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Abstract

Temporal knowledge graph completion has
made significant progress, but several research
gaps persist. This study addresses the chal-
lenges of temporal changes by proposing DDP
and DDPC, novel dual-perspective learning
frameworks that integrate static and temporal
knowledge using a dual-layer embedding mech-
anism and a contrastive learning-enhanced
version, respectively. This approach effec-
tively captures both dynamic changes and time-
invariant properties of entities and relations,
optimizing the completeness and accuracy of
information. Additionally, a perturbation learn-
ing mechanism is introduced to enhance the
model’s robustness to anomalous data and noise
by simulating data perturbations during train-
ing, improving adaptability and stability in
changing environments. DDPC achieves state-
of-the-art results on multiple standard evalua-
tion datasets, experimentally verifying the ef-
fectiveness of the proposed theories and meth-
ods. This study contributes to advancing the
field of temporal knowledge graph completion
by developing an innovative framework that
integrates temporal and static perspectives, en-
hances robustness, and undergoes rigorous eval-
uations.

1 Introduction

Temporal Knowledge Graphs (TKGs) extend traditional
Knowledge Graphs by incorporating time information,
enabling the representation and reasoning over dynamic,
time-dependent relationships between entities. Tempo-
ral Knowledge Completion (TKC) is a crucial task in
TKGs that involves inferring missing facts or relation-
ships at specific time points or intervals by leveraging
existing temporal information, ultimately improving the
accuracy and completeness of the graph.

Temporal Knowledge Graph Embedding (TKGE)
models capture temporal dynamics in knowledge graphs
by incorporating temporal information, allowing for
the representation of evolving relationships over time.
Notable TKGE models includeTTransE (Jiang et al.,
2016), which extends TransE by embedding timestamps;
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Figure 1: An example of coupling TKGE models and
Evolution-based models using causality and timeline

Know-Evolve (Trivedi et al., 2017), which uses a re-
current neural network; HyTE (Dasgupta et al., 2018),
which employs a hyperplane-based approach; and DE-
SimplE (Goel et al., 2020), which adapts SimplE for
diachronic data. Additionally, TeMP (Wu et al., 2020)
uses tensor decomposition methods for temporal graph
completion, and ChronoR (Sadeghian et al., 2021) incor-
porates relative temporal order information to improve
prediction accuracy. Convolutional-based models have
also shown promise in knowledge graph embeddings,
utilizing convolutional neural networks (CNNs) to cap-
ture local patterns and interactions between entities and
relations. ConvE (Dettmers et al., 2018) employs 2D
convolutional layers to embed entities and relations into
a unified space, while ConvKB (Nguyen et al., 2018)
uses convolutional filters to learn features from concate-
nated embeddings. More recent models like HypER
(Balavzevic et al., 2019) leverage hypernetworks to gen-
erate convolutional filters dynamically, and some studies
(Shen et al., 2020; Niu and Li, 2023) explore integrating
timeline and causality to improve model performance
on completion tasks, as shown in Figure 1.

Despite the progress in temporal knowledge graph
completion, significant research gaps remain. First, the
lack of integration between temporal and static knowl-
edge graphs hinders the ability to capture the dynamic
and time-invariant properties of entities and relations
effectively. Second, the robustness of existing models is
challenged by anomalous data and noise, necessitating
the development of perturbation learning mechanisms to
enhance adaptability and stability. Finally, the scarcity
of comprehensive evaluations across multiple datasets



makes it difficult to assess the effectiveness and general-
izability of proposed methods. Addressing these gaps
by developing innovative frameworks that integrate tem-
poral and static perspectives, enhance robustness, and
undergo rigorous evaluations is crucial for advancing
the field and creating more accurate and reliable models
for temporal knowledge graph completion. The major
contributions of this study are listed as follows:

* We propose a novel Dual Dynamic Perspective
(DDP) model that integrates static and tempo-
ral knowledge, utilizing a dual-layer embedding
mechanism to capture dynamic changes and time-
invariant properties to optimize the completeness
and accuracy of information.

We introduce a perturbation learning mechanism
that enhances the model’s robustness to anomalous
data and noise by simulating data perturbations dur-
ing training, improving the model’s adaptability,
stability, and reliability in changing environments,
and propose a dual Dynamic Dynamic Perspective
with Contrastive (DDPC) learning model that em-
ploys such perturbation-based contrastive learning
mechanism.

Our method achieves State-of-the-Art results on
multiple standard evaluation datasets, experimen-
tally verifying the effectiveness of our proposed
theories and methods.

