est, such as the average causal effect or conditional aver-
age causal effect. The causal null hypothesis of interest is
H0 : β = 0. We assume the observed data consists of n
realizations O1, . . . , On drawn IID from an unknown distri-
bution P . We suppose that the analyst is considering K > 1
causal models M1, . . . ,MK , and that ψk,P is an identify-
ing functional for β under Mk. That is, if the assumptions
of Mk are true, then β = ψk,P , which further implies that
H0 holds if and only if ψk,P = 0. Hence, if at least one
of the causal models M1, . . . ,MK is true, then under the
causal null hypothesisH0, at least one of ψ1,P , . . . , ψK,P is
zero. Equivalently, if at least one of the K causal models is
true, then H0 implies that

∏K
k=1 ψk,P = 0. This motivates

our approach to testing H0. We note that the reverse impli-
cation is not necessarily true; we discuss this further later in
this section.

For each k, we suppose we can construct an asymp-
totically linear estimator ψk,n of ψk,P with influence
function ϕk,P under statistical conditions Ck, meaning
ψk,n − ψk,P = Pnϕk,P + oP(n

−1/2), where Pnf =
1
n

∑n
i=1 f(Oi). Here, ϕk,P may depend on P , and is as-

sumed to satisfy E(ϕk,P ) = 0 and E(ϕ2k,P ) < ∞. The
statistical conditions Ck typically include rates of conver-
gence and complexity constraints for nuisance estimators
such as outcome regression or propensity score estimators,
as well as constraints on P such as finite moments or semi-
parametric or parametric modeling assumptions.

3.1 JOINT DISTRIBUTION OF
ASYMPTOTICALLY LINEAR ESTIMATORS

Asymptotic linearity implies the marginal convergence
result n1/2(ψk,n − ψk,P ) →d N(0, σ2

k,P ) for σ2
k,P :=

E(ϕ2k,P ), which can be used to construct asymptotically

valid Wald-style confidence intervals for ψk,P . A natu-
ral estimator of the asymptotic variance σ2

k,P is given by
σ2
k,n := Pnϕ

2
k,n, where ϕk,n is an estimator of the influence

function ϕk,P . This is known as the influence function-based
variance estimator [van der Vaart, 2000]. However, asymp-
totic linearity is stronger than marginal convergence. In
particular, by the multivariate central limit theorem, asymp-
totic linearity of any finite collection of estimators implies
joint convergence in distribution of the estimators. Denoting
ψP := (ψ1,P , . . . , ψK,P )

′ and ψn := (ψ1,n, . . . , ψK,n)
′

as vectors of the true and estimated parameters, respectively,
and ϕP := (ϕ1,P , . . . , ϕK,P )

′ as the vector of influence
functions, if all the statistical conditions C1, . . . , CK hold,
then

ψn −ψP = PnϕP + oP(n
−1/2).

This implies n1/2(ψn −ψP ) →d NK(0,ΣP ), where ΣP

is defined as
E(ϕ21,P ) E(ϕ1,Pϕ2,P ) · · · E(ϕ1,PϕK,P )

E(ϕ2,Pϕ1,P ) E(ϕ22,P ) · · · E(ϕ2,PϕK,P )
...

...
. . .

...
E(ϕK,Pϕ1,P ) E(ϕK,Pϕ2,P ) · · · E(ϕ2K,P )

 .

We can estimate ΣP using the influence function-based
covariance estimator Σn by estimating E(ϕj,Pϕk,P ) with
Pnϕj,nϕk,n. If Σn →P ΣP and ΣP is invertible, it follows
that n1/2Σ−1/2

n (ψn − ψP ) →d NK(0, IK), where IK is
the K ×K identity matrix and Σ−1/2

n is the inverse of the
matrix square root of Σn.

3.2 TESTS OF THE IMPLIED NULL BASED ON
JOINT ASYMPTOTIC NORMALITY

We propose using the joint convergence implied by asymp-
totic linearity to derive tests of the null hypothesis that
ψk,P = 0 for at least one k. By the delta method we have

n1/2
(∏K

k=1 ψk,n −
∏K

k=1 ψk,P

)
→d N (0,γ′

PΣPγP ) ,

where γP := (γ1,P , . . . , γK,P )
′ for γk,P :=

∏
j ̸=k ψj,P .

We recall that if at least one of the causal models is correctly
specified, then the causal null hypothesis H0 implies that∏K

k=1 ψk,P = 0, which then implies that

Tn := n1/2 (γ′
nΣnγn)

−1/2 ∏K
k=1 ψk,n →d N(0, 1).

Therefore, a two-sided test of H0 with asymptotically
valid type I error rate is given by rejecting at level α if
|Tn| > q1−α/2, where qp denotes the pth quantile of a
standard normal distribution. The following result formally
demonstrates that this proposed test has asymptotically valid
type I error rate.

Theorem 1. Suppose that for each k ∈ {1, . . . ,K}, ψk,n

is an asymptotically linear estimator of ψk,P with influence
function ϕk,P ,

∏K
k=1 ψk,P = 0, and Σn →P ΣP , where

γ′
PΣPγP > 0. Then P

(
|Tn| > q1−α/2

)
−→ α.



A proof of Theorem 1 is given in the Appendix. Theorem 1
is stated in terms of the statistical properties of the test,
and we now elaborate on how this relates to our goal of de-
veloping tests with causal model and statistical robustness.
Theorem 1 implies that if at least one of the causal models
M1, . . . ,MK is true and all of the statistical conditions
C1, . . . , CK implying asymptotic linearity of the estimators
ψ1,n, . . . , ψK,n are true, then the test that rejects the causal
null hypothesis H0 : β = 0 when |Tn| > q1−α/2 has
asymptotic size α. Hence, increasing K relaxes the causal
conditions at the expense of stronger statistical conditions.
By using semiparametric estimators rather than estimators
based on parametric models, we increase the statistical ro-
bustness in conditions C1, . . . , CK .

We now briefly comment on some conditions under which
we may not get precise type I error control, and justify
why these situations may not be considered problematic
in practice. First, if more than one ψk,P equals zero, then
γP = 0, which implies that γ′

PΣPγP = 0. Hence, our
method only yields precise type I error control when ex-
actly one of ψ1,P , . . . , ψK,P equals zero. If two or more
equal zero, then the rate of convergence of

∏K
k=1 ψk,n is

faster than n−1/2, and so our test will be asymptotically
conservative. This will be illustrated in simulations in Sec-
tion 4 discussed further in Section 6. Briefly, this might
occur when the null hypothesis is true and the analyst has
successfully specified two or more causal models correctly.
In practice, however, we expect a scenario in which the
analyst is able to specify more than one model correctly to
be exceptionally rare—often our concern is if even a single
model has been correctly specified. Readers interested in
learning more about developing tests in such scenarios may
also refer to Miles and Chambaz [2021] for a test developed
in a separate context that has better power in the special case
of K = 2 and diagonal ΣP . To our knowledge, no such test
yet exists in the general case.

