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Abstract

Temporal knowledge graph completion has001
made significant progress, but several research002
gaps persist. This study addresses the chal-003
lenges of temporal changes by proposing DDP004
and DDPC, novel dual-perspective learning005
frameworks that integrate static and temporal006
knowledge using a dual-layer embedding mech-007
anism and a contrastive learning-enhanced008
version, respectively. This approach effec-009
tively captures both dynamic changes and time-010
invariant properties of entities and relations,011
optimizing the completeness and accuracy of012
information. Additionally, a perturbation learn-013
ing mechanism is introduced to enhance the014
model’s robustness to anomalous data and noise015
by simulating data perturbations during train-016
ing, improving adaptability and stability in017
changing environments. DDPC achieves state-018
of-the-art results on multiple standard evalua-019
tion datasets, experimentally verifying the ef-020
fectiveness of the proposed theories and meth-021
ods. This study contributes to advancing the022
field of temporal knowledge graph completion023
by developing an innovative framework that024
integrates temporal and static perspectives, en-025
hances robustness, and undergoes rigorous eval-026
uations.027

1 Introduction028

Temporal Knowledge Graphs (TKGs) extend traditional029
Knowledge Graphs by incorporating time information,030
enabling the representation and reasoning over dynamic,031
time-dependent relationships between entities. Tempo-032
ral Knowledge Completion (TKC) is a crucial task in033
TKGs that involves inferring missing facts or relation-034
ships at specific time points or intervals by leveraging035
existing temporal information, ultimately improving the036
accuracy and completeness of the graph.037

Temporal Knowledge Graph Embedding (TKGE)038
models capture temporal dynamics in knowledge graphs039
by incorporating temporal information, allowing for040
the representation of evolving relationships over time.041
Notable TKGE models includeTTransE (Jiang et al.,042
2016), which extends TransE by embedding timestamps;043

Figure 1: An example of coupling TKGE models and
Evolution-based models using causality and timeline

Know-Evolve (Trivedi et al., 2017), which uses a re- 044
current neural network; HyTE (Dasgupta et al., 2018), 045
which employs a hyperplane-based approach; and DE- 046
SimplE (Goel et al., 2020), which adapts SimplE for 047
diachronic data. Additionally, TeMP (Wu et al., 2020) 048
uses tensor decomposition methods for temporal graph 049
completion, and ChronoR (Sadeghian et al., 2021) incor- 050
porates relative temporal order information to improve 051
prediction accuracy. Convolutional-based models have 052
also shown promise in knowledge graph embeddings, 053
utilizing convolutional neural networks (CNNs) to cap- 054
ture local patterns and interactions between entities and 055
relations. ConvE (Dettmers et al., 2018) employs 2D 056
convolutional layers to embed entities and relations into 057
a unified space, while ConvKB (Nguyen et al., 2018) 058
uses convolutional filters to learn features from concate- 059
nated embeddings. More recent models like HypER 060
(Balavzevic et al., 2019) leverage hypernetworks to gen- 061
erate convolutional filters dynamically, and some studies 062
(Shen et al., 2020; Niu and Li, 2023) explore integrating 063
timeline and causality to improve model performance 064
on completion tasks, as shown in Figure 1. 065

Despite the progress in temporal knowledge graph 066
completion, significant research gaps remain. First, the 067
lack of integration between temporal and static knowl- 068
edge graphs hinders the ability to capture the dynamic 069
and time-invariant properties of entities and relations 070
effectively. Second, the robustness of existing models is 071
challenged by anomalous data and noise, necessitating 072
the development of perturbation learning mechanisms to 073
enhance adaptability and stability. Finally, the scarcity 074
of comprehensive evaluations across multiple datasets 075
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makes it difficult to assess the effectiveness and general-076
izability of proposed methods. Addressing these gaps077
by developing innovative frameworks that integrate tem-078
poral and static perspectives, enhance robustness, and079
undergo rigorous evaluations is crucial for advancing080
the field and creating more accurate and reliable models081
for temporal knowledge graph completion. The major082
contributions of this study are listed as follows:083

• We propose a novel Dual Dynamic Perspective084
(DDP) model that integrates static and tempo-085
ral knowledge, utilizing a dual-layer embedding086
mechanism to capture dynamic changes and time-087
invariant properties to optimize the completeness088
and accuracy of information.089

• We introduce a perturbation learning mechanism090
that enhances the model’s robustness to anomalous091
data and noise by simulating data perturbations dur-092
ing training, improving the model’s adaptability,093
stability, and reliability in changing environments,094
and propose a dual Dynamic Dynamic Perspective095
with Contrastive (DDPC) learning model that em-096
ploys such perturbation-based contrastive learning097
mechanism.098

• Our method achieves State-of-the-Art results on099
multiple standard evaluation datasets, experimen-100
tally verifying the effectiveness of our proposed101
theories and methods.102