2 Related Works

In this section, we review the advancements in temporal
knowledge graph completion through embedding-based
models and discuss the emergence of contrastive learn-
ing techniques, particularly perturbation-based methods,
in the context of graph data.

2.1 Embedding-based Models

Temporal knowledge graph completion (TKGC) has wit-
nessed significant progress through the development of
embedding-based models that extend traditional knowl-
edge graph embeddings to incorporate temporal dynam-
ics. TTransE (Leblay and Chekol, 2018), TA-DistMult
(Garcia-Durén et al., 2018), and DE-SimplE (Goel et al.,
2019) are notable models that employ various tech-
niques to capture temporal patterns and evolution of
entities and relations. More advanced models, such
as ATiSE (Xu et al., 2019), TComplEx (Lacroix et al.,
2020), and LCGE (Niu and Li, 2023), introduce addi-
tional mechanisms like temporal regularizers, tensor
factorization, logical rules, and commonsense knowl-
edge to enhance temporal reasoning capabilities and
improve prediction accuracy.

2.2 Contrastive Learning

Contrastive learning has become a powerful self-
supervised representation learning framework, particu-
larly in computer vision and natural language process-
ing. In graph data, traditional graph contrastive learning

(GCL) methods like GraphCL (You et al., 2020) and
MVGRL (Hassani and Khasahmadi, 2020) utilize aug-
mentations to generate positive pairs for contrastive loss.
However, these augmentations often require manual
selection or domain-specific knowledge, limiting their
scalability and efficiency. SImGRACE (Xia et al., 2022)
addresses these challenges by perturbing the graph neu-
ral network (GNN) encoder instead of the graph data,
generating semantically consistent views without man-
ual augmentation selection. Other perturbation strate-
gies in contrastive learning, such as feature perturbation
(Zhu et al., 2020), structural perturbation (You et al.,
2021), semantic perturbation (Zhu et al., 2021), and
augmentation-free methods like BGRL (Thakoor et al.,
2021) and MERIT (Jin et al., 2021), have their own lim-
itations in terms of computational cost or effectiveness
in preserving graph data semantics.

2.3 Rule Learning for Knowledge Graph
Completion

Logic rules are naturally suited for knowledge graph
(KG) completion due to the symbolic nature of KGs.
Horn rules, a common type of logic rule, take the form
a1 < as ANas A\ ---Aay, where a; is the head atom and
as, ..., a, are the body atoms. Various rule learning
algorithms have been developed specifically for large-
scale KGs, focusing on efficient rule searching and
quality evaluation. Notable examples include AMIE+
(Galarraga et al., 2015), ScalLeKB (Chen et al., 2016),
RuLES (Dong et al., 2018), AnyBURL (Meilicke et al.,
2019), DRUM (Sadeghian et al., 2019), RLvVLR (Om-
ran and Tresp, 2019), and RNNLogic (Qu et al., 2021).
These algorithms effectively discover meaningful rules
from KGs, contributing to KG completion by inferring
missing facts based on the learned rules. LCGE extends
previous work on temporal rule learning, which focuses
on mining static rules from knowledge graphs and con-
verting them into dynamic temporal rules (Niu and Li,
2023).

3 Methodology

In this section, we introduce two key contributions:
a dual-representation approach and a contrastive loss
function, as demonstrated in Figure 1. The dual-
representation approach integrates time-sensitive and
time-independent representations to capture both tempo-
ral dynamics and commonsense knowledge, enhancing
the model’s ability to evaluate event plausibility. The
contrastive loss function maximizes the agreement be-
tween positive event pairs while ensuring distinct rep-
resentations for negative pairs, improving the model’s
robustness and accuracy.

3.1 Preliminaries

A temporal knowledge graph (TKG) is a representation
that captures events along with their associated temporal
information. In a TKG, each event is represented as a
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Figure 2: Model Framework of DDP and DDPC, using dual-dynamic perspectives for embeddings and
perturbation-based contrastive learning to enhance temporal knowledge graph completion performance.

quadruple (s, p, o,t), where s, o, p, t denotes the sub-
ject of the event, the object of the event, the predicate
or relationship between the subject and object, and the
timestamp or time interval corresponding to the occur-
rence of the event, respectively. In cases where an event
is associated with a time interval [ts¢q,t, tenq] instead of
a single timestamp, the event can be decomposed into
two distinct event quadruples: (s, p, 0, tstart), signify-
ing the start of the event, and (s, p, 0, tenq), representing
the end of the event. This decomposition allows for a
consistent representation of all events using a single
timestamp ¢ while still capturing the temporal span of
events that occur over a period of time.