Second, we note that γ′
PΣPγP may equal 0 if E(ϕ2k,P ) =

0. Hence, precise type I error control using our method
also relies on the variances E(ϕ2k,P ) being positive when
ψk,P = 0. In some cases, ψk,P = 0 implies that E(ϕ2k,P ) =
0. If this happens, our test may again be asymptotically
conservative. For example, suppose the null hypothesis H0

is the strong causal null hypothesis that there is no causal
effect of a binary treatment A on an outcome Y for any unit
in the population. Under the backdoor model, H0 implies
that ψ := E{[µ(1, C) − µ(0, C)]2} = 0, where µ(1, c) −
µ(0, c) is the conditional average treatment effect. When
ψ = 0, its efficient influence function is 0 [Levy et al., 2021].
However, since the strong null hypothesis implies the weak
null hypothesis that the ACE equals zero, the problem can
be avoided in this case by testing the weak null instead.

Finally, γ′
PΣPγP may equal 0 if two or more of the influ-

ence functions are linearly dependent under the null hypoth-
esis. Fortunately, this can be checked by the researcher prior

to using the method.

The next result provides conditions under which the power
of the test goes to one under fixed alternatives.

Theorem 2. Suppose that for each k ∈ {1, . . . ,K},
ψk,n →P ψk,P , where

∏K
k=1 ψk,P ̸= 0, and Σn = OP(1).

Then P
(
|Tn| > q1−α/2

)
−→ 1.

A proof of Theorem 2 is provided in the Appendix. The
conditions of Theorem 2 are substantially weaker than those
of Theorem 1. In particular, Theorem 2 only requires consis-
tency of the estimators, which for doubly robust estimators
can hold as long as at least one nuisance estimator is consis-
tent.

We note that
∏K

k=1 ψk,P ̸= 0 requires that each ψk,P ̸= 0.
If Mk is a correct causal model, then ψk,P ̸= 0 if and only
if β ̸= 0. However, if Mk is invalid, then ψk,P does not nec-
essarily have any correspondence with β, and hence ψk,P

may equal 0 even if β ̸= 0. Hence, the power of the pro-
posed test may not converge to one under certain alternatives
even if at least one of M1, . . . ,MK is true and all of the
statistical conditions C1, . . . , CK are true. This phenomenon
will be illustrated in numerical studies in Section 4. It ap-
pears that developing a consistent test in situations where
β ̸= 0 but some ψk,P = 0 would require being able to
determine which models are invalid, which as discussed
above is typically not possible. However, in some cases,
even when Mk is invalid, ψk,P = 0 is an “unlikely" event
when β ̸= 0 in the sense that it requires exact cancellations
of certain causal effects. This is related to the faithfulness
assumption in DAGs [Spirtes et al., 2000], which states that
(conditional) independence between variables under P can
always be attributed to the structure of the causal graph. In
causal graphical selection, P is often assumed to be faith-
ful with respect to a causal graph with the justification that
unfaithful distributions are rare [Spirtes et al., 2000]. If 1)
the distribution P is faithful and 2) ψk,P = 0 if and only
if Y ⊥⊥ A | R, where R denotes other observed variables
appearing in ψk,P , then β ̸= 0 implies that ψk,P ̸= 0.
Condition 2) holds in, for example, some linear Gaussian
models. An example of a causal model violating faithfulness
is shown in the Appendix.

4 PRACTICAL APPLICATIONS OF THE
GENERAL METHOD

As noted in Section 3, our method can be applied to any set
of causal models as long as we can construct asymptotically
linear estimators of each ψk,P . Recent developments in
semiparametric theory allow us to do this for any identified
query of the ACE given a causal graph with unmeasured
confounders [Bhattacharya et al., 2022, Jung et al., 2021].

We highlight two important examples here: (i) three qualita-
tively distinct causal models—backdoor, front-door, and IV,



Figure 2: Size (left) and power (right) of the test as a function of sample size when at least one of backdoor, front-door, or
IV are true. Panel labels indicate which model(s) are correct (TRUE) and incorrect (FALSE).

and (ii) multiple plausible backdoor models. We assess the
performance of our proposed test using numerical studies
in both examples. In Section 5 we demonstrate an applica-
tion of (i) to the Framingham Heart Study, as highlighted in
our motivating example. We also compare our method with
prior evidence factors work using the Wisconsin Longitu-
dinal Study using two distinct IV models and a backdoor
model.

4.1 BACKDOOR, FRONT-DOOR, AND IV MODELS

We return to the three candidate causal models introduced
in Section 2 and displayed in Figure 1: the backdoor, front-
door, and IV models. Before describing the numerical study,
we provide additional details about the causal models and
estimators. We are interested in testing the weak causal null
hypothesis H0 : β = E[Y (A = 1) − Y (A = 0)] = 0.
Causal model M1 is the backdoor model. In addition to
SUTVA and consistency, the assumptions of M1 are: (i)
Y (A = a) ⊥⊥ A | C for a ∈ {0, 1} (conditional ignorabil-
ity), and (ii) 0 < π(C) < 1 almost surely for a ∈ {0, 1}
for π(c) := P (A = 1 | C = c) (positivity). Under these
conditions, β = ψ1,P defined in (1). The nonparametric
efficient influence function of ψ1,P is ϕ1,P = ϕ◦1,P − ψ1,P ,
where ϕ◦1,P (y, a, c) is given by

{y − µ(a, c)}
{

a− π(c)

π(c)[1− π(c)]

}
+ {µ(1, c)− µ(0, c)} .

The AIPW estimator [Bang and Robins, 2005] is an asymp-
totically linear estimator of ψ1,P with influence function

ϕ1,P under doubly robust conditions on estimators µn and
πn of µ and π, respectively.

Causal model M2 is the front-door model. The key assump-
tions of M2 are: (i) Y (A = a,M = m) = Y (M = m) for
a,m ∈ {0, 1} (no direct effect of treatment on the outcome);
(ii) Y (M = m) ⊥⊥M(A = a) | C for a,m ∈ {0, 1} (con-
ditional ignorability of the mediator-outcome relationship);
(iii) M(A = a) ⊥⊥ A | C for a ∈ {0, 1} (conditional ignor-
ability of the treatment-mediator relationship); (iv) Y (M =
m) ⊥⊥M | A,C; and (v) 0 < P (A = a,M = m | C) < 1
almost surely for each a,m ∈ {0, 1} (positivity). Unob-
served confounding between A and Y is permitted. Under
these conditions, β = ψ2,P defined in (2). The nonpara-
metric efficient influence function ϕ2,P (y,m, a, c) of ψ2,P

is
α(m | 1, c)− α(m | 0, c)

α(m | a, c)
{y − µ(m, a, c)}

+

{
a− π(c)

π(c)[1− π(c)]

}
{γ(m, c)− τ(a, c)}

+ {η(1, a, c)− η(0, a, c)} − ψ2,P ,

where α(m | a, c) := P (M = m | A = a,C = c),
η(a0, a, c) := E[µ(M,a, c) | A = a0, C = c], and
τ(a, c) := E[η(a,A, c) | C = c]. The augmented primal
IPW estimator of ψ2,P [Fulcher et al., 2020, Bhattacharya
et al., 2022] is asymptotically linear with influence function
ϕ2,P under double robust conditions on estimators of the
sets {π, µ} and {α}.