2 Related Works103

In this section, we review the advancements in temporal104
knowledge graph completion through embedding-based105
models and discuss the emergence of contrastive learn-106
ing techniques, particularly perturbation-based methods,107
in the context of graph data.108

2.1 Embedding-based Models109

Temporal knowledge graph completion (TKGC) has wit-110
nessed significant progress through the development of111
embedding-based models that extend traditional knowl-112
edge graph embeddings to incorporate temporal dynam-113
ics. TTransE (Leblay and Chekol, 2018), TA-DistMult114
(García-Durán et al., 2018), and DE-SimplE (Goel et al.,115
2019) are notable models that employ various tech-116
niques to capture temporal patterns and evolution of117
entities and relations. More advanced models, such118
as ATiSE (Xu et al., 2019), TComplEx (Lacroix et al.,119
2020), and LCGE (Niu and Li, 2023), introduce addi-120
tional mechanisms like temporal regularizers, tensor121
factorization, logical rules, and commonsense knowl-122
edge to enhance temporal reasoning capabilities and123
improve prediction accuracy.124

2.2 Contrastive Learning125

Contrastive learning has become a powerful self-126
supervised representation learning framework, particu-127
larly in computer vision and natural language process-128
ing. In graph data, traditional graph contrastive learning129

(GCL) methods like GraphCL (You et al., 2020) and 130
MVGRL (Hassani and Khasahmadi, 2020) utilize aug- 131
mentations to generate positive pairs for contrastive loss. 132
However, these augmentations often require manual 133
selection or domain-specific knowledge, limiting their 134
scalability and efficiency. SimGRACE (Xia et al., 2022) 135
addresses these challenges by perturbing the graph neu- 136
ral network (GNN) encoder instead of the graph data, 137
generating semantically consistent views without man- 138
ual augmentation selection. Other perturbation strate- 139
gies in contrastive learning, such as feature perturbation 140
(Zhu et al., 2020), structural perturbation (You et al., 141
2021), semantic perturbation (Zhu et al., 2021), and 142
augmentation-free methods like BGRL (Thakoor et al., 143
2021) and MERIT (Jin et al., 2021), have their own lim- 144
itations in terms of computational cost or effectiveness 145
in preserving graph data semantics. 146

2.3 Rule Learning for Knowledge Graph 147
Completion 148

Logic rules are naturally suited for knowledge graph 149
(KG) completion due to the symbolic nature of KGs. 150
Horn rules, a common type of logic rule, take the form 151
a1 ⇐ a2∧a3∧ · · ·∧an, where a1 is the head atom and 152
a2, . . . , an are the body atoms. Various rule learning 153
algorithms have been developed specifically for large- 154
scale KGs, focusing on efficient rule searching and 155
quality evaluation. Notable examples include AMIE+ 156
(Galárraga et al., 2015), ScaLeKB (Chen et al., 2016), 157
RuLES (Dong et al., 2018), AnyBURL (Meilicke et al., 158
2019), DRUM (Sadeghian et al., 2019), RLvLR (Om- 159
ran and Tresp, 2019), and RNNLogic (Qu et al., 2021). 160
These algorithms effectively discover meaningful rules 161
from KGs, contributing to KG completion by inferring 162
missing facts based on the learned rules. LCGE extends 163
previous work on temporal rule learning, which focuses 164
on mining static rules from knowledge graphs and con- 165
verting them into dynamic temporal rules (Niu and Li, 166
2023). 167

3 Methodology 168

In this section, we introduce two key contributions: 169
a dual-representation approach and a contrastive loss 170
function, as demonstrated in Figure 1. The dual- 171
representation approach integrates time-sensitive and 172
time-independent representations to capture both tempo- 173
ral dynamics and commonsense knowledge, enhancing 174
the model’s ability to evaluate event plausibility. The 175
contrastive loss function maximizes the agreement be- 176
tween positive event pairs while ensuring distinct rep- 177
resentations for negative pairs, improving the model’s 178
robustness and accuracy. 179

3.1 Preliminaries 180

A temporal knowledge graph (TKG) is a representation 181
that captures events along with their associated temporal 182
information. In a TKG, each event is represented as a 183
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Figure 2: Model Framework of DDP and DDPC, using dual-dynamic perspectives for embeddings and
perturbation-based contrastive learning to enhance temporal knowledge graph completion performance.

quadruple (s, p, o, t), where s, o, p, t denotes the sub-184
ject of the event, the object of the event, the predicate185
or relationship between the subject and object, and the186
timestamp or time interval corresponding to the occur-187
rence of the event, respectively. In cases where an event188
is associated with a time interval [tstart, tend] instead of189
a single timestamp, the event can be decomposed into190
two distinct event quadruples: (s, p, o, tstart), signify-191
ing the start of the event, and (s, p, o, tend), representing192
the end of the event. This decomposition allows for a193
consistent representation of all events using a single194
timestamp t while still capturing the temporal span of195
events that occur over a period of time.196