3.1.1 Rule-based Data Preparation

In this study, we adopt the temporal rule learning ap-
proach proposed by Niu and Li, 2023, which consists of
a static-to-dynamic strategy to mine temporal rules with
diverse patterns. The process involves two main stages:
static rule learning and dynamic rule learning. During
the static rule learning stage, the temporal information
of each event in the training set is masked, converting
the quadruple events into triples. These triples form a
global static knowledge graph (GSKG). Static rules are
then mined from the GSKG using an existing rule learn-
ing algorithm, such as AMIE+ (Galarraga et al., 2015)
or AnyBURL (Meilicke et al., 2019). The dynamic rule
learning stage extends the static rules into temporal rules
by incorporating five well-designed temporal rule pat-
terns based on the temporal sequences among the atoms.
These patterns capture various relationships between

events occurring at different timestamps. The temporal
rule patterns are defined as follows:

1. If p1(e1, e2) holds at time ¢, then ps(eq, ex) will
hold at time ¢ + ¢7.

2. If p1(e1, e2) holds at time ¢, then pa(eq, ea) will
also hold at the same time ¢.

3. If p1(eq, e3) holds at time ¢ and pa(es, e2) holds
at time ¢ + 1, then p3(eq, e2) will hold at time
t+t + to.

4. If py(e1,e3) and po(es, e2) both hold at time ¢,
then p3(eq, e2) will hold at time ¢ + ¢;.

5. If pi(e1,es) and pa(es, ea) both hold at time ¢,
then ps(eq, e2) will also hold at the same time ¢.

, where p represents predicates that describe the type of
relationship between entities, e1, es, and e3 are entities,
and ¢ denotes the times. The quality of the candidate
temporal rules is evaluated using the support degree
(SD), standard confidence (SC), and head coverage (HC)
metrics, calculated by searching for events that satisfy
the grounding of each rule. Temporal rules that meet
the predefined thresholds of SC and HC are retained for
the subsequent data preparation process.

Then, we employ the temporal rule-guided predicate
embedding regularization (RGPR) mechanism (Niu and
Li, 2023) to enhance the data preparation process for
our proposed model. The RGPR mechanism leverages



temporal rules mined from the knowledge graph to in-
ject the causality among events into predicate embed-
dings, providing valuable information for improving the
model’s performance. The RGPR mechanism is based
on the temporal rules obtained from the temporal rule
learning module, which discovers meaningful tempo-
ral dependencies among events in the knowledge graph.
These temporal rules are represented in the form of
Horn clauses, capturing the causal relationships between
events occurring at different timestamps. To apply the
RGPR mechanism on each rule pattern, a time transfer
operator 1" is defined to ensure that all the atoms in a rule
are represented at the same time when calculating their
correlations, and RGPR will guide the predicate em-
bedding regularization. For instance, for the temporal
rule pattern ps (e, e2,t + t1) < pi(e1, e2,t) (namely,
if p1(e1, e2) holds at time ¢, then po(eq, e2) will hold at
time ¢ + t1.), the regularization term is defined as:

GZ'(TOPTI)_pr2| (1)

, where p,1 and p,o are the embeddings of predicates
p1 and po, respectively. We aim to infuse the predicate
embeddings with the causal information captured by
the temporal rules. This enhanced representation of
predicates is expected to improve the model’s ability
to reason about the temporal dependencies and causal
relationships present in the knowledge graph, ultimately
leading to better performance on downstream tasks.

3.2 Dual Perspective Scoring

To effectively represent events in a temporal knowledge
graph and evaluate their plausibility, we propose an
approach that leverages both time-sensitive and time-
independent representations deriving from predicates.
The time-sensitive representation captures the tempo-
ral dynamics of events, while the time-independent
representation incorporates commonsense knowledge.
By combining these complementary representations,
our approach enables a comprehensive understanding
of events, considering both temporal and common-
sense aspects, leading to improved performance in var-
ious tasks such as event prediction and temporal rea-
soning. To learn the time-sensitive representation of
events, inspired by the TKGE model TComplEx (Tim-
othée Lacroix and Usunier, 2020), we learn the time-
liness of each event embodied with the timestamp via
fourth-order tensor decomposition. Besides, the causal-
ity among events can be represented via our RGPR
mechanism together with the subject and object embed-
dings. Given an event quadruple (s, p, o, t), the time-
sensitive score function is defined as:

d

Ea(s,p,0,t) = R <Z[5}i “[pot+prli- Mi) @
i=1

To learn the time-independent representation of com-

monsense associated with events, the timestamp in

each event is masked to convert the event quadruple

(s,p, 0,t) into the factual triple (s, p, 0). Motivated by
some typical commonsense KGs such as ConceptNet
(Robert Speer and Havasi, 2017), commonsense is rep-
resented as two concepts linked by a predicate. There-
fore, we score each event in the view of commonsense
via the learnable concept and predicate embeddings
together with the proposed time-independent score func-
tion based on commonsense:

c]1> 3)