Finally, causal model M3 is an IV model. The key assump-
tions of M3 are: (i) Y (Z = z) ⊥⊥ Z, for z ∈ {0, 1} (ran-



domized instrument); (ii) Y (Z = z,A = a) = Y (A = a)
for each a, z ∈ {0, 1} (no direct effect of the instrument
on the outcome); (iii) P (A(Z = 0) = 1, A(Z = 1) =
0) = 0 (monotonicity); (iv) E[A(Z = 1) − A(Z =
0)] ̸= 0 (non-null effect of the instrument on treatment); (v)
Var{Y (A = 1)− Y (A = 0)} = 0 (homogeneity); and (vi)
0 < P (Z = 1) < 0 (positivity). Unobserved confounding
of the treatment-outcome relationship is again permitted.
Under these conditions, β = ψ3,P defined in (3). We note
that without the homogeneity assumption, ψ3,P is identified
with the ACE among compliers, so we use it here to identify
our actual target β. The nonparametric efficient influence
function ϕ3,P (y, a, z) of ψ3,P is

[{y − µ(z)} {π(1)− π(0)} − {a− π(z)} {µ(1)− µ(0)}]

× z/ζ − (1− z)/(1− ζ)

{π(1)− π0(0)}2
,

where µ(z) := E(Y | Z = z), π(z) := P (A = 1 | Z = z),
and ζ := P (Z = 1). Since A and Z are binary, an asymp-
totically linear estimator of ψ3,P with influence function
ϕ3,P can be constructed by replacing the conditional expec-
tations in the definition of ψ3,P given in (3) with empirical
conditional expectations.

We note that it is possible that M1, M2, and M3 are in-
validated by a common source of bias. For example, if Z
has a direct effect on Y , this invalidates both the IV model
M3 and the backdoor model M1 (if Z is not in the ad-
justment set C). Unlike previous evidence factors analyses
[Karmakar et al., 2021, Zhao et al., 2022], we do not alter
the adjustment sets nor impose any restrictions on the order
of analyses to prevent the source of bias of one model from
invalidating others.

In the first numerical study, we consider testing the causal
null hypothesisH0 : β = 0 against the two-sided alternative
using our proposed test with K = 3 using the three causal
models M1, M2, and M3 defined above. We consider
settings where the assumptions of all causal models hold,
where the assumptions of two of the models hold, and where
the assumptions of just one model holds. For each setting,
we consider data-generating distributions where the iden-
tified functional in the incorrect models is 0 or is different
from 0 because we expect this to impact the rejection rate of
the test, as discussed in Section 3.2. To violate the assump-
tions of M1, we either include unmeasured confounders
or adjust for colliders. To violate the assumptions of M2,
we either include an effect of A on Y not mediated through
M or include unmeasured confounding between A and M
or between M and Y . To violate the assumptions of M3,
we include a direct effect of Z on Y , include unmeasured
confounding between Z, A, and Y , or violate monotonicity.
To simultaneously violate the assumptions of M1 and M2,
we use a common source of bias: a direct effect of Z on Y .
The full details of the data-generating processes for each
setting are in the Appendix.

For each data-generating distribution, we simulate data un-
der the null and alternative hypotheses for sample sizes
n ∈ {100, 250, 500, 750, 1000}. For each simulated dataset,
we use our proposed test with the estimators and influence
functions described above. We estimate outcome regression
and propensity score functions using generalized additive
models. For each setting and sample size, we conduct 1000
simulations and record the fraction of the time that our test
rejected the null hypothesis at level α = 0.05.

Figure 2 displays the size and power of the test as a function
of sample size under the different settings. The results are
consistent with our expectations based on the theory of
Section 3.2. Under the null (left panel of Figure 2) the size
of the test converges to α = 0.05 when two of the causal
models are wrong and both identified functionals in the
wrong models are not zero. The size is close to zero when
more than one of the causal models are correct or when
the identified functional in the wrong model is zero. This is
because, as discussed in Section 3.2, our test is conservative
when more than one ψk,P equals zero. Under the alternative
(right panel of Figure 2), the power of the test converges
rapidly to 1 in all cases when the identified functionals in
the wrong model are not zero. The test has low power when
identified functional in the wrong model equals zero as
discussed in Section 3.2.

We also consider our proposed test with K = 2 using all
three pairs of models: M1 and M2, M1 and M3, and M2

and M3. The simulation results for these settings can be
found in the Appendix, and again align with our theoretical
expectations.

4.2 MULTIPLE BACKDOOR MODELS

In the second example, we consider K = 3 backdoor mod-
els with different adjustment sets. Figure 4 displays the true
causal graph. The adjustment set of the first backdoor model
is {C1, C2, C3, C4}. This model is correct because this set
satisfies the backdoor criterion with respect toA and Y . The
second adjustment set is {C1, C3}, and the third adjustment
set is {C1, C4}, so both of these adjustment sets are invalid
because they omit the confounder C2. As long as the com-
mon source of bias shared by multiple analyses does not
affect all candidate models, then our approach can still be
valid, which is again one of the stated advantages of our
method over standard evidence factors designs.

We use our proposed test with three AIPW estimators with
the three different adjustment sets. We use generalized addi-
tive models to estimate the outcome regression and propen-
sity score. Figure 3 displays the results of the second numer-
ical study. The results are consistent with our expectations.
Under the null, the size of the test converges to α = 0.05,
but is slightly anti-conservative for n = 250. Under the
alternative, the power of the test is close to 1 for all n be-



Figure 3: Size (left) and power (right) of the test as a function of sample size for the second numerical study.

A YC1

C2 C3C4

Figure 4: True causal DAG for the backdoor models.

cause in this case, the identified functionals in the backdoor
models with invalid adjustment sets are not zero.

5 REAL DATA APPLICATIONS

In this section we evaluate our methods using two real-
world studies. The first is the Framingham Heart Study as
introduced in our example in Section 2. The second is the
Wisconsin Longitudinal Study that has been analyzed using
classical evidence factors methods by Karmakar et al. [2021]
and thus allows us to compare our methods with prior work.

5.1 FRAMINGHAM HEART STUDY

We first use our methods to test the effect of smoking on
glucose levels using the Framingham Heart Study [Kannel
and Gordon, 1968]. We use the backdoor, front-door, and IV
models defined in Sections 2 and 4 as our candidate models.
Our treatment A is a binary indicator of current smoking
status and our outcome Y is a continuous measure of blood
glucose level. We adjust for baseline covariatesC containing
age, sex, BMI, past history of heart disease, and past glucose
level in the backdoor model. We propose hypertension as
a candidate mediator M for the front-door model, and past
history of hypertension as a candidate instrumental variable
Z for the IV model. We estimate the ACE in each candidate
model using the methods described in Section 4.