3.1.1 Rule-based Data Preparation197

In this study, we adopt the temporal rule learning ap-198
proach proposed by Niu and Li, 2023, which consists of199
a static-to-dynamic strategy to mine temporal rules with200
diverse patterns. The process involves two main stages:201
static rule learning and dynamic rule learning. During202
the static rule learning stage, the temporal information203
of each event in the training set is masked, converting204
the quadruple events into triples. These triples form a205
global static knowledge graph (GSKG). Static rules are206
then mined from the GSKG using an existing rule learn-207
ing algorithm, such as AMIE+ (Galárraga et al., 2015)208
or AnyBURL (Meilicke et al., 2019). The dynamic rule209
learning stage extends the static rules into temporal rules210
by incorporating five well-designed temporal rule pat-211
terns based on the temporal sequences among the atoms.212
These patterns capture various relationships between213

events occurring at different timestamps. The temporal 214
rule patterns are defined as follows: 215

1. If p1(e1, e2) holds at time t, then p2(e1, e2) will 216
hold at time t+ t1. 217

2. If p1(e1, e2) holds at time t, then p2(e1, e2) will 218
also hold at the same time t. 219

3. If p1(e1, e3) holds at time t and p2(e3, e2) holds 220
at time t + t1, then p3(e1, e2) will hold at time 221
t+ t1 + t2. 222

4. If p1(e1, e3) and p2(e3, e2) both hold at time t, 223
then p3(e1, e2) will hold at time t+ t1. 224

5. If p1(e1, e3) and p2(e3, e2) both hold at time t, 225
then p3(e1, e2) will also hold at the same time t. 226

, where p represents predicates that describe the type of 227
relationship between entities, e1, e2, and e3 are entities, 228
and t denotes the times. The quality of the candidate 229
temporal rules is evaluated using the support degree 230
(SD), standard confidence (SC), and head coverage (HC) 231
metrics, calculated by searching for events that satisfy 232
the grounding of each rule. Temporal rules that meet 233
the predefined thresholds of SC and HC are retained for 234
the subsequent data preparation process. 235

Then, we employ the temporal rule-guided predicate 236
embedding regularization (RGPR) mechanism (Niu and 237
Li, 2023) to enhance the data preparation process for 238
our proposed model. The RGPR mechanism leverages 239
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temporal rules mined from the knowledge graph to in-240
ject the causality among events into predicate embed-241
dings, providing valuable information for improving the242
model’s performance. The RGPR mechanism is based243
on the temporal rules obtained from the temporal rule244
learning module, which discovers meaningful tempo-245
ral dependencies among events in the knowledge graph.246
These temporal rules are represented in the form of247
Horn clauses, capturing the causal relationships between248
events occurring at different timestamps. To apply the249
RGPR mechanism on each rule pattern, a time transfer250
operator T is defined to ensure that all the atoms in a rule251
are represented at the same time when calculating their252
correlations, and RGPR will guide the predicate em-253
bedding regularization. For instance, for the temporal254
rule pattern p2(e1, e2, t + t1) ⇐ p1(e1, e2, t) (namely,255
if p1(e1, e2) holds at time t, then p2(e1, e2) will hold at256
time t+ t1.), the regularization term is defined as:257

G = |(T ◦ pr1)− pr2| (1)258

, where pr1 and pr2 are the embeddings of predicates259
p1 and p2, respectively. We aim to infuse the predicate260
embeddings with the causal information captured by261
the temporal rules. This enhanced representation of262
predicates is expected to improve the model’s ability263
to reason about the temporal dependencies and causal264
relationships present in the knowledge graph, ultimately265
leading to better performance on downstream tasks.266

3.2 Dual Perspective Scoring267

To effectively represent events in a temporal knowledge268
graph and evaluate their plausibility, we propose an269
approach that leverages both time-sensitive and time-270
independent representations deriving from predicates.271
The time-sensitive representation captures the tempo-272
ral dynamics of events, while the time-independent273
representation incorporates commonsense knowledge.274
By combining these complementary representations,275
our approach enables a comprehensive understanding276
of events, considering both temporal and common-277
sense aspects, leading to improved performance in var-278
ious tasks such as event prediction and temporal rea-279
soning. To learn the time-sensitive representation of280
events, inspired by the TKGE model TComplEx (Tim-281
othée Lacroix and Usunier, 2020), we learn the time-282
liness of each event embodied with the timestamp via283
fourth-order tensor decomposition. Besides, the causal-284
ity among events can be represented via our RGPR285
mechanism together with the subject and object embed-286
dings. Given an event quadruple (s, p, o, t), the time-287
sensitive score function is defined as:288