E (S p,0) = <Z[SC i
, and o. € C* represent

where s, € C*, p, € C*
the concept embeddings in the k-dimensional complex
vector space with regard to the subject s, predicate p,
and object o, respectively. Particularly, k& should be set
smaller than d to enhance the abstract feature of entity
concept embeddings.

Finally, the hybrid scoring is concatenated from the
time-sensitive score F'1 and the time-independent score
E2 with weights k1 and k2 to form the final score E:

>

meM

Ey(s,p,o0,t) = (s,p,0,t) “4)

, where M is the set that includes the individual em-
bedding functions, and w,, is the weight assigned to
each function m in the set M. Specifically, this set A/
includes the semantic embedding function E; and the
dynamic embedding function E;. The semantic em-
bedding function, denoted as F(s, p, 0), captures the
semantic relationships between the subject s, predicate
p, and object 0. On the other hand, the dynamic em-
bedding function, F4(s, p, 0,t), incorporates temporal
dynamics by considering the interaction between the
subject, predicate, object, and time t. By summing
these functions with their respective weights w,,,, the
hybrid function Ey; effectively integrates both static
and dynamic aspects, providing a comprehensive repre-
sentation that leverages the strengths of each individual
embedding method.

3.3 Optimization

The optimization process consists of two parts. First,
regular optimization is performed for each embedding to
learn the representations. Second, contrastive learning
is applied to specific embeddings to enhance the learn-
ing process and improve the model’s performance. The
visualized process is displayed in Figure 2, and the over-
all algorithm, which combines these two optimization
techniques, is presented in Algorithm 1.

For the first part, we employ the log-softmax loss
function and N3 regularization to design the optimiza-
tion objective for training:

Ly =aq (|s[3 + [pel3 + |po]3 + lof3)

—log (Z exp(E)) —log (Z exp(E)) ®)

in which L, represents the loss functions for both the
dynamic representation and hybrid representations of



static and dynamic, respectively. E denotes an entity
set that contains all events. «; is defined as the N3
regularization weights corresponding to entity embed-
dings and predicate embeddings, respectively. A is the
weight of commonsense representation in the overall
loss function, which is applied for the trade-off between
the time-sensitive and the time-independent representa-
tions of each event.

Inspired by SimGRACE (Xia et al., 2022), we de-
sign a contrastive loss function based on standard nor-
mal distribution perturbation as an optimizer regularizer.
The goal of this loss function is to maximize the agree-
ment between positive pairs (different views of the same
graph) while minimizing the agreement between nega-
tive pairs (representations of different graphs). Given
a mini-batch of N representations, we generate 2N rep-
resentations by passing the original graph and its per-
turbed version through the encoder. The perturbation is
computed using the following equation:

r :T—|—7’]'Std(7") N(Oal) ©)

where 1 is the perturbed tensor; std(r) is the standard
deviation of the elements in the tensor 7'; A'(0, 1) is
a tensor of random values drawn from a standard nor-
mal distribution with the same shape as r. Then, let
r; and r} represent the representations of the original
and perturbed views of the i-th graph, respectively. The
contrastive loss for the i-th graph, denoted as /;, is cal-
culated as follows:

exp( sim(:—, £ )

S L g exp (SR

where sim(r;, r}) represents the cosine similarity be-
tween two vectors r; and r;, defined as:

i = —log @)

T,/
T

pr— 8
|ril[r} ®

sim(r;, r})

and 7 is a temperature parameter that controls the scal-
ing of the similarities. The total contrastive loss Lo
across the mini-batch is calculated by taking the aver-
age of the individual losses overall positive pairs:

N
_ 1 /
Ly= o ;(& + 1) ©9)

where ¢_i’ represents the loss computed for the per-
turbed view r_i’ with respect to its positive pair r_i. The
overall optimization objective combines the contrastive
loss with the loss for dynamic and hybrid embeddings,
as shown in the following equation:

L= (Li(Eqg+ -Eg) + X La(E))  (10)
in which L represents the loss sum of dynamic and

hybrid embedding, \; is a hyper-parameter that controls
the weight of the hybrid loss, A, is a hyper-parameter

that controls the weight of the hybrid loss, and T denotes
the embedding set of all entities, relations, and times
in the temporal knowledge graph that contains E4, Ey,
and E. Finally, the model is trained using the Adam
optimizer to learn the embedding of entities, predicates,
and timestamps.