Table 1 displays the estimates, 95% confidence intervals,

and p-values from the tests of the null hypothesis of zero
ACE using each causal model individually. The tests based
on the backdoor and front-door models fail to reject the
null hypothesis that smoking status has no effect on glu-
cose levels. The test based on the IV model rejects the null
hypothesis at significance level 0.05 and produces an esti-
mated ACE less than zero, suggesting that smoking reduces
glucose levels. However, these results all rely on validity
of the single causal model on which they are based. The
joint test proposed here is valid if any of the three causal
models is valid and returns a p-value of 0.68. Hence, we do
not find evidence of a statistically significant causal effect
of smoking on glucose levels.

Method ÂCE (95% CI) p-value

Backdoor 0.32 (-1.2, 1.8) 0.67

Front-door -0.038 (-0.090, 0.014) 0.15

IV -47.7 (-62.8, -32.6) 6.5× 10−10

Table 1: Results from the analysis of the effect of smoking
on glucose from the Framingham heart study.

5.2 WISCONSIN LONGITUDINAL STUDY

We next evaluate our method with the Wisconsin Lon-
gitudinal Study (WLS) dataset from the R package
blockingChallenge [Karmakar, 2018]. We compare
our methods and results to evidence factors analysis for this
data [Karmakar et al., 2021].

The WLS data contains a sample of 4450 male students
who completed high school in Wisconsin in 1957. The bi-
nary exposure of interest is whether the student attended a
Catholic high school, and the outcome is income in 1974.
Karmakar et al. [2021] considered three causal models: (1)
an IV model using whether the student’s family resided



in an urban or rural area during high school as an instru-
ment; (2) an IV model using whether the student’s family
was Catholic as an instrument and urban/rural residence as
a covariate; and (3) a backdoor model adjusting for both
urban/rural residence and Catholic religion as covariates.
Each model also included IQ score prior to high school,
father’s and mother’s education, parents’ income, father’s
occupation score, and occupational prestige score as covari-
ates. Letting β be the ACE of attending a Catholic school
on income, we use the methods of Karmakar et al. [2021]
to test the null hypothesis that β = 0 versus the alternative
that β ̸= 0 in these three models, and combine these three
causal models using evidence factors methodology. We as-
sume that at least one model is correct, so we combine the
individual p-values from the evidence factors analysis by
taking the maximum of the three.

We apply our proposed test with the three causal models
described above with slight modifications using the methods
described in Section 4. For the two IV models, we do not
adjust for any covariates, and for the backdoor model, we
adjust for all covariates excluding the two candidate IVs.

Urban IV Catholic IV Backdoor Combined

Evidence Factors Analysis

< 0.0001 0.0084 0.0098 0.0098

Asymptotic Joint Test

3.3× 10−14 0.0094 0.0004 0.0950

Table 2: Results comparing of our method to evidence fac-
tors analysis in analyzing the effect of Catholic schooling
on wages from the Wisconsin longitudinal study.

Table 2 displays the p-values from the three individual tests
and the combined test using the evidence factors method-
ology and our methodology. While all individual p-values
are statistically significant at the 0.01 level, our combined
p-value is not. This is because the three individual p-values
using our proposed models are positively correlated, while
the p-values using the evidence factors methods are nearly
independent of each other under the null by carefully con-
structing each evidence factor analysis. In particular, the
estimated correlation between the AIPW estimator and the
IV estimators from the Catholic religion and urban/rural IV
models are 0.42 and 0.22, respectively. Therefore, whereas
the combined p-value from the evidence factors analysis
simply takes the maximum among the three p-values, our
method takes into account the correlations among the three
tests. Our method produces a valid test even if the individual
p-values are positively correlated and does not require par-
ticular causal models to make p-values from each analysis
nearly independent under the null.

6 CONCLUSION

Many of the assumptions of causal models in the context
of observational data are strong and empirically untestable.
It is desirable to use methods that are as robust as possi-
ble in such settings in order to relax the strength of the
assumptions. In this paper, we proposed a method of testing
a causal null hypothesis in the presence of several candi-
date causal models that provides both statistical and causal
robustness. Our test is valid if at least one of the proposed
causal models is correct, without knowing which one is
correct. Furthermore, our test is based on semiparametric
estimators, which possess desirable statistical robustness
properties. Our methods also relax standard evidence fac-
tors conditions in two ways: we remove the requirement that
non-overlapping biases invalidate the causal models, and
we do not need to show the distribution of the p-values from
each factor dominates the uniform distribution under the
null. This has allowed us to apply our method to new settings
for which evidence factors have not yet been developed. We
expect there are applications of our work to additional new
settings, as well as extensions to causal sensitivity analysis.

The relaxation of the second condition comes at the cost of
statistical power when more than one causal model is correct.
Some evidence factor analyses allow researchers to assume
J ≥ 2 of the K causal models are correct, without knowing
which J causal models are correct [Rosenbaum, 2010, 2011].
The resulting combined test is more powerful as J increases,
at the expense of stronger conditions and less robustness
to invalid causal models. In particular, if the practitioner
assumes that J > 1 models are correct, when in truth fewer
than J are correct, then the resulting test has invalid type
I error rate. Here, we only considered the situation where
J = 1, and if the number of true causal models exceeds one,
our test is valid but tends to be conservative. Extending our
approach to settings where J ≥ 2 models are correct is an
important area of future research.

Our theory covers the case where the number of causal
models K is fixed, and we were primarily focused on the sit-
uation where K is relatively small. Another interesting area
of future research is to quantify the trade-offs in robustness
and power as a function of K and the dependence between
the estimators in each model. We expect that increasing K
typically comes with a reduction in power. However, we
also believe that qualitatively distinct causal models, such
as the backdoor, front-door, and IV models considered here,
leads to less power reduction than qualitatively similar mod-
els, such as multiple backdoor models, because the power
of the combined test is lower when the individual p-values
are positively correlated.

Finally, we focused here on testing causal null hypotheses
because testing is the main focus of the evidence factors
literature, and is an important aspect of causal inference
across various disciplines such as epidemiology [Swanson



et al., 2018], political science [Eggers et al., 2023], and eco-
nomics Angrist and Kuersteiner [2011]. However, as with
evidence factors, we expect that our tests can be inverted to
construct robust confidence sets. This too is an important
topic of future research.
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A PROOF OF THEOREMS

Proof of Theorem 1. Asymptotic linearity of ψn implies that n1/2(ψn −ψP ) →d N(0,ΣP ), where ΣP := E[ϕPϕ
′
P ] is

the asymptotic covariance matrix. Let h : RK → R be defined pointwise as h(x1, x2, . . . , xK) :=
∏K

k=1 xk. Then h is a
continuously differentiable function with ∂h

∂xk
(x1, x2, . . . , xK) =

∏
j ̸=k xj for each k. Denoting the gradient mapping of h

by ∇h, by the delta method,

n1/2 [h(ψn)− h(ψP )] = n1/2
(∏K

k=1 ψk,n −
∏K

k=1 ψk,P

)
→d N(0, σ2

P )

for
σ2
P := ∇h(ψP )

′ΣP∇h(ψP ) = γ
′
PΣPγP .