Ed(s, p, o, t) = ℜ

(
d∑

i=1

[s]i · [p ◦ t+ pr]i · [o]i

)
(2)289

To learn the time-independent representation of com-290
monsense associated with events, the timestamp in291
each event is masked to convert the event quadruple292

(s, p, o, t) into the factual triple (s, p, o). Motivated by 293
some typical commonsense KGs such as ConceptNet 294
(Robert Speer and Havasi, 2017), commonsense is rep- 295
resented as two concepts linked by a predicate. There- 296
fore, we score each event in the view of commonsense 297
via the learnable concept and predicate embeddings 298
together with the proposed time-independent score func- 299
tion based on commonsense: 300

Es(s, p, o) = ℜ

(
k∑

i=1

[sc]i · [pc]i · [oc]i

)
(3) 301

where sc ∈ Ck, pc ∈ Ck, and oc ∈ Ck represent 302
the concept embeddings in the k-dimensional complex 303
vector space with regard to the subject s, predicate p, 304
and object o, respectively. Particularly, k should be set 305
smaller than d to enhance the abstract feature of entity 306
concept embeddings. 307

Finally, the hybrid scoring is concatenated from the 308
time-sensitive score E1 and the time-independent score 309
E2 with weights k1 and k2 to form the final score E: 310

EH(s, p, o, t) =
∑
m∈M

wmEm(s, p, o, t) (4) 311

, where M is the set that includes the individual em- 312
bedding functions, and wm is the weight assigned to 313
each function m in the set M . Specifically, this set M 314
includes the semantic embedding function Es and the 315
dynamic embedding function Ed. The semantic em- 316
bedding function, denoted as Es(s, p, o), captures the 317
semantic relationships between the subject s, predicate 318
p, and object o. On the other hand, the dynamic em- 319
bedding function, Ed(s, p, o, t), incorporates temporal 320
dynamics by considering the interaction between the 321
subject, predicate, object, and time t. By summing 322
these functions with their respective weights wm, the 323
hybrid function EH effectively integrates both static 324
and dynamic aspects, providing a comprehensive repre- 325
sentation that leverages the strengths of each individual 326
embedding method. 327

3.3 Optimization 328

The optimization process consists of two parts. First, 329
regular optimization is performed for each embedding to 330
learn the representations. Second, contrastive learning 331
is applied to specific embeddings to enhance the learn- 332
ing process and improve the model’s performance. The 333
visualized process is displayed in Figure 2, and the over- 334
all algorithm, which combines these two optimization 335
techniques, is presented in Algorithm 1. 336

For the first part, we employ the log-softmax loss 337
function and N3 regularization to design the optimiza- 338
tion objective for training: 339

L1 =α1

(
|s|33 + |pt|33 + |pr|33 + |o|33

)
− log

(∑
exp(E)

)
− log

(∑
exp(E)

) (5) 340

in which L1 represents the loss functions for both the 341
dynamic representation and hybrid representations of 342
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static and dynamic, respectively. E denotes an entity343
set that contains all events. α1 is defined as the N3344
regularization weights corresponding to entity embed-345
dings and predicate embeddings, respectively. λ is the346
weight of commonsense representation in the overall347
loss function, which is applied for the trade-off between348
the time-sensitive and the time-independent representa-349
tions of each event.350

Inspired by SimGRACE (Xia et al., 2022), we de-351
sign a contrastive loss function based on standard nor-352
mal distribution perturbation as an optimizer regularizer.353
The goal of this loss function is to maximize the agree-354
ment between positive pairs (different views of the same355
graph) while minimizing the agreement between nega-356
tive pairs (representations of different graphs). Given357
a mini-batch of N representations, we generate 2N rep-358
resentations by passing the original graph and its per-359
turbed version through the encoder. The perturbation is360
computed using the following equation:361

r′ = r + η · std(r) · N (0, 1) (6)362

where r′ is the perturbed tensor; std(r) is the standard363
deviation of the elements in the tensor T ; N (0, 1) is364
a tensor of random values drawn from a standard nor-365
mal distribution with the same shape as r. Then, let366
ri and r′i represent the representations of the original367
and perturbed views of the i-th graph, respectively. The368
contrastive loss for the i-th graph, denoted as ℓi, is cal-369
culated as follows:370

ℓi = − log
exp(

sim(ri,r
′
i)

τ )∑2N
i′=1 1[i′ ̸=i] exp(

sim(ri,ri′ )
τ )′

(7)371

where sim(ri, r
′
i) represents the cosine similarity be-372

tween two vectors ri and r′i, defined as:373

sim(ri, r
′
i) =

r⊤i r
′
i

|ri||r′i|
(8)374

and τ is a temperature parameter that controls the scal-375
ing of the similarities. The total contrastive loss L2376
across the mini-batch is calculated by taking the aver-377
age of the individual losses overall positive pairs:378