Algorithm 1 Optimization Process

1: Input: T (event set), E (entity set), a1, o, A (regu-
larization and loss weights), 7 (temperature param-
eter)

2: Output: The embeddings of entities, relations, and
timestamps.

3: Initialize model parameters

4: for each (s,p,0,t) € T do

5: Compute loss for Ex and E4 (Eq.5)

6: Compute contrastive loss L:

7 for each mini-batch of N representations do

8 Obtain two 2N representations

9 for each graph ¢ in mini-batch do

10: Compute perturbation r; of r; (Eq.6)
11: Compute cosine similarity sim(r;, ;)
12: Compute single contrastive loss (Eq.7)
13: end for

14: Compute total contrastive loss (Eq.9)

15: end for

16: Combine L and A - £ (Eq.10)

17: end for

18: Train model using Adam optimizer to minimize L
19: Update model parameters

20: Repeat from Line 4 until convergence

4 Experiment

In this section, we present the experimental setup, re-
sults, and analysis to evaluate the performance of our
proposed model. We introduce the datasets, evaluation
protocol, baselines, metrics, and implementation details
used in our experiments.

4.1 Datasets

In our experiments, we employ three widely-used tem-
poral knowledge graph (TKG) datasets: ICEWS14
(Garcia-Duran et al., 2018), ICEWS05-15 (Garcia-
Duran et al., 2018), and Wikidatal2k (Dasgupta et al.,
2018). The ICEWS datasets contain political events
with specific timestamps, while Wikidatal2k, a subset
of Wikidata (Erxleben et al., 2014), includes time anno-
tations as either timestamps or time intervals. Following
the standard practice in previous works (Lacroix et al.,
2020; Xu et al., 2020b; Niu and Li, 2023), we split each
dataset into training, validation, and test sets with a ratio
of 80%, 10%, and 10%, respectively. This setup allows
for a comprehensive evaluation of the models’ perfor-
mance on diverse temporal knowledge graphs. Further
information on each dataset is presented in Table 1.



Dataset Time Span  Predicate  Entity Train Valid Test

ICEWS14 2014 230 6,869 | 72,826 8,941 8,963
ICEWSO05-15 | 2005-2015 251 10,094 | 368,962 46,275 46,092
Wikidatal2k | 1479-2018 24 12,554 | 32,497 4,062 4,062

Table 1: Statistics of the experimental datasets, including the time span, number of predicates, entities, and facts
(train, valid, and test sets). The time span indicates the range of years in which the events occur.

4.2 Baselines

To evaluate our model, we compare it with two types
of related baselines: typical Knowledge Graph Embed-
ding (KGE) models without time information, such as
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), RotatE (Sun
et al., 2019), and QuatE (Zhang et al., 2019), which
are widely-used benchmarks to assess our approach’s
effectiveness in capturing temporal information; and
well-performing Temporal Knowledge Graph Embed-
ding (TKGE) models, including TTransE (Leblay and
Chekol, 2018), HyTE (Dasgupta et al., 2018), ATiSE
(Xu et al., 2020a), TeRo (Xu et al., 2020c), TComplEx
(Lacroix et al., 2020), TeLM (Xu et al., 2021), and the
latest state-of-the-art model, LCGE (Xie et al., 2022),
which handle temporal information and have shown
promising results in temporal knowledge graph com-
pletion tasks. Comparing our model with these base-
lines demonstrates its effectiveness in capturing both
temporal and commonsense information for improved
temporal knowledge graph completion performance.

4.3 Experiment Setups

All experiments are conducted using PyTorch on a
GeForce GTX 4090 GPU with a batch size of 1024.
The thresholds for support count (SC) and head cover-
age (HC) in the temporal rule learning algorithm are set
to 0.1 for all datasets. Hyperparameters are tuned using
grid search on the validation sets. For the ICEWS14
dataset, the rank is 2000, embedding regularization is
0.005, temporal regularization is 0.01, rule regulariza-
tion is 0.01, maximum epochs are 500, weight static is
0.1, learning rate is 0.1, and X of Equation 10 is selected
from [10, 2, 1, 0.5, 0.1, 0.05, 0.01]. For ICEWSO05-15,
the rank is 2000, embedding regularization is 0.0025,
temporal regularization is 0.05, rule regularization is 1.0,
maximum epochs are 500, weight static is 0.1, learning
rate is 0.1, and A Equation 10 is selected from [10, 2,
1, 0.5, 0.1, 0.05, 0.01]. For the Wikidatal2k dataset,
the rank is 2000, embedding regularization is 0.2, tem-
poral regularization is 0.5, maximum epochs are 500,
weight static is 0.1 and 0.07, learning rate is 0.1, and A
of Equation 10 is selected from [10, 2, 1, 0.5, 0.1, 0.01].
The Hybrid weight (w) of Equation 4 is set to 1 for all
datasets.