Since Σn →P ΣP by assumption, by the continuous mapping theorem [Mann and Wald, 1943], (γ′
nΣnγn)

1/2 →P

(γ′
PΣPγP )

1/2
= σP , which is positive by assumption. Therefore, since

∏K
k=1 ψk,P = 0,

n1/2 (γ′
nΣnγn)

−1/2 ∏K
k=1 ψk,n →d N(0, 1).

The result follows.

Proof of Theorem 2. By the continuous mapping theorem [Mann and Wald, 1943],
∏K

k=1 ψk,n →P

∏K
k=1 ψk,P ̸= 0, and

γn →P γP . Since Σn = OP(1), (γ′
nΣnγn)

1/2 = OP(1) as well. Therefore, |Tn| →P +∞, which yields the result.

B EXAMPLE OF A CAUSAL MODEL VIOLATING FAITHFULNESS

Figure 5 shows an example of a causal model that violates faithfulness due to exact cancellation and where β ̸= 0 but
ψk,P = 0 when applying the backdoor formula with observed covariates. In this example, each variable is equal to a
linear function of its direct causes and an independent noise term; e.g., Y = 2A− 2U + 4C + ϵY . Here, the causal null
H0 that A has no causal effect on Y is false – the causal effect of A on Y is the coefficient 2. This distribution violates
faithfulness because A and Y are not d-separated given C [Pearl, 2009], but nevertheless it turns out that Y ⊥⊥ A | C.
To see this, we use Wright’s rules of path analysis (assuming all variables are standardized) [Wright, 1921] to find that
Cor(A, Y | C) = −2×1+2 = 0. Since Y is given by a linear combination of its causes, this implies Y ⊥⊥ A | C. Since the
conditional independence Y ⊥⊥ A | C does not correspond to a property of the graph, it violates faithfulness. Furthermore,
while the backdoor model with conditioning set C is false due to the unblocked backdoor path through U , the observed data
parameter identified by the backdoor model is given by ψ1,P = Cor(A, Y | C) = 0 as above. Hence, ψ1,P = 0 even though
β ̸= 0, which is due to the violation of faithfulness.
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Figure 5: A causal model violating faithfulness.

C ADDITIONAL DETAILS FOR SIMULATIONS STUDIES

Here we provide details for the data-generating processes for the simulation studies presented in Section 4. The coefficient β
was set to 0 under the null and set to 10 under alternatives. We define expit(x) := 1/[1 + exp(−x)] for x ∈ R. Throughout,
“Bern(p)" is shorthand for the Bernoulli distribution with probability p, “Unif(a, b)" is shorthand for the continuous uniform
distribution on the interval [a, b], and N(µ, σ2) is shorthand for the normal distribution with mean µ and variance σ2.

C.1 BACKDOOR, FRONT-DOOR, AND IV MODELS
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Figure 6: Causal DAGs for the data-generating distribution for the simulation with backdoor, front-door, and IV models.
Violation of assumptions is shown via solid black edges.

We begin with data-generating processes for the simulation study combining the backdoor, front-door, and IV models, the
results of which are shown in Figure 2 and discussed in Section 4. Figure 6 shows the causal DAGs for this simulation.
Figure 6(a) shows the causal DAG in the setting where all three models are valid, which was used to generate the lines in



the bottom right panels under the null and alternative of Figure 2. The precise data-generating process for this setting is as
follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define
π(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)} .

We then simulate Ā(1) ∼ Bern(π(C1, C2, C3)) and Ā(0) ∼ Bern(1 − π(C1, C2, C3)). To make the monotonicity
assumption hold for the IV model, we then convert all defiers to compliers by setting A(1) = 1 and A(0) = 0 if Ā(1) = 0
and Ā(0) = 1, and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as
A = A(Z). Finally, we set

M ∼ Bern (expit{5A− 1 + C2})

Y ∼ N
(
βM + 3U + 2

√
|C1|+ sin(C4), 1

)
.

Figure 6(b) shows the causal DAG in the setting where the front-door and IV models are valid, but the backdoor model is
invalid due to an unblocked path from A to Y through U . This DAG was used to generate the both lines in the bottom left
panels under the null and alternative of Figure 2. The data-generating process for this setting when the identified backdoor
functional is not zero under the null and alternative is the same as that described for (a) above, but we change π to

π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

The data-generating process for the setting when the identified backdoor functional equals zero under the null is the same as
that described for (a) above, but we change the equations for π and Y to

π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3)− u}

Y ∼ N
(
βM + U + 2

√
|C1|+ sin(C4), 1

)
.

The data-generating process for the setting when the identified backdoor functional equals zero under the alternative is the
same as that described for (a) above, but we change the equations for π, M , and Y to

π(c1, c2, z, u) = expit {−0.5 + 5z + c1 + expit(c2)− 0.97u}
M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(
βM + 5U − 2

√
|C1|+ sin(C4), 1

)
.

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is
invalid.

Figure 6(c) shows the causal DAG in the setting where the backdoor and front-door models are valid, but the IV model is
invalid due to a direct effect of Z on Y . This DAG was used to generate the line corresponding to “Identified functional in
wrong model ̸= 0" in the second-from-bottom right panel under the null of Figure 2. The data-generating process for this
setting is the same as that described for (a) above, but we change the equation for Y to

Y ∼ N
(
βM + U + 2

√
|C1|+ sin(C4) + 2Z, 1

)
.

Since Z now has a direct effect on Y , the IV model is invalid.

To simulate data where the front-door and backdoor models are valid, but the IV model is invalid (second-from-bottom right
panels of Figure 2) under the null when the identified functional in the IV model equals 0 and under the alternative, we
make the IV model invalid by violating the monotonicity assumption. This violation does not have a graphical visualization,
so it is not displayed in Figure 6. The equations for U , C, Z, and π are as described for setting (a) above. We then simulate



A(1) ∼ Bern(π(C1, C2, C3)) and A(0) ∼ Bern(1 − π(C1, C2, C3)), and we set A = A(Z). Finally, we change the
equations for M and Y to

M ∼ Bern (expit{α1A+ α2I{A(0) < A(1)}A− 1 + C2})

Y ∼ N
(
βM + U + 2

√
|C1|+ sin(C4), 1

)
.