L2 =
1

2N

N∑
i=1

(ℓi + ℓ′i) (9)379

where ℓ_i′ represents the loss computed for the per-380
turbed view r_i′ with respect to its positive pair r_i. The381
overall optimization objective combines the contrastive382
loss with the loss for dynamic and hybrid embeddings,383
as shown in the following equation:384

L =
∑

(L1(Ed + ·EH) + λ · L2(E)) (10)385

in which L represents the loss sum of dynamic and386
hybrid embedding, λ1 is a hyper-parameter that controls387
the weight of the hybrid loss, λ2 is a hyper-parameter388

that controls the weight of the hybrid loss, and T denotes 389
the embedding set of all entities, relations, and times 390
in the temporal knowledge graph that contains Ed, EH , 391
and E. Finally, the model is trained using the Adam 392
optimizer to learn the embedding of entities, predicates, 393
and timestamps. 394

Algorithm 1 Optimization Process

1: Input: T (event set), E (entity set), α1, α2, λ (regu-
larization and loss weights), τ (temperature param-
eter)

2: Output: The embeddings of entities, relations, and
timestamps.

3: Initialize model parameters
4: for each (s, p, o, t) ∈ T do
5: Compute loss for EH and Ed (Eq.5)
6: Compute contrastive loss L:
7: for each mini-batch of N representations do
8: Obtain two 2N representations
9: for each graph i in mini-batch do

10: Compute perturbation r′i of ri (Eq.6)
11: Compute cosine similarity sim(ri, rj)
12: Compute single contrastive loss (Eq.7)
13: end for
14: Compute total contrastive loss (Eq.9)
15: end for
16: Combine L and λ · L (Eq.10)
17: end for
18: Train model using Adam optimizer to minimize L
19: Update model parameters
20: Repeat from Line 4 until convergence

4 Experiment 395

In this section, we present the experimental setup, re- 396
sults, and analysis to evaluate the performance of our 397
proposed model. We introduce the datasets, evaluation 398
protocol, baselines, metrics, and implementation details 399
used in our experiments. 400

4.1 Datasets 401

In our experiments, we employ three widely-used tem- 402
poral knowledge graph (TKG) datasets: ICEWS14 403
(García-Durán et al., 2018), ICEWS05-15 (García- 404
Durán et al., 2018), and Wikidata12k (Dasgupta et al., 405
2018). The ICEWS datasets contain political events 406
with specific timestamps, while Wikidata12k, a subset 407
of Wikidata (Erxleben et al., 2014), includes time anno- 408
tations as either timestamps or time intervals. Following 409
the standard practice in previous works (Lacroix et al., 410
2020; Xu et al., 2020b; Niu and Li, 2023), we split each 411
dataset into training, validation, and test sets with a ratio 412
of 80%, 10%, and 10%, respectively. This setup allows 413
for a comprehensive evaluation of the models’ perfor- 414
mance on diverse temporal knowledge graphs. Further 415
information on each dataset is presented in Table 1. 416
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Dataset Time Span Predicate Entity Train Valid Test
ICEWS14 2014 230 6,869 72,826 8,941 8,963
ICEWS05-15 2005-2015 251 10,094 368,962 46,275 46,092
Wikidata12k 1479-2018 24 12,554 32,497 4,062 4,062

Table 1: Statistics of the experimental datasets, including the time span, number of predicates, entities, and facts
(train, valid, and test sets). The time span indicates the range of years in which the events occur.

4.2 Baselines417

To evaluate our model, we compare it with two types418
of related baselines: typical Knowledge Graph Embed-419
ding (KGE) models without time information, such as420
TransE (Bordes et al., 2013), DistMult (Yang et al.,421
2015), ComplEx (Trouillon et al., 2016), RotatE (Sun422
et al., 2019), and QuatE (Zhang et al., 2019), which423
are widely-used benchmarks to assess our approach’s424
effectiveness in capturing temporal information; and425
well-performing Temporal Knowledge Graph Embed-426
ding (TKGE) models, including TTransE (Leblay and427
Chekol, 2018), HyTE (Dasgupta et al., 2018), ATiSE428
(Xu et al., 2020a), TeRo (Xu et al., 2020c), TComplEx429
(Lacroix et al., 2020), TeLM (Xu et al., 2021), and the430
latest state-of-the-art model, LCGE (Xie et al., 2022),431
which handle temporal information and have shown432
promising results in temporal knowledge graph com-433
pletion tasks. Comparing our model with these base-434
lines demonstrates its effectiveness in capturing both435
temporal and commonsense information for improved436
temporal knowledge graph completion performance.437