4.4 Evaluation Metrics

The effectiveness of the proposed model is evaluated us-
ing Mean Reciprocal Rank (MRR) and Hits @k, where
k € 1,3,10, for the entity prediction task. Given a

test quadruple (s, p, o, t), the object o is replaced with
candidate entities e;, and a score is computed for each
candidate quadruple using the scoring function:

E(e;) = Ex(s,p,eit) + X Eq(s,p,ei,t)  (11)

Candidate entities are ranked based on their scores, and
MRR and Hits @k are calculated as follows:

In|

1 1
MRR = — — 12
[n| ; rank; 12)

1
Hits@n = Tl Zz = 1" (rank; <n)  (13)
n

, where N is the total number of test instances, ranks is
the rank of the correct entity for the i-th test instance,
and I(ranki < k) is an indicator function. For events
with time intervals in the Wikidatal2k dataset, each
event is converted into two events with timestamps at
the interval’s endpoints during training, and the score is
obtained by averaging the scores of the two events dur-
ing evaluation. Performance improvement is assessed
by Absolute Performance Gain (APG) and Relative Per-
formance Gain (RPG):

APG = Pproposed - Pbaseline (14)

P — P )
RPG = proposed baseline % 100

Pbaseline

(15)

5 Result Analysis

The performance comparison of various models on the
ICEWS14, ICEWS05-15, and Wikidatal2k datasets is
presented in Table 2. The models are evaluated us-
ing four key metrics: Mean Reciprocal Rank (MRR),
Hits@10 (H@10), Hits@3 (H@3), and Hits@1 (H@1).
The results highlight the effectiveness of the proposed
DDP and DDPC models in capturing temporal knowl-
edge graph information. Visualizations of the perfor-
mance on each dataset are demonstrated in Appendix A.
Improvements evaluated by APG and RPG methods are
listed in Table 3.

5.1 Lambda Tuning Report

We conducted a hyperparameter tuning experiment to
determine the optimal value of A for each dataset. The
results are presented in Figures 3, 4, and 5 for [ICEWS 14,
ICEWSO05-15, and Wikidatal2k, respectively. For the
ICEWS 14 dataset (Figure 3), the best performance was
achieved with A = 0.1, resulting in a score of 0.805.



Models ICEWS14 ICEWS05-15 Wikidatal2k

MRR H@10 H@3 H@l |MRR H@I0 H@3 H@l | MRR H@10 H@3 Hel
TransE 0.280 0.637 - 0.094 | 0.294  0.663 - 0.090 | 0.178 0.339 0.192 0.100
DistMult | 0.439  0.672 - 0.323 | 0.456  0.691 - 0.337 | 0.222 0460 0.238 0.119
ComplEx | 0.467 0.716 0.527 0.347 | 0481 0.729 0.535 0.362 | 0233 0436 0253 0.123
RotatE 0418 0.690 0478 0.291 | 0.304 0.595 0.355 0.164 | 0221 0461 0236 0.116
QuatE 0471 0712 0.530 0.353 | 0482 0.727 0.529 0370 | 0230 0416 0.243  0.125
TTransE 0.255 0.601 - 0.047 | 0.271 0.616 - 0.085 | 0.172 0.329 0.185 0.096
HyTE 0.297 0.655 0.416 0.108 | 0.316 0.681 0.445 0.116 | 0253 0.483 0.197 0.147
TeRo 0.562 0.732 0.621 0468 | 0.586 0.795 0.668 0.469 | 0299 0.507 0329 0.198
ATiSE 0.550 0.750 0.629 0436 | 0.519 0.794 0.606 0378 | 0.252 0.462 0.288 0.148
TComplEx | 0.610 0.770  0.660 0.530 | 0.660 0.800 0.710 0.590 | 0.331 0.539 0.357 0.233
TeLM 0.625 0.774 0.673 0.545 | 0.678 0.823 0.728 0.599 | 0.332 0.542 0.360 0.231
LCGE 0.667 0.815 0.714 0.588 | 0.730 0.866 0.776 0.655 | 0.429 0.677 0.495 0.304
DDP 0.712 0.818 0.741 0.658 | 0.792 0.882 0.821 0.742 | 0.453 0.697 0.515 0.331
DDPC 0.805 0.885 0.829 0.762 | 0.905 0.950 0.921 0.879 | 0.497 0.712 0.558 0.3843