Here, we set α1 = 5 and α2 = −3 under the null, we set α1 = 5 and α2 = −2.838 under the alternative if the identified IV
functional equals zero, and we set α1 = 2 and α2 = 3 under the alternative if the identified IV functional is not zero. Since
there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

Figure 6(d) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid
due to an unblocked path from A to Y through V and the IV model is invalid due to an unblocked path from Z to Y
through U . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the
second-from-bottom left panel under the null of Figure 2. The data-generating process for this setting is the same as that
described for (a) above, but we add V ∼ Unif(−2, 2) and change the equations for Z, π, M and Y to

Z ∼ Bern (expit{2 + 2U})
π(c1, c2, c3, v) = expit {c1 + expit(c2) + sin(C3) + v}

M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(
βM + 2U + V + 2

√
|C1|+ sin(C4), 1

)
.

Since V has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is
invalid. Since U has an effect on both Z and Y , but is not in the adjustment set for the IV model, the IV model is invalid.

To simulate data where the front-door model is valid but the backdoor and IV models are invalid (second-from-bottom
left panels of Figure 2) under the null when “Identified functional in wrong model = 0" and under the alternative when
“Identified functional in wrong model = 0", we make the IV model invalid by violating the monotonicity assumption. This
violation does not have a graphical visualisation, so it is not displayed in Figure 6. The backdoor model is invalid due to an
unblocked path from A to Y through U. The equations for U , C, Z, and Y are as described for setting (a) above. We change
the equation for π to

π(c1, c2, c3, u) = expit(c1 + expit(c2) + sin(c3) + u).

We then simulate A(1) ∼ Bern(π(C1, C2, C3, U)) and A(0) ∼ Bern(1 − π(C1, C2, C3, U)), and we set A = A(Z).
Finally, we change the equations for M and Y to

M ∼ Bern (expit{α1A+ α2I{A(0) < A(1)}A− 1 + C2})

Y ∼ N
(
βM + U + 2

√
|C1|+ sin(C4), 1

)
.

Here, we set α1 = 5 and α2 = −3 under the null, and we set α1 = 5 and α2 = −2.63 under the alternative. Since U has an
effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is invalid. Since there
are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

Figure 6(e) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid due
to an unblocked path from A to Y through Z and the IV model is invalid due to a direct effect of Z on Y . This DAG was
used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the second-from-bottom left panel
under the alternative of Figure 2. The data-generating process for this setting is the same as that described for (a) above, but
we change the equations for π, M , and Y to

π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3)}
M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(
βM + 3U + 2

√
|C1|+ sin(C4) + 2Z, 1

)
.

Since Z has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is
invalid. Since Z has a direct effect on Y , the IV model is invalid.

Figure 6(f) shows the causal DAG in the setting where the backdoor and IV models are valid, but the front-door model is
invalid due to a direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in



wrong model = 0" in the third-from-bottom right panels under the null and alternative of Figure 2. The data-generating
process for this setting is the same as that described for (a) above, but we change the equation for Y to

Y ∼ N
(
βA+ 3U + 2

√
|C1|+ sin(C4), 1

)
.

Since A now has a direct effect on Y , the front-door model is invalid.

Figure 6(g) shows the causal DAG in the setting where the backdoor and IV models are valid, but the front-door model
is invalid due to an unblocked path from M to Y through U . This DAG was used to generate the line corresponding to
“Identified functional in wrong model ̸= 0" in the third-from-bottom right panels under the null and alternative of Figure 2.
The data-generating process for this setting is the same as that described for (a) above, but we change the equation for M to

M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U now has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model
is invalid.

Figure 6(h) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to
controlling for the collider C5 and the front-door model is invalid due to an unblocked path from M to Y through U and
because M does not fully mediate the effect of A on Y . This DAG was used to generate the line corresponding to “Identified
functional in wrong model ̸= 0" in the third-from-bottom left panel under the null of Figure 2. The data-generating process
for this setting is the same as that described for (a) above, but we change the equations for π, M , and Y to

π(c1, c2, c3) = expit {c4 + expit(c2) + sin(c3)}
M ∼ Bern(expit{5A− 1 + C2 + 2U})
Y ∼ N (βM + U + sin(C4), 1)

and we simulate C5 ∼ N (3A− Y, 1). Since C5 is a A-Y collider and it is adjusted for in the backdoor model, the backdoor
model is invalid. Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the
front-door model is invalid.

Figure 6(i) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to
an unblocked path from A to Y through U and the front-door model is invalid due to an unblocked path from M to Y
through U . This DAG was used to generate the line corresponding to “Identified functional in wrong model = 0" in the
third-from-bottom left panel under the null and the line corresponding to “Identified functional in wrong model ̸= 0" in the
third-from-bottom left panel under the alternative of Figure 2. The data-generating process for this setting is the same as that
described for (a) above, but we change the equations for π and M to

π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u}
M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U has an effect on both A and Y , but is not in the adjustment set for the backdoor model, the backdoor model is
invalid. Since U has an effect on both M and Y , but is not included in the adjustment set for the font-door model, the
front-door model is invalid.

Figure 6(j) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to
controlling for the collider C5 and the front-door model is invalid due to an unblocked path from A to M through U and
because M does not fully mediate the effect of A on Y . This DAG was used to generate the line corresponding to “Identified
functional in wrong model = 0" in the third-from-bottom left panel under the alternative of Figure 2. The data-generating
process for this setting is the same as that described for (a) above, but we change the equations for π, M , and Y to

π(c1, c2, c3, u) = expit {c4 + sin(c3)− u}
M ∼ Bern {expit(5A− 1 + C2 − 2U)}
Y ∼ N (βM − 5 sin(C4), 1)

and we simulate C5 ∼ N (−2A− 5Y, 1). Since C5 is a A-Y collider and it is adjusted for in the backdoor model, the
backdoor model is invalid. Since U has an effect on both A and M but is not in the adjustment set for the front-door model,
the front-door model is invalid.
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Figure 7: Causal DAGs for the data-generating distribution for the simulation with backdoor and front-door models. Violation
of assumptions is shown via solid black edges.

Figure 6(k) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid
due to an unblocked path from M to Y through U and the IV model is invalid due to a direct effect of Z on Y . This DAG
was used to generate the line corresponding to “Identified functional in wrong model ̸= 0" in the top right panel under the
null of Figure 2. The data-generating process for this setting is the same as that described for (a) above, but we change the
equations for M and Y to

M ∼ Bern (expit{2A− 1 + C2 + U})

Y ∼ N
(
βM − 3U + 2

√
|C1|+ sin(C4) + 2Z, 1

)
.

Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model is
invalid. Since Z has a direct effect on Y , the IV model is invalid. We note that Z is included in the adjustment set for the
backdoor model, since otherwise there would be an unblocked path from A to Y through Z.

To simulate data where the backdoor model is valid but the front-door and IV models are invalid (top right panels of Figure 2)
under the null when “Identified functional in wrong model = 0" and under the alternative when “Identified functional in
wrong model ̸= 0", we make the IV model invalid by violating the monotonicity assumption. As above, this violation does
not have a graphical visualisation, so it is not displayed in Figure 6. The front-door model is invalid due to an unblocked
path from M to Y through U. The equations for U , C, Z, and π are as described for setting (a) above. We then simulate
A(1) ∼ Bern(π(C1, C2, C3)) and A(0) ∼ Bern(1− π(C1, C2, C3)), and we set A = A(Z). We also change the equations
for M and Y to

M ∼ I{A(0) < A(1)}Bern (expit{5A− 1 + C2 + U}) + I{A(0) ≥ A(1)}Bern (expit{2A− 1 + C2 + U})

Y ∼ N
(
βM − 3U + 2

√
|C1|+ sin(C4), 1

)
.