4.3 Experiment Setups438

All experiments are conducted using PyTorch on a439
GeForce GTX 4090 GPU with a batch size of 1024.440
The thresholds for support count (SC) and head cover-441
age (HC) in the temporal rule learning algorithm are set442
to 0.1 for all datasets. Hyperparameters are tuned using443
grid search on the validation sets. For the ICEWS14444
dataset, the rank is 2000, embedding regularization is445
0.005, temporal regularization is 0.01, rule regulariza-446
tion is 0.01, maximum epochs are 500, weight static is447
0.1, learning rate is 0.1, and λ of Equation 10 is selected448
from [10, 2, 1, 0.5, 0.1, 0.05, 0.01]. For ICEWS05-15,449
the rank is 2000, embedding regularization is 0.0025,450
temporal regularization is 0.05, rule regularization is 1.0,451
maximum epochs are 500, weight static is 0.1, learning452
rate is 0.1, and λ Equation 10 is selected from [10, 2,453
1, 0.5, 0.1, 0.05, 0.01]. For the Wikidata12k dataset,454
the rank is 2000, embedding regularization is 0.2, tem-455
poral regularization is 0.5, maximum epochs are 500,456
weight static is 0.1 and 0.07, learning rate is 0.1, and λ457
of Equation 10 is selected from [10, 2, 1, 0.5, 0.1, 0.01].458
The Hybrid weight (w) of Equation 4 is set to 1 for all459
datasets.460

4.4 Evaluation Metrics461

The effectiveness of the proposed model is evaluated us-462
ing Mean Reciprocal Rank (MRR) and Hits@k, where463
k ∈ 1, 3, 10, for the entity prediction task. Given a464

test quadruple (s, p, o, t), the object o is replaced with 465
candidate entities ei, and a score is computed for each 466
candidate quadruple using the scoring function: 467

E(ei) = EH(s, p, ei, t) + λ · Ed(s, p, ei, t) (11) 468

Candidate entities are ranked based on their scores, and 469
MRR and Hits@k are calculated as follows: 470

MRR =
1

|n|

|n|∑
i=1

1

ranki
(12) 471

472

Hits@n =
1

|n|
∑

i = 1|n|1(ranki ≤ n) (13) 473

, where N is the total number of test instances, ranki is 474
the rank of the correct entity for the i-th test instance, 475
and I(ranki ≤ k) is an indicator function. For events 476
with time intervals in the Wikidata12k dataset, each 477
event is converted into two events with timestamps at 478
the interval’s endpoints during training, and the score is 479
obtained by averaging the scores of the two events dur- 480
ing evaluation. Performance improvement is assessed 481
by Absolute Performance Gain (APG) and Relative Per- 482
formance Gain (RPG): 483

APG = Pproposed − Pbaseline (14) 484
485

RPG =
Pproposed − Pbaseline

Pbaseline
× 100 (15) 486

5 Result Analysis 487

The performance comparison of various models on the 488
ICEWS14, ICEWS05-15, and Wikidata12k datasets is 489
presented in Table 2. The models are evaluated us- 490
ing four key metrics: Mean Reciprocal Rank (MRR), 491
Hits@10 (H@10), Hits@3 (H@3), and Hits@1 (H@1). 492
The results highlight the effectiveness of the proposed 493
DDP and DDPC models in capturing temporal knowl- 494
edge graph information. Visualizations of the perfor- 495
mance on each dataset are demonstrated in Appendix A. 496
Improvements evaluated by APG and RPG methods are 497
listed in Table 3. 498

5.1 Lambda Tuning Report 499

We conducted a hyperparameter tuning experiment to 500
determine the optimal value of λ for each dataset. The 501
results are presented in Figures 3, 4, and 5 for ICEWS14, 502
ICEWS05-15, and Wikidata12k, respectively. For the 503
ICEWS14 dataset (Figure 3), the best performance was 504
achieved with λ = 0.1, resulting in a score of 0.805. 505
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Models ICEWS14 ICEWS05-15 Wikidata12k
MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

TransE 0.280 0.637 - 0.094 0.294 0.663 - 0.090 0.178 0.339 0.192 0.100
DistMult 0.439 0.672 - 0.323 0.456 0.691 - 0.337 0.222 0.460 0.238 0.119
ComplEx 0.467 0.716 0.527 0.347 0.481 0.729 0.535 0.362 0.233 0.436 0.253 0.123
RotatE 0.418 0.690 0.478 0.291 0.304 0.595 0.355 0.164 0.221 0.461 0.236 0.116
QuatE 0.471 0.712 0.530 0.353 0.482 0.727 0.529 0.370 0.230 0.416 0.243 0.125
TTransE 0.255 0.601 - 0.047 0.271 0.616 - 0.085 0.172 0.329 0.185 0.096
HyTE 0.297 0.655 0.416 0.108 0.316 0.681 0.445 0.116 0.253 0.483 0.197 0.147
TeRo 0.562 0.732 0.621 0.468 0.586 0.795 0.668 0.469 0.299 0.507 0.329 0.198
ATiSE 0.550 0.750 0.629 0.436 0.519 0.794 0.606 0.378 0.252 0.462 0.288 0.148
TComplEx 0.610 0.770 0.660 0.530 0.660 0.800 0.710 0.590 0.331 0.539 0.357 0.233
TeLM 0.625 0.774 0.673 0.545 0.678 0.823 0.728 0.599 0.332 0.542 0.360 0.231
LCGE 0.667 0.815 0.714 0.588 0.730 0.866 0.776 0.655 0.429 0.677 0.495 0.304