Table 2: Performance Comparison of Models on ICEWS14, ICEWS05-15, and Wikidatal2k Datasets. Metrics:
Hits@1 (H1), Hits@3 (H3), and Hits@10 (H10). Results from DDP and DDPC models are listed in bold, and the

previous SOTA results of LCGE are underlined.
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Figure 3: Performance with Differ-
ent A on ICEWS14 Dataset

The scores gradually increased as A decreased from 10
to 0.1, but further reducing A to 0.05 and 0.01 led to a
decline in performance. Similarly, for the ICEWS05-15
dataset (Figure 4), the optimal value of A was found to
be 0.1, yielding a score of 0.905. The scores followed
a similar trend as in ICEWS14, with an increase in
performance as A decreased from 10 to 0.1, followed
by a slight decline when A was further reduced to 0.05
and 0.01. In the case of the Wikidatal2k dataset (Figure

5), the best score of 0.497 was obtained with A = 0.5.

The scores showed a slight improvement as \ decreased
from 10 to 0.5, but setting A to lower values such as 0.1

and 0.01 resulted in a significant drop in performance.

Based on these findings, we recommend setting A to 0.1
for both the ICEWS14 and ICEWSO05-15 datasets, and
to 0.5 for the Wikidatal2k dataset to achieve the best
performance in our experiments.

5.2 Case study on Contrastive Learning Effect

To compare the performance of DDP and DDPC, we
train both models on a temporal knowledge graph
dataset and evaluate their mean reciprocal rank (MRR)

scores over 500 epochs on the Wikidatal2k Dataset.

The training progress and the resulting MRR scores are
visualized in Figure 6. The red curve represents the

2 4
Contrastive Loss Weight

Figure 4: Performance with Differ-
ent A on ICEWS05-15 Dataset

6 8 10 [ 2 4 6 8 10
Contrastive Loss Weight

Figure 5: Performance with Differ-
ent A on Wikidatal2k Dataset

performance of the DDP model, while the blue curve
represents the performance of the DDPC model. As
evident from the graph, both models exhibit a steady
improvement in MRR scores as the number of epochs
increases. However, the DDPC model demonstrates a
faster convergence rate and consistently outperforms
the DDP model throughout the training process. The
perturbation-based contrastive learning mechanism em-
ployed by DDPC helps the model learn more robust
and discriminative representations, leading to better per-
formance in the temporal knowledge graph completion
task.

Furthermore, the DDPC model achieves a higher final
MRR score of approximately 0.497 after 500 epochs,
compared to the DDP model’s final MRR score of 0.453.
This suggests that the incorporation of the contrastive
learning mechanism in DDPC enables the model to
capture more accurate and complete information from
the temporal knowledge graph.

5.3 Best Results Analysis

The results analysis reveals the significant advancements
achieved by the DDP and DDPC models in temporal
knowledge graph completion. The DDP model, which
employs a dynamic-enhanced dual perspective embed-



Metrics / Models ICEWS14 ICEWS05-15 Wikidatal2k

MRR H@l H®@3 H@10 ‘ MRR H@l H®@3 H@10 ‘ MRR H@l H®@3 H®@10
APG /DDP 0.045 0.003 0.027 0.070 | 0.062 0.016 0.045 0.087 | 0.024 0.020 0.020 0.027
RPG(%) / DDP 6.7 0.4 3.8 11.9 8.5 1.8 5.8 13.3 5.59 295  4.04 8.88
APG / DDPC 0.138 0.070 0.115 0.174 | 0.175 0.084 0.145 0.224 | 0.068 0.035 0.063 0.0803
RPG(%) / DDPC | 20.7 8.6 16.1 29.6 24.0 9.7 18.7 342 15.8 5.2 12.7 26.4

Table 3: Performance comparison of the DDP and DDPC models using Absolute Performance Gain (APG) and
Relative Performance Gain (RPG) metrics on the three datasets.
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Figure 6: Comparison of DDP (in red) and DDPC (in
blue) models for temporal knowledge graph completion

ding for scoring, shows notable improvements over es-
tablished baseline models across all datasets. For ex-
ample, in the ICEWS14 dataset, DDP achieves a MRR
of 0.712, surpassing the previous state-of-the-art model
LCGE, which had an MRR of 0.667. Similarly, on the
ICEWSO05-15 dataset, DDP records an MRR of 0.792,
significantly exceeding LCGE’s MRR of 0.730. The
enhancements are also evident in the Hits metrics, with
DDP demonstrating better performance in H@1, H@3,
and H@ 10 across the datasets. The DDPC model, which
integrates contrastive learning on top of the DDP archi-
tecture, further enhances performance, leading to the
best results across all evaluated metrics and datasets.