Since U has an effect on both M and Y , but is not in the adjustment set for the front-door model, the front-door model is
invalid. Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

To simulate data where the backdoor model is valid but the front-door and IV models are invalid in the top right panel under
the alternative of Figure 2 when “Identified functional in wrong model = 0", we make the IV model invalid by violating the
monotonicity assumption. As above, this violation does not have a graphical visualisation, so it is not displayed in Figure 6.
The front-door model is invalid due to a direct effect of A on Y. The equations for U , C, Z, and π are as described for setting
(a) above. We then simulate A(1) ∼ Bern(π(C1, C2, C3)) and A(0) ∼ Bern(1− π(C1, C2, C3)), and we set A = A(Z).
We also change the equations for M and Y to

M ∼ I{A(0) < A(1)}Bern (expit{2A− 1 + C2}) + I{A(0) ≥ A(1)}Bern (expit{5A− 1 + C2})

Y ∼ N
(
βA+ 3U + 2

√
|C1|+ sin(C4), 1

)
.

C.2 BACKDOOR AND FRONT-DOOR MODELS

We next present the data-generating processes for the simulation study combining the backdoor and front-door models, the
results of which are shown in Figure 10. Figure 7 shows the causal DAGs for this simulation. Figure 7(a) shows the causal
DAG in the setting where both models are valid, which was used to generate the lines in the bottom right panels under the



null and alternative of Figure 10. The precise data-generating process for this setting is as follows. We generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

A ∼ Bern (expit {C1 + expit(C2) + sin(C3)})
M ∼ Bern (expit{2A− 1 + C2})

Y ∼ N
(
βM + 2U + 2

√
|C1|+ sin(C4), 1

)
.

Figure 7(b) shows the causal DAG in the setting where the front-door model is valid, but the backdoor model is invalid due
to an unblocked path from A to Y through U . This DAG was used to generate both lines in the bottom left panels under the
null and alternative of Figure 10. The data-generating process for this setting when “Identified functional in wrong model ̸=
0" under the null and under the alternative is the same as that described for (a) above, but we change the formula for A to

A ∼ Bern (expit {C1 + expit(C2) + sin(C3) + U}) .

The data-generating process for this setting when “Identified functional in wrong model = 0" under the null is the same as
that described for (a) above, but we change the equations for A, M , and Y to

A ∼ Bern (expit {C1 + expit(C2) + sin(C3)− 0.05U})
M ∼ Bern (expit{5A− 1 + C2})

Y ∼ N
(
βM + 0.05U + 2

√
|C1|+ sin(C4), 1

)
.

The data-generating process for this setting when “Identified functional in wrong model = 0" under the alternative is the
same as that described for (a) above, but we change the equations for A, M , and Y to

A ∼ Bern (expit {C1 − expit(C2)− sin(C3) + 0.6U})
M ∼ Bern (expit{0.37A− 1 + C2})

Y ∼ N
(
βM − 0.9U + 2

√
|C1|+ sin(C4), 1

)
.

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is
invalid.

Figure 7(c) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid due
to a direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model
= 0" in the top right panels under the null and alternative of Figure 10. The data-generating process for this setting is the
same as that described for (a) above, but we change the formula for Y to

Y ∼ N
(
βA+ 2U + 2

√
|C1|+ sin(C4), 1

)
.

Since A has a direct effect on Y , the front-door model is invalid.

Figure 7(d) shows the causal DAG in the setting where the backdoor model is valid, but the front-door model is invalid
due to an unblocked path from M to Y through U . This DAG was used to generate the line corresponding to “Identified
functional in wrong model ̸= 0" in the top right panels under the null and alternative of Figure 10. The data-generating
process for this setting is the same as that described for (a) above, but we change the formula for M to

M ∼ Bern (expit{2A− 1 + C2 + U}) .

Since U has an effect on both M and Y , but is not included in the adjustment set for the front-door model, the front-door
model is invalid.

C.3 BACKDOOR AND IV MODELS

We next present the data-generating processes for the simulation study combining the backdoor and IV models, the results
of which are shown in Figure 11. Figure 8 shows the causal DAGs for this simulation. Figure 8(a) shows the causal DAG in
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Figure 8: K = 2 with backdoor and IV models. Violation of assumptions is shown via solid black edges.

the setting where both models are valid, which was used to generate the lines in the bottom right panels under the null and
alternative of Figure 11. The precise data-generating process for this setting is as follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define
π(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)} .

We then simulate Ā(1) ∼ Bern(π(C1, C2, C3)) and Ā(0) ∼ Bern(1−π(C1, C2, C3)). As above, to make the monotonicity
assumption hold for the IV model, we then convert all defiers to compliers by setting A(1) = 1 and A(0) = 0 if Ā(1) = 0
and Ā(0) = 1, and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as
A = A(Z). Finally, we set

Y ∼ N
(
βA+ 2U + 2

√
|C1|+ sin(C4), 1

)
.

Figure 8(b) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to an
unblocked path from A to Y through U . This DAG was used to generate the line corresponding to “Identified functional in
wrong model = 0" in the bottom left panel under the null of Figure 11. The data-generating process for this setting is the
same as that described for (a) above, but we change the formula for π to

π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

Since U has an effect on both A and Y but is not in the adjustment set for the backdoor model, the backdoor model is
invalid.

Figure 8(c) shows the causal DAG in the setting where the IV model is valid, but the backdoor model is invalid due to
controlling for the collider C5. This DAG was used to generate the lines corresponding to “Identified functional in wrong
model ̸= 0" in the bottom left panels under the null and alternative of Figure 11 as well as the line corresponding to
“Identified functional in wrong model = 0" in the bottom left panel under the alternative of Figure 11. The data-generating
process for this setting when “Identified functional in wrong model ̸= 0" under the null is the same as that described for (a)
above, but we change the equations for π and Y to

π(c1, c2,c3) = expit {c4 + expit(c2) + sin(c3)}
Y ∼ N (βA+ 2U + sin(C4), 1) .

We then simulate C5 as

C5 ∼ N (2A+ Y, 1) .

The data-generating process for this setting when “Identified functional in wrong model ̸= 0" under the alternative is the
same as that described for (a) above, but we change the equations for π and Y to

π(c1, c2, c3) = expit {c4 + expit(c2) + sin(c3)}
Y ∼ N (βA+ 2U + sin(C4), 1) .



We then simulate C5 as

C5 ∼ N (A+ Y, 1) .

The data-generating process for this setting when “Identified functional in wrong model = 0" under the alternative is the
same as that described for (a) above, but we change the equations for π and Y to

π(c1, c2,c3) = expit {c4 + expit(c2) + sin(c3)}
Y ∼ N (βA− 3U − sin(C4), 1) .