DDP 0.712 0.818 0.741 0.658 0.792 0.882 0.821 0.742 0.453 0.697 0.515 0.331
DDPC 0.805 0.885 0.829 0.762 0.905 0.950 0.921 0.879 0.497 0.712 0.558 0.3843

Table 2: Performance Comparison of Models on ICEWS14, ICEWS05-15, and Wikidata12k Datasets. Metrics:
Hits@1 (H1), Hits@3 (H3), and Hits@10 (H10). Results from DDP and DDPC models are listed in bold, and the
previous SOTA results of LCGE are underlined.

Figure 3: Performance with Differ-
ent λ on ICEWS14 Dataset

Figure 4: Performance with Differ-
ent λ on ICEWS05-15 Dataset

Figure 5: Performance with Differ-
ent λ on Wikidata12k Dataset

The scores gradually increased as λ decreased from 10506
to 0.1, but further reducing λ to 0.05 and 0.01 led to a507
decline in performance. Similarly, for the ICEWS05-15508
dataset (Figure 4), the optimal value of λ was found to509
be 0.1, yielding a score of 0.905. The scores followed510
a similar trend as in ICEWS14, with an increase in511
performance as λ decreased from 10 to 0.1, followed512
by a slight decline when λ was further reduced to 0.05513
and 0.01. In the case of the Wikidata12k dataset (Figure514
5), the best score of 0.497 was obtained with λ = 0.5.515
The scores showed a slight improvement as λ decreased516
from 10 to 0.5, but setting λ to lower values such as 0.1517
and 0.01 resulted in a significant drop in performance.518
Based on these findings, we recommend setting λ to 0.1519
for both the ICEWS14 and ICEWS05-15 datasets, and520
to 0.5 for the Wikidata12k dataset to achieve the best521
performance in our experiments.522

5.2 Case study on Contrastive Learning Effect523

To compare the performance of DDP and DDPC, we524
train both models on a temporal knowledge graph525
dataset and evaluate their mean reciprocal rank (MRR)526
scores over 500 epochs on the Wikidata12k Dataset.527
The training progress and the resulting MRR scores are528
visualized in Figure 6. The red curve represents the529

performance of the DDP model, while the blue curve 530
represents the performance of the DDPC model. As 531
evident from the graph, both models exhibit a steady 532
improvement in MRR scores as the number of epochs 533
increases. However, the DDPC model demonstrates a 534
faster convergence rate and consistently outperforms 535
the DDP model throughout the training process. The 536
perturbation-based contrastive learning mechanism em- 537
ployed by DDPC helps the model learn more robust 538
and discriminative representations, leading to better per- 539
formance in the temporal knowledge graph completion 540
task. 541

Furthermore, the DDPC model achieves a higher final 542
MRR score of approximately 0.497 after 500 epochs, 543
compared to the DDP model’s final MRR score of 0.453. 544
This suggests that the incorporation of the contrastive 545
learning mechanism in DDPC enables the model to 546
capture more accurate and complete information from 547
the temporal knowledge graph. 548

5.3 Best Results Analysis 549

The results analysis reveals the significant advancements 550
achieved by the DDP and DDPC models in temporal 551
knowledge graph completion. The DDP model, which 552
employs a dynamic-enhanced dual perspective embed- 553
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Metrics / Models ICEWS14 ICEWS05-15 Wikidata12k
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

APG / DDP 0.045 0.003 0.027 0.070 0.062 0.016 0.045 0.087 0.024 0.020 0.020 0.027
RPG(%) / DDP 6.7 0.4 3.8 11.9 8.5 1.8 5.8 13.3 5.59 2.95 4.04 8.88

APG / DDPC 0.138 0.070 0.115 0.174 0.175 0.084 0.145 0.224 0.068 0.035 0.063 0.0803
RPG(%) / DDPC 20.7 8.6 16.1 29.6 24.0 9.7 18.7 34.2 15.8 5.2 12.7 26.4

Table 3: Performance comparison of the DDP and DDPC models using Absolute Performance Gain (APG) and
Relative Performance Gain (RPG) metrics on the three datasets.