On the ICEWS14 dataset, DDPC achieves an impres-
sive MRR of 0.805, with H@1, H@3, and H@ 10 values
of 0.762, 0.829, and 0.885, respectively. This trend is
consistently observed in the I[CEWS05-15 and Wiki-
datal2k datasets, where DDPC sets new benchmarks
with MRR values of 0.905 and 0.497, respectively, along
with corresponding improvements in Hits metrics.The
APG and RPG metrics further highlight the effective-
ness of the DDP and DDPC models. For instance, the
APG for DDPC on the ICEWS 14 dataset is 0.138 for
MRR and 0.174 for Hits@ 10, translating to RPG im-
provements of 20.7% and 29.6%, respectively. These
gains are mirrored in the ICEWS05-15 and Wikidatal2k
datasets, underscoring the robustness and superiority of
the DDPC model in capturing and utilizing temporal
information for knowledge graph completion.

The results clearly demonstrate the superiority of
the proposed DDP and DDPC models over previous

state-of-the-art (SOTA) models, such as LCGE. The in-
corporation of dynamic temporal reasoning in the DDP
and DDPC models significantly enhances their ability
to capture and utilize temporal information. Addition-
ally, the use of contrastive learning effectively improves
learning performance, leading to better results across
all evaluated datasets. The improvements in various
metrics suggest that these models are more effective in
ranking the correct entities higher and making accurate
top-k predictions. Consequently, DDP and DDPC pro-
vide a more robust and comprehensive representation
of temporal knowledge graphs compared to existing
methods.

6 Conclusion

In this study, we introduced DDP and DDPC, novel dual-
perspective learning frameworks for temporal knowl-
edge graph completion. These models integrate static
and temporal knowledge using a dual-layer embedding
mechanism and a contrastive learning-enhanced ver-
sion, effectively capturing dynamic changes and time-
invariant properties. A perturbation learning mechanism
was incorporated to enhance robustness to anomalous
data and noise. Experiments on three widely used tem-
poral knowledge graph datasets (ICEWS14, ICEWSO05-
15, and Wikidatal2k) demonstrated the superior perfor-
mance of DDP and DDPC over the previous state-of-the-
art model. The dual-perspective approach, along with
dynamic temporal reasoning and contrastive learning,
significantly improved the models’ ability to capture
and utilize temporal information, leading to better per-
formance across all evaluated metrics. DDP and DDPC
contribute to advancing temporal knowledge graph com-
pletion and offer promising solutions for various down-
stream applications.

Limitations

The current study presents significant advancements in
temporal knowledge graph completion by introducing
innovative dual-layer embedding mechanisms and con-
trastive learning-enhanced frameworks. However, there
are some limitations to consider. One limitation is that
the study does not explore the potential of using large
language models (LLMs) for temporal knowledge graph
completion. Given the remarkable capabilities of LLMs
in various natural language processing tasks, their inclu-
sion could potentially lead to significant improvements



in this domain. By not incorporating LLMs, the study
leaves a gap in understanding their effectiveness com-
pared to the proposed methods.

Another limitation is the study’s primary focus on
developing and evaluating specific embedding and con-
trastive learning techniques. While these techniques
are important, the narrow focus means that other influ-
ential hyperparameters, such as learning rates, regular-
ization parameters, and model architectures, have not
been thoroughly explored. These hyperparameters can
greatly impact the performance and generalizability of
the models. To further optimize model performance,
future research should include a comprehensive tuning
of these hyper-parameters.

Lastly, although the study demonstrates the effective-
ness of the proposed methods across several datasets,
it does not test their generalizability to other types of
temporal knowledge graphs or domains. To gain a more
comprehensive understanding of the models’ robustness
and applicability, it would be beneficial to expand the
evaluation to a broader range of datasets and applica-
tions.

As a result, while the current study makes significant
contributions to temporal knowledge graph completion,
future research should address the limitations by ex-
ploring the potential of LLMs, conducting comprehen-
sive hyper-parameter tuning, and evaluating the models’
generalizability across a wider range of datasets and
domains.
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