We then simulate C5 as

C5 ∼ N (0.6A+ 2Y, 1) .

Since C5 is a collider and is included in the adjustment set for the backdoor model, the backdoor model is invalid.

Figure 8(d) shows the causal DAG in the setting where the backdoor model is valid, but the IV model is invalid due to a
direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸=
0" in the top left panel under the null of Figure 11. The data-generating process for this setting is the same as that described
for (a) above, but we change the equation for Y to

Y ∼ N
(
βA+ 2U + 2

√
|C1|+ sin(C4) + 2Z, 1

)
.

Since Z has a direct effect on Y , the IV model is invalid.

To simulate data where the backdoor model is valid but the IV model is invalid (top right panels of Figure 11) under the null
when the identified functional in the IV model equals 0 and under both cases for the alternative, we make the IV model
invalid by violating the monotonicity assumption. As above, this violation does not have a graphical visualisation, so it
is not displayed in Figure 8. The equations for U , C, Z, and π are as described for setting (a) above. We then simulate
A(1) ∼ Bern(π(C1, C2, C3)) and A(0) ∼ Bern(1− π(C1, C2, C3)), and we set A = A(Z). We also change the equation
for Y to

Y ∼ N
(
β1A+ β2I{A(0) > A(1)}A+ 2U + 2

√
|C1|+ sin(C4), 1

)
Here, we set β1 = 0 and β2 = 0 under the null, we set β1 = 5.75 and β2 = 4.25 under the alternative if the identified IV
functional equals zero, and we set β1 = 10 and β2 = −8 under the alternative if the identified IV functional is not zero.
Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

C.4 FRONT-DOOR AND IV MODELS

We next present the data-generating processes for the simulation study combining the front-door and IV models, the results
of which are shown in Figure 12. Figure 9 shows the causal DAGs for this simulation. Figure 9(a) shows the causal DAG in
the setting where both models are valid, which was used to generate the lines in the bottom right panels under the null and
alternative of Figure 12. The precise data-generating process for this setting is as follows. We first generate

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

Z ∼ Bern(0.5).

We also define
π(c1, c2, c3, u) = expit {c1 + expit(c2) + sin(c3) + u} .

We then simulate Ā(1) ∼ (π(C1, C2, C3, U)) and Ā(0) ∼ (1− π(C1, C2, C3, U)). To make the monotonicity assumption
hold for the IV model, we then convert all defiers to compliers by settingA(1) = 1 andA(0) = 0 if Ā(1) = 0 and Ā(0) = 1,
and setting A(1) = Ā(1) and A(0) = Ā(0) otherwise. The observed treatment A is then defined as A = A(Z). Finally, we
set

M ∼ (expit{5A− 1 + C2})

Y ∼ N
(
βM + 3U + 2

√
|C1|+ sin(C4), 1

)
.
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Figure 9: Causal DAGs for the data-generating distribution for the simulation with front-door and IV models. Violation of
assumptions is shown via solid black edges.

Figure 9(b) shows the causal DAG in the setting where the IV model is valid, but the front-door model is invalid due to a
direct effect of A on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model =
0" in the bottom left panels under the null and alternative of Figure 12. The data-generating process for this setting is the
same as that described for (a) above, but we change the equations for π and Y to

π(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)}

Y ∼ N
(
βA+ 3U + 2

√
|C1|+ sin(C4), 1

)
.

Since A has a direct effect on Y , the front-door model is invalid.

Figure 9(c) shows the causal DAG in the setting where the IV model is valid, but the front-door model is invalid due to an
unblocked path from M to Y through U . This DAG was used to generate the line corresponding to “Identified functional in
wrong model ̸= 0" in the bottom left panels under the null and alternative of Figure 12. The data-generating process for this
setting is the same as that described for (a) above, but we change the equations for π and M to

π(c1, c2, c3) = expit {c1 + expit(c2) + sin(c3)}
M ∼ Bern (expit{3A− 1 + C2 + U}) .

Since U has an effect on both M and Y but is not in the adjustment set for the front-door model, the front-door model is
invalid.

Figure 9(d) shows the causal DAG in the setting where the front-door model is valid, but the IV model is invalid due to
direct effect of Z on Y . This DAG was used to generate the line corresponding to “Identified functional in wrong model ̸=
0" in the top right panels under the null and alternative of Figure 12. The data-generating process for this setting is the same
as that described for (a) above, but we change the equation for Y to

Y ∼ N
(
βM + 3U + 2

√
|C1|+ sin(C4) + 2Z, 1

)
.

Since Z has a direct effect on Y , the IV model is invalid.

To simulate data where the front-door model is valid but the IV model is invalid (top right panels of Figure 12) under the
null and alternative when the identified functional in the IV model equals 0, we make the IV model invalid by violating the
monotonicity assumption. As above, this violation does not have a graphical visualisation, so it is not displayed in Figure 9.
The equations for U , C, Z, and π are as described for setting (a) above. We then simulate A(1) ∼ (π(C1, C2, C3, U)) and
A(0) ∼ (1− π(C1, C2, C3, U)), and we set A = A(Z). We change the equations for M and Y under the null to

M ∼ I{A(0) < A(1)} (expit{2A− 1 + C2})
+ I{A(0) ≥ A(1)} (expit{5A− 1 + C2})

Y ∼ N
(
βM + 2U + 2

√
|C1|+ sin(C4), 1

)
,



and we change the equations for M and Y under the alternative to

M ∼ I{A(0) < A(1)} (expit{2.38A− 1 + C2}) + I{A(0) ≥ A(1)} (expit{5A− 1 + C2})

Y ∼ N
(
βM + U + 2

√
|C1|+ sin(C4), 1

)
.

Since there are “defiers" for whom A(0) = 1 but A(1) = 0, the IV model is invalid.

C.5 BACKDOOR MODELS WITH DIFFERENT ADJUSTMENT SETS

Finally, we present the data-generating processes for the simulation study combining three backdoor models with different
adjustment sets, the results of which are shown in Figure 4 and discussed in Section 4. We simulate data as follows:

U ∼ Unif(−2, 2)

Ci ∼ Unif(−2, 2), for i = 1, 2, 3, 4

A ∼ Bern (expit {C1 + C2})
Y ∼ N (βA+ 4C2 + C3 + U, 1) .

D ADDITIONAL SIMULATION RESULTS

Figures 10, 11, and 12 display the size and power of the test for the case of K = 2 when combining the backdoor and
front-door, backdoor and IV, and front-door and IV models, respectively.

Figure 10: Size (left) and power (right) of the test when combining the backdoor model M1 and front-door model M2

when at least one of the models holds.



Figure 11: Size (left) and power (right) of the test when combining the backdoor model M1 and IV model M3 when at
least one of the models holds.

Figure 12: Size (left) and power (right) of the test when combining the front-door model M2 and IV model M3 when at
least one of the models holds.
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