Figure 6: Comparison of DDP (in red) and DDPC (in
blue) models for temporal knowledge graph completion

ding for scoring, shows notable improvements over es-554
tablished baseline models across all datasets. For ex-555
ample, in the ICEWS14 dataset, DDP achieves a MRR556
of 0.712, surpassing the previous state-of-the-art model557
LCGE, which had an MRR of 0.667. Similarly, on the558
ICEWS05-15 dataset, DDP records an MRR of 0.792,559
significantly exceeding LCGE’s MRR of 0.730. The560
enhancements are also evident in the Hits metrics, with561
DDP demonstrating better performance in H@1, H@3,562
and H@10 across the datasets. The DDPC model, which563
integrates contrastive learning on top of the DDP archi-564
tecture, further enhances performance, leading to the565
best results across all evaluated metrics and datasets.566

On the ICEWS14 dataset, DDPC achieves an impres-567
sive MRR of 0.805, with H@1, H@3, and H@10 values568
of 0.762, 0.829, and 0.885, respectively. This trend is569
consistently observed in the ICEWS05-15 and Wiki-570
data12k datasets, where DDPC sets new benchmarks571
with MRR values of 0.905 and 0.497, respectively, along572
with corresponding improvements in Hits metrics.The573
APG and RPG metrics further highlight the effective-574
ness of the DDP and DDPC models. For instance, the575
APG for DDPC on the ICEWS14 dataset is 0.138 for576
MRR and 0.174 for Hits@10, translating to RPG im-577
provements of 20.7% and 29.6%, respectively. These578
gains are mirrored in the ICEWS05-15 and Wikidata12k579
datasets, underscoring the robustness and superiority of580
the DDPC model in capturing and utilizing temporal581
information for knowledge graph completion.582

The results clearly demonstrate the superiority of583
the proposed DDP and DDPC models over previous584

state-of-the-art (SOTA) models, such as LCGE. The in- 585
corporation of dynamic temporal reasoning in the DDP 586
and DDPC models significantly enhances their ability 587
to capture and utilize temporal information. Addition- 588
ally, the use of contrastive learning effectively improves 589
learning performance, leading to better results across 590
all evaluated datasets. The improvements in various 591
metrics suggest that these models are more effective in 592
ranking the correct entities higher and making accurate 593
top-k predictions. Consequently, DDP and DDPC pro- 594
vide a more robust and comprehensive representation 595
of temporal knowledge graphs compared to existing 596
methods. 597

6 Conclusion 598

In this study, we introduced DDP and DDPC, novel dual- 599
perspective learning frameworks for temporal knowl- 600
edge graph completion. These models integrate static 601
and temporal knowledge using a dual-layer embedding 602
mechanism and a contrastive learning-enhanced ver- 603
sion, effectively capturing dynamic changes and time- 604
invariant properties. A perturbation learning mechanism 605
was incorporated to enhance robustness to anomalous 606
data and noise. Experiments on three widely used tem- 607
poral knowledge graph datasets (ICEWS14, ICEWS05- 608
15, and Wikidata12k) demonstrated the superior perfor- 609
mance of DDP and DDPC over the previous state-of-the- 610
art model. The dual-perspective approach, along with 611
dynamic temporal reasoning and contrastive learning, 612
significantly improved the models’ ability to capture 613
and utilize temporal information, leading to better per- 614
formance across all evaluated metrics. DDP and DDPC 615
contribute to advancing temporal knowledge graph com- 616
pletion and offer promising solutions for various down- 617
stream applications. 618

Limitations 619

The current study presents significant advancements in 620
temporal knowledge graph completion by introducing 621
innovative dual-layer embedding mechanisms and con- 622
trastive learning-enhanced frameworks. However, there 623
are some limitations to consider. One limitation is that 624
the study does not explore the potential of using large 625
language models (LLMs) for temporal knowledge graph 626
completion. Given the remarkable capabilities of LLMs 627
in various natural language processing tasks, their inclu- 628
sion could potentially lead to significant improvements 629
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in this domain. By not incorporating LLMs, the study630
leaves a gap in understanding their effectiveness com-631
pared to the proposed methods.632

Another limitation is the study’s primary focus on633
developing and evaluating specific embedding and con-634
trastive learning techniques. While these techniques635
are important, the narrow focus means that other influ-636
ential hyperparameters, such as learning rates, regular-637
ization parameters, and model architectures, have not638
been thoroughly explored. These hyperparameters can639
greatly impact the performance and generalizability of640
the models. To further optimize model performance,641
future research should include a comprehensive tuning642
of these hyper-parameters.643

Lastly, although the study demonstrates the effective-644
ness of the proposed methods across several datasets,645
it does not test their generalizability to other types of646
temporal knowledge graphs or domains. To gain a more647
comprehensive understanding of the models’ robustness648
and applicability, it would be beneficial to expand the649
evaluation to a broader range of datasets and applica-650
tions.651

As a result, while the current study makes significant652
contributions to temporal knowledge graph completion,653
future research should address the limitations by ex-654
ploring the potential of LLMs, conducting comprehen-655
sive hyper-parameter tuning, and evaluating the models’656
generalizability across a wider range of datasets and657
domains.658
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